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All unrestricted HF /DFT calculations have been performed from the Orca 5.0.0 package
within the def2-QZVPPD basis set for GMTKNb)H5 subsets and def2-QZVP for TMC151

subset. For a small number of reactions when this basis was too expensive, we settled for:

e def2-QZVPP - for the ISOL24 and C60ISO sets.

o def2-TZVPP - for the UPU23 set.
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FIG. S1: Optimal MAD for all subsets of GMTKN55 and TMC151 computed using the
three optimization strategies, shown as a function of set size. Results are shown for XYGy

and XYG7 models, with the number of parameters indicated by subscripts in the legend.

o def2-TZVP - for the two MOR reactions involving "ed24”, ”ed25”, "pcy3”, "pr24”,

"pr25” molecules

Furthermore, we have used RIJCOSX for approximating Coulomb and HF Exchange
in our calculations and ”TightSCF” Orca keyword for tight SCF convergences. For larger
elements, when appropriate, we have used: def2-ECP effective core potentials (associated
with the def2- basis set family).

For the optimization of for each DFA considered, we employ three strategies to optimize

the MAD as a function of input parameters:

1. Multi: Scipy’s scipy.optimize.minimize function was utilized, employing the default
BFGS algorithm in tandem with our multiple-seed strategy. This strategy uses the
optimization from various initial seeds, incorporating both a set of statically defined
seeds and dynamically generated pseudo-random seeds. For the static seeds, each
parameter in {a;,...,ay} is set to one of the values in {0.125,0.25,0.75,1.0}. Ad-
ditionally, M dynamically pseudo-random generated seeds are used, with the default

M = 10 found to be sufficient for the robustness of the optimization process.

2. IWLS: TIterative re-Weighted Least Squares (IWLS) is used to optimize the MAD.
This involves iterating a weighted least squares problem: ¢ = (XTW(i_l)X +
107°T) ' X"W=DY where X and Y are the usual matrices used for least squares

minimizaion of, 3, |yx — Xic|? = tr[(Y — Xc)T(Y — Xc)]; and W is a digaonal
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matrix with elements 1/ max(10~4, |y, — Xc®|), i.e. one over the absolute error. The

numbers 1075 and 10~ are regularisation parameters to aid in convergence.

3. Quick: A crude least squares fit is first used to minimize the RMSD as a guess for the
MAD, and then scipy.optimize.minimize is used to refine the guess. This approach is

only used during the training of T100.

The effectiveness of our strategies can be seen in practice. Theoretically, Tja; should
never be less than zero. The occurrence of Tia; < 1 would therefore suggest that the
optimization of a a DFA trained on dataset “j” is not optimal and that a lower minimum
can be found. However, in practice, instances of 7;; < 1 were never observed (even for
large matrices), evidencing the robustness of our multiple-seed optimization strategy in
identifying optimal DFA parameters. As further evidence, Figure S1 shows that Multi
and IWLS are indistinguishable in performance for datasets with more than 10 elements
(covering all considered in detail in this work) so may be used interchangeably. For larger

sets, Quick (only used to optimize T100) is also indistinguishable from the more robust

but slower approaches.

S2. BREEDING OF “PRETTY TRANSFERABLE” BENCHSETS

In the main text, we formulate and motivate [see eq. (1) and eq. (last) and surrounding
discussion] the unitless transferability of A to B and mean transferabilities of set A:

MADgaap + 1
MADgeBy + 7

- 1
Tp(A) = - Z TB@A;p (Sl)
BeTM+Org.

TB@A;p -

T measures the error on set B when optimized on A (B@QA) versus its minimum error when
optimized on itself (B@B). n = 0.01 kcal/mol regularizes results for small energies. T is
the mean of this error over all 58 subsets of TM+Org.. Here, p indicates the number of
parameters used in the optimization.

A random set involves 100 processes selected at random out of the 1656 processes of
GMTKN55+TMC151, and we create Npjia = 1000 of these. Ty(randp) will serve
as our metric for breeding the pretty transferable sets, PT g from randi — i.e. we use
transferability on XYG;. We therefore also define C7 := N, | gi:”ifi‘"“ Ty (randp) to be the

mean transferability obtained by chance, which we use as a normalizing factor.

S4



Our goal is to construct 20 pretty transferable sets, via the following algorithm:

1. From the random sets, {randpg}, select the sets with the Ngyvive = 100 lowest values

of T%, to form a breeding pool, {breed}.
2. Breed {breedg} to create a single pretty transferable set:

(a) Select the best [smallest Ty(breedp)] set, breed,, from the breeding pool, and

another set, breedgs, at random from the rest of the breeding pool;

(b) Breed a new set, breed.,, that contains all Ng processes shared by breed, and
breedg, and fills the remaining 100 — Ng processes by random selection from

unshared elements of breed, and breedg;

(c) Replace the worst [largest T7(breedp)] set in the breeding pool by breed.,, or
leave the list unchanged if T7(breed,) is higher;

(d) Repeat from step 2a for up to Nyeea = 2000 times, or until all T7(breedp) are
within 0.001C% of each other.

3. Define PTx = breed,, set K — K + 1 and repeat from step 1 (resetting the breeding

pool each time) until 20 sets have been created.

The code BreedTransferable.py implements the above algorithm, while the code
PickBest.py implements the second stage of T100’s construction that is described in
the main text. The pool of pretty transferable sets used to select T100 is cached (see
PickBest.py for location) and read by PickBest.py to allow for reproducibility. All files are
provided on the github repository [https://github.com/vuckovic-lab/transferability/]
for this work (see ”"read.ipynb” notebook for pedagogical explanations on how to extract

the data from the code).
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S3. TRANSFERABILITY BETWEEN GMTKN55 AND ORG

TABLE S1: Transferabilities between GMTKN55 and Org (i.e. GMTKN55 with

non-covalent interactions removed) for XYG, with p from one to seven.

XYGq XYGa XYGs XYGy XYGs XYGg XYGr

Torg@GMTKNS5 1.00 1.00 1.00 1.00 1.00 1.01 1.01
TGMTKN55@O0rg 1.00 1.00 1.00 1.00 1.00 1.01 1.01
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S4. TRANSFERABILITY OF FUNCTIONALS TRAINED ON G21IP SET

— XYG ;@G21IP — XYG s@Mindless

— B2PLYP-D3 XYG 3@G21 IP  seses XYG 7Mind|eSS

HEAVY28 h
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FIG. S2: Radial plots displaying MAD [kcal /mol] of selected functionals across different
NCI subsets within the GMTKN55 database. The XYG3@QG21IP functional, trained only
on 21 ionization potentials, performs on par with or better than B2PLYP-D3, despite the
former having no D3 dispersion correction. However, this transferability diminishes when
extending from 3 to 7 parameters. Conversely, XYGy@Mindless functionals maintain

consistent NCI performance as N transitions from 3 to 5.
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S5. FURTHER DETAILS ON THE RESULTS IN FIGURE 1(A)

9 PBE parent
R TEEEY )
p— /0"
o /,
E o -
© _
R, ="
<Dt > ::—"" —_———————— g ————-———"0
= ———— o EDE—
0 T T T T T , :
1 2 3 4 5 6 7
Trained on N parameters
(a) PBE parent
° r2SCAN parent
— .” ~
©° /// °®
E o -
¢
§ ol
— ————”
2 3— X‘-’ =0~
A e S S e
o o

1 2 3 4 5 6 7
Trained on N parameters

(b) 12SCAN parents

FIG. S3: Same as figure 1(a), but with PBE and r?*SCAN parents, purple represents
reactions energies (R), while teal color represents barriers (B): purple line with purple
beads represents R@QR, purple line with teal beads represents R@B, teal line with purple
beads represents B@QR, teal line with teal beads represents BQR.
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S6. FURTHER DETAILS ON THE RESULTS IN FIGURE 1(C)
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FIG. S4: Same as Figure 1(c), but for all number of parameters between 1 and 7.
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FIG. S5: Same as Figure S4, but for PBE parent.
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T with 1 params T with 2 params T with 3 params
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FIG. S7: Transferability matrices for reaction and barrier subsets of GMTKN55. R@R

and B@QB blocks of the matrices show the intra-reactions and intra-barriers transferability.

R@B blocks show how barriers transfer to reactions. BQR blocks show how reactions

transfer to barriers. 7 set to lkcal/mol as the denominator of the transferability matrix for

a single GMTKNH5 subset becomes very small.
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T with 1 params T with 4 params
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FIG. S8: intra-"Basic” Transferability matrices for the sets belonging to the ”Basic” part
of GMTKNS55. 7 set to 1kcal/mol as the denominator when train only a single subset of
GMTKNS5 can get very small. ”Org. Thermo” represents "W4-11" set.
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T with 1 params T with 4 params
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FIG. S9: Transferability matrices for the sets belonging to the ”inter-NCI” part [first 4
sets] and "intra-NCI” [last 4 sets] of GMTKN55. 7 set to 0.1 kcal/mol.
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T with 1 params T with 4 params
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FIG. S10: Transferability matrices for the ”Set0”, ”Set+", ”Set-" sets with varying number
of parameters within XYGp double hybrid which uses BLYP as a GGA [same as Fig. 1(c)].
7 is set to 0.5 kcal/mol. Set0 includes atomization energies of 45 randomly chosen neutral
molecules from W4-11. Set+ includes atomization energies of 20 randomly chosen neutral
molecules from W4-11 and 25 (randomly chosen) ionization potentials from the G21IP
dataset. Set- includes atomization energies of 20 randomly chosen neutral molecules from

W4-11 and 25 electron affinities from the G21EA dataset (whole G21EA set).
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T with 1 params ) T with 4 params ) T with 7 params
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FIG. S11: (a)-(c): Transferability matrices for the "Big”, ”Small” sets with varying number

of parameters within XYGp double hybrid which uses BLYP as a GGA [same as Fig. 1(c)].

7 is set to 0.5 kecal/mol. ”Big” includes C60ISO and ISOL24 reaction energies subsets from

GMTKNDB5 (33 reactions in total). ”Small” includes 33 reactions sampled from ”Small54”

set including the ISO34 and PArel reaction energies subsets from GMTKN55 (54 reactions
in total). (d): Boxplots for the sizes of molecules in the "Big” and ”Small54” sets.
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With 1 parameters With 4 parameters With 7 parameters
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FIG. S12: Same as Fig. 1(c), but with MAD gap (kcal/mol) shown in place of Thap.
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FURTHER DETAILS ON THE RESULTS IN FIGURE 2(A)
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FIG. S13: Same as figure 2(a), but with PBE and r2SCAN parents.

The functional form used in Figure S14 is given by:

HF LDA B88 LDA LYP MP2 MP2 PBE
Exc :alEX + agEX + (IgEX + CL4EC + CL5EC + CL6EX 5+ 0,7EX o8 + (ZSEC

(52)

PBE 2SCAN 2SCAN
+ agEC —+ aloEg SC + CLHE(I; SC
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S8. DETAILS ON THE MINDFUL VS. MINDLESS ANALYSIS
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FIG. S15: Same as Figure 2(b), but with varying the ”Mindful” dataset.
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FURTHER DETAILS ON THE RESULTS IN FIGURE 3
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FIG. S17: Same as Figure 3, but with more datasets.
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FIG. S18: Same as Figure 3, but with more datasets. "M AD relative to best’ in kcal/mol

corresponds to the MAD dataset represented by the largest marker.
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FIG. S19: Same as Figure S17, but with a double hybrid functional consisting of different
(m)GGA parts. 'MAD relative to best’ in kcal/mol corresponds to the MAD dataset

represented by the largest marker.
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FIG. S20: Same as Figure S18, but with a double hybrid functional consisting of different
(m)GGA parts. 'MAD relative to best’ in kcal/mol corresponds to the MAD dataset

represented by the largest marker.
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FIG. S21: Same as Figure S17, but with a double hybrid functional consisting of different
(m)GGA parts. '"MAD relative to best’ in kcal/mol corresponds to the MAD dataset

represented by the largest marker.
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FIG. S22: Same as Figure S18, but with a double hybrid functional consisting of different
(m)GGA parts. '"MAD relative to best’ in kcal/mol corresponds to the MAD dataset

represented by the largest marker.

S27



S10. ADDITIONAL DETAILS FOR TM VS ORGANIC CHEMISTRY
TRANSFERABILITY
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FIG. S23: Transferability matrices for selected TMC151 [?TM” label here] and GMTKN55
[7O” label here] sets. OQO and TM@TM blocks of the matrices shows the intra-TMC
and intra-GMTKN55 transferability. OQTM blocks shows how transition metal sets

transfer to organic ones. TM@OQO blocks shows how organic sets transfer to transition

metal ones. 1 set to lkcal/mol as the denominator when train only a single subset of

GMTKNbS5 can get very small.
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S11. ADDITIONAL RESULTS FOR SIE4X4 SET
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FIG. S24: Optimal values for the two-parameter model, XY Gy (markers) for selected
GMTKNDS5 sets. Also shows the MAD (contours, kcal/mol) of SIE4x4 set as a function of

the two parameters, relative to the optimal value.
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FIG. S25: Mean absolute deviation (MAD) for SIE4x4@set, where set is a subset of
GMTKNbS5 for XYGy;. 10 sets that give lowest STE4x4@set MAD are shown. Below each

MAD(kcal/mol)
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bar, the name of @set is shown together with the fraction of exact exchange in XY Gy train
on each individual set. For all shown bars (cases where SIE4x4@set MAD is the lowest),

fraction of exact exchange is always greater than 73 percent.
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S12. ADDITIONAL RESULTS FOR THE ACCURACY OF @T100-BASED
FUNCTIONALS

20 A

Error [kcal/mol]

Acc. Lim. @Non-NCI @T100 ANon-NCI AT100

FIG. S26: Transferability energy (same as Fig. 4) with the B3LYP functional form (still
with HF orbitals), for the non-NCI subsets of GMTKN55. The black ”Acc. Limit”
displays MADs for each non-NCI subset using ”@QSelf” for training. Comparisons are
drawn with results trained on the complete non-NCI GMTKN55 set (blue bar) and the
T100 set (green bar). The final two A bars represent the difference between the full
dataset and ”@Self” training (blue minus black) and T100 and ”@Self” training (green
minus black). The non-NCI portion of GMTKNS55 is selected due to BSLYP’s inability
(lacking MP2 admixture or dispersion corrections) to capture, dispersion interactions,

which are crucial for simulating NCls.
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S13.

DATASETS DESCRIPTION

Alias Name Description Reference

n/a. GMTKN55 Database for general main group chemistry® |1

Org. GMTKNS55 minus NCI GMTKNS55 with noncovalent interaction sets|1
removed

Mindless MB16-43 Mindless set with decomposition energies of ar- |1 and 2
tificial molecules

Mindful DARC? + ISO34P Cheical intuition-based counterpart of Mind- |1
less, combining DARC and ISO34 sets

Org. Difficult P30-5 subset of GMTKN55 Difficult subset of GMTKNG55 3

Diet100 Diet100 Gould’s statistical representation of |4
GMTKNS55 with 100 reactions

n/a G21IP GMTKNS5 subset with adiabatic ionisation |1
potentials

Barriers Barriers - GMTKN55 GMTKNS55 subset with barrier heights com- |1
bining BH76, BHPERI, BHDIV10, INV24,
BHROT?27, PX13, WCPT18 sets

Reactions Reactions - GMTKN55 GMTKNS55 subset with MB16-43, DARC, |1
RSE43, BSR36, CDIE20, ISO34, PArel,
C60IS0O, ISOL24 sets

Org. X Subset of GMTKN55 A subset from GMTKNS55, e.g., Org. Barriers. |1

™ TMC151 Transition metal chemistry set with 151(5
reactions

n/a MORA41 TMC151  subset with 41 closed-shell |5
organometallic reactions

n/a TMD60 TMC151 subset with 60 TM dimer dissocia- |5
tion energies;

n/a TMB50 TMC151 subset with 50 barriers of complexes |5
of secondand third-row transition metals

TM Difficult, TMDiff| Difficult Subset of TMC151 Includes TMD60 + challenging reactions from |5
TMB50 and MOR41

TM+Org. Org + TMC151 Combines Org and TMC151 1and 5

T100 Subset of GMTKN554+TMC151 | Based on transferable diversity principles this work

TABLE S2: Summary of used chemical datasets and their descriptions. Notes: *Reaction
energies of Diels—Alder reactions. PIsomerisation energies of small and medium-sized

organic molecules. “Main group thermochemistry, kinetics, and noncovalent interactions.
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