Photolysis-Driven Bond Activation by Thorium and Uranium Tetraosmate Polyhydride Complexes

Christopher Z. Ye,^a Iker Del Rosal,^b Sheridon N. Kelly,^a I. Joseph Brackbill,^a Laurent Maron,^b Clément Camp,^{*c} and John Arnold^{*a}

^a Department of Chemistry, University of California, Berkeley, California 94720, United States; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

^b LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, Toulouse 31077, France.

^c Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, CNRS, Université Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France.

Supporting Information

Experimental Procedures	\$3-\$5
UV-Vis Spectroscopy	S6
IR Spectroscopy	S7-S8
NMR Spectroscopy	S9-S33
X-ray Crystallography	S34-S37
Computational Section	S38-S58
References	S59

Experimental Procedures

General considerations: Unless otherwise noted, all reactions were performed using standard Schlenk line techniques under an atmosphere of nitrogen, or in an MBraun inert atmosphere glove box under an atmosphere of nitrogen. Glassware and Celite® were stored in an oven at ca. 150 °C for at least 3 h prior to use. Molecular sieves (4 Å) were activated by heating to 200 °C overnight under vacuum prior to storage in a glovebox. NMR spectra were recorded on Bruker AV-600, AV-700, and AV-500 spectrometers. ¹H chemical shifts are given relative to residual solvent peaks and are recorded in units of parts per million (ppm). FT-IR samples were prepared as Nujol mulls pressed between KBr plates, with data collected with a Nicolet iS10 FT-IR spectrometer. Melting points were determined using sealed capillaries prepared under nitrogen on an OptiMelt automated melting point system. Elemental analyses were determined at the Microanalytical Facility at the College of Chemistry, University of California, Berkeley.

Materials: Tetrahydrofuran (THF), toluene, benzene, *n*-hexane, and *n*-pentane were purified by passage through columns of activated alumina and degassed by sparging with dinitrogen. Deuterated solvents were degassed with three freeze-pump-thaw cycles and stored over molecular sieves. Benzylpotassium,¹ Cp*OsH₅,^{2,3} UCl₄,⁴ and ThCl₄(DME)₂⁵ were synthesized according to literature procedures. Mesitylene and fluorobenzene were purchased from commercial sources and stored on molecular sieves. All other chemicals were purchased from commercial sources and used as received.

In-situ generation of K[Cp*OsH₅] (1):

Cp*OsH₅ (5.0 mg, 0.015 mmol, 1.0 equiv.) and benzyl potassium (2.0 mg, 0.015 mmol, 1.0 equiv.) were dissolved in 0.4 mL d₈-THF each, then added together in a J. Young NMR tube and sealed. The colorless and orange solutions immediately become very pale yellow (nearly colorless). Analysis of the solution revealed the quantitative formation of **1** along with toluene. ¹H NMR (500 MHz, THF-*d*₈): δ 2.16 (s, 15H, CH_{3Cp*}), -17.15 (s, 4H, Os–H).

Synthesis of Th{(µ-H4)OsCp*}4 (2-Th):

Cp*OsH₅ (160.4 mg, 0.485 mmol, 4.0 equiv.) and benzyl potassium (63.1 mg, 0.485 mmol, 4.0 equiv.) were added to a 20 mL scintillation vial with THF (4 mL) to generate a solution of K[Cp*OsH₄]. ThCl₄(DME)₂ (67.2 mg, 0.121 mmol, 1.0 equiv.) was dissolved in THF (4 mL) and added to the K[Cp*OsH₄] solution. The colorless solution immediately turned pale yellow and opaque as KCl precipitated out of solution. After stirring at room temperature for 2 h, the solvent was removed *in vacuo*. The crude solid was then triturated with *n*-hexane and the product was extracted with *n*-hexane (8 mL), filtered through Celite, and concentrated (2 mL). This solution was cooled to -40 °C, affording cubic colorless crystals (104.4 mg). A second crop of crystals were grown after concentration of the mother liquor to 1 mL (124.3 mg total, 66% total yield). Mp ca. 190 °C (slow decomp. starting from 110 °C); ¹H NMR (600 MHz, C₆D₆): δ 2.13 (s, 60H, CH_{3Cp*}), -11.01 (s, 16H, Th–H–Os); ¹³C NMR (600 MHz, C₆D₆): δ 92.5 (*C*₅(CH₃)₅), 12.5

(C₅(*C*H₃)₅); IR (Nujol mull on KBr): 1993 (s), 1073 (w), 1034 (m), 863 (m), 560 (m); Anal. Calcd (%) for ThOs₄C₄₀H₇₆: C, 31.00; H, 4.94. Found: C, 31.16; H, 4.93.

Synthesis of U{(µ-H4)OsCp*}4 (2-U):

Cp*OsH₅ (146.8 mg, 0.444 mmol, 4.0 equiv.) and benzyl potassium (59.8 mg, 0.459 mmol, 4.1 equiv.) were added to a 20 mL scintillation vial with THF (4 mL) to generate a solution of K[Cp*OsH₄]. UCl₄ (42.1 mg, 0.111 mmol, 1.0 equiv.) was dissolved in THF (4 mL) and added to the K[Cp*OsH₄] solution. The colorless solution immediately turned bright yellow and opaque as KCl precipitated out of solution. After stirring at room temperature for 2 h, the solvent was removed *in vacuo*. The crude solid was then triturated with *n*-hexane and the product was extracted with *n*-hexane (8 mL), filtered through Celite, and concentrated (2 mL). This solution was cooled to –40 °C, affording cubic yellow crystals (87.6 mg). A second crop of crystals were grown after concentration of the mother liquor to 1 mL (110.7 mg total, 64% total yield). Mp ca. 240 °C (decomp.); ¹H NMR (600 MHz, C₆D₆): δ 89.8 (s, 16H, U–H–Os), 3.65 (s, 60H, CH_{3Cp*}); ¹³C NMR (600 MHz, C₆D₆): δ 114.2 (*C*₅(CH₃)₅), 12.4 (C₅(CH₃)₅); IR (Nujol mull on KBr): 2091 (w), 1990 (s), 1072 (w), 1034 (m), 862 (m), 559 (m); Anal. Calcd (%) for UOs₄C₄₀H₇₆: C, 30.88; H, 4.92. Found: C, 31.21; H, 4.75.

Synthesis of 3-U via photolysis of 2-U:

2-U (38.5 mg, 0.025 mmol) was dissolved in 3 mL benzene and transferred to a Teflon-tap sealed quartz cuvette. The yellow solution was photolyzed for 6 hours, yielding a dark brown solution. After removing the solvent *in vacuo*, the crude solid was extracted with *n*-hexane, filtered, and concentrated to 0.5 mL. This solution was allowed to stand at RT overnight, yielding dark brown crystals (16.7 mg, 43% yield). Mp. 235 °C (slow decomp. starting from 208 °C); ¹H NMR (600 MHz, C₆D₆): δ 55.46 (s, 8H, Cp*Os_a(μ -H)₄), 9.84 (s, 6H, [(CH₂)*M*e₄C₅]Os_c), 1.43 (s, 30H, *Cp**Os_a), -2.44 (s, 15H, *Cp**Os_b), -4.82 (s, 6H, [(CH₂)*M*e₄C₅]Os_c), -89.11 (s, 2H, [(CH₂)Me₄C₅]Os_c); ¹³C NMR (600 MHz, C₆D₆): δ 106.43, 74.34 (*C*H₂), 29.97, 12.75, 7.52, -4.46; IR (Nujol mull on KBr): 1990 (s), 1152 (w), 1072 (w), 1032 (m), 947 (w), 890 (w), 625 (w), 585 (w); Anal. Calcd (%) for UOs₄C₄₀H₇₃•C₆H₁₄: C, 33.71; H, 5.35. Found: Sample 1: C, 33.81; H, 4.97. Sample 2: C, 33.78; H, 5.04.

Synthesis of 3-Th and 4-Th via photolysis of 2-Th:

Complex **2-Th** (29.4 mg, 0.019 mmol) was dissolved in 3 mL benzene and transferred to a Teflontap sealed quartz cuvette. The colorless solution was photolyzed for 6 hours, yielding an orange solution. After removing the solvent *in vacuo*, the crude solid was extracted with *n*-hexane and minimal benzene, filtered, and concentrated to 0.5 mL. This solution was allowed to stand at RT overnight, yielding orange crystals composed of 22% **3-Th** and 78% **4-Th** (mol/mol %) by ¹H NMR (20.4 mg, 66% total yield by Th). Both products consistently co-crystallize in similar ratios across multiple syntheses, and show no evident differences in color. Mp. 215 °C (slow decomp. starting from 182 °C); IR (Nujol mull on KBr): 2009 (s), 1566 (w), 1549 (w), 1152 (w), 1071 (w), 1033 (m), 901 (w), 710 (w), 585 (w); Anal. Calcd (%) for 0.22 ThOs₄C₄₀H₇₀·C₆H₁₄/0.78 ThOs-4C₄₆H₇₄: C, 34.06; H, 4.73. Found: C, 34.29; H, 4.85. Isolation of **3-Th**: A sample of **2-Th** (9.6 mg, 0.006 mmol) was dissolved in 0.75 mL benzene and photolyzed in a sealed J.Young NMR tube for 66.5 hours, then dried *in vacuo*, extracted with *n*-hexane, filtered, and concentrated to 0.5 mL. This solution was allowed to stand at -40 °C overnight, yielding orange crystals of **3-Th** (1.7 mg, 17% yield). The ¹H NMR and ¹³C NMR spectra can be found in Figures S16 and S17.

3-Th: ¹H NMR (700 MHz, C₆D₆): δ 7.98 (d, 1H, H_d), 7.76 (d, 1H, H_c), 7.20 (td, 1H, H_e), 7.07 (m, 2H, H_f/H_f⁻), 2.87 (s, 3H, Cp*_{activ}), 2.79 (s, 3H, Cp*_{activ}), 2.15 (s, 15H, Cp*), 2.13 (s, 15H, Cp*), 1.87 (s, 15H, Cp*), 1.82 (s, 3H, Cp*_{activ}), 1.77 (s, 3H, Cp*_{activ}), 1.37 (d, 1H, H_a), 1.08 (d, 1H, H_b), -8.16 (t, 1H, H_h), -9.80 (s, 3H, H_{hydride}), -10.54 (d, 1H, H_g), -10.84 (s, 1H, H_i), -11.59 (s, 4H, Cp*Os(μ -H)₄Th); ¹³C NMR (600 MHz, C₆D₆): δ 155.0 (Cd), 150.9 (Cc), 136.0 (Cc–C–Cd), 130.1 (Ce), 127.0 (Cf, Cf⁻), 100.4, 93.9, 92.0, 80.3, 79.7, 78.8, 77.4, 77.4, 61.0 (CH_aH_b), 14.0, 13.7, 12.6, 11.8, 11.4, 11.1, 11.1.

Isolation of **4-Th**: A single sample containing 16.1 mg **3-Th** and 13.7 mg **4-Th** was recrystallized from a 1:1 *n*-hexane/benzene solution at -40 °C, yielding 8.2 mg of crystals containing 88% **4-Th** (mol%). The ¹H and ¹³C NMR spectra can be found in Figures S18 and S19.

4-Th: ¹H NMR (600 MHz, C₆D₆) δ 2.89 (s, 6H, Cp*_{activ}.), 2.16 (s, 15H, *Cp**Os(μ -H)₃OsCp*_{activ}.), 2.13 (s, 30H, [*Cp**Os(μ -H)₄]₂Th), 1.77 (s, 6H, Cp*_{activ}.), 1.34 (s, 2H, CH₂–Th), -9.76 (s, 3H, Cp*Os(μ -H)₃OsCp*_{activ}), -11.07 (s, 8H, [Cp*Os(μ -H)₄]₂Th); ¹³C NMR (600 MHz, C₆D₆): δ 103.6 (Cp*_{activ}., ring C), 92.9 ([*C*₅Me₅Os(μ -H)₄]₂Th), 80.9 (*C*₅Me₅Os(μ -H)₃OsCp*_{activ}), 79.7 (Cp*_{activ}., ring C), 77.2 (Cp*_{activ}., ring C), 65.6 (Th–CH₂), 13.8 (Cp*_{activ}., CH₃), 12.4 ([C₅Me₅Os(μ -H)₄]₂Th), 11.7 (C₅Me₅Os(μ -H)₃OsCp*_{activ}), 10.9 (Cp*_{activ}., CH₃).

Figure S1. UV-vis spectra of colorless 2-Th and crystallized 22:78 3-Th/4-Th in benzene.

Figure S2. UV-vis spectra of yellow 2-U and dark brown photolysis product 3-U in benzene.

IR Spectra

Figure S3. IR spectrum of 2-Th (Nujol mull).

Figure S4. IR spectrum of 2-U (Nujol mull).

Figure S5. IR spectrum of crystallized 22:78 3-Th/4-Th (Nujol mull).

Figure S6. IR spectrum of 3-U (Nujol mull).

Figure S7. ¹H NMR spectrum of *in-situ* generated **1** at 298 K in THF- d_8 , * = toluene.

Figure S8. ¹H NMR spectrum of **2-Th** at 298 K in C_6D_6 .

Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum of 2-Th at 298 K in C₆D₆.

Figure S10. ¹H NMR spectrum of **2-U** at 298 K in C_6D_6 .

S12

Figure S11. ${}^{13}C{}^{1}H$ NMR spectrum of 2-U at 298 K in C₆D₆.

Figure S12. Crude ¹H NMR spectrum of the photolysis of **2-U** in C_6D_6 , evidencing production of H_2 (4.47 ppm in C_6D_6).

Figure S13. ¹H NMR spectrum of **3-U** at 298 K in C_6D_6 , * = *n*-hexane. Insets: zoomed in view of upfield and downfield peaks.

Figure S14. ¹³C{¹H} NMR spectrum of **3-U** at 298 K in C₆D₆, * = n-hexane.

Figure S15. Crude ¹H NMR spectrum of the photolysis of **2-Th** in C_6D_6 , evidencing production of H_2 (4.47 ppm in C_6D_6).

Figure S16. ¹H NMR of isolated 3-Th at 298 K in C_6D_6 , * = [Cp*OsH₂]₂ decomp. product.

S18

Figure S17. ¹³C{¹H} NMR of isolated 3-Th at 298 K in C_6D_6 , * = [Cp*OsH₂]₂ decomp. product.

Figure S18. ¹H NMR spectrum of isolated **4-Th** at 298 K in C_6D_6 , * = *n*-hexane. Insets: zoomed in view of peak splitting.

Figure S19. ¹³C{¹H} NMR spectrum of isolated **4-Th** at 298 K in C₆D₆, * = n-hexane.

S21

Figure S20. ¹H NMR spectrum of crystallized 22:78 3-Th/4-Th at 298 K in C_6D_6 .

Figure S21. ¹H NMR spectrum of crystallized 22:78 3-Th/4-Th at 298 K in C₆D₆, zoomed in and labeled.

Figure S22. ¹³C{¹H} NMR spectrum of crystallized 22:78 **3-Th/4-Th** at 298 K in C₆D₆, * = n-pentane.

Figure S23. ¹H-¹³C HSQC NMR spectrum of crystallized 22:78 **3-Th/4-Th** at 298 K in C_6D_6 . Inset: zoomed in view of methylene H-C interactions.

Figure S24. ¹H-¹H COSY NMR spectrum of crystallized 22:78 **3-Th/4-Th** at 298 K in C₆D₆.

Figure S25. ¹H-¹H COSY NMR spectrum of crystallized 22:78 **3-Th/4-Th** at 298 K in C₆D₆, aromatic interactions.

Figure S26. ¹H-¹H COSY NMR spectrum NMR of crystallized 22:78 **3-Th/4-Th** at 298 K in C₆D₆, hydride interactions.

Figure S27. NOESY NMR spectrum of crystallized 22:78 3-Th/4-Th at 298 K in C₆D₆.

Figure S28. NOESY NMR spectrum of crystallized 22:78 3-Th/4-Th at 298 K in C₆D₆, aromatic proton/hydride interactions.

Figure S29. NOESY NMR spectrum of crystallized 22:78 3-Th/4-Th at 298 K in C₆D₆, methylene/hydride interactions.

exchange at the hydrides. Inset: zoomed in view of hydride signals.

Diffusion Coefficients for 3-Th and 4-Th

Figure S31. Diffusion coefficients calculated for ¹H NMR peaks from DOSY of a ~1:1 sample of 3-Th/4-Th.

X-ray crystallography details

In a dry nitrogen glovebox, samples of single crystals were coated in Paratone-N oil for transport to the Advanced Light Source (ALS) or CheXray. Crystals were mounted on a MiTeGen 10 µm aperture Dual-Thickness MicroMount loop (ALS) or Kaptan loop (CheXray). X-ray diffraction data for 2-Th, 2-U, 3-U, and 4-Th were collected at the ALS, Lawrence Berkeley National Lab, Berkeley, CA, station 12.2.1 using a silicon monochromated beam of 17 keV ($\lambda = 0.7288$ Å) synchrotron radiation. Data was collected at 100 K, with the crystals cooled by a stream of dry nitrogen. Bruker APEX3 software was used for the data collections, Bruker SAINT v8.37A or V8.38A software was used to conduct the cell refinement and data reduction procedures,⁶ and absorption corrections were carried out by a multi-scan method utilizing the SADABS program.⁶ X-ray diffraction data for 3-Th were collected at CheXray, Berkeley, CA, using a Rigaku XtaLAB P200 equipped with a MicroMax-007 HF microfocus rotating anode and a Pilatus 200K hybrid pixel array detector. Data was collected using Mo K α radiation ($\lambda = 0.71073$ Å). All data collections were conducted at 100 K, with the crystals cooled by a stream of dry nitrogen. CrysAlis Pro was used for the data collections and data processing, including a multi-scan absorption correction applied using the SCALE3 ABSPACK scaling algorithm within CrysAlis Pro. Initial structure solutions were found using direct methods (SHELXT),⁷ and refinements were carried out using SHELXL-2014,⁸ as implemented by Olex2.⁹ Thermal parameters for all non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions and refined isotropically. Thermal ellipsoid plots were made using Mercury.¹⁰ The structures have been deposited to the Cambridge Crystallographic Data Centre (CCDC) with deposition numbers 2346841 (2-Th), 2346842 (2-U), 2346843 (3-U), 2346844 (3-Th), and 2346845 (4-Th).

Compound	2-Th	2- U	3-U	3-Th	4-Th
Empirical formula*	$C_{40}H_{60}Os_4Th$	$C_{40}H_{60}Os_4U$	$C_{40}H_{59}Os_4U$	$C_{40}H_{59}Os_4Th\cdot C_6H_{14}$	C46H64Os4Th
Formula weight	1533.72	1539.71	1538.70	1618.88	1609.81
Temperature/K	100	100	100	100.00	100
Crystal system	monoclinic	cubic	monoclinic	orthorhombic	tetragonal
Space group	$P2_1/c$	Pa-3	C2/c	$Pmn2_1$	P4 ₂ /ncm
a/Å	23.163(2)	21.395(2)	40.875(4)	18.6052(5)	13.7391(15)
b/Å	12.6413(11)	21.395(2)	10.0269(10)	9.9998(3)	13.7391(15)
c/Å	15.7810(13)	21.395(2)	23.315(2)	13.3830(4)	25.158(3)
α/°	90	90	90	90	90
β/°	91.796(3)	90	113.731(4)	90	90
$\gamma/^{\circ}$	90	90	90	90	90
Volume/Å ³	4618.6(7)	9793(3)	8747.7(15)	2489.88(12)	4748.8(12)
Ζ	4	8	8	2	4
$\rho_{calc}g/cm^3$	2.206	2.089	2.337	2.159	2.252
μ/mm^{-1}	15.063	12.483	13.975	13.171	14.656
F(000)	2776.0	5568.0	5560.0	1486.0	2936.0
Crystal size/mm ³	$0.05 \times 0.05 \times 0.01$	$0.1 \times 0.1 \times 0.05$	$0.03 \times 0.02 \times 0.02$	$0.2\times0.1\times0.05$	$0.3 \times 0.02 \times 0.02$
Radiation	synchrotron ($\lambda =$	synchrotron ($\lambda =$	synchrotron ($\lambda =$	Mo K α (λ =	synchrotron ($\lambda =$
Kaulation	0.7288)	0.7288)	0.7288)	0.71073)	0.7288)
2\Overlap range for data collection/°	1.882 to 29.119	3.904 to 55.608	3.642 to 52.084	5.982 to 61.012	4.608 to 52.084
Index ranges	$-30 \le h \le 30, 0 \le k$	$-27 \le h \le 27, -27 \le k$	$-49 \le h \le 49, -12 \le k$	$-25 \le h \le 26, -14 \le k$	$-16 \le h \le 16, -16 \le k$
	$\leq 16, 0 \leq l \leq 21$	$\leq 27, -27 \leq l \leq 27$	$\leq 11, -28 \leq l \leq 28$	$\leq 13, -19 \leq l \leq 18$	$\leq 16, -30 \leq l \leq 30$
Reflections collected	11258	125415	52702	27906	53451
Independent reflections	11258	$3605 [R_{int} = 0.1087,$	7991 [$R_{int} = 0.0502$,	7260 [$R_{int} = 0.0340$,	2317 [$R_{int} = 0.1416$,
	11250	$R_{sigma} = 0.0356$]	$R_{sigma} = 0.0335$]	$R_{sigma} = 0.0322$]	$R_{sigma} = 0.0530$]
Data/restraints/parameters	11258/206/427	3605/75/206	7991/186/532	7260/31/279	2317/51/177
Goodness-of-fit on F ²	1.041	1.109	1.069	1.045	1.214
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0387, wR2	$R_1 = 0.0342, wR_2 =$	$R_1 = 0.0314, wR_2 =$	$R_1 = 0.0216, wR_2 =$	$R_1 = 0.0445, wR_2 =$
	= 0.0801	0.0965	0.0670	0.0463	0.1071
Final R indexes [all data]	R1 = 0.0521, wR2	$R_1 = 0.0372, wR_2 =$	$R_1 = 0.0397, wR_2 =$	$R_1 = 0.0247, wR_2 =$	$R_1 = 0.0510, wR_2 =$
	= 0.0862	0.0986	0.0701	0.0470	0.1101
Largest diff. peak/hole / e Å ⁻³	2.77/-2.36	1.35/-1.91	1.90/-2.54	2.13/-1.14	1.08/-1.37
CSD entry	2346841	2346842	2346843	2346844	2346845

Table S1. Crystal data for complexes 2-Th, 2-U, 3-U, 3-Th, and 4-Th. *Hydrides are not observed, and are therefore not included in the empirical formulas.

Figure S32. ORTEP diagram for **2-Th**, with ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (°): Th1–Os1 3.0215(7), Th1–Os2 3.0379(6), Th1–Os3 3.0183(6), Th1–Os4 3.0288(7), Th1–Os1–Cp*_{centroid} 175.81(2), Th1–Os2–Cp*_{centroid} 171.10(2), Th1–Os3–Cp*_{centroid} 176.92(3), Th1–Os4–Cp*_{centroid} 171.88(3), Os1–Th1–Os4 103.291(17), Os2–Th1–Os4 115.805(16).

Figure S33. ORTEP diagram for **2-U**, with ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) and angles (°): U1–Os1 2.9501(7), U1–Os2 2.9490(6), U1–Os1–Cp*_{centroid} 175.30(2), U1–Os2–Cp*_{centroid} 176.40(2), Os1–U1–Os1' 107.900(9), Os1–U1–Os2 110.998(9).

Computational details

All DFT calculations were carried out with the Gaussian 09 suite of programs.¹¹ Geometries were fully optimized in gas phase without symmetry constraints, employing the B3PW91 functional.^{12,13} The nature of the extrema was verified by analytical frequency calculations. The calculation of electronic energies and enthalpies of the extrema of the potential energy surface (minima and transition states) were performed at the same level of theory as the geometry optimizations. IRC calculations were performed to confirm the connections of the optimized transition states. Uranium, thorium and osmium atoms were treated with a small core effective core potential (60 MWB), associated with its adapted basis set^{14–16} augmented, for osmium atoms, with a polarization function ($\zeta_f = 0.886$).¹⁷ For the other elements (H and C), Pople's double- ζ basis set 6-31G(d,p) was used.^{18–20} Dispersion corrections were treated with the D3 version of Grimme's dispersion with Becke-Johnson damping.²¹ The electronic charges (at the DFT level) were computed using the natural population analysis (NPA) technique.²²

2-U	U Linear			1 - Bent		2 - Bent		3 - Bent			4 - Bent				
Spin Multiplicity	singlet	triplet	quintet	singlet	triplet	quintet	singlet	triplet	quintet	singlet	triplet	quintet	singlet	triplet	quintet
ΔrH (kcal/mol)	25.0	0.0	_	26.1	1.5	35.7	30.7	4.1	39.0	-	9.9	_	58.6	17.5	_
∆rG (kcal/mol)	26.7	0.0	_	32.5	5.9	40.4	39.7	12.7	44.5	—	17.9	_	66.8	27.3	—

2-Th	Lir	ear	1 - Bent		1 - Bent 2 - I		2 - Bent 3 - Bent		4 - Bent	
Spin Multiplicity	singlet	triplet	singlet	triplet	singlet	triplet	singlet	triplet	singlet	triplet
$\Delta r H$ (kcal/mol)	0.0	269.7	1.4	57.7	5.8	58.4	11.7	63.6	18.7	_
∆rG (kcal/mol)	0.0	273.7	6.3	61.0	15.5	65.9	20.5	73.43	30.5	_

Table S2. Relative energies, for 2-U and 2-Th, as a function of the number of bent Cp^{*} groups and spin multiplicity

	2-U	2-Th
	Linear (triplet)	Linear (singlet)
Os–H distance (Å)	[1.628 – 1.652] (µ-H)	[1.630 – 1.648] (µ-H)
U/Th-H distance (Å)	[2.444 - 2.595]	[2.536 - 2.601]
U/Th–Os distance (Å)	2.911, 2.912, 2.913, 2.913	2.977, 2.977, 2.977, 2.978
U/Th–C(Cp*) distance (Å)	[4.858 - 5.037]	[4.945 - 5.089]
U/Th–C(Me-Cp*) distance (Å)	[5.476 - 5.708]	[5.564 - 5.749]
Os–C(Cp*) distance (Å)	[2.187 - 2.300]	[2.187 – 2.306]
Os–U/Th–Os angle (°)	[107.1 – 111.3]	[108.3 - 110.1]
Os–U/Th–Cp (centroid) angle (°)	177.1 ; 177.8 ; 179.1 ; 179.2	178.9 ; 179.8 ; 179.2, 179.3
Os–H (cm ⁻¹)	[2056 – 1947], [939 – 818], [675 – 653]	[2051 – 1963], [947 – 838], [678 – 667]

 Table S3. Tabulated calculated bond distances/angles and Os-H frequencies for 2-U and 2-Th.

	2-U (triplet)	2-Th (singlet)				
	Wiberg B	ond Indexes (WBI)				
Os – H	[0.57 - 0.60]	[0.60]				
$U/Th - (\mu-H)$	[0.18 - 0.24]	[0.19 - 0.21]				
U/Th – Os	[0.81 - 0.83]	[0.72 - 0.73]				
U/Th – C (Cp*)	[0.02 - 0.03]	[0.02 - 0.03]				
2nd Order NBO Analysis	LP C (Cp*) \rightarrow LP* U: [4 – 5] kcal/mol	BD C (Cp*) – C (Cp*) \rightarrow LP*: 3 kcal/mol BD C (Me-Cp*) – H \rightarrow LP* U: [8 - 12] kcal/mol LP C (Cp*) \rightarrow LP* U: [42 – 48] kcal/mol				
	Na	tural Charges				
Os Natural Charges	-0.950.96	-0.98				
U/Th Natural Charges	-0.36	0.04				

 Table S4. Wiberg Bond Indexes and Natural Charges for 2-U and 2-Th.

Figure S34. Determination of the number of hydrogen atoms on complexes 3-U, 3-Th and 4-Th.

$\begin{array}{c} (H_4OsCp^*)_2U\\ ((C_5Me_4CH_2)Os\\ H_nOsCp^*) \end{array}$		n = 2			n = 3			n = 4			n = 5			n = 6	
Spin Multiplicity	doublet	quartet	sextet	singlet	triplet	quintet	doublet	quartet	sextet	singlet	triplet	quintet	doublet	quartet	sextet
ΔrH (kcal/mol)	1.1	0.0	34.3	25.6	0.0	23.3	2.7	0.0	29.3	32.6	0.0	11.1	1.2	0.0	30.3
ΔrG (kcal/mol)	0.6	0.0	32.6	26.8	0.0	22.9	3.6	0.0	27.8	32.0	0.0	9.6	1.6	0.0	26.8
															_
$\begin{array}{c} (PhH_3OsCp^*)(H\\ {}_4OsCp^*)Th\\ ((C_5Me_4CH_2)Os\\ H_nOsCp^*) \end{array}$	n =	= 0	n =	= 1	n	= 2	n:	= 3	n	= 4	n	= 5	n	= 6	
Spin Multiplicity	doublet	quartet	singlet	triplet	doublet	quartet	singlet	triplet	doublet	quartet	single	t triplet	doublet	quartet	
ΔrH (kcal/mol)	0.0	44.4	0.0	36.5	0.0	46.8	0.0	42.4	0.0	-	0.0	-	0.0	-	
ΔrG (kcal/mol)	0.0	40.8	0.0	34.6	0.0	45.2	0.0	36.6	0.0	-	0.0	-	0.0	-	

Table S5. Relative energies, for 3-U and 4-Th, as a function of the number of hydrogens atoms and of the spin multiplicity.

	3-U (triplet)	3-Th (singlet)	4-Th (singlet)
Os – H distance (Å)	$ \begin{array}{l} [1.630-1.649] \ (H_4 Os Cp^*)_2 \\ [1.794-1.838] \\ ((C_5 Me_4 CH_2) Os H_3 Os Cp^*) \end{array} $	[1.632 – 1.647] (H ₄ OsCp [*]) ₂ [1.798 – 1.834] ((C5Me4CH ₂)OsH ₃ OsCp [*])	$\begin{array}{l} [1.625-1.642] \ (H_4 Os Cp^*)_2 \\ [1.797-1.834] \\ ((C_5 Me_4 CH_2) Os H_3 Os Cp^*) \end{array}$
Os–C(Ph) distance (Å)	-	-	2.113
U/Th–H distance (Å)	$\begin{array}{l} [2.464-2.543] \ (H_4 Os Cp^*)_2 \\ [2.662, 2.667, 4.065] \\ ((C_5 Me_4 CH_2) Os H_3 Os Cp^*) \end{array}$	$\begin{array}{l} [2.542-2.630] \ (H_4OsCp^*)_2 \\ [2.738, 2.734, 4.127] \\ ((C_5Me_4CH_2)OsH_3OsCp^*) \end{array}$	$\begin{array}{l} [2.518-2.644] \ (H_4OsCp^*)_2 \\ [2.737, 2.742, 4.132] \\ ((C_5Me_4CH_2)OsH_3OsCp^*) \end{array}$
U/Th–C(Ph) distance (Å)	-	-	2.856
U/Th–Os distance (Å)	[2.918, 2.922] (H ₄ OsCp [*]) ₂ [2.856, 3.150] ((C ₅ Me ₄ CH ₂)OsH ₃ OsCp [*])	[2.984, 2.987] (H4OsCp [*]) ₂ [2.941, 3.178] ((C5Me4CH ₂)OsH ₃ OsCp [*])	[3.040, 2.988] (H ₄ OsCp [*]) ₂ [2.948, 3.179] ((C ₅ Me ₄ CH ₂)OsH ₃ OsCp [*])
Os–Os distance (Å) ((C5Me4CH2)OsH3OsCp [*])	2.474	2.475	2.472
Os–C(Cp*) distance (Å)	[2.188 – 2.301] (H4OsCp [*]) ₂ [2.175 – 2.241] ((C5Me4CH ₂)OsH ₃ OsCp [*])	[2.193 – 2.309] (H4OsCp [*])2 [2.175 – 2.248] ((C5Me4CH2)OsH3OsCp [*])	[2.183 – 2.318] (H4OsCp [*]) ₂ [2.178 – 2.243] ((C5Me4CH ₂)OsH ₃ OsCp [*])
Os–C(Me-Cp*) distance (Å)	[3.306 - 3.412] (H4OsCp*) ₂ [3.280 - 3.446] ((C5Me4CH ₂)OsH ₃ OsCp*)	$\begin{array}{c} [3.313-3.421] \ (H40sCp^*)_2 \\ [3.281-3.437] \\ ((C_5Me_4CH_2)OsH_3OsCp^*) \end{array}$	[3.305 - 3.431] (H4OsCp*) ₂ [3.284 - 3.405] ((C5Me4CH ₂)OsH ₃ OsCp*)
U/Th-C(CH ₂) distance (Å)	2.438	2.504	2.518
Os–U/Th–Os angle (°) (H4OsCp [*])	116.3	120.7	135.6
Os–U/Th–Os angle (°) ((C5Me4CH2)OsH3OsCp [*])	48.3	47.5	47.4
U/Th–Os–Os angle (°) ((C5Me4CH2)OsH3OsCp [*])	72.0, 59.6	71.3, 61.2	71.2, 61.4
U/Th–Os–Cp(centroid) angle (°)	179.1, 179.1 (H4OsCp [*]) ₂ 103.0, 121.7 ((C ₅ Me ₄ CH ₂)OsH ₃ OsCp [*])	178.1, 179.6 (H4OsCp [*]) ₂ 103.6, 120.0 ((C ₅ Me ₄ CH ₂)OsH ₃ OsCp [*])	177.9, 177.6 (H4OsCp [*]) ₂ 104.2, 119.3 ((C ₅ Me ₄ CH ₂)OsH ₃ OsCp [*])
Os–Os–Cp (centroid) angle (°)	175.0, 178.5	174.8, 178.7	175.3, 179.3
Os–H (cm ⁻¹)	$ \begin{bmatrix} 2050 - 1953 \end{bmatrix} (H_4OsCp^*)_2 \\ [1619 - 1561] \\ ((C_5Me_4CH_2)OsH_3OsCp^*) \\ [1061 - 1057, 1036, 947, 900, 776, 644] \\ ((C_5Me_4CH_2)OsH_3OsCp^*) \\ [930 - 918, 856 - 837, 644 - 642, 585 - 564] (H_4OsCp^*)_2 \\ \end{bmatrix} $	$\begin{matrix} [2037-1964] & (H4OsCp^*)_2 \\ & [1608-1561] \\ & ((C_5Me_4CH_2)OsH_3OsCp^*) \\ & [1032-1019, 958, 907, 788, \\ & 648] & ((C_5Me_4CH_2)OsH_3OsCp^*) \\ & [949-916, 887-846, 667-660, 588-570] & (H_4OsCp^*)_2 \end{matrix}$	$\begin{array}{c} [2072-1999] \ (H_4 Os Cp^*)_2 \\ [1620-1565] \\ ((C_5 Me_4 CH_2) Os H_3 Os Cp^*) \\ [1061-1060, 1034, 958, \\ 908, 790-787, 651] \\ ((C_5 Me_4 CH_2) Os H_3 Os Cp^*) \\ [955-923, 902, 875-825, \\ 759, 674, 576-569] \\ (H_4 Os Cp^*)_2 \end{array}$

 Table S6. Tabulated calculated bond distances/angles and Os-H frequencies for 3-U, 3-Th and 4-Th.

	3-U (triplet)	3-Th (singlet)	4-Th (singlet)
		Wiberg Bond Indexes (WBI)	
Os – H	$[0.60 - 0.62] (H4OsCp^*)_2 [0.32 - 0.41] ((C_5Me_4CH_2)OsH_3OsCp^*)$		$ \begin{array}{l} [0.60-0.61] \ (PhH_3OsCp^*) \\ [0.60-0.62] \ (H_4OsCp^*) \\ [0.31-0.40] \\ ((C_5Me_4CH_2)OsH_3OsCp^*) \end{array} $
Os - Os ((C ₅ Me ₄ CH ₂)OsH ₃ OsCp [*])	0.74	0.73	0.73
U/Th – H	[0.18 – 0.21] H4OsCp [*]) ₂ [0.14, 0.15, 0.01] ((C5Me4CH ₂)OsH ₃ OsCp [*])	[0.18 – 0.21] H4OsCp*)2 [0.15, 0.16, 0.02] ((C5Me4CH2)OsH3OsCp*)	$ \begin{array}{l} [0.16-0.21] \ (PhH_3OsCp^*) \\ [0.18-0.20] \ (H_4OsCp^*) \\ [0.16, 0.16, 0.03] \\ ((C_5Me_4CH_2)OsH_3OsCp^*) \end{array} $
U/Th – Os	[0.72, 0.72] H4OsCp [*]) ₂ [0.79, 0.53] ((C ₅ Me ₄ CH ₂)OsH ₃ OsCp [*])	$\begin{array}{c} [0.69,0.70] H4OsCp^*)_2 \\ [0.68,0.53] \\ ((C_5Me_4CH_2)OsH_3OsCp^*) \end{array}$	
U/Th - CH2	0.72	0.64	0.65
C (Cp*) – Os, C (Cp*) – Th	-	-	0.70, 0.27
Os – C (Cp*)	$\begin{array}{c} [0.31-0.42] \ H_4 Os Cp^*)_2 \\ [0.35-0.43] \\ ((C_5 Me_4 CH_2) Os H_3 Os Cp^*) \end{array}$	$\begin{array}{c} [0.30-0.41] \ H_4 Os Cp^*)_2 \\ [0.36-0.43] \\ ((C_5 Me_4 CH_2) Os H_3 Os Cp^*) \end{array}$	$ \begin{array}{l} [0.30-0.41] \ (PhH_3OsCp^*) \\ [0.29-0.41] \ (H_4OsCp^*) \\ [0.36-0.42] \\ ((C_5Me_4CH_2)OsH_3OsCp^*) \end{array} $
		Natural Charges	
Os Natural Charges (H4OsCp*) ₂	[-1.02, -1.03]	[-1.02, -1.03]	[-0.82 (Ph), -1.00]
Os Natural Charges ((C5Me4CH2)OsH3OsCp*)	[-0.57, -0.60]	[-0.60, -0.61]	[-0.58, -0.58]
U/Th Natural Charges	0.52	0.68	0.44

 Table S7. Wiberg Bond Indexes and Natural Charges for 3-U, 3-Th and 4-Th.

3- U	3-Th	4-Th
Alpha Spin Orbitals	(1.83739) BD (1)Os 25 -Os 36	
(0.75325) BD (1)Os 15 -Os 16	(55.70%) Os 25 s(0.24%)p 7.41(1.81%)d99.99(97.94%)	
(50.26%) Os 15 s(0.08%)p48.18(3.80%)d99.99(96.10%)	(44.30%) Os 36 s(0.20%)p 8.17(1.65%)d99.99(98.14%)	
(49.74%) Os 16 s(0.06%)p81.37(4.50%)d99.99(95.41%)		
	(1.59753) BD*(1)Os 25 -Os 36	
(0.72128) BD (2)Os 15 -Os 16	(44.30%) Os 25 s $(0.24%)$ p 7.41 $(1.81%)$ d99.99 $(97.94%)$	
(48.78%) Os 15 s(0.00%)p 1.00(3.14%)d30.83(96.84%)	(55.70%) Os 36 s $(0.20%)$ p 8.17 $(1.65%)$ d99.99 $(98.14%)$	
(51.22%) Os 16 s(0.00%)p1.00(3.44%)d28.04(96.54%)		
Beta Spin Orbitals		
(0.75552) BD (1)Os 15 -Os 16		
(50.54%) Os 15 s $(0.09%)$ p42.07 $(3.66%)$ d99.99 $(96.23%)$		
(49.46%) Os 16 s $(0.0%)$ p63.21 $(4.31%)$ d99.99 $(95.59%)$		
(0.72156) BD (2)Og 15 Og 16		
(0.72150) BD (2)08 15 -08 10 (48.87%) Os 15 s(0.00%) n 1.00(3.12%) d31.01(.96.86%)		
(51 13%) Os 16 s(0.00%)p 1.00(3.42%)d31.01(90.80%)		
(31.1376) 03 10 s(0.0076)p 1.00(3.1476)d20.07(70.5576)		
Alpha Spin Orbitals	$CR \text{ Os } 25 \rightarrow LP^* \text{ Os } 36 \qquad \sim 430$	$CR \text{ Os } 30 \rightarrow LP^* \text{ Os } 4 \sim 440$
$CR \text{ Os } 15 \rightarrow LP^* \text{ Os } 16 \qquad \sim 190$	$LP \text{ Os } 25 \rightarrow LP^* \text{ Os } 36 \qquad \sim 205$	LP Os $30 \rightarrow LP^*$ Os $41 \sim 320$
$LP \text{ Os } 15 \to LP^* \text{ Os } 16 \qquad ~140$		
	$CR \text{ Os } 36 \rightarrow LP^* \text{ Os } 25 \qquad ~303$	CR Os $41 \rightarrow LP^*$ Os $30 \sim 370$
$CR \text{ Os } 16 \rightarrow LP^* \text{ Os } 15 \qquad \sim 150$	$LP Os \ 36 \rightarrow LP*Os \ 25 \qquad ~130$	$LP Os 41 \rightarrow LP^* Os 30 \sim 240$
$LP \text{ Os } 16 \rightarrow LP^* \text{ Os } 15 \qquad ~70$		
Beta Spin Orbitals		
$CR \text{ Os } 15 \rightarrow LP^* \text{ Os } 16 \qquad \sim 210$		
$LP \text{ Os } 15 \rightarrow LP^* \text{ Os } 16 \qquad ~140$		
$CP \cap c = 16 \rightarrow LP * \cap c = 15$ $= 140$		
$LP \cap s \ 16 \longrightarrow LP \circ s \ 15 \qquad \sim 70$		
$L1 OS 10 \rightarrow L1 OS 13 \sim 70$		

 Table S8. NBO Analysis of the Os–Os bonding in 3-U, 3-Th and 4-Th.

	4-Th	
NBO bonding	(1.82905) BD C - Os (55.49%) C s(33.22%) p 2.01(66.78%) d 0.00 (44.51%) Os s(15.23%) p 0.80(12.15%) d 4.7	(0.01%) 7(72.59%) f 0.00(0.03%)
Second order perturbation analysis	7. BD (1) C2-Os7/208. LP*(1)Th 18 7. BD (1) C2-Os7/209. LP*(2)Th 18 7. BD (1) C2-Os7/209. LP*(2)Th 18 7. BD (1) C2-Os7/210. LP*(3)Th 18 7. BD (1) C2-Os7/211. LP*(4)Th 18 7. BD (1) C2-Os7/213. LP*(6)Th 18 7. BD (1) C2-Os7/214. LP*(7)Th 18 7. BD (1) C2-Os7/215. LP*(8)Th 18 7. BD (1) C2-Os7/216. LP*(9)Th 18 7. BD (1) C2-Os7/216. LP*(9)Th 18 7. BD (1) C2-Os7/217. LP*(10)Th 18 7. BD (1) C2-Os7/218. LP*(11)Th 18 7. BD (1) C2-Os7/219. LP*(12)Th 18 7. BD (1) C2-Os7/220. LP*(13)Th 18 7. BD (1) C2-Os7/221. LP*(14)Th 18 7. BD (1) C2-Os7/222. LP*(15)Th 18 7. BD (1) C2-Os7/222. LP*(15)Th 18 7. BD (1) C2-Os7/***. BD*(1)Th 18-C 38	337.24 kcal/mol 56.60 kcal/mol 294.98 kcal/mol 550.91 kcal/mol 37.08 kcal/mol 253.85 kcal/mol 230.39 kcal/mol 119.21 kcal/mol 32.30 kcal/mol 40.26 kcal/mol 2.06 kcal/mol 147.04 kcal/mol 192.37 kcal/mol

Table S9. NBO Analysis of the Th–Cphenyl–Os bonding in 4-Th.

Figure S35. Lowest unoccupied molecular orbital and highest occupied molecular orbitals of complexes 2-U, 3-U, 2-Th, 3-Th and 4-Th.

Figure S36. Depiction of the molecular orbital corresponding to the Th– C_{phenyl} –Os three-center-two-electron bond in 4-Th.

 Table S10. Coordinates of the most stable computed structures.

2-U	linear triplet		
С	10.573605	3.349826	3.096335
С	9.825026	2.862014	1.954930
С	9.162305	1.644839	2.358364
С	9.494247	1.383429	3.723800
C	10.355368	2.430506	4.187288
0s	8 426980	3 425191	3 558105
11	6 1/2816	5 123644	1 173205
0	5 726045	6 966261	1 070402
US	5.756045	0.000301	1.070492
C	4.8/6264	8.838468	1.033365
C	6.299635	8.83/429	0.905388
С	6.6/9489	1.113958	0.081259
С	5.465339	7.018884	-0.295506
С	4.355586	7.719657	0.306314
С	8.056907	7.416864	-0.420446
С	5.366976	5.879579	-1.259467
С	7.230453	9.863896	1.467170
С	2.908310	7.392975	0.120410
С	4.066385	9.846981	1.782039
С	9.857314	3.429895	0.571507
С	8.328969	0.770596	1.476989
С	10.996424	2.503011	5.536207
C	9 041897	0 205341	4 524459
Ċ	11 522756	4 505667	3 096977
09	3 786012	3 484628	4 669917
03	1 507200	2 250104	4.612722
C	2.011520	2 200240	4.013/33
C	2.011529	2.290249 1 4E2207	3.799370
C	2.835869	1.453207	4.014484
C	2.834760	1.989128	5.957093
С	2.009917	3.180452	5.951996
С	1.710833	2.089591	2.350444
С	3.486028	0.179002	4.178651
С	3.437634	1.341355	7.162906
С	1.629219	3.992858	7.148717
С	0.573165	4.436534	4.167271
Os	6.649233	6.761661	6.528311
С	7.246678	8.748177	7.338408
С	5.928342	8.381551	7.809253
С	6.072405	7.198844	8.633006
С	7.468147	6.858390	8.672310
С	8.186248	7.804817	7.880033
С	4.983856	6.530908	9.411366
С	8.068899	5.726962	9.442585
С	4.673592	9.172807	7.618073
C	9.667332	7.835334	7.680601
C	7 588215	9 966185	6 540594
н	4 680328	9 688507	6 655154
н	4 553644	9 925391	8 2079/1
ц	3 796386	8 522012	7 630/71
11 11	10 00000	6 820043	7 700155
п ,,	10.U9U020	0.020942	1.1U9133
H	TO.T27883	0.429938	0.404014
H	9.924688	0.2/5664	6./14960
H	4.020549	6.643180	8.909297
H	4.895341	6.959432	10.417921
Η	5.175460	5.460252	9.514605

Η	8.449311	9.783821	5.893474
Н	7.827130	10.814001	7.195299
Н	6.753556	10.258223	5.899681
н	2 423936	3 978792	7 897711
и Ц	0 713476	3 608156	7 615758
11 TT	1 457000	5.000130	6 075225
п	1.457606	5.050050	0.075525
н	0.709222	5.343308	4.760353
Н	-0.470957	4.115831	4.272310
Η	0.743203	4.698279	3.120556
Η	3.802325	0.235241	3.134463
Η	2.797691	-0.669671	4.280455
Η	4.373371	-0.031313	4.779512
Н	1.538304	3.040773	1.842195
Н	0.813385	1.470810	2.225589
Н	2.539086	1.588666	1.844749
н	4 350550	0 801359	6 901525
и Ц	2 739674	0 629888	7 622626
11 TT	2.755074	0.020000	7.022020
п	3.704733	2.000420	7.913646
H	7.364304	4.898010	9.536953
Н	8.348827	6.050631	10.452947
Η	8.965492	5.344761	8.949688
Η	6.859918	10.255568	2.417090
Η	7.347883	10.706484	0.774044
Η	8.218612	9.437037	1.650800
Η	2.768288	6.323941	-0.052942
Н	2.491230	7.933778	-0.738529
Н	2.326308	7.661985	1.004878
н	8 811099	7 694111	0 319849
и Ц	8 270990	7 964751	-1 3/7123
и П	0.270550	6 240004	-0 621620
11	2 140722	0.349904	-0.021039
п	3.149723	9.402910	2.1/004/
H	3./84510	10.68091/	1.12/126
Н	4.626843	10.255549	2.625654
Η	11.199737	5.274961	2.392141
Η	12.534821	4.188002	2.815259
Η	11.574538	4.969534	4.084628
Η	8.963310	0.456202	5.584493
Η	9.750249	-0.626617	4.424890
Н	8.062041	-0.144527	4.192474
Н	11.214964	3.537235	5.810127
Н	11,938711	1,940930	5,552798
Н	10 341897	2 089464	6 306877
н	7 549076	0 262186	2 048262
и П	0 017025	0.202100	0 000106
п	0.9470ZJ	1 255070	0.909400
H	/.83/559	1.355870	0.697003
Н	8.912502	3.249902	0.053159
Η	10.663919	2.984552	-0.025023
Η	10.012076	4.510714	0.598951
Η	6.265681	5.259961	-1.222251
Н	5.243588	6.240094	-2.288703
Н	4.517181	5.236099	-1.020350
Н	7.268959	2.911486	4.609054
Н	7.033652	3.414560	2.679689
Н	8,306586	4.958462	3.011951
H	8 524350	4 385818	4 873273
н	5 262400	2 789681	4 6576/1
ц П	1 601000	Z . 709004 A 1AAA71	5 01201C
11	4.004900	9.1444/⊥	J. 713UI0

Н	3.704471	5.111989	4.418149
Н	4.393847	3.700973	3.150524
Η	6.560710	5.470975	1.731737
Н	4.663302	5.662986	2.133376
H	5.035428	7.1/0/46	3.341/38
H	7.012374	7.025873	2.905678
H	/.826683	6.465561	5.413627
H	6.164/4Z	/.466/31	5.143029
н ц	5.152559	6.188399 5 119540	6.228393
п	0.01/094	J.110349	0.330237
2-Th	linear singlet	5	
С	10.669209	3.319280	3.229976
С	10.033419	2.830677	2.023215
С	9.338824	1.616355	2.352996
С	9.527350	1.351908	3.743844
С	10.343172	2.397616	4.297172
Os	8.505183	3.397635	3.534559
Th	6.158504	5.131700	4.131589
Os	5.685561	6.919480	1.799929
С	4.770583	8.869524	0.971631
С	6.187449	8.889430	0.784232
C	6.550536	7.763450	-0.041229
C	5.333263	7.044277	-0.361284
C	4.23/523	7.734906	0.277856
C	7.911257 5.012520	7.481998	-0.594/52
C	J.ZIJJZ9 7 100070	0 026021	-1.312410
C	7.123370	9.930031 7 386182	1.290437
C	3 975799	9 876205	1 738805
C	10 184586	3 411231	0 653157
C	8 581933	0 755267	1 393902
C	10.871030	2.449935	5.695447
C	9.001606	0.167526	4.488900
С	11.623892	4.467266	3.318030
Os	3.742571	3.469985	4.647148
С	1.475709	3.357179	4.603870
С	1.957402	2.272045	3.807568
С	2.774373	1.432618	4.632214
С	2.794077	1.992742	5.962990
С	1.986176	3.196274	5.943920
С	1.641116	2.038486	2.365673
С	3.412277	0.146707	4.213321
С	3.401225	1.359078	7.174130
С	1.619472	4.029737	7.130584
С	0.543699	4.432940	4.146162
Os	6.700985	6.//5954	6.554062
C	7.258995	8./69//0	7.399685
C	5.960022 C 1E1004	8.331U94 7 140C7E	7.878690
C	0.131994 7 550025	7.149075 6 950715	0 672150
C	1.009900	0.030713 7 8/3277	0.0/3130 7 898325
C	5 098/33	6 4333211	0 710030 1.099220
C	8 209677	5 722693	9 408011
C	4.680472	9.111013	7.729251
č	9.710692	7.924306	7.676187
C	7.549521	10.015500	6.624999

Н	4.652246	9.644841	6.776653
Н	4.557198	9.844761	8.536139
Н	3.821948	8.436045	7.749578
Н	10.164660	6.930976	7.673051
Н	10.190734	8.513943	8.467216
Н	9.938444	8.396163	6.718082
Н	4.122485	6.531100	8.969719
Н	5.019152	6.834563	10.468399
Н	5.321008	5.366136	9.521965
Н	8.405518	9.875711	5.960852
Н	7.772634	10.854244	7.296640
Н	6.695905	10.296361	6.004558
Н	2.418972	4.020294	7.874572
H	0.703364	3.660214	7.609000
H	1 455797	5 070660	6 842093
н	0 688652	5 348057	4 724001
н	-0.501547	4 119735	4 262296
н	0 709267	4 677767	3 094648
н	3 717848	0 181127	3 165093
н	2 718511	-0 694345	4 338001
н	4 303899	-0 059000	4.330001
и П	1 173189	2 981389	1 8/0816
и П	0 7358/9	1 /27285	2 262050
и П	2 158791	1 518687	2.202030
и П	7 308430	1.510007	6 91/777
п u	4.300430	0.650927	7 6/0270
п u	2.701309	0.039027	7 011202
п	J.070J70 7 E20402	2.113030	7.911392
н	7.530402	4.8/2900	9.502345
н	8.504439	6.035231 E 274E11	10.41/669
п	9.104172	10 222577	0.000934
н	0./84983	10.3335//	2.236174
H	7.198538	10.772968	0.589821
H	8.125045	9.52/980	1.444281
H	2.657993	6.313219	-0.003129
H	2.330983	7.910713	-0.696218
H	2.238071	/.65/386	1.055489
H	8.690256	/./85831	0.108360
H	8.0/5659	8.01/869	-1.538405
Н	8.041/14	6.414164	-0./83015
Н	3.081008	9.424629	2.172435
Н	3.658023	10.698002	1.084996
Н	4.561949	10.302441	2.555/62
Н	11.364491	5.245853	2.597143
Н	12.653539	4.144773	3.116816
Η	11.597591	4.921541	4.311064
Η	8.836121	0.407537	5.541278
Η	9.710145	-0.668772	4.439159
Η	8.050128	-0.170508	4.072555
Η	11.074474	3.479771	5.996416
Η	11.803135	1.877939	5.787087
Η	10.148933	2.038282	6.404370
Η	7.755665	0.242229	1.890763
Η	9.238938	-0.005504	0.954054
Н	8.161240	1.349544	0.580137
Η	9.291896	3.230849	0.049752
Н	11.043830	2.972963	0.129547
Н	10.332407	4.492093	0.702258

Η	6.122317	5.290458	-1.307404
Н	5.042830	6.246929	-2.338349
Η	4.384131	5.241971	-1.034277
Н	7.370725	2.916235	4.624651
Н	7.109885	3.291871	2.663694
Н	8.354126	4.865582	2.835945
н	8 588732	4 469126	4 760694
н	5 206300	2 747778	4 555265
н	4 606327	4 083827	5 885220
и Ц	3 6/3307	5 098696	1 117551
и Ц	1 271/31	3 728275	3 107391
и П	6 563189	5 556008	1 630161
и П	1 616959	5 602024	2 005071
и П	5 013813	7 250742	2.090971
п u	5.013013	7.230742	2 707072
п u	7 904662	6 475149	5 150756
п	6 222610	0.4/JI40 7 511110	J.4J9/J0 E 17E/C0
п	6.232619 E 100036	7.JIII0 C 014E20	0.1/0400 C 051/50
Н	5.199936	6.214530	6.251452
Н	6.866545	5.13/303	6.569450
3-U	n=3 triplet		
С	1.897157	8.430945	8.584890
С	3.022094	7.820931	9.265304
С	4.130236	8.744194	9.185604
С	3.691600	9.906908	8.473322
С	2.326047	9.715926	8.095165
Os	3.524849	8.038222	7.135741
U	4.337943	6.704833	4.667056
С	6.741742	7.103095	4.776259
С	7.099160	5.677000	4.702133
С	7.240460	4.757654	5.813175
С	7.489198	3.443294	5.293298
С	7.464858	3.522588	3.851504
С	7.206376	4.890281	3.492813
С	5.469795	8.561208	9.824509
Os	5.505906	4.101839	4.637072
Os	3.049643	3.824453	4.666810
С	1.034962	4.778342	4.766336
С	1.177822	4.039918	3.540104
С	1.394177	2.658562	3.865964
С	1.405487	2.542946	5.308460
С	1.198478	3.850468	5.856153
С	1.048977	4.617652	2.169701
С	1.509836	1.529334	2.894069
С	1.098359	4.200248	7.303501
С	1.551796	1.273702	6.083631
С	7.236971	5.147931	7.254645
С	7.162280	5.443562	2.106085
С	7.754816	2.404955	2.903726
С	7.790007	2.222218	6.099759
С	0.555227	6.187201	4.891512
С	4.512645	11.125381	8.200359
С	2.992458	6.554852	10.061078
С	1.466264	10.712293	7.386050
С	0,493730	7.915912	8.561495
0s	3.670277	8.013579	2.139833
С	2.065252	8.651675	0.612491

С	2.997263	7.740245	0.015408
С	4.310750	8.342961	0.070551
C	4 171035	9 632057	0 714331
C	2 781735	9 810647	1 011901
c	Z.701733 5 546261	7 000020	1.044J04
	5.540301	10 65 6006	-0.380320
C	5.249438	10.656006	0.8/3183
С	2.659194	6.458570	-0.6/6393
С	2.182287	11.028376	1.671471
С	0.590003	8.441009	0.729486
Η	2.185704	0.559129	5.553237
Η	0.575296	0.801146	6.250113
Н	2.009789	1.458920	7.057910
Н	6.815434	4,691051	1.394215
н	8 161321	5 775128	1 794933
н	6 482495	6 296241	2 040126
ц	6 555226	5 002056	2.040120
п	0.333330	J.9020J0	7.434723
н	8.242500	5.453356	7.571060
Н	6.916422	4.31/13/	/.88/135
Н	1.942892	1.868215	1.950115
Н	0.526717	1.090372	2.680090
Η	2.154536	0.738090	3.284200
Η	0.859729	6.797084	4.037455
Н	0.940641	6.668945	5.791908
Н	-0.542225	6.202505	4.937030
Н	1,633951	3,476316	7,921715
н	0 051525	4 224527	7 632387
и Ц	1 5/3636	5 181903	7 /82517
11	1 502266	5.101903	2 120225
п	1.303266	5.610999	2.130223
н	-0.005/59	4.696469	1.8/5100
Н	1.561964	3.994663	1.433/83
Η	5.572198	10.876267	8.113308
Η	4.401968	11.853811	9.013010
Н	4.206853	11.608423	7.270064
Η	7.288013	2.257940	7.069398
Н	8.868708	2.126474	6.278802
Н	7.452961	1.318346	5.586763
Н	7.420352	1.446695	3.308572
н	8 831272	2 329361	2 702190
н	7 242462	2 556521	1 950849
ц	5 000525	11 262400	1 767210
п	J.000JZJ E 0041E7	11.202400	1.707319
н	5.284157	11.328546	0.006953
Н	6.22/458	10.180303	0.9/1196
Н	2.260063	5.853/16	9.656129
Η	2.730182	6.752462	11.108073
Η	3.964276	6.056708	10.041758
Η	6.443405	8.144478	-0.055744
Н	5.619868	8.138044	-1.624320
Н	5.551147	6.715838	-0.569284
Н	-0.082344	8.314698	9.406050
H	0 469702	6 827063	8 626165
н	-0 018201	8 202831	7 6/0007
U U	0.010291 0.010291	11 210701	6 600170
п т	2.000004	11 207/12	0.0734/9
H	U.98II/U	11.30/412	σ.101940
Н	0.684645	10.214823	6.808106
Η	3.453030	5.719946	-0.547412
Η	2.519549	6.624898	-1.751866
Н	1.738421	6.025151	-0.282101

Н	0.347618	7.381166	0.829897
Н	0.072993	8.821859	-0.159778
Н	0.184877	8.958893	1.601547
H	5.721891	7.502018	9.907576
H	5.484429	8.992600	10.833130
H U	6.236381 1 211612	9.043126 10.772047	9.239522
п u	1 861030	10.772947	2.2/930/
H	2 902716	11 530941	2 319902
Н	7.150414	7.691582	3.952321
H	7.009066	7.561489	5.731259
Н	2.719482	8.277070	5.721496
Н	4.612166	8.720959	6.101919
Н	4.801080	7.015664	7.111981
Н	2.957097	6.557467	6.742677
Н	3.602157	8.867859	3.542867
Н	5.185525	8.036766	2.745828
H	2.529828	7.284921	3.072862
H	4.114052	6.4365/3	2.201810
H	4.404691	2.638U31 4.252420	4.6/6306
п u	4.190000	4.333430	5 920123
11	4.200000	4.303074	5.520125
3-Th	n=3 singlet		
Н	9.344906	9.471556	7.660663
Os	8.354274	8.520901	8.572232
С	6.846483	7.989845	7.048213
С	8.012711	7.200819	6.744508
С	8.269561	6.333061	7.851352
С	7.275882	6.575603	8.855634
С	6.38096/	/.6006/2	8.363/92
C	7.113304	5.816885 5.201027	10.133/13
C	9.300170 8 780309	7 231404	5 462168
C	5.113358	8.046459	9.020156
C	6.151535	8.925580	6.111243
Th	9.885332	10.721711	9.886566
Os	12.082748	12.173622	8.476154
С	13.502992	12.261582	6.676963
С	12.723918	13.458599	6.686859
С	12.960715	14.141170	7.929085
С	13.909811	13.358635	8.693767
С	14.239765	12.187375	7.908544
C	14.339331	15.//4104	9.9/5346
C	12.420075	13 9//366	0.3U41U0 5 575623
C	15 277716	11 163549	8 239942
C	13.583536	11.278373	5.554157
Os	9.268727	11.322151	12.696088
С	7.182528	11.744811	12.171484
С	8.005409	12.604026	11.350400
С	8.788658	13.415967	12.255667
С	8.408515	13.106001	13.607125
С	7.408226	12.064434	13.555876
C	8.895260	13.798466	14.838060
C	9./55552	12 527020	11.83/120
C	0.140324	IZ.JZ/920	7.000Z/U

С	6.670177	11.492012	14.721650
С	6.190067	10.759757	11.645677
Os	11.052261	9.607703	12.623421
С	13.186740	9.187744	12.298627
C	12 430588	8 372934	11 381751
C	11 567356	7 52/155	12 161319
C	11 007510	7.00001	12.101319
C	10.017014	7.709031	13.332040
C	12.81/214	8.824523	13.635502
С	11.188392	7.073180	14.708532
С	10.645393	6.488676	11.607278
С	12.678509	8.256986	9.912693
С	13.409380	9.369865	14.894521
С	14.229068	10.180737	11.905344
Н	8.263545	14.663371	15.079593
Н	9.920304	14.154145	14.709198
Н	8.886116	13,124960	15.698676
н	10 250514	5 651202	7 382142
и 11	9 0/077/	1 364627	7 50/223
и П	0 661190	5 1/1010	0 066262
п	9.004409	J.141212 E 464460	0.900303 10 E11041
H	8.0/5001	5.464460	10.511041
H	6.466027	4.943176	9.98/352
Н	6.666995	6.444495	10.907677
Н	8.380349	6.495267	4.753802
Н	9.835536	7.002566	5.626886
Η	8.724040	8.216111	4.993944
Н	10.541716	14.608480	12.583836
Н	9.240970	15.434599	11.702472
Н	10.238889	14.214544	10.891875
н	8.550756	13.449471	9.456500
н	11 786053	6 198883	14 997774
и 11	10 181066	6 729186	14 462201
11	11 105006	7 727000	15 570440
H	11.105996	1.12/999	15.5/9440
H	11.423572	15.639/64	7.904261
Н	13.073352	16.286353	7.916888
Н	12.370403	15.596625	9.389068
Η	12.426567	14.559465	4.873194
Н	11.027125	14.550817	5.957967
Η	11.418173	13.110658	5.018327
Н	9.839767	6.268453	12.311357
Н	11.184929	5.554665	11.402063
Н	10.183204	6.839601	10.681015
Н	5.769625	12.078719	14.946164
Н	6.361873	10.462699	14.523053
н	7 296122	11 480900	15 617441
и Ц	1/ 990052	10 17/571	7 87/982
и П	16 242409	11 122061	7 706015
11	16 425707	11.006046	0.210256
п	14 270175	11.000240	9.310330
H	14.3/01/5	11.365260	4.843312
Н	13.8121/1	10.276803	5.924195
Η	12.639715	11.223178	5.007596
Η	6.049212	9.931894	12.344782
Η	5.217427	11.242452	11.484687
Н	6.520367	10.333990	10.694816
Н	7.212565	12.271046	9.383634
Н	14.270507	8.769903	15.216049
Н	13.745755	10.400085	14.756320
Н	12.677361	9.370515	15.705742

Н	4.868134	9.073580	8.741022
Н	4.270659	7.405359	8.732162
Н	5.205035	8.017184	10.108135
Н	5.435212	8.387943	5.477386
Н	5.605611	9.694643	6.661708
Н	6.866086	9.433824	5.459824
Н	14.374506	10.929499	12.687243
H	15.192048	9.687373	11.719798
H	13.925674	10.706026	10.996434
H	13.460015	7.509160	9.722623
H	13.00/101	9.203240	9.4//014
H	11./840/2	1.934/00	9.3/11/0
H	10 514676	10.0/5802	0 017411
п u	11 226567	12.300229	0.UI/4II 0.7/0077
п u	12 375/05	11 232287	9.740077
н Н	7 748444	10 033024	8 697904
н	8 235157	8 776576	10 185149
H	9 867448	8 278395	9 161340
н	13 874953	14 366844	10 585896
Н	15.457666	14.375690	9.786795
Н	14.852372	12.904936	10.567719
Н	10.205836	10.428636	13.987916
Н	9.288713	9.539715	12.273698
Н	11.052794	11.372141	12.269405
4-Th	n=3 singlet		
С	10.588108	9.036032	6.661809
C	9.304495	9.451252	7.082956
C	8./46826	10.544883	6.3/3/44
C	9.351129	11.068221	5.230185
C	11 100200	10.554809	4.780410 5.517170
09	8 240961	9.540050	3.JI4I40 8 563722
C C	6 475831	7 811535	7 314124
C	7 569383	7 031393	6 804495
C	8 063502	6 202020	7 854254
C	7.268773	6.441756	9.027111
C	6.272287	7.435914	8.691739
С	7.308150	5.639724	10.287877
С	9.173553	5.206667	7.732172
С	8.069510	7.047142	5.399257
С	5.130194	7.862051	9.558391
С	5.625710	8.737995	6.507748
Th	9.994644	10.631468	9.616857
Os	12.226153	12.271438	8.612884
С	13.861151	12.618785	6.998912
С	12.878594	13.664370	7.009573
С	12.916403	14.295813	8.318998
С	13.917124	13.592664	9.108448
С	14.494280	12.567358	8.275341
C	14.376762	13.970328	10.481493
C	12.19/326	15.54/381	8./13440
C	12.U9U666	14.1210/4	5.824855
C	17.37319U 17.177717	11 720166	8.0394U9 5.033705
	14.1/41/ 9 37/080	11 329878	12 382250
<u> </u>	J.J.IUUU	TT • JC JU / U	

С	7.288893	11.790005	11.878750
С	8.123855	12.566393	10.987406
С	8.947276	13.412588	11.822168
С	8.590583	13.198086	13.198065
С	7.555709	12.192259	13.232268
С	9.123321	13,955582	14.369929
С	9 921526	14 427579	11 323519
C	8 229967	12 422147	9 522449
C	6 836882	11 712257	14 450765
C	6 254435	10 805800	11 /39/88
00	11 060507	Q 535063	12 430770
C C	12 10/602	9.00000	12.430770
C	10 110522	9.021340	11 261201
C	12.419333 11 E12100	0.200100	12.201201
C	11.513108	7.41/421	12.058652
C	11.743036	7.730433	13.440910
C	12.789720	8./30643	13.496992
C	11.084356	7.093660	14.621620
С	10.537954	6.413557	11.538945
С	12.626885	8.051393	9.788116
С	13.375192	9.309295	14.744723
С	14.294483	9.946968	11.746916
Η	8.499313	14.832703	14.589170
Η	10.140654	14.305467	14.179047
Η	9.150026	13.330143	15.265930
Η	9.942704	5.554307	7.037528
Η	8.798701	4.244626	7.362321
Н	9.654226	5.032958	8.697928
Η	8.307091	5.241336	10.476254
Η	6.614678	4.792294	10.221730
Н	7.025766	6.242364	11.154033
Н	7.500961	6.333748	4.789563
Н	9.123533	6.768215	5.348458
Н	7.970166	8.037093	4.950400
Н	10.791659	14.498898	11.982075
Н	9.450406	15.418142	11.267463
Н	10.287000	14.163360	10.329557
Н	8.593122	13.332690	9.042707
H	11.015404	10.930099	3.864762
н	8 866271	11 875588	4 687292
н	7 781868	10 937963	6 682720
н	11 663321	6 233433	14 983736
н	10 079731	6 743609	14 370656
и Ц	10.985331	7 804242	15 116083
и Ц	11 193657	15 57/576	8 281885
11	10 707070	16 440242	0.201000
п	12./3/2/0	15 606011	0.3//213
п	12.009101	14 77(010	9./904/4 E 10110C
н	12.690541	14.776910	5.181196
н	11.202/34	14.070849	6.13/0/9
H	11./51865	13.2/0316	5.230834
H	9./05691	6.286593	12.234009
H	11.015531	5.434952	11.392413
H	10.114067	6.743773	10.586944
Η	12.151884	9.154946	5.191444
Η	5.988064	12.367022	14.689968
Η	6.451855	10.700105	14.306237
Н	7.501158	11.693367	15.318462
Η	15.444022	10.639693	8.226713

Н	16.562093	12.009041	8.303944
Н	15.659924	11.516277	9.743073
Н	14.978127	12.176418	5.224331
Н	14.507495	10.750852	6.165502
Н	13.300559	11.601235	5.200536
Н	6.101855	10.027973	12.191896
Н	5.294188	11.308939	11.265791
Н	6.555536	10.308859	10.514198
Н	7.281217	12.127131	9.069547
Н	14.184001	8.677071	15.134309
Н	13.783203	10.306705	14.560962
Н	12.616945	9.406697	15.525657
Н	4.856107	8.902637	9.367042
Н	4.245121	7.239151	9.377329
Н	5.391719	7.783746	10.615730
Η	4.854840	8.186212	5.955592
Η	5.124604	9.467234	7.149092
Н	6.229924	9.292031	5.784890
Н	14.475380	10.697191	12.519462
Н	15.228552	9.393012	11.583169
Н	14.036551	10.476402	10.825857
Н	11.083768	8.234812	7.203533
Н	13.400237	7.299315	9.581296
Н	12.956616	8.983441	9.320845
Н	11.712498	7.716218	9.290912
Н	11.724288	10.930319	7.805181
Н	10.678510	12.564394	8.188662
Н	11.506988	12.662499	10.014694
Н	12.448528	11.037465	9.673259
Н	7.651785	9.892458	8.783106
Н	8.265013	8.676152	10.164026
Η	9.780115	8.140553	9.067774
Н	13.557719	14.405961	11.057722
Н	15.193755	14.701457	10.440791
Н	14.728290	13.096926	11.034675
Н	10.208651	10.463356	13.742905
Н	9.313164	9.520604	12.057883
Н	11.174016	11.304456	12.074418

References

- P. J. Bailey, R. A. Coxall, C. M. Dick, S. Fabre, L. C. Henderson, C. Herber, S. T. Liddle, D. Loroño-González, A. Parkin and S. Parsons, *Chemistry A European Journal*, 2003, 9, 4820–4828.
- 2 C. L. Gross and G. S. Girolami, Organometallics, 2007, 26, 160–166.
- 3 T. Shima and H. Suzuki, Organometallics, 2005, 24, 3939–3945.
- 4 J. L. Kiplinger, D. E. Morris, B. L. Scott and C. J. Burns, *Organometallics*, 2002, **21**, 5978–5982.
- 5 T. Cantat, B. L. Scott and J. L. Kiplinger, *Chem. Commun.*, 2010, **46**, 919–921.
- 6 APEX2, APEX3, SADABS, TWINABS and SAINT. Bruker AXS. Madison, WI, USA.
- 7 G. M. Sheldrick, Acta Crystallogr A Found Adv, 2015, 71, 3–8.
- 8 G. M. Sheldrick, Acta Crystallogr C Struct Chem, 2015, 71, 3–8.
- 9 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J Appl Crystallogr*, 2009, **42**, 339–341.
- 10 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *Journal of Applied Crystallography*, 2008, **41**, 466–470.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 09.
- 12 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, *Phys. Rev. B*, 1992, **46**, 6671–6687.
- 13 A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 14 X. Cao and M. Dolg, Journal of Molecular Structure: THEOCHEM, 2004, 673, 203–209.
- 15 X. Cao, M. Dolg and H. Stoll, J. Chem. Phys., 2003, 118, 487–496.
- 16 D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, *Theoret. Chim. Acta*, 1990, **77**, 123–141.
- 17 A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp and G. Frenking, *Chemical Physics Letters*, 1993, **208**, 111–114.
- 18 P. C. Hariharan and J. A. Pople, *Theoret. Chim. Acta*, 1973, 28, 213–222.
- 19 R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724–728.
- 20 W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2261.
- 21 S. Grimme, S. Ehrlich and L. Goerigk, *Journal of Computational Chemistry*, 2011, **32**, 1456–1465.
- 22 A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899–926.