Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Expedient Alkyne Semi-Hydrogenation by Using a Bimetallic AgCu-C₃N₄ Single Atom Catalyst

Jingting Song,[‡] Xiangbin Cai,[‡] Zhongxin Chen, Tie Wang, Shibo Xi, Hu Qikun, Ning Yan, and Kian Ping Loh^{*}

[#] These authors contributed equally to this work. Correspondence and requests for materials should be addressed to K. P. Loh (*chmlohkp@nus.edu.sg*)

Computational Section:

The calculations were carried out using density functional theory with the revised version of Perdew-Burke-Ernzerhof (revPBE), which can estimate the adsorption of species well.¹⁻⁴ The Vienna *ab-initio* simulation package (VASP)⁵⁻⁸ was employed. The Brillouin zone was sampled only at the Gamma point. The plane wave energy cutoff was set as 400 eV. The Fermi scheme was employed for electron occupancy with an energy smearing of 0.1 eV. The energy (converged to 1.0×10^{-4} eV atom⁻¹) and force (converged to 0.06 eV Å⁻¹) were set as the convergence criterion for geometry optimization. The spin polarization was considered in all calculations. To accurately describe the van der Waals (vdW), the non-local van der Waals density functional (vdW-DF) was employed.^{9,10} The projected Crystal Orbital Hamilton Population (pCOHP) method was used to visualize and analyze chemical bonding between catalysts and adsorbates with an MP-centered k-point of $2 \times 2 \times 2$, and the computer program Local Orbital Basis Suite Toward Electronic-Structure Reconstruction (LOBSTER) was used to process the pCOHP calculation results.¹¹⁻¹²

Models

A monolayer of 2 × 2 supercell of tri-s-triazine-based g-C₃N₄ with periodical boundary conditions was employed as the M-C₃N₄ catalyst model. Meanwhile the differential charge of the AgCu-C₃N₄ is investigated. The vacuum space was set to larger than 15 Å in the *z* direction to surface isolation to prevent interaction between two neighboring slabs. All the atoms were allowed to relax for structural optimization calculations.

Gibbs free energies

The reaction activity in this work is estimated using the Gibbs Free Energy curves. For free energy change (ΔG) of elementary reaction can be defined as follows:

$$\Delta G = \Delta E_{DFT} + \Delta E_{ZPE} - T\Delta S$$

where ΔE_{DFT} is the reaction energy of the elementary reaction by DFT, *i.e.* the energy difference between the final and initial states. ΔE_{ZPE} and ΔS are the differences in zero-point energy and entropy change between the final and initial states, respectively.

References

- (1) B. Hammer, L. B. Hansen, J. K. Nørskov, Phys. Rev. B 1999, 59, 7413-7421;
- (2) Y. K. Zhang, W. T. Yang, Phys. Rev. B 1998, 80, 890;
- (3) W. A. Brown, R. Kose, D. A. King, Chem. Rev. 1998, 98, 797-831;
- (4) K. Christmann, O. Schober, G. Ertl, J. Chem Phys. 1974, 60, 4719-4724;
- (5) G. Kresse, J. Furthmüller, Comp. Mater. Sci. 1996, 6, 15;
- (6) G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558;

- (7) G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251;
- (8) G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169;
- (9) M. Dion, R. Rydberg, E. Schröder, D. C. Langreth, B. I. Lundqvist, Phys. Rev. Lett. 2004, 92, 246401;
- (10) J. Kliměs, D. R. Bowler, A. Michaelides, J. Phys. Condens. Matter 2010, 22, 022201;
- (11) R. Dronskowski, P. E. Bloechl, J. Phys. Chem. 1993, 97, 8617;
- (12) V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Phys. Chem. A 2011, 115, 5461.

Figure S1. Schematic illustration of the preparation of AgCu-C₃N₄ SACs.

Figure S2. XRD patterns of (A) C_3N_4 -K and g- C_3N_4 showing successful intercalation of K ions, and (B) AgCu- C_3N_4 , Ag- C_3N_4 , and Cu- C_3N_4 SACs compared with C_3N_4 -K.

Figure S3. XPS spectra of C_3N_4 -K: (A) survey; (B) C_{1s} and (C) N_{1s} spectra.

Figure S4. TEM images of as-prepared SACs and pristine support. (A) $AgCu-C_3N_4$, (B) $Ag-C_3N_4$ (C) $Cu-C_3N_4$ SACs, and (D) C_3N_4 -K. Scale bar: (A-D) 20 nm.

Figure S5. HAADF-STEM images and corresponding elemental mappings of (A) AgCu-C₃N₄, (B Ag-C₃N₄, and (C) Cu-C₃N₄ SACs. Elemental mappings: Ag (grey), Cu (cyan), N (yellow), and C (red). Scale bar: (A-C) 50 nm.

Figure S6. MNN Auger electron spectra of AgCu-C₃N₄ and Ag-C₃N₄.

Figure S7. XPS spectra of AgCu-C₃N₄ SAC: (A) survey; (B) C_{1s} and (C) N_{1s} spectra.

Figure S8. XPS spectra of Ag-C₃N₄ SAC: (A) survey; (B) C_{1s} and (C) N_{1s} spectra.

Figure S9. XPS spectra of $Cu-C_3N_4$ SAC: (A) survey; (B) C_{1s} and (C) N_{1s} spectra. Note that the peak labeled with * is associated with carbon paste during XPS sample preparation.

Figure S10. Characterization of 23 wt% Ag-C₃N₄. (A) XRD patterns of 23 wt% Ag-C₃N₄ and C₃N₄-K. (B) TEM image of 23 wt% Ag-C₃N₄. Ag particles can be identified as black dots under TEM. Scale bar: (A) 20 nm.

Figure S11. Characterization of spent AgCu-C₃N₄ SAC. (A)TEM image, which shows no particle aggregation; (B) Cu *K*-edge XANES spectra; (C) Cu FT-EXAFS spectra; and (D) HAADF-STEM images and corresponding elemental mappings of the spent AgCu-C₃N₄ SAC. Scale bar: (A) 20 nm; (D) 50 nm.

Figure S12. (A) Adsorption energy for phenylacetylene and (B) atomic H on AgCu- C_3N_4 , Ag- C_3N_4 , and Cu- C_3N_4 SACs. (C) The p-COHP curves for phenylacetylene and (D) atomic H adsorption on Ag and Cu site of AgCu- C_3N_4 .

Figure S13. NMR spectrum for semi-hydrogenation product using MeOD as solvent. (A) ¹H NMR spectrum of alkene product and (B) ¹¹B NMR spectrum of reaction filtrate.

Figure S14. DFT-calculated energy pathway for fully hydrogenation of 4-ethynylanisole by NH_3BH_3 . Steps of semi-hydrogenation to alkene has been omitted. Inset shows the optimized configuration of each intermediates adsorbed on $AgCu-C_3N_4$ catalyst. The color scheme used: silver for Ag, orange for Cu, brown for C; grey for N, green for B, red for O, and pink for H.

Figure S15. The charge density difference of AgCu-C3N4 model. The color scheme used: silver for Ag, orange for Cu, brown for C and grey for N. Green and pink regions in differential charge density represent electron accumulation and depletion, respectively.

Figure S16. Demonstration of selective hydrogenation of alkyne to remove the trace amount of alkyne from alkene.

Figure S17. semi-hydrogenation of (A) *p*-nitrophenylacetylene and (B) 1-ethynyl-4-(phenylethynyl)benzene. For *p*-nitrophenylacetylene, Cu has a stronger affinity for the aryl nitro group than for the alkyne (*Nat Commun* **2022**, *13*, 2807), so reduction of the aryl nitro group occurs first, followed by the reduction of alkyne. In the case of 1-ethynyl-4-(phenylethynyl)benzene, the terminal alkyne is reduced first due to its less steric hindrance than the internal alkyne.

Sampla	ICP-OES	ICP-OES
Sample	Ag/wt%	Cu/wt%
AgCu-C ₃ N ₄	9.2	12.0
Ag-C ₃ N ₄	9.5	3.9
Cu-C ₃ N ₄	21.4	1.5

Table S1. Elementary composition of C₃N₄-based SACs.

Sample	ICP-OES	ICP-OES	2 11	
	Ag/wt%	Cu/wt%	2 a yield	
1	4.0	9.2	5%	
2	3.0	11.9	27%	
3	8.8	12.0	99%	
4	15.7	8.5	99%	
5	14.4	3.9	99%	
6	14.6	1.5	99%	
7	7.0	5.0	33%	
8	6.7	2.5	25%	
9	3.2	2	1%	

Table S2. The elementary composition of $AgCu-C_3N_4$ SACs for metal loading dependent catalytic performance study in Figure 3C.

 Table S3. Results of the EXAFS fitting of various catalysts.

	Bonding	Ν	R (Å)	σ^2 (Å ²)	$\Delta E_0(eV)$	R-factor
AgCu-C ₃ N ₄	Cu-N	2.8 ± 0.5	1.89	0.006	4.46	0.005
	Ag-N	2.5 ± 0.9	2.21	0.008	-0.153	0.01
Ag-C ₃ N ₄	Ag-N	2.9 ± 0.5	2.21	0.007	1.83	0.01
Cu-C ₃ N ₄	Cu-N	3.4 ± 0.2	1.91	0.007	3.78	0.002
Spent catalyst	Cu-N	3.1 ± 0.5	1.89	0.005	4.03	0.006
Ag ₂ O	Ag-O	2.0	2.05	0.003	5.41	0.002
Ag foil	Ag-Ag	12.0	2.86	0.011	1.03	0.008
Cu foil	Cu-Cu	12.0	2.54	0.008	3.51	0.002

Entry	Reductant	Solvent	Temperature Reaction Time		Yield (%)
1	NH ₃ BH ₃	MeOH	R.T	20 hr	99
2	NH ₃ BH ₃	Ethyl acetate	R.T	20 hr	0
3	NH ₃ BH ₃	Dichloromethane	R.T	20 hr	0
4	NH ₃ BH ₃	Diethyl ether	R.T	20 hr	0
5	NH ₃ BH ₃	THF (anhydrous)	R.T	20 hr	0
6	NH ₃ BH ₃	THF/MeOH = 10:1	R.T	20 hr	45
8	NH ₃ BH ₃	EtOH	R.T	20 hr	28
9	NH ₃ BH ₃	iPr-OH	R.T	20 hr	18
10	NH ₃ BH ₃	H ₂ O	R.T	20 hr	77
11 ^b	H_2 (1 atm)	MeOH	R.T	20 hr	0
12	NH ₃ BH ₃	MeOH	45 °C	10 hr	99
13	NH ₃ BH ₃	MeOH	60 °C	2 hr	99

Table S4. Reaction condition screening for semi-hydrogenation of 4-ethynylanisole^a

^a Condition: 0.1 mmol of 4-ethynylanisole (13 μ L), 0.5 mmol of NH₃BH₃ (15.0 mg), 1 mL of solvent, AgCu-C₃N₄ SAC (3mg), room temperature, 24 h, under ambient condition. The yield of 4-vinylanisole was determined by GC-MS; ^b H₂ balloon was used without adding NH₃BH₃.

Catalyst	Solvent	Reducing agent	Temperature	Alkene selectivity	Reference
AgCu-C ₃ N ₄	MeOH	NH ₃ BH ₃	RT to 60 °C	> 99%	This work
Pd ₁ /BP	MeOH	NH ₃ BH ₃	80 °C	> 90%	<i>Adv. Mater.</i> 2021 , 33, 2008471
Cu ₁ /CN/Al ₂ O ₃	MeOH	NH ₃ BH ₃	70 °C	98%	<i>Chem. Sci.</i> 2021 , 12, 14599
PdNP@Ni ₁ -γ- Al ₂ O ₃	EtOH	H ₂ (1atm)	RT	> 99%	ACS Catal. 2022, 12, 24, 14846
Pd ₁ /ZIF-8	Ethyl Acetate	H ₂ (1atm)	120 °C	100%	Nano Res. 2023, 16, 8003
Pd ₁ /Ni@G	EtOH	H ₂ (2 bar)	30 °C	93%	<i>Adv. Mater.</i> 2022 , 34, 2110455
Pt ₁ -Sn ₁ /N-C	MeOH	H ₂ (10 atm)	50 °C	> 97%	<i>Nat Commun</i> 2019 , 10, 3663
Pd ₁ @Cu-SiW	Gas-phase reaction	H ₂	120 °C	93%	Angew. Chem. Int. Ed. 2021 , 60, 22522
Pd ₁ /N-graphene	Gas-phase reaction	H ₂	125 °C	93.5%	<i>Adv. Mater.</i> 2019 , 31, 1900509
Pd ₁ Cu ₁ /ND@G	Gas-phase reaction	H ₂	110 °C	92%	J. Am. Chem. Soc. 2022 , 144, 40, 18485
Pd ₁ /CeO ₂	Gas-phase reaction	H ₂	160 °C	85%	Nano Res. 2022 , 15, 10037

 Table S5. Performance tracker for SAC catalysed semi-hydrogenation of alkynes.

¹H NMR of organic compounds.

1-methoxy-4-vinylbenzene (2*a***). ¹H NMR** (600 MHz, CDCl₃) δ = 7.37-7.36 (d, 2H), 6.89 (s, 2H), 6.69-6.66 (m, 1H), 5.65-5.62 (d, 1H), 5.15-5.14 (d, 1H), 3.82 (s, 3H).

2-(4-ethynylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (*1b*). ¹H NMR (600 MHz, CDCl₃) δ = 7.76-7.75 (d, 2H), 7.49-7.48 (d, 2H), 3.14 (s, 1H), 1.34 (s, 12H).

4,4,5,5-tetramethyl-2-(4-vinylphenyl)-1,3,2-dioxaborolane (*2b*). ¹H NMR (600 MHz, CDCl₃) δ = 7.81-7.80 (d, 2H), 7.44-7.43 (d, 2H), 6.77-6.72 (m, 1H), 5.85-5.82 (d, 1H), 5.32-5.30 (d, 1H), 1.37 (s, 12H).

Methyl 4-(ethynyloxy)benzoate (*1c*). ¹**H NMR** (600 MHz, CDCl₃) δ = 8.02-7.99 (m, 2H), 7.01-6.98 (m, 2H), 4.75-4.74 (d, 2H), 3.88 (s, 3H), 2.55-2.54 (t, 1H).

Methyl 4-(vinyloxy)benzoate (2*c***).** ¹**H NMR** (600 MHz, CDCl₃) δ = 7.99-7.97 (m, 2H), 6.93-6.91 (d, 2H), 6.07-6.01 (m, 1H), 5.43-5.40 (m, 1H), 5.32-5.30 (m, 1H), 4.58-4.57 (d, 2H), 3.87 (s, 3H).

N-benzyl-N-methylprop-2-yn-1-amine (*1d*). ¹**H NMR** (600 MHz, CDCl₃) δ = 7.34-7.29 (m, 4H), 7.26-7.23 (m, 1H), 3.56 (s, 2H), 3.29 (d, 2H), 2.33 (s, 3H), 2.27-2.26 (t, 1H).

N-benzyl-N-methylprop-2-en-1-amine (*2d*). ¹**H NMR** (600 MHz, CDCl₃) δ = 7.32-7.31 (m, 4H), 7.25-7.24 (m, 1H), 5.95-5.88 (m, 1H), 5.22-5.19 (m, 1H), 5.17-5.15 (m, 1H), 3.50 (s, 2H), 3.04-3.03 (d, 2H), 2.19 (s, 3H).

1-phenylprop-2-yn-1-ol (*1e*). ¹**H NMR** (600 MHz, CDCl₃) δ = 7.45-7.44 (m, 2H), 7.31-7.24 (m, 3H), 5.31 (d, 1H), 3.67 (s, 1H), 2.57 (d, 1H).

1-phenylprop-2-en-1-ol (2*e***). ¹H NMR** (600 MHz, CDCl₃) δ = 7.39-7.36 (m, 4H), 7.32-7.29 (m, 1H), 6.08-6.03 (m, 1H), 5.37-5.33 (m, 1H), 5.22-5.18 (m, 1H), 2.35 (s, 1H).

1,2-diphenylethyne (*If*). ¹H NMR (600 MHz, CDCl₃) δ = 7.57-7.38 (m, 4H), 7.38-7.34 (m, 6H).

(*Z*)-1,2-diphenylethene (*2f-cis*). ¹H NMR (600 MHz, CDCl₃) δ = 7.53-7.52 (d, 4H), 7.47-7.41 (m, 6H), 6.85 (s, 2H).

(*E*)-1,2-diphenylethene (*2f-trans*). ¹H NMR (600 MHz, CDCl₃) δ = 7.52-7.51 (m, 4H), 7.37-7.34 (m, 4H), 7.27-7.24 (m, 2H), 7.11 (s, 2H).

3-phenylpropiolamide (*1g*). ¹**H NMR** (600 MHz, CDCl₃) δ = 7.55-7.54 (m, 2H) 7.44-7.42 (t, 1H), 7.38-7.35 (t, 2H), 5.89 (s, 2H).

(*Z*)-3-phenylacrylamide (*2g-cis*). ¹H NMR (600 MHz, CDCl₃) δ = 7.48-7.47 (d, 2H), 7.37-7.35 (m, 2H), 7.33-7.31 (m, 1H), 6.86-6.84 (d, 1H, *J* = 12.6 Hz), 5.99-5.97 (d, 1H, *J* = 12.6 Hz), 5.66 (s, 1H), 5.47 (s, 1H).

(*E*)-3-phenylacrylamide (*2g-trans*). ¹H NMR (600 MHz, CDCl₃) δ = 7.66-7.64 (d, 1H, *J* = 15.6 Hz), 7.52-7.51 (m, 2H), 7.38-7.37 (m, 3H), 6.47-6.45 (d, 1H, *J* = 15.6 Hz), 5.66 (s, 2H).