SUPPLEMENTARY INFORMATION

Re-assessing viologens for modern bio-electrocatalysis

Desmond Ato Koomson¹, Jake H. Nicholson¹, Alex P. S. Brogan^{1,*}, and Leigh Aldous^{1,*}

1. Department of Chemistry, Britannia House, King's College London, London SE1 1DB, UK

Viologens	Reagents	Mass/	Solvents	Temperature	Duration	Observation
		Volume		(°C)		
1-MBP	4,4'-bipyridine	5 g	Ethyl Acetate	4	1 Month	Orange precipitate
	lodomethane	1.196 mL	(50 mL)			
	4,4'-bipyridine	1 g	ACN (10 mL)	60	24 hours	Colourless solution
PV1	1-Chloropropane	1.691 mL	DMF (50 mL)	120	120 hours	Crystal yellow solution
PV 2	4.4'-bipvridine	1 a				· ·
	lodopropane	1.873 mL	ACN (50 mL)	70	210 hours	Red precipitates
	4,4'-bipyridine	1 g	ACN (50 mL)	60	336 hours	Yellow precipitates
BuV	1-Bromobutane	2.763 mL	_			
	4,4'-bipyridine	1 g	ACN (75 mL)	90	22 hours	Crystal brown solution
AcV	Bromoacetic acid	2.669 g	_			with brown precipitates
MAcV	lodoacetic acid	0.8799 g	ACN (65 mL)	90	145 hours	Deep orange
	1-MBP	1.4106 g	_			precipitates
	4,4'-bipyridine	1 g	ACN (50 mL)	60	120 hours	White precipitates
EtOHV	2-Bromoethanol	1.588 mL	DMF (65 mL)	120	96 hours	Cream precipitates
POHV	4,4'-bipyridine	1 g	DMF (95 mL)	120	410 hours	Brown precipitates
	3-Bromo-1-	2026.53	_			
	propanol	mL				
EtAmV	4,4'-bipyridine	1 g	DMF (70 mL)	120	168 hours	Brown precipitate
			_			formation
	2-	3.936 g				
	Bromoethylamine					
	hydrobromide					
PAmV	4,4'-bipyridine	1 g	DMF (95 mL)	120	550 hours	Light brown precipitate
	2-	4.205 g	-			formation
	Bromopropylamine					
	hydrobromide					

MEtAmV	1-MBP	1.1393 g	ACN (50 mL)	90 117 hours	Orange precipitate
	2-	1.566 g	-		
	Bromoethylami	ne			
	hydrobromide				
Suppleme	entary Table 2	. ¹ H NMR (400) MHz) characte	erisation of viologen libr	ary.
Viologens		Proton (s)	Multiplicity	Chemical shift δ (ppm)	Solvent
Methyl Viologen (MeV)		2H	d	9.0	
		2H	d	8.46	D ₂ O
		3H	S	4.44	_
Ethyl Viologen (EtV)		2H	d	9.37	
		2H	d	8.76	DMSO-d6
		2H	q	4.73	_
		3H	t	1.67	_
Propyl Viologen (PV)		2H	d	9.51	
		2H	d	8.90	_
		2H	t	4.74	DMSO-d6
		2H	sex	2.03	_
-		3H	t	0.97	_
Butyl Viologen (BuV)		2H	d	9.52	
		2H	d	8.88	_
		2H	t	4.77	DMSO-d6
		2H	quin	1.97	_
		2H	q	1.32	_
		3H	t	0.91	_
Benzyl Viologen (BzV)		2H	d	9.11	
		2H	d	8.48	D2O
		2H	m	7.52	_
		ЗH	S	5.84	_
Ethanol Viologen (EtOHV)		2H	d	9.08	
		2H	d	8.51	D2O
		2H	t	4.82	_
		2H	t	4.11	_
Propanol V	iologen (POHV)	2H	d	9.10	
		2H	d	8.50	_
		2H	t	4.80	D2O
		2H	t	3.66	_
		1H	S	2.66	_
		2H	quin	2.27	_
A potete \/'-	$\lambda = \frac{1}{2}$	211	d	0.02	
Acetate Viologen (AcV)		2H	0	9.02	
		2H	a	8.49	D_2O

	2H	S	4.48	
Methyl Acetate Viologen	2H	d	9.33	
	2H	d	8.82	D ₂ O
	2H	S	3.39	
	3H	S	2.52	
Ethyl Amine Viologen	2H	d	9.20	
(EtAMV)	2H	d	8.60	
	2H	t	5.06	D ₂ O
	2H	t	3.73	
	2H	S	1.97	
Propyl Amine Viologen	2H	d	9.13	
(PAMV)	2H	d	8.56	
	2H	t	4.81	D2O
	2H	t	3.15	
	3H	S	2.65	
	2H	quin	2.45	
Methyl Amine Viologen	2H	d	9.18	
(METAMV)	2H	d	9.01	
	2H	d	8.61	
	2H	d	8.48	D ₂ O
	2H	t	5.07	
	3H	S	4.46	
	2H	t	3.75	

Supplementary Figure 1. Cyclic Voltammograms showing no bio-electrocatalytic activity: a – MeV and GSSG; b – GSSG only (red), GR only (green), and GSSG and GR (blue); c – Tris/KCl only.

Supplementary Figure 2. First redox cyclic voltammograms (solid blue line) of viologens with their corresponding simulated fits (dotted red line): a – MeV; b – EtV; c – PV; d – BuV; e – AcV; f – MacV; g – EtOHV; h – POHV; I – EtAmV; j – PamV; k – MetAmV; and I – BzV.

Supplementary Figure 3. Cyclic voltammograms showing viologens at $E_{red,1}$ with GSSG in the presence (red) or absence (blue) of GR for: a – MeV; b – EtV; c – PV; d – BuV; e – AcV; f – MacV; g – EtOHV; h – POHV; I – EtAmV; j – PamV; k – MetAmV; and I – BzV

Supplementary Figure 4. a – Lineweaver-Burk plot showing inhibition of GSSG at GR active site in presence of viologens: uninhibited control (black), MeV (grey), BzV (orange), EtOHV (green), EtAmV (red), and AcV (blue); b – Lineweaver-Burk plot showing inhibition of NADPH at GR active site in presence of viologens: uninhibited control (black), MeV (grey), BzV (orange), EtOHV (green), EtAmV (red), and AcV (blue); c – $I_{lim,1}/I_{p,1}$ versus NADPH-inhibition factor of the viologens.

Supplementary Figure 5. Second redox cyclic voltammograms (solid blue line) of viologens with their corresponding simulated fits (dotted red line): a – EtOHV; b – POHV; c – EtAmV; d – PamV; e – MetAmV.

Supplementary Figure 6. Cyclic voltammograms showing polar and positively charged viologens at $E_{red,2}$ with GSSG in the presence (red) or absence (blue) of GR: a – Polar viologen (EtOHV); and b – Positively charged viologen (EtAmV).

Supplementary Figure 7. Plot of number weight particle size distribution against hydrodynamic diameter, as collected by dynamic light scattering, for glutathione reductase in water (data fitted with Gaussian distribution, black, to determine average diameter).

Supplementary Figure 8. First redox cyclic voltammograms (solid blue line) showing bioelectrocatalysis with their corresponding simulated fits (dotted red line): a – MeV; b – AcV; c – EtOHV; and d – MetAmV.

Supplementary Figure 9. Second redox cyclic voltammograms (solid blue line) showing bioelectrocatalysis with their corresponding simulated fits (dotted red line): a – EtOHV; and c – MetAmV.