Supplemental information

Cobalt-modified covalent organic framework enables highly efficient degradation of 2,4-dichlorophenol in high concentrations through peroxymonosulfate activation

Yunchao Ma^a, Yuhang Han^a, Yuxin Yao^a, Tianyu Zhou^{a,b}, Dongshu Sun^a, Chunbo Liu^{b,*} Guangbo Che^{c,*}, Bo Hu ^{a,*} Valentin Valtchev^d and Qianrong Fang^e

^aKey Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, P.R. China

^bJilin Joint Technology Innovation Laboratory of Developing and Utilizing Materials of Reducing Pollution and Carbon Emissions, College of Engineering, Jilin Normal University, Siping, 136000, China

^cCollege of Chemistry, Baicheng Normal University, Baicheng, 137000, China

^dQindao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, 189 Song Ling Rd, Qingdao, Shangdong 266101, China.

^eState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China

Table of contents

Section S1	Materials and characterization	S3-S5
Section S2	PXRD patterns	S6
Section S3	Structural model	S 7
Section S4	Stability test	S 8
Section S5	TGA	S9
Section S6	SEM	S10
Section S7	Gas adsorption isotherms	S11-13
Section S8	XPS spectra	S14-17
Section S9	Contact angle	S18
Section S10	UV-visible absorption	S19
Section S11	Degradation performance	S20
Section S12	Unit cell parameters and fractional atomic coordinates	S21
Section S13	Compared with other catalysts	S22-S23
Section S14	References	S24-25

Section S1. Materials and characterization

S1.1 Materials and instruments

All starting materials and solvents, unless otherwise noted, were obtained from J&K scientific LTD. 2,4,6-tri(4aldehyde phenyl)-1,3,5-triazine (TFPT) was purchased from J&K scientific LTD. 2,2'-bipyridine-5,5'-diamine (Bpy) was purchased from Zhengzhou Alpha Chemical Technology Co.. Fourier transform infrared (FT-IR) spectra were acquired on a Thermoscientific Nicolet 4700 Fourier Transform Infrared Spectrometer with KBr pellet. Thermogravimetric analysis (TGA) was recorded on a STA 449 F3 Jupiter thermal analyzer with N₂ flow rate of 20 mL min⁻¹ at a heating rate of 5 °C min⁻¹ to 800 °C. PXRD data were collected on a PANalytical B.V. Empyrean powder diffractometer using a Cu K α source ($\lambda = 1.5418$ Å) over the range of 2 $\theta = 2.0-40.0^\circ$ with a step size of 0.02° and 2 s per step. The SEM images were obtained on JEOL 8100 scanning electron microscope. X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectrum (UV-vis DRS) and UV detection were obtained by ESCALAB250XI electronic spectrometer (VG scientific, USA).

S1.2 Synthesis of JLUN-307

TFPT (0.04 mmol, 15.73 mg) and Bpy (0.06 mmol, 11.17 mg) were weighed into a Pyrex tube (volume: ca. 20 mL with length of 10 cm, neck length of 9 cm) and to the mixture were added 1,4-dioxane (0.5 mL), 1,3,5-trityleneand (0.5 mL) and 0.1 mL of aqueous acetic acid (6.0 mol L⁻¹). The tube was flash frozen at 77K (LN₂ bath), evacuated to an internal pressure of 0.15 mmHg and flame sealed. Upon sealing, the length of the tube was reduced to ca. 13 cm. The reaction mixture was heated at 120°C for 72 h to afford a yellow precipitate which was isolated by filtration over a medium glass frit and washed with anhydrous acetone (3×20 mL). The yield was about 82.1% (22.1 mg). The solvent was removed under vacuum at 60 °C to afford the corresponding products as yellow powder of JLNU-307 (JLNU=Jilin Normal University). Anal. Calc for $C_{78}H_{48}N_{18}$: C: 77.16; H: 3.65; N:19.19 Found: C:77.91; H:

3.52; N: 18.57. Solid-state ¹³C NMR (500MH_Z): 74.14, 88.79, 93.83, 121.63, 128.68, 139.15, 145.28, 153.79, 158.29, 170.38 ppm. FT-IR (KBr): 805, 1031, 1189, 1345, 1376, 1407, 1496, 1602, 1679, 2913, 3417 cm⁻¹.

S1.3 Synthesis of JLUN-307-Co

50 mg of JLNU-307 and 100 mg of hexahydrate and cobalt nitrate ($Co(NO_3)_2 \cdot 6H_2O$) were stirred in a mixture of 10 mL of water and ethanol ($H_2O:C_2H_5OH=1:1$) for 24 h. After vacuum drying at 60°C for 12 h, 52.84 mg of orange powder was obtained, named as JLNU-307-Co.

S1.4 Computational details

The theoretical calculations were performed via the Gaussian 16 suite of programs [1]. The structure of the studied molecule was fully optimized at the B3LYP-D3BJ/TZVP level of theory. The vibrational frequencies of the optimized structures were carried out at the same level. The structures were characterized as a local energy minimum on the potential energy surface by verifying that all the vibrational frequencies were real. The Hirshfeld atomic charges and the Fukui index (f^+ , f^- , f^0) of molecules were calculated and analyzed by using the Multiwfn software [2]. The Visual Molecular Dynamics (VMD) program [3] was used to plot the color-filled iso-surface graphs to visualize the molecular electrostatic potential (MESP). The ESP surface minima and maxima of the molecules are depicted as blue and yellow points, which were calculated based on the optimized structure.

Considering acetonitrile as polar solvent, all structures were optimized and characterized in gas at M06 [4]/BSI level, BSI representing a basis set with SDD [5] for Co and 6-31G(d,p) for other atoms. Harmonic frequency analysis calculations at the same level were performed to verify the optimized geometries to be minima (no imaginary frequency). The energies were further improved by M06/BSII//M06/BSI single-point calculations, BSII denotes a basis set with SDD for Co and 6-311++G(d,p) for other atoms. All DFT calculations were carried

out using Gaussian 09 program [6]. Selected computed structures are illustrated using the CYLview [7].

Section S2: PXRD patterns

Fig. S1. Comparison of PXRD patterns for JLNU-307: calculated based on the AA stacked (purple), AB stacked (orange), and experiment (blue).

Fig. S2. Comparison of PXRD between JLNU-307 and JLNU-307-Co.

Section S3: Structural model

Fig. S3. The simulated AA stacking structure of JLNU-307.

Fig. S4. The simulated AB stacking structure of JLNU-307.

Section S4: Stability test

Fig. S5. PXRD patterns of JLNU-307 after 3 d treatment in acid/base aqueous solutions.

Fig. S6. TGA curves of JLNU-307 in N_2 atmosphere.

Fig. S7. TGA curves of JLNU-307-Co in N₂ atmosphere.

Section S6: SEM

Fig. S8. (a) SEM image of JLNU-307; (b, c) SEM images and EDS maps for C and N elements of JLNU-307.

Fig. S9. (a) SEM image of JLNU-307-Co; (b-d) SEM images and EDS maps for C, N and Co elements of JLNU-307-Co.

Section S7: Gas adsorption isotherms

Fig. S10. N₂ adsorption-desorption isotherms of JLNU-307.

Fig. S11. BET pole of JLNU-307 calculated from N₂ adsorption isotherm at 77 K.

Fig. S12. The pore size distribution curve of JLNU-307.

Fig. S13. N₂ adsorption-desorption isotherms of JLNU-307-Co.

Fig. S14. BET pole of JLNU-305-Co calculated from N_2 adsorption isotherm at 77 K.

Fig.

Section S8: XPS spectra

Fig. S16. XPS spectra of JLNU-307.

Fig. S17. High resolution XPS spectra of C 1s obtained from JLNU-307.

Fig. S18. High resolution XPS spectra of N 1s obtained from JLNU-307.

Fig. S19. XPS spectra of JLNU-307-Co.

Fig. S20. High resolution XPS spectra of C 1s obtained from JLNU-307-Co.

Fig. S21. High resolution XPS spectra of N 1s obtained from JLNU-307-Co.

Fig. S22. High resolution XPS spectra of Co 2p obtained from JLNU-307-Co.

Section S9: Contact angle

Fig. S23. Contact angle test for JLNU-307.

Fig. S24. Contact angle test for JLNU-307-Co.

Fig. S25. UV-vis DRS spectra of JLNU-307 and JLNU-307-Co.

Fig. S26. The bandgap energy of JLNU-307 and JLNU-307-Co.

Section S11: Degradation performance

Fig. S27. Reaction rate constants of JLNU-307 and JLNU-307-Co systems within 3 min.

Fig. S28. Effects of TPA (5 mM) on degradation of 2,4-DCP.

Section S12: Unit cell parameters and fractional atomic coordinates

Space group		P6/M (No. 175)		
Calculated unit cell		$a = b = 44.3729$ Å, $c = 3.5122$ Å, $\alpha = \beta$		
		$=90^{\circ}, \gamma = 120^{\circ}$		
Measured unit cell		$a = b = 44.3729$ Å, $c = 3.5122$ Å, $\alpha = \beta$		
		$=90^{\circ}, \gamma$	$ = 120^{\circ} $	
Pawley refinement		$R\omega p = 2.79\%,$	<i>Rp</i> = 1.96%	
Atom	X	у	Z	
C1	0.50001	0.51926	1	
C2	0.51956	0.55571	1	
C3	0.50253	0.57495	1	
C4	0.46625	0.55796	1	
C5	0.44752	0.52147	1	
N6	0.46461	0.50319	1	
N7	0.44924	0.57815	1	
C8	0.41569	0.56435	1	
C9	0.39925	0.58593	1	
C10	0.36296	0.56972	1	
C11	0.34664	0.5897	1	
C12	0.36647	0.62614	1	
C13	0.40288	0.64231	1	
C14	0.4192	0.62234	1	
C15	0.34925	0.6472	1	
N16	0.31397	0.63147	1	
C17	0.48074	0.98075	1	
C18	0.44429	0.96385	1	
C19	0.42505	0.92758	1	
C20	0.44204	0.90829	1	
C21	0.47853	0.92605	1	
N22	0.49681	0.96142	1	
N23	0.42185	0.87109	1	

Table S1. Unit cell parameters and fractional atomic coordinates for JLNU-307 calculated on the basis of staggered **hcb** net

Section S13: Compared with other catalysts

 Table S2. Comparison of the performance of JLNU-305-Fe with other catalysts.

Catalyst	Pollutants:2,4-DCP					
	Amount of catalyst (mg)	Concentration of pollutants (mg/L)	Time of degradation (min)	Illumination	Efficiency of degradation (%)	Reference
JLNU-307-Co/PMS	10	50	3	_	100	This work
Pal-Fe/Ni	75	81.5	240	_	100	8
GCN-PSFs	25	5	30	\checkmark	88.8	9
Cr(VI)/PCN-S	50	80	80	\checkmark	100	10
1Ag/6Sn-CN	200	20	30	_	71	11
Na(8)B(6)-CN	50	50	270		90.6	12

Fe/Mn-BC/PS	100	30	30		83.7	13
MIL-100(Fe)	75	100	420	\checkmark	87.7	14
D-ATP-nFe/Ni	400	10	120		96.8	15
Fe@C/Cu@C-PS	94	40	90	—	100	16
COFs-Ph@CdS-3	20	10	100	\checkmark	95.4	17
Fe ₃ O ₄ (S600)/PMS	200	20	70	\checkmark	100	18
JLNU-305-Fe/PDS	10	10	8	—	100	19
CoNi LDH@NF/PMS	200	20	90	—	99	20
FeCo ₂ O ₄ /PMS	60	100	90	—	95	21

Section S14. References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 16 Revision. A.03, Gaussian Inc., Wallingford, CT, 2016.
- [2] Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem., 33 (2012) 580-592. <u>https://doi.org/10.1002/jcc.22885</u>.
- [3] W. Humphrey, A. Dalke and K. Schulten, VMD: Visual molecular dynamics. J Mol Graph Model, (1996) 14, 33-38. <u>https://doi.org/10.1016/0263-7855(96)00018-5</u>.
- [4] (a) Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 2009, 5, 324; (b) Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215; (c) Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
- [5] (a) M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 1987, 86, 866; (b) D. Andrae, U. Häussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta. 1990, 77, 123; (c) L. E. Roy, P. J. Hay, R. L. Martin, J. Chem. Theory. Comput. 2008, 4, 1029.
- [6] (a) Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 2009, 5, 324; (b) Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215; (c) Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157. 6 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, , M. Ishida, T.Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.; J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Rev. A.01; Gaussian, Inc.: Wallingford, CT, 2010.
- [7] C. Y. Legault, CYLView, version 1.0 b; Université de Sherbrooke: Sherbrooke, Quebec, Canada, 2009. <u>http://www.cylview.org.</u>
- [8] N. Ezzatahmadi, G.J. Millar, G.A. Ayoko, J. Zhu, R. Zhu, X. Liang, H. He, Y. Xi, Degradation of 2,4-dichlorophenol using palygorskite-supported bimetallic Fe/Ni nanocomposite as a heterogeneous catalyst, Appl Clay Sci. 168 (2019) 276-286. <u>https://doi.org/10.1016/j.clay.2018.11.030.</u>
- [9] Y. Wu, J. Chen, H. Che, X. Gao, Y. Ao, P. Wang, Boosting 2e⁻ oxygen reduction reaction in garland carbon nitride with carbon defects for high-efficient photocatalysis-self-Fenton degradation of 2,4dichlorophenol, Appl. Catal. B. 307 (2022) 121185. <u>https://doi.org/10.1016/j.apcatb.2022.121185.</u>
- [10] Y. Deng, L. Tang, G. Zeng, Z. Zhu, M. Yan, Y. Zhou, J. Wang, Y. Liu, J. Wang, Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C₃N₄ nanosheets from aqueous media: Performance and reaction mechanism, Appl. Catal. B. 203 (2017) 343-354. <u>https://doi.org/10.1016/j.apcatb.2016.10.046.</u>
- [11] W. Ali, X. Zhang, X. Zhang, S. Ali, L. Zhao, S. Shaheen, L. Jing, Improved visible-light activities of g-C₃N₄ nanosheets by co-modifying nano-sized SnO₂ and Ag for CO₂ reduction and 2,4-

dichlorophenol degradation, Mater. Res. Bull. 122 (2020) 110676. https://doi.org/10.1016/j.materresbull.2019.110676.

- [12] Y. Chu, X. Zheng, J. Fan, Preparation of sodium and boron co-doped graphitic carbon nitride for the enhanced production of H₂O₂ via two-electron oxygen reduction and the degradation of 2,4-DCP via photocatalytic oxidation coupled with Fenton oxidation, Chem. Eng. J. 431 (2022) 134020. <u>https://doi.org/10.1016/j.cej.2021.134020.</u>
- [13] K. Zhang, D. Huang, Y. Zhang, N. El Houda Bouroubi, P. Chen, N. Ganbold, P. He, J. Liu, Y. Fang, M. Gan, J. Zhu, B. Yang, Natural mineral-derived Fe/Mn-BC as efficient peroxydisulfate activator for 2,4-dichlorophenol removal from wastewater: Performance and sustainable catalytic mechanism, J. Environ. Manage. 335 (2023) 117540. <u>https://doi.org/10.1016/j.jenvman.2023.117540.</u>
- [14] Z. Wang, R. Miao, L. He, Q. Guan, Y. Shi, Green synthesis of MIL-100(Fe) derivatives and revealing their structure-activity relationship for 2,4-dichlorophenol photodegradation, Chemosphere. 291 (2022) 132950. <u>https://doi.org/10.1016/j.chemosphere.2021.132950.</u>
- [15] H. Wu, J. Wang, H. Liu, X. Fan, Performance, Reaction Pathway and Kinetics of the Enhanced Dechlorination Degradation of 2,4-Dichlorophenol by Fe/Ni Nanoparticles Supported on Attapulgite Disaggregated by a Ball Milling-Freezing Process, Materials, 15 (2022) 3957. https://doi.org/10.3390/ma15113957.
- [16] S. Zhou, Y. Hu, M. Yang, Y. Liu, Q. Li, Y. Wang, G. Gu, M. Gan, Insights into the mechanism of persulfate activation with carbonated waste metal adsorbed resin for the degradation of 2,4dichlorophenol, Environ. Res. 226 (2023) 115639. <u>https://doi.org/10.1016/j.envres.2023.115639.</u>
- [17] D. You, Z. Pan, Q. Cheng, COFs-Ph@CdS S-scheme heterojunctions with photocatalytic hydrogen evolution and efficient degradation properties, J. Alloys Compd. 930 (2023) 167069. <u>https://doi.org/10.1016/j.jallcom.2022.167069.</u>
- [18] Wang, H., Liu, H., Chu, Z., Sun, F., Zou, X., Wang, Q., Wang, H. Fe₃O₄ Derived from the Decomposition of Siderite as a Heterogeneous Photocatalyst to Degrade 2,4-DCP Via Activating PMS: The Enhancement of Visible Light Irradiation. J. Water Process Eng
- ,(2024) 4524012. https://doi.org/10.1016/j.jwpe.2023.104538
- [19] Y. Han, M. Tai, Y. Yao, J. Li, Y. Wu, B. Hu, Y. Ma, C. Liu, Iron-decorated covalent organic framework as efficient catalyst for activating peroxydisulfate to degrade 2,4-dichlorophenol: Performance and mechanism insight, J. Colloid Interface Sci, 663 (2024) 238-250. <u>https://doi.org/10.1016/j.jcis.2024.02.165.</u>
- [20] Liu, Y., Liu, W., Gan, X., Shang, J., & Cheng, X. High-performance, stable CoNi LDH@ Ni foam composite membrane with innovative peroxymonosulfate activation for 2,4-dichlorophenol destruction. J. Environ. Sci, 141 (2024) 235-248. <u>https://doi.org/10.1016/j.jes.2023.07.019.</u>
- [21] Zhou, R., Zhao, J., Shen, N., Ma, T., Su, Y., Ren, H. Efficient degradation of 2,4-dichlorophenol in aqueous solution by peroxymonosulfate activated with magnetic spinel FeCo2O4 nanoparticles. Chemosphere, 197 (2018) 670-679. <u>https://doi.org/10.1016/j.chemosphere.2018.01.079.</u>