An imidazole-based covalent-organic framework enabling a super-efficiency in

sunlight-driving uranium extraction from seawater

Lizhen Zhong,^a Xuefeng Feng,^a* Qingyun Zhang,^a Xianqing Xie^b and Feng Luo^a*

^aSchool of Chemistry and Materials Science, East China University of Technology, Nanchang 330013, China

^bNational Engineering Research Center for Carbonhydrate Synthesis, Jiangxi Normal University,

Nanchang, 330027, China

E-mail: fxfeng@ecut.edu.cn and ecitluofeng@163.com

Fig. S1 MS of model compound.

Fig. S6 Selectivity of $S_{U/M}$.

Fig. S7 Uranium adsorption under controlled conditions upon TI-COF. The error bars is based on the average vaule of three times.

Fig. S8 The PXRD patterns of the uranium-extracted samples after photocatalysis.

Fig. S9 The Raman spectra of the uranium-extracted samples after photocatalysis.

Fig. S10 Mott-Schottky plots of BI-COF.

Fig. S11 Mott-Schottky plots of TI-COF.

Fig. S12 The active intermediate test. The error bars is based on the average vaule of three times.

Fig. S13 Impedance plots of TI-COF and BI-COF.

Fig. S14 Fluorescence lifetimes of TI-COF.

Fig. S15 View of the HOMO and LUMO levels of BI-COF.

Fig. S16 View of the HOMO and LUMO levels of BI-COF and TI-COF, and their photocatalytic mechanism.

data_ I	BI-COF	7							
audit	_creatio	on_date		2023-10-15					
audit	_creatio	on_method		'Materials S	Studio'				
_symm	netry_s	pace_group_n	ame_H-M	'P-6'					
symmetry_Int_Tables_number				174					
				hexagonal					
loop_									
_symn	netry_e	quiv_pos_as_	xyz						
x,y,z	Z								
-y,x-	-y,z								
-x+y	√, - X,Z								
х,у,-	-Z								
-y,x-	-y,-z								
-x+y	∕,-X,-Z								
_cell_l	ength_	a		20.8009					
_cell_l	ength_	b		20.8009					
_cell_l	ength_	c		3.4407					
_cell_a	angle_a	lpha		90.0000					
_cell_a	angle_b	oeta		90.0000					
_cell_a	angle_g	amma		120.0000					
loop_									
atom	_site_la	lbel							
atom	_site_ty	pe_symbol							
atom	_site_fr	act_x							
atom	_site_fr	act_y							
atom	_site_fr	act_z							
atom	_site_U	_iso_or_equiv	V						
atom	_site_a	dp_type							
atom	_site_o	ecupancy							
C1	С	0.45313	0.39945	0.50000	0.00000	Uiso	1.00		
N2	Ν	0.44952	0.46247	0.50000	0.00000	Uiso	1.00		
C3	С	0.37609	0.43837	0.50000	0.00000	Uiso	1.00		
C4	С	0.33671	0.36202	0.50000	0.00000	Uiso	1.00		
N5	Ν	0.38541	0.33760	0.50000	0.00000	Uiso	1.00		
C6	С	0.52474	0.40080	0.50000	0.00000	Uiso	1.00		
C7	С	0.34332	0.48678	0.50000	0.00000	Uiso	1.00		
C8	С	0.53010	0.33915	0.50000	0.00000	Uiso	1.00		
C9	С	0.40908	0.69007	0.50000	0.00000	Uiso	1.00		
C10	С	0.38618	0.74332	0.50000	0.00000	Uiso	1.00		
C11	С	0.38572	0.56095	0.50000	0.00000	Uiso	1.00		
C12	С	0.73134	0.32859	0.50000	0.00000	Uiso	1.00		
C13	С	0.73686	0.39886	0.50000	0.00000	Uiso	1.00		
H14	Н	0.27697	0.32671	0.50000	0.00000	Uiso	1.00		

Table S1. Structural data of BI-COF.

Г

H15	Н	0.37204	0.28213	0.50000	0.00000	Uiso	1.00
H16	Н	0.57359	0.45514	0.50000	0.00000	Uiso	1.00
H17	Н	0.28355	0.45969	0.50000	0.00000	Uiso	1.00
H18	Н	0.47968	0.28579	0.50000	0.00000	Uiso	1.00
H19	Н	0.46725	0.70685	0.50000	0.00000	Uiso	1.00
H20	Н	0.44548	0.58476	0.50000	0.00000	Uiso	1.00
H21	Н	0.78047	0.32352	0.50000	0.00000	Uiso	1.00

Table S2. Structural data of TI-COF.

data_TI-COF											
_audit_creation_date				2023-10-15							
_audi	t_creation	n_method		'Materials Studio'							
_symmetry_space_group_name_H-M 'P-6'											
_sym	metry_In	t_Tables_nu	mber	174							
_sym	metry_ce	ll_setting		hexagonal							
loop_											
_sym	metry_eq	uiv_pos_as_	xyz								
x,y	,Z										
-y,y	к-y,z										
-x+	y,-x,z										
x,y	,-Z										
-y,y	к-у,-z										
-x+	y,-x,-z										
cell	length_a			34.0869							
cell	length_b			34.0869							
cell	length_c			6.6018							
cell	angle_al	pha		90.0000							
cell	angle_be	eta		90.0000							
cell	angle_ga	imma		120.0000							
loop_											
_atom	_site_lab	bel									
_atom	_site_typ	be_symbol									
_atom	_site_fra	.ct_x									
_atom	_site_fra	.ct_y									
_atom	_site_fra	.ct_z									
_atom	_atom_site_U_iso_or_equiv										
_atom_site_adp_type											
_atom_site_occupancy											
C1	С	0.41654	0.38254	-0.00000	0.00000	Uiso	1.00				
N2	Ν	0.41642	0.42199	-0.00000	0.00000	Uiso	1.00				
C3	С	0.37221	0.40958	-0.00000	0.00000	Uiso	1.00				
C4	С	0.34625	0.36298	-0.00000	0.00000	Uiso	1.00				

N5	N	0.37438	0.34601	-0.00000	0.00000	Uiso	1.00	
C6	С	0.45931	0.38170	-0.00000	0.00000	Uiso	1.00	
C7	С	0.35533	0.44186	-0.00000	0.00000	Uiso	1.00	
N8	Ν	0.37675	0.67562	-0.00000	0.00000	Uiso	1.00	
C9	С	0.36808	0.71043	-0.00000	0.00000	Uiso	1.00	
C10	С	0.35220	0.59416	-0.00000	0.00000	Uiso	1.00	
C11	С	0.39679	0.79396	-0.00000	0.00000	Uiso	1.00	
C12	С	0.45123	0.76816	-0.00000	0.00000	Uiso	1.00	
C13	С	0.48673	0.81315	-0.00000	0.00000	Uiso	1.00	
C14	С	0.43216	0.83880	-0.00000	0.00000	Uiso	1.00	
C15	С	0.47753	0.84910	-0.00000	0.00000	Uiso	1.00	
C16	С	0.75542	0.45703	-0.00000	0.00000	Uiso	1.00	
C17	С	0.79242	0.41226	-0.00000	0.00000	Uiso	1.00	
C18	С	0.83461	0.45182	-0.00000	0.00000	Uiso	1.00	
C19	С	0.79766	0.49667	-0.00000	0.00000	Uiso	1.00	
C20	С	0.83788	0.49476	-0.00000	0.00000	Uiso	1.00	
N21	Ν	0.70520	0.33112	-0.00000	0.00000	Uiso	1.00	
C22	С	0.70772	0.37217	-0.00000	0.00000	Uiso	1.00	
C23	С	0.66199	0.24766	-0.00000	0.00000	Uiso	1.00	
C24	С	0.51331	0.89765	-0.00000	0.00000	Uiso	1.00	
C25	С	0.46186	0.34373	-0.00000	0.00000	Uiso	1.00	
H26	Н	0.30965	0.34285	-0.00000	0.00000	Uiso	1.00	
H27	Н	0.36486	0.31177	-0.00000	0.00000	Uiso	1.00	
H28	Н	0.48951	0.41455	-0.00000	0.00000	Uiso	1.00	
H29	Н	0.31912	0.42818	-0.00000	0.00000	Uiso	1.00	
H30	Н	0.36230	0.78755	-0.00000	0.00000	Uiso	1.00	
H31	Н	0.45945	0.74131	-0.00000	0.00000	Uiso	1.00	
H32	Н	0.52097	0.81915	-0.00000	0.00000	Uiso	1.00	
H33	Н	0.42391	0.86565	-0.00000	0.00000	Uiso	1.00	
H34	Н	0.72520	0.45991	-0.00000	0.00000	Uiso	1.00	
H35	Н	0.79134	0.37997	-0.00000	0.00000	Uiso	1.00	
H36	Н	0.86403	0.44781	-0.00000	0.00000	Uiso	1.00	
H37	Н	0.79889	0.52905	-0.00000	0.00000	Uiso	1.00	
H38	Н	0.50168	0.92201	-0.00000	0.00000	Uiso	1.00	
H39	Н	0.43082	0.31132	-0.00000	0.00000	Uiso	1.00	
C40	С	0.74968	0.04956	0.50000	0.00000	Uiso	1.00	
N41	Ν	0.74952	0.08898	0.50000	0.00000	Uiso	1.00	
C42	С	0.70529	0.07653	0.50000	0.00000	Uiso	1.00	
C43	C	0.67935	0.02997	0.50000	0.00000	Uiso	1.00	
N44	Ν	0.70750	0.01302	0.50000	0.00000	Uiso	1.00	
C45	С	0.79252	0.04875	0.50000	0.00000	Uiso	1.00	
C46	Ċ	0.68839	0.10874	0.50000	0.00000	Uiso	1.00	
N47	- N	0.71006	0.34229	0.50000	0.00000	Uiso	1.00	
C48	C	0.70138	0.37705	0.50000	0.00000	Uiso	1.00	

C49	С	0.68550	0.26094	0.50000	0.00000	Uiso	1.00
C50	C	0.72999	0.46045	0.50000	0.00000	Uiso	1.00
C51	С	0.78441	0.43460	0.50000	0.00000	Uiso	1.00
C52	С	0.81991	0.47951	0.50000	0.00000	Uiso	1.00
C53	С	0.76538	0.50524	0.50000	0.00000	Uiso	1.00
C54	С	0.81072	0.51545	0.50000	0.00000	Uiso	1.00
C55	С	1.08905	0.12379	0.50000	0.00000	Uiso	1.00
C56	С	1.12598	0.07897	0.50000	0.00000	Uiso	1.00
C57	С	1.16823	0.11851	0.50000	0.00000	Uiso	1.00
C58	С	1.13136	0.16344	0.50000	0.00000	Uiso	1.00
C59	С	1.17157	0.16149	0.50000	0.00000	Uiso	1.00
N60	Ν	1.03851	-0.00228	0.50000	0.00000	Uiso	1.00
C61	С	1.04112	0.03884	0.50000	0.00000	Uiso	1.00
C62	С	0.99518	-0.08586	0.50000	0.00000	Uiso	1.00
C63	С	0.84648	0.56392	0.50000	0.00000	Uiso	1.00
C64	С	0.79510	0.01077	0.50000	0.00000	Uiso	1.00
H65	Н	0.64274	0.00984	0.50000	0.00000	Uiso	1.00
H66	Н	0.69799	-0.02121	0.50000	0.00000	Uiso	1.00
H67	Η	0.82272	0.08159	0.50000	0.00000	Uiso	1.00
H68	Η	0.65217	0.09506	0.50000	0.00000	Uiso	1.00
H69	Н	0.69552	0.45404	0.50000	0.00000	Uiso	1.00
H70	Η	0.79259	0.40772	0.50000	0.00000	Uiso	1.00
H71	Η	0.85413	0.48547	0.50000	0.00000	Uiso	1.00
H72	Η	0.75717	0.53212	0.50000	0.00000	Uiso	1.00
H73	Η	1.05886	0.12673	0.50000	0.00000	Uiso	1.00
H74	Н	1.12486	0.04665	0.50000	0.00000	Uiso	1.00
H75	Н	1.19765	0.11449	0.50000	0.00000	Uiso	1.00
H76	Н	1.13263	0.19583	0.50000	0.00000	Uiso	1.00
H77	Н	0.83487	0.58829	0.50000	0.00000	Uiso	1.00
H78	Н	0.76405	-0.02162	0.50000	0.00000	Uiso	1.00

Adsorbents	U uptake capacity (mg/g)	Reference
TI-COF	902	Our case
i-MZIF90(50)	1.3 g/g	Energy Environ. Sci., 2022,15, 3462
USC-CP-1	562	Angew. Chem. Int. Ed. 2019,58,52
POP-pNH ₂ -AO	580	Nat. Commun. 2018, 9,1644
MUU _{re}	475	Angew. Chem. Int. Ed. 2022,61,82
COF-TpDb-AO	408	Adv. Mater. 2018, 1705479
SCU-19	557	Angew. Chem. Int. Ed. 2019,58,45
SZ-2/SZ-3	58	Nat. Commun. 2017, 8, 15369
MISS-PAF-1	79.8	ACS Cent. Sci. 2019, 5,1432
PIDO NF	860	Adv. Energy Mater. 2018,8,1802607
COF-TpAb-AO	127	Adv. Mater. 2018, 30, 1705479
MIPAF-11c	14.5	Adv. Mater. 2018, 30, 1706507
NDA-TN-AO	600	Angew. Chem. Int. Ed. 2020,59,40

Table S3. A comparison of U uptake capacity among established adsorbents/photocatalysts and our case.

Table S4. A comparison of U adsorption kinetics among established photocatalysts and our case.

Adsorbents	Adsorption equilibrium time	Reference		
	(min)			
TI-COF	40	Our case		
i-MZIF90(50)	120	Energy Environ. Sci., 2022,15, 3462		
SCU-19	500	Angew. Chem. Int. Ed. 2019,58,45		
COF-4	200	Nat. Commun. 2023, 14,1106		
Tp-DBD	300	Small 2021, 17, 2006882		
WO _{3- x}	120	Appl. Catal. B. 2023,324,122202		
BP@CNF-MOF	600	Adv. Fun. Mater. 2021, 31, 2100106		
NDA-TN-AO	900	Angew. Chem. Int. Ed. 2020,59,40		

Table S5. A comparison in U uptake capacity from natural seawater among established adsorbents and our case. All the photocatalysis was performed under simulated sunlight.

Materials	Adsorbent	Time	Capacity for U	References
	dosage	(d)	(mg/g/day)	
TI-COF	5 mg sample	1	8.8	This work
i-MZIF90(50)	10 mg sample	25	1.1	Energy Environ. Sci., 2022,15, 3462
COF 4P	10 mg sample	3	8.02	Angew. Chem. Int. Ed. 2023, e202303129
COF-HHTF-AO	5 mg sample	25	0.21	Sci. Bull. 2021, 66, 1994
Tp-DBD	5 mg sample	8	1.28	Small 2021, 17, 2006882
COF 4-Pd-AO	10 mg sample	3	4.62	CCS Chem. 2022, 4, 2294
COF-R5	10 mg sample	15	0.75	Cell Rep. Phys. Sci. 2023, 4, 101220

NDA-TN-AO	5 mg sample	27	0.22	Angew. Chem. Int. Ed. 2020, 59, 17684
COF 2-Ru-AO	10 mg sample	3	2.45	JACS. Au. 2023, 3, 239
COF-4	9 mg sample	56	6.84	Nat. Commun. 2023, 14, 1106
Ui0-66-3C4N	20 mg sample	28	0.24	Angew. Chem. Int. Ed. 2020, 59, 4262
UiO-66-A0	1 mg sample	3	0.89	ACS. Appl. Mater. Interfaces. 2017, 9, 32446
Anti-UiO-66	5 mg sample	30	0.15	Adv. Sci. 2019, 6, 1900002
MIL-101-0A	100 mg sample	5	0.92	Micropor. Mesopor. Mater. 2019, 288, 109567
PPA@MISS-PAF-1			0.38	Chem. 2020, 6, 1683
BP-PAO	10 mg sample	56	0.21	Angew. Chem. Int. Ed. 2019, 59, 1220
AO-PIM-1	10 mg sample	28	0.32	Nat. Sustain. 2022, 5, 71
POP1-AO	2.5 mg sample	56	0.15	ACS Cent. Sci. 2021, 7, 1650
PAF-CS	5 mg sample	21	0.28	Chem. Sci. 2020, 11, 4747
MISS-PAF-1	5 mg sample	56	0.10	ACS Cent. Sci. 2019, 5, 1432
POP-oNH ₂ - AO	5 mg sample	56	0.07	Nat. Commun. 2018, 9, 1644
P(2DVB-VBC)-2PAN	10 mg sample	27	0.07	Angew. Chem. Int. Ed. 2013, 52, 13458
AO-HNTs	10 mg sample	30	0.30	Angew. Chem. Int. Ed. 2019, 58, 14979
MIGPAF-13	4 mg sample	28	0.28	J. Am. Chem. Soc. 2021, 143, 14523
Fe-Nx-C-R	6 mg sample	1	1.20	Adv. Mater. 2021, 33, 2106621
Cp-1:12	10 mg sample	28	0.02	Sci. China Chem. 2013, 56, 1510
DSUP	10 mg sample	3	5.82	Angew. Chem. Int. Ed. 2020, 59, 15997
SSUP	10 mg sample	3.5	3.52	Angew. Chem. Int. Ed. 2019, 58, 11785
H-ABP	10 mg sample	90	0.13	Energy Environ. Sci. 2019, 12, 1979
SMON-PAO	10 mg sample	56	0.17	Adv. Funct. Mater. 2019, 29, 1805380
Zn ²⁺ -PAO	36 mg sample	28	0.33	Adv. Mater. 2020, 32, 1906615
РРН-ОР	10 mg sample	21	0.34	Nat. Sustain. 2021, 4, 708
DNA-UEH	10 mg sample	6	1.01	Nat. Commun. 2020, 11, 5708
MS@PIDO/Alg sponge		56	0.10	Adv. Funct. Mater. 2019, 29, 1901009
AUPM membrane	36 mg sample	25	0.35	ACS. Appl. Mater. Interfaces. 2021, 13, 21272