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Section S1. Materials and characterization

S1.1 Materials and instruments 

All starting materials and solvents, unless otherwise noted, were obtained from J&K scientific LTD. 2,4,6-tri(4-

aldehyde phenyl)-1,3,5-triazine (TFPT) was purchased from J&K scientific LTD. 2,2'-bipyridine-5,5'-diamine 

(Bpy) was purchased from Zhengzhou Alpha Chemical Technology Co.. Fourier transform infrared (FT-IR) spectra 

were acquired on a Thermoscientific Nicolet 4700 Fourier Transform Infrared Spectrometer with KBr pellet. 

Thermogravimetric analysis (TGA) was recorded on a STA 449 F3 Jupiter thermal analyzer with N2 flow rate of 20 

mL min-1 at a heating rate of 5 ℃ min-1 to 800 ℃. PXRD data were collected on a PANalytical B.V. Empyrean 

powder diffractometer using a Cu Kα source (λ = 1.5418 Å) over the range of 2θ = 2.0-40.0° with a step size of 

0.02° and 2 s per step. The SEM images were obtained on JEOL 8100 scanning electron microscope. X-ray 

photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectrum (UV-vis DRS) and UV detection were 

obtained by ESCALAB250XI electronic spectrometer (VG scientific, USA).

S1.2 Synthesis of JLUN-307 

TFPT (0.04 mmol, 15.73 mg) and Bpy (0.06 mmol, 11.17 mg) were weighed into a Pyrex tube (volume: ca. 20 mL 

with length of 10 cm, neck length of 9 cm) and to the mixture were added 1,4-dioxane (0.5 mL), 1,3,5-trityleneand 

(0.5 mL) and 0.1 mL of aqueous acetic acid (6.0 mol L-1). The tube was flash frozen at 77K (LN2 bath), evacuated 

to an internal pressure of 0.15 mmHg and flame sealed. Upon sealing, the length of the tube was reduced to ca. 13 

cm. The reaction mixture was heated at 120℃ for 72 h to afford a yellow precipitate which was isolated by filtration 

over a medium glass frit and washed with anhydrous acetone (3×20 mL). The yield was about 82.1% (22.1 mg). 

The solvent was removed under vacuum at 60 ℃ to afford the corresponding products as yellow powder of JLNU-

307 (JLNU=Jilin Normal University). Anal. Calc for C78H48N18: C: 77.16; H: 3.65; N:19.19 Found: C:77.91; H: 
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3.52; N: 18.57. Solid-state 13C NMR (500MHZ): 74.14, 88.79, 93.83, 121.63, 128.68, 139.15, 145.28, 153.79, 

158.29, 170.38 ppm. FT-IR (KBr): 805, 1031, 1189, 1345, 1376, 1407, 1496, 1602, 1679, 2913, 3417 cm-1.

S1.3 Synthesis of JLUN-307-Co

50 mg of JLNU-307 and 100 mg of hexahydrate and cobalt nitrate (Co(NO3)2·6H2O) were stirred in a mixture of 

10 mL of water and ethanol (H2O:C2H5OH=1:1) for 24 h. After vacuum drying at 60℃ for 12 h, 52.84 mg of orange 

powder was obtained, named as JLNU-307-Co.

S1.4 Computational details

The theoretical calculations were performed via the Gaussian 16 suite of programs [1]. The structure of the studied 

molecule was fully optimized at the B3LYP-D3BJ/TZVP level of theory. The vibrational frequencies of the 

optimized structures were carried out at the same level. The structures were characterized as a local energy minimum 

on the potential energy surface by verifying that all the vibrational frequencies were real. The Hirshfeld atomic 

charges and the Fukui index (f +, f -, f 0) of molecules were calculated and analyzed by using the Multiwfn software 

[2]. The Visual Molecular Dynamics (VMD) program [3] was used to plot the color-filled iso-surface graphs to 

visualize the molecular electrostatic potential (MESP). The ESP surface minima and maxima of the molecules are 

depicted as blue and yellow points, which were calculated based on the optimized structure.

Considering acetonitrile as polar solvent, all structures were optimized and characterized in gas at M06 

[4]/BSI level, BSI representing a basis set with SDD [5] for Co and 6-31G(d,p) for other atoms. Harmonic 

frequency analysis calculations at the same level were performed to verify the optimized geometries to be minima 

(no imaginary frequency). The energies were further improved by M06/BSII//M06/BSI single-point calculations, 

BSII denotes a basis set with SDD for Co and 6-311++G(d,p) for other atoms. All DFT calculations were carried 
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out using Gaussian 09 program [6]. Selected computed structures are illustrated using the CYLview [7].
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Section S2: PXRD patterns

.

Fig. S1. Comparison of PXRD patterns for JLNU-307: calculated based on the AA stacked 

(purple), AB stacked (orange), and experiment (blue).

Fig. S2. Comparison of PXRD between JLNU-307 and JLNU-307-Co.
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Section S3: Structural model

Fig. S3. The simulated AA stacking structure of JLNU-307.

Fig. S4. The simulated AB stacking structure of JLNU-307.
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Section S4: Stability test

Fig. S5. PXRD patterns of JLNU-307 after 3 d treatment in acid/base aqueous solutions.
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Section S5: TGA

Fig. S6. TGA curves of JLNU-307 in N2 atmosphere.

Fig. S7. TGA curves of JLNU-307-Co in N2 atmosphere.
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Section S6: SEM

Fig. S8. (a) SEM image of JLNU-307; (b, c) SEM images and EDS maps for C and N elements of 
JLNU-307.

Fig. S9. (a) SEM image of JLNU-307-Co; (b-d) SEM images and EDS maps for C, N and Co 
elements of JLNU-307-Co.
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Section S7: Gas adsorption isotherms

Fig. S10. N2 adsorption-desorption isotherms of JLNU-307.

Fig. S11. BET pole of JLNU-307 calculated from N2 adsorption isotherm at 77 K.
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Fig. S12. The pore size distribution curve of JLNU-307.

Fig. S13. N2 adsorption-desorption isotherms of JLNU-307-Co.
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Fig. S14. BET pole of JLNU-305-Co calculated from N2 adsorption isotherm at 77 K.

Fig. S15. The pore size distribution curve of JLNU-305-Co.
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Section S8: XPS spectra

Fig. S16. XPS spectra of JLNU-307.

Fig. S17. High resolution XPS spectra of C 1s obtained from JLNU-307.
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Fig. S18. High resolution XPS spectra of N 1s obtained from JLNU-307.

Fig. S19. XPS spectra of JLNU-307-Co.
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Fig. S20. High resolution XPS spectra of C 1s obtained from JLNU-307-Co.

Fig. S21. High resolution XPS spectra of N 1s obtained from JLNU-307-Co.
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Fig. S22. High resolution XPS spectra of Co 2p obtained from JLNU-307-Co.
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Section S9: Contact angle

Fig. S23. Contact angle test for JLNU-307.

Fig. S24. Contact angle test for JLNU-307-Co.
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Section S10: UV-visible absorption

Fig. S25. UV-vis DRS spectra of JLNU-307 and JLNU-307-Co.

Fig. S26. The bandgap energy of JLNU-307 and JLNU-307-Co.
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Section S11: Degradation performance

Fig. S27. Reaction rate constants of JLNU-307 and JLNU-307-Co systems within 3 min.

Fig. S28. Effects of TPA (5 mM) on degradation of 2,4-DCP. 
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Section S12: Unit cell parameters and fractional atomic coordinates

Table S1. Unit cell parameters and fractional atomic coordinates for JLNU-307 calculated on the 
basis of staggered hcb net

Space group P6/M (No. 175)
Calculated unit cell a = b = 44.3729 Å, c = 3.5122 Å, α = β 

= 90°, γ = 120°
Measured unit cell a = b = 44.3729 Å, c = 3.5122 Å, α = β 

= 90°, γ = 120°
Pawley refinement Rωp = 2.79%， Rp = 1.96%

Atom x y z
C1 0.50001 0.51926 1
C2 0.51956 0.55571 1
C3 0.50253 0.57495 1
C4 0.46625 0.55796 1
C5 0.44752 0.52147 1
N6 0.46461 0.50319 1
N7 0.44924 0.57815 1
C8 0.41569 0.56435 1
C9 0.39925 0.58593 1
C10 0.36296 0.56972 1
C11 0.34664 0.5897 1
C12 0.36647 0.62614 1
C13 0.40288 0.64231 1
C14 0.4192 0.62234 1
C15 0.34925 0.6472 1
N16 0.31397 0.63147 1
C17 0.48074 0.98075 1
C18 0.44429 0.96385 1
C19 0.42505 0.92758 1
C20 0.44204 0.90829 1
C21 0.47853 0.92605 1
N22 0.49681 0.96142 1
N23 0.42185 0.87109 1
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Section S13: Compared with other catalysts

Table S2. Comparison of the performance of JLNU-305-Fe with other catalysts.

Pollutants:2,4-DCP

Catalyst Amount of 
catalyst (mg)

Concentration of 
pollutants (mg/L)

Time of degradation 
(min)

Illumination
Efficiency of 

degradation (％)

Reference

JLNU-307-Co/PMS 10 50 3 — 100 This work

Pal-Fe/Ni 75 81.5 240 — 100 8

GCN-PSFs 25 5 30 √ 88.8 9

Cr(VI)/PCN-S 50 80 80 √ 100 10

1Ag/6Sn-CN 200 20 30 — 71 11

Na(8)B(6)-CN 50 50 270 √ 90.6 12
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Fe/Mn-BC/PS 100 30 30 — 83.7 13

MIL-100(Fe) 75 100 420 √ 87.7 14

 D-ATP-nFe/Ni 400 10 120 — 96.8 15

Fe@C/Cu@C-PS 94 40 90 — 100 16

COFs-Ph@CdS-3 20 10 100 √ 95.4 17

Fe3O4(S600)/PMS 200 20 70 √ 100 18

JLNU-305-Fe/PDS 10 10 8 — 100 19

CoNi 

LDH@NF/PMS
200 20 90 — 99 20

FeCo2O4/PMS 60 100 90 — 95 21
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