Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

for

Asymmetric three-component Tsuji-Trost allylation reaction enabled by chiral aldehyde/palladium combined catalysis

Jian-Hua Liu^[a], Wei Wen^[a], Zhu-Lian Wu^[a], Tian Cai^[a], Yan-Min Huang^[b]*, Qi-Xiang Guo^[a]* huangyanmin828@gxtc.edu.com; qxguo@swu.edu.cn

^a Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.

^b Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China.

Table of Contents

1.	General data	2
2.	Reaction condition optimization	2
3.	General procedure	9
4.	Determination of the absolute configuration of 4b	40
5.	Mechanistic Studies	41
6.	References	47
7.	Copies of ¹ H NMR and ¹³ C NMR spectra	48

1. General data

All non-aqueous reactions were carried out in a flame-dried glassware under nitrogen atmosphere or in a nitrogen-filled glove box unless otherwise noted. Solvents for reactions were dried appropriately before use: toluene, THF and Et₂O were dried by refluxing with sodium and benzophenone as indicator, CH₂Cl₂ and CHCl₃ were dried by refluxing with CaH₂. All other reagents were directly used as purchased from Aladdin, Adamas-beta[®] and Energy Chemical. ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance 600 MHz spectrometer. Chemical shifts (δ) are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Proton signal multiplicities are given as s(singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad) or a combination of them. *J*-values are in Hz. HRMS (ESI-Q-TOF) spectra were recorded on Bruker Impact-II mass spectrometer. Enantiomer ratios were determined by HPLC (Chiralpak IF-H, IA-H, OD-H columns were purchased from Daicel Chemical Industries, LTD). Optical rotations were determined at $\lambda = 589$ nm (sodium D line) by using a Rudolph-API automatic polarimeter. alkenyl iodides,^[11] amino acid esters^[2,3] and chiral aldehydes catalysts^[4] were prepared according to the literature.

2. Reaction condition optimization

Table S1: Chiral aldehyde screening^a

· · +	×~ +	Me	CA (10 r [Pd(C ₃ H ₅)Cl] dppp (10	nol%) ₂ (5 mol%) mol%)	Ph
a	OAc 2a	H_2N CO ₂ Et 3a	TMG (20) ZnCl ₂ (40)	0 mol%) 0 mol%) 80 %C 12 h	4a
	СНО	CA-1 : $R = TMS$	с н	$\mathbf{C}\mathbf{A}\mathbf{-6}\cdot\mathbf{R}=4$	CIC.H.
	ОН	CA-2 : $R = 4-CF$ CA-3 : $R = CN$ CA-4 : $R = CH_3$	3С6П3	CA-7 : $R = 4$ - CA-8 : $R = 4$ -H	$MeOC_6H_4$ FC_6H_4
		CA-5 : R = 3,5-(0	CH ₃) ₂ C ₆ H ₃	CA-9 : R = 3,5	$-(^{t}\mathrm{Bu})_{2}\mathrm{C}_{6}\mathrm{H}_{3}$

Entry	СА	Time(h)	Yield(%) ^b	ee(%) ^c
1	CA-1	12	45	71
2	CA-2	12	29	50
3	CA-3	12	46	20
4	CA-4	12	49	65
5	CA-5	12	31	58
6	CA-6	12	32	65

7	CA-7	12	47	60
8	CA-8	12	51	64
9	CA-9	12	43	58

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.30 mmol), **3a** (0.30 mmol), **CA** (0.02 mmol), dppp (0.02 mmol), [Pd(C₃H₅)Cl]₂ (0.01 mmol), TMG (0.20 mmol) and ZnCl₂ (0.08 mmol) in PhCH₃ (0.5 mL) at 80 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

Table S2: Transition-metal screening^a

Ph—I + 1a	$\bigcirc Ac + H_2N \xrightarrow{Me} CO_2Et$ 2a 3a		CA-1 (10 mol%) [Pd] (5 mol%) dppp (10 mol%) TMG (200 mol%) ZnCl ₂ (40 mol%) PhCH ₃ , N ₂ , 80 °C, 12 h	Ph H ₂ N Me CO ₂ Et	
Entry	y [Pd]	Time(h) Yield(%) ^b	ee(%) ^c	
1	$Pd(OAc)_2$	12	43	40	
2	PdCl ₂	12	45	65	
3	$Pd_2(dba)_3$	12	NR	n.d. ^d	
4	Pd(PPh ₃) ₂ Cl ₂	12	49	65	
5	[(CH ₃)CyPd]	12	43	66	
6	$Pd(CO_2CF_3)_2$	12	38	53	
7	Pd(PPh ₃) ₄	12	Trace	n.d.	
8	$[Pd(C_3H_5)Cl]_2$	12	45	71	

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.30 mmol), **3a** (0.30 mmol), **CA-1** (0.02 mmol), dppp (0.02 mmol), [Pd] (0.01mmol), TMG (0.20 mmol) and ZnCl₂ (0.08 mmol) in PhCH₃ (0.5 mL) at 80 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} n.d. = Not determined.

Table S3: Base screening^a

Ph—I +		CA-1 (10 mol%) [Pd(C ₃ H ₅)Cl] ₂ (5 mol%) dppp (10 mol%) base (200 mol%) ZnCl ₂ (40 mol%) PhCH ₃ , N ₂ , 80 °C, 12 h		H ₂ N Me	
1a	$2a \qquad 3a$			• • • CO ₂ Et 4a	
Entry	Base	Time(h)	Yield(%) ^b	ee(%) ^c	
1	Et ₃ N	12	Trace	$n.d.^d$	
2	^t BuOK	12	Trace	n.d.	
3	Metformin	12	NR	n.d.	
4	2,2-Dimethylpyrrolidine	12	35	78	
5	Quinuclidine	12	31	81	
6	DABCO	12	29	81	
7	TBD	12	23	64	
8	'Bu-TMG	12	45	58	
9	DBN	12	32	52	
10	DBU	12	36	67	
11	Cs_2CO_3	12	NR	n.d.	
12	TMG	12	45	71	
13	TDMAIP	12	41	61	

14	^t Bu-TDMAIP	12	43	55
15		12	36	71

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.30 mmol), **3a** (0.30 mmol), **CA-1** (0.02 mmol), dppp (0.02 mmol), $[Pd(C_3H_5)Cl]_2$ (0.01mmol), Base (0.20 mmol) and ZnCl₂ (0.08 mmol) in PhCH₃ (0.5 mL) at 80 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} n.d. = Not determined.

Table S4: Solvent screening^a

Ph—I + 1a	$\mathbf{\mathbf{\mathbf{A}}}_{\mathbf{O}\mathbf{A}\mathbf{C}} + \mathbf{\mathbf{H}}_{2}\mathbf{N} \mathbf{\mathbf{\mathbf{A}}}_{\mathbf{C}\mathbf{C}}$ 2a 3a	$P_2Et = \begin{bmatrix} CA-1 \\ [Pd(C_3H) \\ dppp \\ TMC \\ ZnC \\ Solvent \end{bmatrix}$	$\begin{array}{c} 1 & (10 \text{ mol}\%) \\ (10 \text{ mol}\%) \\ (10 \text{ mol}\%) \\ \hline \\ $	Ph H ₂ N Me CO ₂ Et	
Entry	Solvent	Time(h)	Yield(%) ^b	ee(%) ^c	
1	PhCH ₃	12	45	71	
2	PhCF ₃	12	55	51	
3	Mesitylene	12	46	64	
4	o-Xylene	12	52	65	
5	m-Xylene	12	52	67	
6	p-Xylene	12	53	67	
7	PhCl	12	55	56	
8	PhEt	12	47	66	
9	Octane	12	56	26	
10	1,2-dixoane	12	34	55	

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.30 mmol), **3a** (0.30 mmol), **CA-1** (0.02 mmol), dppp (0.02 mmol), [Pd(C₃H₅)Cl]₂ (0.01 mmol), TMG (0.20 mmol) and ZnCl₂ (0.08 mmol) in Solvent (0.5 mL) at 80 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

Table S5: Achiral ligand screening^a

7	L2	12	32	52
8	L3	12	25	65
9	L4	12	26	65
10	L5	12	NR	n.d.
11	L6	12	35	52

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.30 mmol), **3a** (0.30 mmol), **CA-1**(0.02 mmol), L (0.02 mmol), [Pd(C₃H₅)Cl]₂ (0.01 mmol), TMG (0.20 mmol) and ZnCl₂ (0.08 mmol) in PhCH₃ (0.5 mL) at 80 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} n.d. = Not determined.

Table S6: Lewis acid screening^a

Ph—I + 1a	$\bigcirc OAc + H_2N \xrightarrow{Me} CO$ 2a 3a	$\begin{array}{c} \text{CA-1 (10 mol\%)} \\ \text{Me} \\ \downarrow \\ \text{CO}_2\text{Et} \end{array} \xrightarrow{ \left[\text{Pd}(\text{C}_3\text{H}_5)\text{Cl} \right]_2 (5 \text{ mol}\%) \\ \text{dppp (10 mol\%)} \\ \hline \text{TMG (200 mol\%)} \\ \text{Lewis acid (40 mol\%)} \\ \text{PhCH}_3, \text{N}_2, 80 \ ^{\circ}\text{C}, 12 \text{ h} \end{array} $		Ph H ₂ N CO ₂ Et 4a	
Entry	Lewis acid	Time(h)	Yield(%) ^b	ee(%) ^c	
1	ZnF_2	12	52	32	
2	ZnCl ₂	12	45	71	
3	ZnBr ₂	12	55	70	
4	ZnI_2	12	50	56	
5	Zn(OAc) ₂	12	51	65	
6	Zn(OTf) ₂	12	36	47	
7	Zn(ClO ₄) ₂ .6H ₂ O	12	45	61	
8	LiCl	16	32	35	
9	LiBr	17	15	30	

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.30 mmol), **3a** (0.30 mmol), **CA-1** (0.02 mmol), dppp (0.02 mmol), $[Pd(C_3H_5)Cl]_2$ (0.01mmol), TMG (0.20 mmol) and Lewis acid (0.08 mmol) in PhCH₃ (0.5 mL) at 80 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

Table S7: Chiral ligand screening^a

entry	CA	ligand	time (h)	yield (%) ^b	ee (%) ^c
1	ent-CA-1	L1	12	32	16
2	CA-1	L1	12	30	88
3	ent-CA-1	L7	12	26	29
4	CA-1	L7	12	31	75
5	ent-CA-1	L8	12	30	21
6	CA-1	L8	12	34	75
7	ent-CA-1	L9	12	36	77
8	CA-1	L9	12	32	11
9	ent-CA-1	L10	12	53	63
10	CA-1	L10	12	50	63
11	ent-CA-1	L11	12	26	70
12	CA-1	L11	12	28	70

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.30 mmol), **3a** (0.30 mmol), **CA-1** (0.02 mmol), L (0.02 mmol), [Pd(C₃H₅)Cl]₂ (0.01mmol), TMG (0.20 mmol) and ZnBr₂ (0.08 mmol) in PhCH₃ (0.5 mL) at 80 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

Table S8: Additive screening^a

Ph—I + la	$\bigcirc OAc + H_2N + CO$ 2a 3a	2Et CA- [Pd(C ₃ H L1 ZnB Liy PhCH ₃	1 (10 mol%) 5)Cl] ₂ (5 mol%) (10 mol%) G (200 mol%) G (200 mol%) G (40 mol%) X (40 mol%) N ₂ , 80 °C, 12 h	Ph H ₂ N Me CO ₂ Et 4a
Entry	LiX	Time(h)	Yield(%) ^b	ee(%) ^c
1	LiCl	12	49	88
2	LiBr	12	53	90
3	LiOTf	12	61	88
4	LiBF ₄	12	56	90
5	Li ₂ CO ₃	12	50	90
6	LiOAc	12	52	88
7	LiClO ₄	12	55	82
8	LiOH·H ₂ O	12	51	90

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.30 mmol), **3a** (0.30 mmol), **CA-1** (0.02 mmol), **L1** (0.02 mmol), [Pd(C₃H₅)Cl]₂ (0.01mmol), TMG (0.20 mmol), LiX (0.08 mmol) and ZnBr₂ (0.08 mmol) in PhCH₃ (0.5 mL) at 80 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

Table S9: Reaction temperature screening^a

1	90	1	2	64	86	
Entry	T(°C)	Tim	e(h)	Yield(%) ^b	ee(%) ^c	
Ph—I + 1a	OAc + 2a	$H_2N \xrightarrow{Me}_{CO_2Et} 3a$	[Pd(C ₃ H ₅) L1 (1 TMG ZnBr ₂ LiOTI PhCH ₃ ,	(10 mol%) (Cl] ₂ (5 mol%) (0 mol%) (200 mol%) (40 mol%) f (40 mol%) N ₂ , T °C, 12 h	Ph H_2N Me CO_2Et 4a	

2	80	12	61	88
3	70	12	56	92
4	60	12	45	93

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.30 mmol), **3a** (0.30 mmol), **CA-1** (0.02 mmol), **L1** (0.02 mmol), [Pd(C₃H₅)Cl]₂ (0.01 mmol), TMG (0.20 mmol), LiOTf (0.08 mmol) and ZnBr₂ (0.08 mmol) in PhCH₃ (0.5 mL) at T °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

Table S10: Lewis acid equivalents screening^a

Ph—I + la	$\bigcirc OAc + H_2N \xrightarrow{Me} CO_2Et$ 2a 3a	CA-1 [Pd(C ₃ H L1 t TMC ZnB LiO PhCH ₃ ,	(10 mol%) ₅)Cl] ₂ (5 mol%) (10 mol%) G (200 mol%) G (200 mol%) G (200 mol%) G (40 mol%) N ₂ , 70 °C, 12 h	Ph H_2N Me CO_2Et 4a		
Entry	Х	Time(h)	Yield(%) ^b	ee(%) ^c		
1	0	12	23	3		
2	20	12	42	84		
3	40	12	56	92		
4	60	12	59	90		
5	80	12	60	89		
6	100	12	63	90		
7	120	12	55	81		

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.30 mmol), **3a** (0.30 mmol), **CA-1** (0.02 mmol), **L1** (0.02 mmol), [Pd(C₃H₅)Cl]₂ (0.01mmol), TMG (0.20 mmol), LiOTf (0.08 mmol) and ZnBr₂ (X mmol) in PhCH₃ (0.5 mL) at 70 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

Table S11: Base equivalents screening^a

Ph—I + 1a	$\bigcirc OAc + H_2N + C$ 2a 3a	$O_2Et \qquad \begin{array}{c} CA-1 \\ [Pd(C_3H_5 \\ L1 (C_3H_5 \\ C_3H_5 \\ L1 (C_3H_5 \\ C_3H_5 \\ C_3H_5 \\ L1 (C_3H_5 \\ C_3H_5 \\ C_3$	(10 mol%))Cl] ₂ (5 mol%) 10 mol%) 6 (X mol%) (100 mol%) f (40 mol%) N ₂ , 70 °C, 12 h	Ph H ₂ N Me CO ₂ Et 4a
Entry	X	Time(h)	Yield(%) ^b	ee(%) ^c
1	180	12	48	88
2	200	12	63	90
3	220	12	67	89
4	240	12	71	87
5	260	12	66	85

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.30 mmol), **3a** (0.30 mmol), **CA-1** (0.02 mmol), **L1** (0.02 mmol), [Pd(C₃H₅)Cl]₂ (0.01 mmol), TMG (X mmol), LiOTf(0.08 mmol) and ZnBr₂ (0.2 mmol) in PhCH₃ (0.5 mL) at 70 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

Table S12: Leaving group screening^a

Ph—I + 1a	$\begin{array}{c} & & & M_{1} \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	$\begin{array}{c} \mathbf{CA-I}\\ \mathbf{e} & [\mathrm{Pd}(\mathrm{C_3H}]\\ \mathbf{CO_2Et} & \mathbf{TMG}\\ \mathbf{CO_2Et} & \mathbf{TMG}\\ \mathbf{DCO_2Et} & \mathbf{TMG}\\ \mathbf{DCO_2Et} & \mathbf{DCO_2Et}\\ \mathbf{DCO_2Et} & DCO_2$	l (10 mol%) 5)Cl] ₂ (5 mol%) (10 mol%) (2.2 equival.) (100 mol%) Ff (40 mol%) N ₂ , 70 °C, 12 h	$\begin{array}{c} H_2N \\ Me \\ CO_2Et \\ 4a \end{array}$
Entry	LG	Time(h)	Yield(%) ^b	ee(%) ^c
1	OAc	12	67	89
2	Br	12	49	81
3	OCO ₂ Ph	12	69	90
4	OBoc	12	56	84
5	O(CO ₂)Et	12	62	90

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.30 mmol), **3a** (0.30 mmol), **CA-1** (0.02 mmol), **L1** (0.02 mmol), $[Pd(C_3H_5)Cl]_2$ (0.01mmol), TMG (0.44 mmol), LiOTf (0.08 mmol) and ZnBr₂ (0.2 mmol) in PhCH₃ (0.5 mL) at 70 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

Table S13: Alkoxyl group screening^a

Ph−I + 1a	OCO₂Ph ⁺ H₂N 2b	$Me \qquad CO_2R \qquad CA-1 \\ CO_2R \qquad $	l (10 mol%) 5)Cl] ₂ (5 mol%) (10 mol%) (2.2 equival.) (2 (100 mol%) If (40 mol%) N ₂ , 70 °C, 12 h	H_2N Me Ph CO ₂ R
Entry	R	Time(h)	Yield(%) ^b	ee(%) ^c
1	Me	12	53	88
2	Et	12	69	90
3	^t Bu	12	71	96
4	Bn	12	47	85

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.30 mmol), **3a** (0.30 mmol), **CA-1** (0.02 mmol), **L1** (0.02 mmol), [Pd(C₃H₅)Cl]₂ (0.01mmol), TMG (0.44 mmol), LiOTf (0.08 mmol) and ZnBr₂ (0.2 mmol) in PhCH₃ (0.5 mL) at 70 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

Table S14: Re-screening of the additives^a

Ph−I + 1a	2b	$\begin{array}{c} \text{CA-1} \\ \text{[Pd(C_3H_5]]} \\ \text{CO}_2^{\prime}\text{Bu} & \begin{array}{c} \text{[Pd(C_3H_5]]} \\ \text{CO}_2^{\prime}\text{Bu} & \begin{array}{c} \text{TMG (} \\ \text{TMG (} \\ \text{ZnBr}_2 \\ \text{LiX} \\ \text{PhCH}_3, \end{array} \end{array}$	Ph H ₂ N Me CO ₂ ^t Bu 4b		
Entry	LiX	Time(h)	Yield(%) ^b	ee(%) ^c	
1	LiCl	12	63	95	
2	LiBr	12	62	95	
3	LiOTf	12	71	96	
4	Li ₂ CO ₃	12	70	94	
5	LiBF ₄	12	78	97	

6	LiOAc	12	66	93
7	LiClO ₄	12	55	88
8	LiOH [·] H ₂ O	12	67	91

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.30 mmol), **3a** (0.30 mmol), **CA-1** (0.02 mmol), **L1** (0.02 mmol), [Pd(C₃H₅)Cl]₂ (0.01mmol), TMG (0.44 mmol), LiX (0.08 mmol) and ZnBr₂ (0.2 mmol) in PhCH₃ (0.5 mL) at 70 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

Table S15: Reactant ratio screening^a

Ph—I 1a	+ \	Ph + $H_2N \xrightarrow{Me} CO$ 3b	$\begin{array}{c} \text{CA-1} \\ \text{[Pd(C_3H_5] \\ L1 () \\ 0_2 \text{'Bu} \end{array}} \\ \begin{array}{c} \text{TMG} \\ \text{ZnBr}_2 \\ \text{LiBF} \\ \text{LiBF} \\ \text{LiBF} \end{array}$	(10 mol%))Cl] ₂ (5 mol%) 10 mol%) (2.2 equival.) (100 mol%) (4 (40 mol%)	Ph H ₂ N Me CO ₂ 'B		
]	Entry	1b:2a:3b	Time(h)	Yield(%) ^b	ee(%) ^c		
	1	1.2:1:1.5	12	69	93		
	2	1.5:1:1.5	12	78	97		
	3	1.8:1:1.5	12	81	97		
	4	2:1:1.5	12	77	96		

^{*a*} Unless noted otherwise, reactions were performed with **1a** (0.20 mmol), **2a** (0.30 mmol), **3a** (0.30 mmol), **CA-1** (0.02 mmol), **L1** (0.02 mmol), $[Pd(C_3H_5)Cl]_2$ (0.01 mmol), TMG (0.44 mmol), LiBF₄ (0.08 mmol) and ZnBr₂ (0.2 mmol) in PhCH₃ (0.5 mL) at 70 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

3. General procedure

To a 10 mL vial charged with $[Pd(C_3H_5)Cl]_2$ (3.6 mg, 0.01 mmol) and L1 (11.7 mg, 0.02 mmol) was added 0.5 mL toluene, and the mixture was stirred under nitrogen atmosphere at room temperature for 30 min. Then, aryl iodide 1 (0.2 mmol), allyl alcohol ester 2 (0.36 mmol), amino acid ester 3 (0.3 mmol), chiral aldehyde CA-1 (7.7 mg, 0.02 mmol), ZnBr₂ (45.0 mg, 0.2 mmol), LiBF₄ (7.5mg, 0.08 mmol) and TMG (56.2 uL, 0.44 mmol) were added. The mixture was continuously stirred at indicated reaction temperature under nitrogen atmosphere. After the reaction completed, the solvent was removed by rotary evaporation, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ ethyl acetate/ triethylamine =200/100/3).

tert-Butyl (R, E)-2-amino-2-methyl-5-phenylpent-4-enoate (4b):

H₂N Me CO₂^tBu

Colorless oil (42.1 mg, 81%); $R_f = 0.23$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 97% by

HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 5.442 min, $t_R(minor)$ 4.955 min; $[\alpha]_D^{20} = +16.25$ (c = 0.88, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.36-7.29 (m, 4H), 7.23 (t, J = 6.0 Hz, 1H), 6.50 (d, J = 18.0 Hz, 1H), 6.25 – 5.93 (m, 1H), 2.67 (dd, J = 18.0, 6.0 Hz, 1H), 2.42 (dd, J = 12.0, 6.0 Hz, 1H), 1.79 (s, 2H), 1.50 (s, 9H), 1.36 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.39, 137.19, 134.02, 128.53, 127.34, 126.17, 124.71, 81.02, 58.11, 44.50, 28.04, 26.44; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₄NO₂⁺ 262.1802; found 262.1809.

Colorless oil (17.1 mg, 31%); $R_f = 0.25$ (petroleum ether/ ethyl CO₂'Bu acetate = 2:1); the enantiomeric excess was determined to be 92% by HPLC analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R(major) 10.015 min, t_R(minor) 5.679 min; $[\alpha]_D^{20} = +10.60$ (c = 0.31, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.39 – 7.37 (m, 1H), 7.13 (d, J = 6.0 Hz, 3H), 6.68 (d, J = 18.0 Hz, 1H), 6.03 – 5.98 (m, 1H), 2.67 (dd, J = 12.0, 6.0 Hz, 1H), 2.42 (dd, J = 12.0, 6.0 Hz, 1H), 2.33 (s, 3H), 1.73 (s, 2H), 1.47 (s, 9H), 1.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.44, 136.39, 135.11, 131.95, 130.23, 127.27, 126.13, 126.06, 125.69, 80.98, 57.97, 44.76, 28.05, 26.47, 19.84.; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₇H₂₆NO₂⁺ 276.1958; found 276.1957.

tert-Butyl (*R*,*E*)-2-amino-5-(2-fluorophenyl)-2-methylpent-4-enoate (4d):

Colorless oil (32.2 mg, 58%); $R_f = 0.24$ (petroleum ether/ ethyl CO₂'Bu acetate = 2:1); the enantiomeric excess was determined to be 78% by HPLC analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 8.814 min, $t_R(minor)$ 6.536 min; $[\alpha]_D^{20} = +4.39$ (c = 0.30, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.34 - 7.31 (m, 1H), 7.12 - 7.09 (m, 1H), 7.00 (t, J = 7.3 Hz, 1H), 6.94 (dd, J = 12.0, 6.0 Hz, 1H), 6.55 (d, J = 12.0 Hz, 1H), 6.19 - 6.14 (m, 1H), 2.59 (dd, J = 12.0, 6.0 Hz, 1H), 2.35 (dd, J = 12.0, 6.0 Hz, 1H), 1.67 (s, 2H), 1.40 (s, 9H), 1.28 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.29, 160.90(d, J = 249.2 Hz), 128.56(d, J = 9.1 Hz), 127.63(d, J = 4.5 Hz), 127.35(d, J = 3.0 Hz), 126.40(d, J = 3.0 Hz), 124.98(d, J = 13.6 Hz), 124.05(d, J = 3.0 Hz), 115.75(d, J = 22.7 Hz), 81.11, 58.12, 44.92, 28.00, 26.41; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₃FNO₂⁺ 280.1707; found 280.1704.

tert-Butyl (R,E)-2-amino-2-methyl-5-(m-tolyl)pent-4-enoate (4e):

Colorless oil (32.5 mg, 59%); $R_f = 0.22$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak OD-H column (hexane/isopropanol =

90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 12.751 min, $t_R(minor)$ 6.546 min; [α] $_D^{20}$ = +8.19 (c = 0.45, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.29 - 7.15 (m, 3H), 7.06 (d, J = 6.0 Hz, 1H), 6.47 (d, J = 18.0 Hz, 1H), 6.21 - 6.04 (m, 1H), 2.66 (dd, J = 12.0, 6.0 Hz, 1H), 2.41 (dd, J = 12.0, 6.0 Hz, 1H), 2.35 (s, 3H), 1.83 (s, 2H), 1.50 (s, 9H), 1.36 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.37, 138.07, 137.13, 134.13, 128.43, 128.14, 126.92, 124.42, 123.32, 81.03, 58.13, 44.46, 28.04, 26.39, 21.39; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₇H₂₆NO₂⁺ 276.1958; found 276.1957.

tert-Butyl (R,E)-2-amino-5-(3-fluorophenyl)-2-methylpent-4-enoate (4f):

Colorless oil (35.2 mg, 63%); $R_f = 0.24$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 93% by HPLC analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10,

flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 7.976 min, $t_R(minor)$ 6.210 min; $[\alpha]_D^{20}$ = +15.03 (*c* = 0.33, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.29 – 7.25 (m, 1H), 7.11 (d, *J* = 7.7 Hz, 1H), 7.04 (d, *J* = 10.2 Hz, 1H), 6.94 - 6.91 (m, 1H), 6.46 (d, *J* = 12.0 Hz, 1H), 6.25 – 6.01 (m, 1H), 2.66 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.42 (dd, *J* = 13.5, 8.3 Hz, 1H), 1.77 (s, 2H), 1.49 (s, 9H), 1.36 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.25, 163.92 (d, *J* = 246.1 Hz), 139.57(d, *J* = 7.6 Hz), 132.87(d, *J* = 3.0 Hz), 129.98(d, *J* = 9.1 Hz), 126.32, 122.04(d, *J* = 3.0 Hz), 114.18(d, *J* = 6.1 Hz), 112.67(d, *J* = 7.6 Hz), 81.11, 58.08, 44.38, 28.03, 26.39; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₃FNO₂⁺ 280.1707; found 280.1704.

tert-Butyl (R,E)-2-amino-5-(3-chlorophenyl)-2-methylpent-4-enoate (4g):

Br

 H_2N

Colorless oil (35.9 mg, 61%); $R_f = 0.22$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 91% by HPLC analysis on Daicel Chirapak OD-H column

(hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 6.529 min, $t_R(minor)$ 5.263 min; $[\alpha]_D^{20} = +13.45$ (c = 0.40, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.33-7.21 (m, 4H), 6.44 (d, J = 18.0 Hz, 1H), 6.20 (dd, J = 12.0, 6.0 Hz, 1H), 2.66 (dd, J = 12.0, 6.0 Hz, 1H), 2.43 (dd, J = 18.0, 12.0 Hz, 1H), 1.80 (s, 2H), 1.50 (s, 9H), 1.32 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.24, 139.06, 134.49, 132.61, 129.74, 127.27, 126.49, 126.12, 124.35, 81.12, 58.09, 44.40, 28.04, 26.37; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₃ClNO₂⁺ 296.1412; found 296.1418.

tert-Butyl (*R*,*E*)-2-amino-5-(3-bromophenyl)-2-methylpent-4-enoate (4h):

Colorless oil (40.6 mg, 60%); $R_f = 0.23$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak OD-H column

(hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, t_R(major) 8.573 min,

t_R(minor) 6.999 min; $[\alpha]_D^{20} = +7.94$ (c = 0.77, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.47 (s, 1H), 7.33 (d, J = 12.0 Hz, 1H), 7.24 (d, J = 6.0 Hz, 1H), 7.15 (t, J = 12.0 Hz, 1H), 6.40 (d, J = 12.0 Hz, 1H), 6.19 – 6.13 (m, 1H), 2.63 (dd, J = 12.6, 6.9 Hz, 1H), 2.40 (dd, J = 13.0, 8.3 Hz, 1H), 1.71 (s, 2H), 1.47 (s, 9H), 1.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.25, 139.37, 132.47, 130.18, 130.03, 129.06, 126.59, 124.78, 122.74, 81.09, 58.08, 44.41, 28.04, 26.38; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₃BrNO₂⁺ 340.0907; found 340.0904.

Me H₂N, Me Colorless oil (39.9 mg, 73%); R_f= 0.23 (petroleum ether/ ethyl CO₂/Bu acetate = 2:1); the enantiomeric excess was determined to be 91% by HPLC analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R(major) 13.672 min, t_R(minor) 6.979 min; $[\alpha]_D^{20}$ = +12.88 (*c* = 0.50, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, *J* = 6.0 Hz, 2H), 7.12 (d, *J* = 6.0 Hz, 2H), 6.47 (d, *J* = 12.0 Hz, 1H), 6.10 (ddd, *J* = 15.4, 8.1, 7.0 Hz, 1H), 2.66 (ddd, *J* = 13.5, 6.8, 1.0 Hz, 1H), 2.44 – 2.36 (m, 1H), 2.35 (s, 3H), 1.81 (s, 2H), 1.49 (s, 9H), 1.36 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.42, 137.11, 134.42, 133.90, 129.22, 126.07, 123.58, 80.97, 58.12, 44.52, 28.04, 26.42, 21.15; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₇H₂₆NO₂⁺ 276.1958; found 276.1963.

Peak	RetTime	Туре	Width	Area	Height	Area	Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8	#	[min]		[min]	[mAU*s]	[mAU]	dp
1	6.969	BB	0.1952	4209.73779	330.71246	51.9669	1	6.979	BB	0.1943	416.54797	32.90405	4.5690
2	13.667	BB	0.4112	3891.07324	148.24908	48.0331	2	13.672	BB	0.4112	8700.37598	331.46686	95.4310

tert-Butyl (*R*,*E*)-2-amino-5-(4-ethylphenyl)-2-methylpent-4-enoate (4j):

Et Colorless oil (42.1 mg, 73%); $R_f = 0.25$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 5.889 min, t_R (minor) 5.022 min; $[\alpha]_D^{20} = +15.06$ (c = 0.43, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.28 (d, J = 6.0 Hz, 2H), 7.16(d, J = 6.0 Hz, 2H), 6.48 (d, J = 12.0 Hz, 1H), 6.13 – 6.08 (m, 1H), 2.68 – 2.63 (m, 3H), 2.40 (dd, J = 12.0, 6.0 Hz, 1H), 1.80 (s, 2H), 1.50 (s, 9H), 1.36 (s, 3H), 1.25(t, J = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.42, 143.56, 134.68, 133.93, 128.04, 126.16, 123.66, 80.98, 58.11, 44.49, 28.58, 28.05, 26.43, 15.55; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₈NO₂⁺ 290.2115; found 290.2114.

White solid (45.1 mg, 67%); m.p. = 75-76 °C; $R_f = 0.26$ $CO_2'Bu$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess

was determined to be 96% by HPLC analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 12.469 min, $t_R(minor)$ 16.504 min; $[\alpha]_D^{20} = +11.21$ (c = 0.55, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.62 (d, J = 12.0 Hz, 2H), 7.57 (d, J = 6.0 Hz, 2H), 7.47 - 7.43 (m, 4H), 7.36 (t, J = 6.0 Hz, 1H), 6.55 (d, J = 18.0 Hz, 1H), 6.25 - 6.20 (m, 1H), 2.70 (dd, J = 12.0, 6.0 Hz, 1H), 2.45 (dd, J = 12.0, 6.0 Hz, 1H), 1.83 (s, 2H), 1.52 (s, 9H), 1.39 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.37, 140.75, 140.12, 136.24, 133.56, 128.78, 127.26, 127.25, 126.92, 126.60, 124.90, 81.05, 58.17, 44.58, 28.07, 26.44; HRMS(ESI) m/z:

[M+H]⁺ Calculated for C₂₂H₂₈NO₂⁺ 338.2115; found 338.2112.

tert-Butyl (R,E)-2-amino-5-(4-(tert-butyl)phenyl)-2-methylpent-4-enoate (4l):

^{'Bu} Colorless oil (44.6 mg, 70%); $R_f = 0.26$ (petroleum ether/ ethyl CO₂'Bu acetate = 2:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, t_R (major) 6.141 min, t_R (minor) 5.268 min; $[\alpha]_D^{20} = +5.56$ (c =0.40, CHCl₃); ¹H NMR (600 MHz, CDCl₃)) δ 7.25 (d, J = 12.0 Hz, 2H), 7.20 (d, J = 12.0 Hz, 2H), 6.39 (d, J = 12.0 Hz, 1H), 6.02 (ddd, J = 15.5, 8.1, 7.0 Hz, 1H), 2.57 (dd, J = 18.0, 6.0 Hz, 1H), 2.31 (dd, J = 18.0, 6.0 Hz, 1H), 1.68 (s, 2H), 1.41 (s, 9H), 1.26 (s, 3H), 1.24 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 176.33, 150.42, 134.43, 133.82, 125.90, 125.44, 123.83, 80.99, 58.14, 44.45, 34.54, 31.30, 28.05, 26.40; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₀H₃₂NO₂⁺ 318.2428; found 318.2427.

tert-Butyl (R,E)-2-amino-5-(4-methoxyphenyl)-2-methylpent-4-enoate (4m):

MeO H₂N Me

Me Colorless oil (41.2 mg, 72%); $R_f = 0.21$ (petroleum ether/ ethyl $CO_2^{t}Bu$ acetate = 2:1); the enantiomeric excess was determined to be 95%

by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 1.0

mL/min, T = 30 °C), UV 254 nm, t_R(major) 7.579 min, t_R(minor) 6.443 min; $[\alpha]_D^{20} = +17.54$ (*c* = 0.80, CHCl₃); ¹H NMR (600 MHz, CDCl₃)) δ 7.19 (d, *J* = 6.0 Hz, 2H), 6.76 (d, *J* = 6.0 Hz, 2H), 6.34 (d, *J* = 18.0 Hz, 1H), 5.93-5.88 (m, 1H), 3.72 (s, 3H), 2.55 (dd, *J* = 18.0, 6.0 Hz, 1H), 2.28 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.70 (s, 2H), 1.40 (s, 9H), 1.26 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.46, 159.03, 133.41, 130.04, 127.29, 122.38, 113.95, 80.92, 58.12, 55.28, 44.53, 28.04, 26.43; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₇H₂₆NO₃⁺ 292.1907; found 292.1912.

^{PhO} Colorless oil (53.1 mg, 75%); $R_f = 0.24$ (petroleum ether/ ethyl CO₂^{*i*}Bu acetate = 2:1); the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R (major) 9.474 min, t_R (minor) 7.557 min; $[\alpha]_D^{20} = +17.36$ (*c* = 0.53, CHCl₃); ¹H NMR (600 MHz, CDCl₃)) δ 7.36 - 7.29 (m, 4H), 7.12 (t, *J* = 6.0 Hz, 1H), 7.03 (d, *J* = 6.0 Hz, 2H), 6.96 (d, *J* = 12.0 Hz, 2H), 6.48 (d, *J* = 18.0 Hz, 1H), 6.10 - 6.05 (m, 1H), 2.66 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.41 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.80 (s, 2H), 1.50 (s, 9H), 1.36 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.42, 157.21, 156.59, 133.17, 132.50, 129.74, 127.48, 123.81, 123.27, 118.90, 80.99, 58.12, 44.50, 28.06, 26.43; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₂H₂₈NO₃⁺ 354.2064; found 354.2069.

S17

Peak	RetTime	Туре	Width	Area	Height	Area	Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90	#	[min]		[min]	[mAU*s]	[mAU]	olo
1	7.544	BB	0.2258	4859.06738	332.68939	50.7741	1	7.557	BB	0.2222	375.03467	26.23285	2.9848
2	9.494	BB	0.2924	4710.90137	250.41580	49.2259	2	9.474	BB	0.2915	1.21897e4	646.23926	97.0152

tert-Butyl (R,E)-2-amino-5-(4-fluorophenyl)-2-methylpent-4-enoate (40):

Colorless oil (36.3 mg, 65%); $R_f = 0.22$ (petroleum ether/ ethyl CO₂'Bu acetate = 2:1); the enantiomeric excess was determined to be 95% by HPLC analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 7.165 min, $t_R(minor)$ 5.867 min; $[\alpha]_D^{20} = +9.95$ (c = 0.41, CHCl₃); ¹**H NMR (600 MHz, CDCl₃)** δ 7.23 – 7.20 (m, 2H), 6.91 (t, J = 6.0 Hz, 2H), 6.36 (d, J = 18.0 Hz, 1H), 6.00 - 5.95 (m, 1H), 2.55 (dd, J = 12.0, 6.0 Hz, 1H), 2.31 (dd, J = 12.0, 6.0 Hz, 1H), 1.68 (s, 2H), 1.40 (s, 9H), 1.26 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.35, 162.98(d, J = 246.1Hz), 133.37(d, J = 3.0 Hz), 132.77, 127.64(d, J = 9.1 Hz), 124.48, 115.48(d, J = 22.7 Hz), 81.04, 58.09, 44.43, 28.03, 26.40; **HRMS(ESI)** m/z: [M+H]⁺ Calculated for C₁₆H₂₃FNO₂⁺ 280.1707; found 280.1704.

tert-Butyl (R,E)-2-amino-5-(4-chlorophenyl)-2-methylpent-4-enoate (4p):

Cl H_2N Me $CO_2'Bu$ Colorless oil (39.1 mg, 66%); $R_f = 0.22$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 6.915 min, $t_R(minor)$ 6.057 min; $[\alpha]_D^{20} = +8.02$ (c = 0.58, CHCl₃); ¹H NMR (600 MHz, CDCl₃)) δ 7.27 (s, 4H), 6.44 (d, J = 18.0 Hz, 1H), 6.16 – 6.11 (m, 1H), 2.65 (dd, J = 12.0, 6.0 Hz, 1H), 2.41 (dd, J = 12.0, 6.0 Hz, 1H), 1.77 (s, 2H), 1.48 (s, 9H), 1.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.30, 135.67, 132.92, 132.72, 128.68, 127.35, 125.54, 81.08, 58.09, 44.46, 28.03, 26.40; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₃ClNO₂⁺ 296.1412; found 296.1409.

tert-Butyl (R,E)-2-amino-5-(4-bromophenyl)-2-methylpent-4-enoate (4q):

^{Br} H₂N, Me Colorless oil (43.7 mg, 64%); $R_f = 0.25$ (petroleum ether/ ethyl $CO_2'Bu$ acetate = 2:1); the enantiomeric excess was determined to be 95% by HPLC analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, t_R(major) 7.052 min, t_R(minor) 6.328 min; $[\alpha]_D^{20} = +12.63$ (c = 0.50, CHCl₃); ¹H NMR (600 MHz, CDCl₃)) δ 7.43 (d, J = 6.0 Hz, 2H), 7.21 (d, J = 6.0 Hz, 2H), 6.43 (d, J = 18.0 Hz, 1H), 6.18 – 6.13 (m, 1H), 2.64 (ddd, J = 13.6, 6.9, 1.2 Hz, 1H), 2.40 (ddd, J = 13.6, 8.2, 0.8 Hz, 1H), 1.79 (s, 2H), 1.48 (s, 9H), 1.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.26, 136.12, 132.76, 131.63, 127.68, 125.70, 121.04, 81.08, 58.07, 44.47, 28.03, 26.39; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₆H₂₃BrNO₂⁺ 340.0907; found 340.0903.

tert-Butyl (R,E)-2-amino-2-methyl-5-(4'-propyl-[1,1'-biphenyl]-4-yl)pent-4-enoate (4r):

Colorless oil (54.5 mg, 72%); $R_f = 0.25$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak IA-H column

(hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, t_R (major) 8.715 min,

 $t_R(minor)$ 7.956 min; $[\alpha]_D^{20} = +16.09$ (c = 0.86, CHCl₃); ¹H NMR (600 MHz, CDCl₃)) δ 7.56 (d, J = 6.0 Hz, 2H), 7.54 (d, J = 6.0 Hz, 2H), 7.42 (d, J = 12.0 Hz, 2H), 7.27 (d, J = 12.0 Hz, 2H), 6.54 (d, J = 18.0 Hz, 1H), 6.23 - 6.18 (m, 1H), 2.70 (dd, J = 12.0, 6.0 Hz, 1H), 2.68 - 2.64 (m, 2H), 2.45 (dd, J = 18.0, 12.0 Hz, 1H), 1.81 (s, 2H), 1.74 - 1.68 (m, 2H), 1.52 (s, 9H), 1.38 (s, 3H), 1.00 (t, J = 7.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.38, 141.89, 140.10, 138.09, 135.93, 133.64, 128.91, 127.05, 126.72, 126.56, 124.64, 81.04, 58.16, 44.58, 37.71, 28.07, 26.44, 24.55, 13.88; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₅H₃₄NO₂⁺ 380.2584; found 380.2585.

Peak	RetTime	Туре	Width	Area	Height	Area	Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	do	#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.782	BB	0.2145	5772.36963	401.09854	50.8520	1	7.956	BB	0.2097	576.91602	41.28906	2.2276
2	8.612	BB	0.2334	5578.93408	356.87427	49.1480	2	8.715	BBA	0.2488	2.53211e4	1516.16333	97.7724

tert-Butyl (R,E)-2-amino-5-(4'-butyl-[1,1'-biphenyl]-4-yl)-2-methylpent-4-enoate (4s):

Colorless oil (54.2 mg, 69%); $R_f = 0.27$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 95% by HPLC analysis on Daicel Chirapak IA-H

column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 9.120 min, $t_R(minor)$ 7.913 min; $[\alpha]_D^{20} = +11.49$ (c = 0.73, CHCl₃); ¹H NMR (600 MHz, CDCl₃)) δ 7.56 (d, J = 12.0 Hz, 2H), 7.54 (d, J = 6.0 Hz, 2H), 7.42 (d, J = 6.0 Hz, 2H), 7.27 (d, J = 6.0 Hz, 2H), 6.55 (d, J = 18.0 Hz, 1H), 6.21 (ddd, J = 15.5, 8.1, 7.0 Hz, 1H), 2.72 – 2.66 (m, 3H), 2.45 (dd, J = 12.0, 6.0 Hz, 1H), 1.77 (s, 2H), 1.69 -1.64 (m, 2H), 1.52 (s, 9H), 1.45 -1.40 (m, 2H), 1.38 (s, 3H), 0.98 (t, J =7.4 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.42, 142.11, 140.11, 138.05, 135.94, 133.63, 128.86, 127.05, 126.74, 126.56, 124.67, 81.00, 58.15, 44.61, 35.31, 33.64, 28.07, 26.47, 22.41, 13.98; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₆H₃₆NO₂⁺ 394.2741; found 394.2730.

tert-Butyl (R,E)-2-amino-5-(4'-bromo-[1,1'-biphenyl]-4-yl)-2-methylpent-4-enoate (4t):

Me

Me

 $H_2N_{\ Ne}$

White solid (49.2 mg, 59%); m.p. = 79-80 °C; $R_f = 0.25$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 95% by HPLC analysis on Daicel Chirapak OD-

H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, t_R(major) 14.233 min, t_R(minor) 8.447 min; $[\alpha]_D{}^{20}$ = +12.65 (*c* = 0.71, CHCl₃); ¹H NMR (600 MHz, CDCl₃)) δ 7.57 (d, *J* = 6.0 Hz, 2H), 7.51 (d, *J* = 6.0 Hz, 2H), 7.47 (d, *J* = 6.0 Hz, 2H), 7.42 (d, *J* = 6.0 Hz, 2H), 6.53 (d, *J* = 18.0 Hz, 1H), 6.25 - 6.20 (m, 1H), 2.69 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.44 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.78 (s, 2H), 1.51 (s, 9H), 1.38 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.37, 139.65, 138.81, 136.65, 133.36, 131.88, 128.47, 127.02, 126.71, 125.31, 121.49, 81.04, 58.14, 44.59, 28.07, 26.45; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₂H₂₇BrNO₂⁺ 416.1220; found 416.1227.

Colorless oil (40.3 mg, 71%); $R_f = 0.23$ (petroleum ether/ ethyl acetate $CO_2'Bu = 2:1$); the enantiomeric excess was determined to be 94% by HPLC

analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 7.968 min, $t_R(minor)$ 5.922 min; $[\alpha]_D^{20} = +10.86$ (c = 0.40, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 6.98 (s, 2H), 6.89 (s, 1H), 6.44 (d, J = 12.0 Hz, 1H), 6.26 – 5.99 (m, 1H), 2.65 (dd, J = 12.0, 6.0 Hz, 1H), 2.41 (dd, J = 12.0, 6.0 Hz, 1H), 2.32 (s, 6H), 1.82 (s, 2H), 1.50 (s, 9H), 1.36 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.38, 137.95, 137.12, 134.17, 129.06, 124.23, 124.09, 80.98, 58.13, 44.48, 28.04, 26.38, 21.25; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₈NO₂⁺ 290.2115; found 290.2118.

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.001	BB	0.1794	2830.98486	246.00703	50.9080	1	5.922	BB	0.1739	160.72661	14.24538	2.7997
2	8.115	BB	0.2396	2729.99268	177.09204	49.0920	2	7.968	BB	0.2342	5580.07520	370.04404	97.2003

 $\begin{array}{c} OMe \\ H_2N, Me \\ MeO \end{array} \begin{array}{c} OMe \\ H_2N, Me \\ CO_2'Bu \end{array} \begin{array}{c} Colorless \ oil \ (41.7 \ mg, \ 65\%); \ R_f = \ 0.21 \ (petroleum \ ether/ \ ethyl) \\ acetate = \ 2:1); \ the \ enantiomeric \ excess \ was \ determined \ to \ be \ 94\% \\ by \ HPLC \ analysis \ on \ Daicel \ Chirapak \ OD-H \ column \end{array}$

MeO CO₂^{'Bu} by HPLC analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, t_R(major) 9.257 min, t_R(minor) 7.908 min; $[\alpha]_D^{20}$ = +11.20 (*c* = 0.73, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 6.42 (d, *J* = 6.0 Hz, 2H), 6.33 (d, *J* = 12.0 Hz, 1H), 6.28 (s, 1H), 6.08 -6.03 (m, 1H), 3.71 (s, 6H), 2.56 (dd, *J* = 13.5, 6.9 Hz, 1H), 2.31 (dd, *J* = 13.5, 8.2 Hz, 1H), 1.70 (s, 2H), 1.40 (s, 9H), 1.26 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.33, 160.89, 139.23, 133.95, 125.31, 104.31, 99.60, 81.02, 58.09, 55.30, 44.41, 28.03, 26.42; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₈NO₄⁺ 322.2013; found 322.2019.

S22

Peak	RetTime	Туре	Width	Area	Height	Area	Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	dp	#	[min]		[min]	[mAU*s]	[mAU]	do
1	7.911	BB	0.2374	3392.70923	219.28722	51.2158	1	7.908	BB	0.2405	289.80240	18.55972	2.8608
2	9.311	BB	0.2831	3231.62842	176.93367	48.7842	2	9.257	BB	0.2824	9840.42676	540.32935	97.1392

tert-Butyl (R,E)-2-amino-5-(3,4-dimethylphenyl)-2-methylpent-4-enoate (4w):

Colorless oil (39.7 mg, 69%); $R_f = 0.24$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 95% by HPLC analysis on Daicel Chirapak OD-H column

(hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 12.001 min, $t_R(minor)$ 6.178 min; $[\alpha]_D^{20}$ = +15.99 (c = 0.55, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.04 (s, 1H), 6.98 (q, J = 8.0 Hz, 2H), 6.35 (d, J = 18.0 Hz, 1H), 6.00 (dd, J = 18.0, 6.0 Hz, 1H), 2.55 (dd, J = 12.0, 6.0 Hz, 1H), 2.30 (dd, J = 12.0, 6.0 Hz, 1H), 2.16 (s, 3H), 2.16 (s, 3H), 1.67 (s, 2H), 1.40 (s,9H), 1.26 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.46, 136.58, 135.81, 134.88, 133.98, 129.79, 127.46, 123.63, 123.42, 80.94, 58.12, 44.53, 28.05, 26.43, 19.76, 19.48; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₈NO₂⁺ 290.2115; found 290.2120.

tert-Butyl (*R*,*E*)-2-amino-5-(3,4-dichlorophenyl)-2-methylpent-4-enoate (4x):

Colorless oil (37.2 mg, 56%); $R_f = 0.22$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 88% by HPLC analysis on Daicel Chirapak OD-H column

(hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 6.736 min, $t_R(minor)$ 6.210 min; $[\alpha]_D^{20} = +6.15$ (c = 0.48, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.39 - 7.34 (m, 2H), 7.14 (dd, J = 12.0, 6.0 Hz, 1H), 6.37 (d, J = 12.0 Hz, 1H), 6.19 - 6.14 (m, 1H), 2.61 (dd, J =12.0, 6.0 Hz, 1H), 2.40 (dd, J = 12.0, 6.0 Hz, 1H), 1.69 (s, 2H), 1.47 (s, 9H), 1.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.18, 137.32, 132.63, 131.51, 130.91, 130.41, 127.87, 127.19,125.31, 81.12, 58.05, 44.39, 28.03, 26.37; **HRMS(ESI)** m/z: $[M+H]^+$ Calculated for $C_{16}H_{22}Cl_2NO_2^+$ 330.1022; found 330.1020.

tert-Butyl (R,E)-2-amino-5-(3-fluoro-4-methylphenyl)-2-methylpent-4-enoate (4y):

Me H₂N Me

Colorless oil (39.1 mg, 66%); $R_f = 0.25$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 94% by HPLC

analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 6.590 min, $t_R(minor)$ 6.056 min; $[\alpha]_D^{20} = +15.79$ (c = 0.42, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.01 (t, J = 6.0 Hz, 1H), 6.90 (d, J = 12.0 Hz, 2H), 6.33 (d, J = 18.0 Hz, 1H), 6.03 (dd, J = 12.0, 6.0 Hz, 1H), 2.55 (dd, J = 12.0, 6.0 Hz, 1H), 2.31 (dd, J = 12.0, 6.0 Hz, 1H), 2.17 (s, 3H), 1.66 (s, 2H), 1.40 (s, 9H), 1.26 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.32, 162.28(d, J = 244.6 Hz), 136.98(d, J = 7.6 Hz), 132.89, 131.41(d, J = 6.1 Hz), 125.09, 123.82(d, J = 9.1 Hz), 121.74(d, J = 3.0 Hz), 112.29(d, J = 22.7 Hz), 81.04, 58.09, 44.42, 28.03, 26.41, 14.32; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₇H₂₅FNO₂⁺ 294.1864; found 294.1869.

tert-Butyl (*R*,*E*)-2-amino-5-(benzo[d][1,3]dioxol-5-yl)-2-methylpent-4-enoate (4z):

H₂N Me

Colorless oil (37.2 mg, 61%); $R_f = 0.22$ (petroleum ether/ ethyl acetate $p_2'^{Bu} = 2:1$); the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 11.148 min, $t_R(minor)$ 8.565 min; $[\alpha]_D^{20} = +13.00$ (c = 0.60, CHCl₃); ¹**H NMR (600 MHz, CDCl**₃) δ 6.88 (s, 1H), 6.76 (q, *J* = 8.0 Hz, 2H), 6.40 (d, *J* = 18.0 Hz, 1H), 5.99 -5.97 (m, 1H), 5.95 (s, 2H), 2.62 (dd, J = 12.0, 6.0 Hz, 1H), 2.37 (dd, J = 12.0, 6.0 Hz, 1H), 1.81 (s, 2H), 1.48 (s, 9H), 1.34 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.38, 147.97, 146.99, 133.56, 131.72, 122.84, 120.67, 108.24, 105.54, 100.99, 80.98, 58.11, 44.40, 28.04, 26.38; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₇H₂₄NO₄⁺ 306.1700; found 306.1701.

tert-Butyl(R,E)-2-amino-5-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-methylpent-4-enoate (4aa):

Colorless oil (38.4 mg, 60%); $R_f = 0.24$ (petroleum ether/ ethyl CO₂^tBu acetate = 2:1); the enantiomeric excess was determined to be 93%

by HPLC analysis on Daicel Chirapak OD-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, t_R(major) 17.776 min, t_R(minor) 13.160 min; $[\alpha]_D^{20} = +10.39$ (c = 0.74, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 6.78 - 6.70 (m, 3H), 6.28 (d, J = 12.0 Hz, 1H), 5.89 (ddd, *J* = 15.5, 8.2, 7.0 Hz, 1H), 4.17 (s, 4H), 2.54 (ddd, *J* = 13.5, 6.8, 1.1 Hz, 1H), 2.28 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.67 (s, 2H), 1.40 (s, 9H), 1.25 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.40, 143.47, 143.07, 133.32, 131.07, 123.00, 119.56, 117.24, 114.69, 80.95, 64.43, 64.37, 58.10, 44.44, 28.05, 26.41; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₆NO₄⁺ 320.1856; found 320.1852.

tert-Butyl (R,E)-2-amino-2-methyl-5-(naphthalen-2-yl)pent-4-enoate (4ab):

White solid (47.2 mg, 76%); m.p. = 76-77 °C R_f = 0.23 (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined

to be 92% by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 11.430 min, $t_R(minor)$ 8.034 min; $[\alpha]_D^{20}$ = +16.06 (*c* = 0.60, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.80 (dd, *J* = 12.7, 8.5 Hz, 3H), 7.70 (s, 1H), 7.59 - 7.57 (m, 1H), 7.49 -7.43 (m, 2H), 6.67 (d, *J* = 12.0 Hz, 1H), 6.33 - 6.28 (m, 1H), 2.73 (ddd, *J* = 13.5, 6.8, 0.9 Hz, 1H), 2.49 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.83 (s, 2H), 1.51 (s, 9H), 1.40 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.40, 134.66, 134.08, 133.64, 132.90, 128.17, 127.93, 127.66, 126.23, 125.90, 125.73, 125.19, 123.51, 81.05, 58.19, 44.69, 28.07, 26.46; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₀H₂₆NO₂⁺ 312.1958; found 312.1956.

tert-Butyl (R,E)-2-amino-2-methyl-5-(1-tosyl-1H-indol-5-yl)pent-4-enoate (4ac):

Colorless oil (46.3 mg, 51%); $R_f = 0.24$ (petroleum ether/ ethyl acetate = 1:1); the enantiomeric excess was determined to be 94% by HPLC

analysis on Daicel Chirapak IF-H column (hexane/isopropanol = 80/20, flow rate 1.0 mL/min, T =

30 °C), UV 254 nm, t_R(major) 18.124 min, t_R(minor) 16.188 min; $[\alpha]_D^{20} = +16.47$ (*c* = 0.51, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 6.0 Hz, 1H), 7.74 (d, *J* = 6.0 Hz, 2H), 7.52 (d, *J* = 6.0 Hz, 1H), 7.43 (s, 1H), 7.32 (d, *J* = 6.0 Hz, 1H), 7.20 (d, *J* = 6.0 Hz, 2H), 6.60 (d, *J* = 3.2 Hz, 1H), 6.52 (d, *J* = 18.0 Hz, 1H), 6.13-6.07(m, 1H), 2.64 (dd, *J* = 18.0, 6.0 Hz, 1H), 2.43 – 2.35 (m, 1H), 2.33 (s, 3H), 1.75 (s, 2H), 1.47 (s, 9H), 1.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.39, 144.93, 135.29, 134.23, 133.86, 132.80, 131.13, 129.87, 126.81, 124.13, 122.85, 119.06, 113.59, 109.20, 80.99, 58.12, 44.50, 28.05, 26.41, 21.54; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₅H₃₁N₂O₄S⁺ 455.1999; found 455.2000.

tert-Butyl (R,4E,6E)-2-amino-2-methyl-7-phenylhepta-4,6-dienoate (4ad):

H₂N Me CO₂'Bu Colorless oil (35.6 mg, 62%); $R_f = 0.22$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 96% by

HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 8.810 min, $t_R(minor)$ 7.639 min; $[\alpha]_D^{20} = +7.85$ (c = 0.76, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.37 (d, J = 12.0 Hz, 2H), 7.33 – 7.26 (m, 2H), 7.20 (t, J = 7.3 Hz, 1H), 6.74 (dd, J = 18.0, 12.0 Hz, 1H), 6.47 (d, J = 12.0 Hz, 1H), 6.28 (dd, J = 12.0, 6.0 Hz, 1H), 5.75 – 5.70 (m, 1H), 2.57 (dd, J = 12.0, 6.0 Hz, 1H), 2.32 (dd, J = 12.0, 6.0 Hz, 1H), 1.68 (s, 2H), 1.47 (s, 9H), 1.31 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.38, 137.36, 134.61, 131.45, 129.05, 128.75, 128.58, 127.39, 126.28, 80.97, 58.13, 44.39, 28.04, 26.43; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₈H₂₆NO₂⁺ 288.1958; found 288.1960.

tert-Butyl (R,4E,6E)-2-amino-2-methyl-7-(p-tolyl)hepta-4,6-dienoate (4ae):

Me H₂N Me CO₂'Bu

Colorless oil (37.9 mg, 64%); $R_f = 0.22$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 95%

by HPLC analysis on Daicel Chirapak IF-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, t_R(major) 9.746 min, t_R(minor) 8.663 min; $[\alpha]_D{}^{20}$ = +12.40 (*c* = 0.72, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.27 (d, *J* = 12.0 Hz, 2H), 7.11 (d, *J* = 6.0 Hz, 2H), 6.69 (dd, *J* = 12.0, 6.0 Hz, 1H), 6.44 (d, *J* = 18.0 Hz, 1H), 6.27 (dd, *J* = 12.0, 12.0.0 Hz, 1H), 5.71-5.66 (m, 1H), 2.57 (dd, *J* = 18.0, 6.0 Hz, 1H), 2.33 (s, 3H), 2.30 (d, *J* = 6.0 Hz, 1H), 1.70 (s, 2H), 1.47 (s, 9H), 1.31 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.40, 137.26, 134.78, 134.57, 131.44, 129.30, 128.36, 127.80, 126.20, 80.96, 58.13, 44.39, 28.04, 26.41, 21.20; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₉H₂₈NO₂⁺ 302.2115; found 302.2119.

tert-Butyl (R,4E,6E)-7-([1,1'-biphenyl]-4-yl)-2-amino-2-methylhepta-4,6-dienoate (4af):

White solid (35.5 mg, 49%); m.p. = 109-110 °C; $R_f = 0.25$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was

determined to be 94% by HPLC analysis on Daicel Chirapak IF-H column (hexane/isopropanol =

90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 12.036 min, $t_R(minor)$ 11.365 min; [α]_D²⁰ = +28.42 (*c* = 0.40, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, *J* = 12.0 Hz, 2H), 7.54 (d, *J* = 6.0 Hz, 2H), 7.45-7.41 (m, 4H), 7.33 (t, *J* = 6.0 Hz, 1H), 6.78 (m, 1H), 6.51 (d, *J* = 18.0 Hz, 1H), 6.31 (d, *J* = 6.0 Hz, 1H), 5.77-5.72 (m, 1H), 2.59 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.34 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.71 (s, 2H), 1.48 (s, 9H), 1.32 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.38, 140.70, 140.13, 136.43, 134.68, 131.00, 129.18, 128.85, 128.79, 127.27, 126.89, 126.72, 81.01, 58.16, 44.43, 28.06, 26.44; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₄H₃₀NO₂⁺ 364.2271; found 364.2276.

tert-Butyl (R,4E,6E)-2-amino-7-(4-(benzyloxy)phenyl)-2-methylhepta-4,6-dienoate (4ag):

BnO

^{Bind} H₂N_{Me} (petroleum ether/ ethyl acetate = 1:1); the enantiomeric excess was determined to be 91% by HPLC analysis on Daicel Chirapak IF-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, t_R(major) 16.699 min, t_R(minor) 15.339 min; $[\alpha]_{D}^{20}$ = +14.21 (*c* = 0.57, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.42 (d, *J* = 6.0 Hz, 2H), 7.38 (t, *J* = 6.0 Hz, 2H), 7.34 - 7.25 (m, 3H), 6.91 (d, *J* = 6.0Hz, 2H), 6.61 (dd, *J* = 12.0, 6.0 Hz, 1H), 6.42 (d, *J* = 12.0 Hz, 1H), 6.26 (dd, *J* = 18.0, 12.0 Hz, 1H), 5.69-5.64 (m, 1H), 5.06 (s, 2H), 2.57 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.31 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.72 (s, 2H), 1.47 (s, 9H), 1.31 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.39, 158.37, 136.96, 134.83, 130.99, 130.47, 128.59, 127.98, 127.82, 127.47, 126.92, 115.06, 80.97, 70.08, 58.15, 44.38, 28.05, 26.40; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₅H₃₂NO₃⁺ 394.2377; found 394.2382.

tert-Butyl (R,E)-2-amino-2-ethyl-5-phenylpent-4-enoate (5a):

Colorless oil (34.7 mg, 63%); $R_f = 0.22$ (petroleum ether/ ethyl acetate = 5:1); the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 95/5, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 9.130 min, $t_R(minor)$ 7.358 min; $[\alpha]_D^{20} = +22.34$ (c = 0.48, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.26 – 7.19 (m, 4H), 7.14 (t, J = 7.2 Hz, 1H), 6.41 (d, J = 12.0 Hz, 1H), 6.05 (ddd, J = 15.5, 8.3, 6.8 Hz, 1H), 2.60 (ddd, J = 13.5, 6.7, 1.0 Hz, 1H), 2.29 (dd, J = 13.5, 8.5 Hz, 1H), 1.78 - 1.72 (m, 1H), 1.61 (s, 2H), 1.54 – 1.48 (m, 1H), 1.41 (s, 9H), 0.83 (t, J = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.86, 137.20, 134.01, 128.52, 127.32, 126.16, 124.66, 81.01, 61.53, 43.42, 32.99, 28.10, 8.20; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₇H₂₆NO₂⁺ 276.1958; found 276.1954.

Colorless oil (35.1 mg, 57%); $R_f = 0.24$ (petroleum ether/ ethyl acetate = 5:1); the enantiomeric excess was determined to be 93%

by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 0.8

mL/min, T = 30 °C), UV 254 nm, t_R(major) 7.138 min, t_R(minor) 6.042 min; $[\alpha]_D^{20} = +15.38$ (*c* = 0.31, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.33 – 7.26 (m, 4H), 7.21 (t, *J* = 6.0 Hz, 1H), 6.48 (d, *J* = 12.0 Hz, 1H), 6.11 (ddd, *J* = 15.5, 8.4, 6.7 Hz, 1H), 2.67 (ddd, *J* = 13.5, 6.6, 1.0 Hz, 1H), 2.36 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.80 – 1.75 (m, 1H), 1.68 (s, 2H), 1.57 - 1.52 (m, 1H), 1.48 (s, 9H), 1.40 – 1.28 (m, 3H), 1.22 – 1.12 (m, 1H), 0.91 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.02, 137.20, 134.04, 128.52, 127.32, 126.17, 124.60, 80.99, 61.21, 43.78, 39.86, 28.10, 26.06, 23.00, 13.96; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₉H₃₀NO₂⁺ 304.2271; found 304.2268.

1

2

6.042 BB

7.138 BB

49.8332

50.1668

0.1692 520.57434

0.1715 1.50819e4 1316.65442

45.74467

3.3365

96.6635

0.1680 3969.00195 352.06573

0.1711 3995.56738 350.09576

6.029 BB

7.142 BB

2

Colorless oil (38.9 mg, 64%); $R_f = 0.26$ (petroleum ether/ ethyl acetate = 5:1); the enantiomeric excess was determined to be 94% by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, t_R (major) 6.859 min, t_R (minor) 5.679 min; $[\alpha]_D^{20} = +18.44$ (*c* = 0.30, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.33 – 7.26 (m, 4H), 7.21 (t, *J* = 7.1 Hz, 1H), 6.47 (d, *J* = 18.0 Hz, 1H), 6.09 (ddd, *J* = 15.4, 8.5, 6.7 Hz, 1H), 2.66 (ddd, *J* = 13.5, 6.6, 1.1 Hz, 1H), 2.33 (dd, *J* = 13.4, 8.6 Hz, 1H), 1.85 – 1.73 (m, 2H), 1.68 (s, 2H), 1.53 (q, *J* = 8.1 Hz, 1H), 1.48 (s, 9H), 0.97 (d, *J* = 6.0 Hz, 3H), 0.90 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.51, 137.17, 134.22, 128.53, 127.34, 126.18, 124.33, 81.14, 60.98, 48.42, 45.36, 28.08, 24.69, 24.50, 23.41; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₁₉H₃₀NO₂⁺ 304.2271; found 304.2268.

tert-Butyl (R,E)-2-amino-2-(3-(4-methoxyphenyl)allyl)heptanoate (5d):

Colorless oil (41.6 mg, 60%); $R_f = 0.24$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 94%

by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 9.144 min, $t_R(minor)$ 6.795 min; $[\alpha]_D^{20} = +17.74$ (*c* = 0.62, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, *J* = 6.0 Hz, 2H), 6.83 (d, *J* = 12.0 Hz, 2H), 6.42 (d, *J* = 18.0 Hz, 1H), 5.98 – 5.93 (m, 1H), 3.79 (s, 3H), 2.65 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.33 (dd, *J* = 13.5, 8.5 Hz, 1H), 1.78 – 1.73 (m, 1H), 1.72 (s, 2H), 1.55 – 1.50 (m, 1H), 1.47 (s, 9H), 1.40 – 1.36 (m, 1H), 1.33 – 1.26 (m, 4H), 1.21 – 1.16 (m, 1H), 0.89 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.09, 159.03, 133.44, 130.06, 127.29, 122.25, 113.95, 80.90, 61.26, 55.27, 43.80, 40.14, 32.10, 28.10, 23.52, 22.46, 13.96; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₁H₃₄NO₃⁺ 348.2533; found 348.2535.

tert-Butyl (*S*,*E*)-2-amino-5-(4-methoxyphenyl)-2-phenylpent-4-enoate (5e):

MeO H₂N CO₂'Bu

Colorless oil (45.1 mg, 64%); $R_f = 0.26$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 95% by HPLC

analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 13.609 min, $t_R(minor)$ 10.020 min; $[\alpha]_D^{20}$ = -19.11 (*c* = 0.59, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.57 (d, *J* = 6.0 Hz, 2H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.29 – 7.24 (m, 3H), 6.83 (d, *J* = 12.0 Hz, 2H), 6.49 (d, *J* = 18.0 Hz, 1H), 6.01 – 5.96 (m, 1H), 3.79 (s, 3H), 3.09 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.71 (dd, *J* = 18.0, 12.0 Hz, 1H), 1.98 (s, 2H), 1.45 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 174.35, 159.11, 143.52, 134.13, 130.01, 128.31, 127.35, 127.28, 125.43, 122.37, 113.98, 81.66, 63.78, 55.30, 43.94, 27.92; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₂H₂₈NO₃⁺ 354.2064; found 354.2057.

tert-Butyl (S,E)-2-amino-5-(4-methoxyphenyl)-2-(p-tolyl)pent-4-enoate (5f):

MeO H₂N CO₂'Bu

Colorless oil (44.7 mg, 61%); $R_f = 0.23$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol =

90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 14.001 min, $t_R(minor)$ 10.460 min; [α] $_D^{20}$ = -25.77 (*c* = 0.59, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, *J* = 6.0 Hz, 2H), 7.25 (d, *J* = 12.0 Hz, 2H), 7.16 (d, *J* = 6.0Hz, 2H), 6.83 (d, *J* = 6.0 Hz, 2H), 6.48 (d, *J* = 18.0 Hz, 1H), 6.01 – 5.96 (m, 1H), 3.79 (s, 3H), 3.07 (dd, *J* = 13.6, 6.8 Hz, 1H), 2.69 (dd, *J* = 13.5, 8.0 Hz, 1H), 2.34 (s, 3H), 1.95 (s, 2H), 1.44 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 174.48, 159.09, 140.58, 136.87, 134.03, 130.05, 129.01, 127.34, 125.31, 122.50, 113.97, 81.56, 63.56, 55.29, 43.98, 27.96, 20.99; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₃H₃₀NO₃⁺ 368.2220; found 368.2223.

tert-Butyl (S,E)-2-amino-2-(4-chlorophenyl)-5-(4-methoxyphenyl)pent-4-enoate (5g):

Colorless oil (44.9 mg, 58%); $R_f = 0.21$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol =

80/20, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 10.633 min, $t_R(minor)$ 7.968 min; [α] $_D^{20}$ = -37.78 (*c* = 0.51, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.53 (d, *J* = 6.0 Hz, 2H), 7.32 (d, *J* = 12.0 Hz, 2H), 7.25 (d, *J* = 6.0 Hz, 2H), 6.83 (d, *J* = 12.0 Hz, 2H), 6.47 (d, *J* = 15.8 Hz, 1H), 5.97 – 5.92 (m, 1H), 3.79 (s, 3H), 3.04 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.66 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.92 (s, 2H), 1.44 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.95, 159.19, 142.03, 134.40, 133.17, 129.83, 128.39, 127.37, 127.07, 121.86, 114.00, 81.97, 63.43, 55.30, 44.05, 27.92; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₂H₂₇ClNO₃⁺ 388.1674; found 388.1676.

tert-Butyl (S,E)-2-amino-2-benzyl-5-(4-methoxyphenyl)pent-4-enoate (5h):

Colorless oil (44.7 mg, 60%); $R_f = 0.25$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 96%

by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 0.8

mL/min, T = 30 °C), UV 254 nm, t_R(major) 10.997 min, t_R(minor) 8.128 min; $[\alpha]_D^{20} = +9.49$ (*c* = 0.69, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.29 – 7.23 (m, 7H), 6.83 (d, *J* = 12.0 Hz, 2H), 6.46 (d, *J* = 12.0 Hz, 1H), 5.97 (ddd, *J* = 15.5, 8.4, 6.8 Hz, 1H), 3.79 (s, 3H), 3.21 (d, *J* = 12.0 Hz, 1H), 2.92 – 2.70 (m, 2H), 2.40 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.63 (s, 2H), 1.46 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 175.31, 159.09, 136.56, 133.78, 130.26, 129.97, 128.25, 127.33, 126.89, 121.81, 113.98, 81.43, 62.03, 55.29, 45.75, 44.36, 28.14; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₃H₃₀NO₃⁺ 368.2220; found 368.2218.

tert-Butyl (*S*,*E*)-2-amino-5-(4-methoxyphenyl)-2-(4-methylbenzyl)pent-4-enoate (5i):

^{MeO} Colorless oil (47.2 mg, 62%); $R_f = 0.25$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 95% by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 9.653 min, $t_R(minor)$ 8.040 min; $[\alpha]_D^{20} = +9.64$ (c = 0.57, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, J = 6.0 Hz, 2H), 7.12 (d, J = 12.0 Hz, 2H), 7.08 (d, J = 6.0 Hz, 2H), 6.83 (d, J = 6.0 Hz, 2H), 6.45 (d, J = 12.0 Hz, 1H), 5.97 (ddd, J = 15.5, 8.3, 6.9 Hz, 1H), 3.79 (s, 3H), 3.17 (d, J = 12.0 Hz, 1H), 2.79 (dd, J = 12.0, 6.0 Hz, 1H), 2.75 (d, J = 12.0 Hz, 1H), 2.40 – 2.37 (m, 1H), 2.31 (s, 3H), 1.64 (s, 2H), 1.47 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 175.41, 159.08, 136.40, 133.69, 133.38, 130.10, 130.01, 128.96, 127.32, 121.92, 113.98, 81.36, 62.04, 55.29, 45.28, 44.34, 28.16, 21.04; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₄H₃₂NO₃⁺ 382.2377; found 382.2377.

tert-Butyl (S,E)-2-amino-2-(4-fluorobenzyl)-5-(4-methoxyphenyl)pent-4-enoate (5j):

MeO

 $H_2N_{CO_2'Bu}$ acetate = 2:1); the enantiomeric excess was determined to be 96% by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 80/20, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 8.403 min, $t_R(minor)$ 6.943 min; $[\alpha]_D^{20} = +12.71$ (*c* = 0.44, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.26 (d, *J* = 6.0 Hz, 2H), 7.21 (dd, *J* = 12.0, 6.0 Hz, 2H), 6.97 (t, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 6.45 (d, *J* = 18.0 Hz, 1H), 5.98 – 5.93 (m, 1H), 3.79 (s, 3H), 3.17 (d, *J* = 18.0 Hz, 1H), 2.81 - 2.75 (m, 2H), 2.38 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.65 (s, 2H), 1.45 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 175.17, 162.82, 161.20, 159.15, 133.93 (d, *J* = 252.2 Hz), 131.71(d, *J* = 7.6 Hz), 129.88, 127.34, 121.58, 115.11, 114.97(d, *J* = 146.5 Hz), 81.57, 62.01, 55.29, 44.87, 44.19, 28.13; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₃H₂₉FNO₃⁺ 386.2126; found 386.2129.

Colorless oil (43.9 mg, 57%); $R_f = 0.23$ (petroleum ether/ ethyl

tert-Butyl (S,E)-2-amino-5-(4-methoxyphenyl)-2-(naphthalen-2-ylmethyl)pent-4-enoate (5k):

White solid (45.9 mg, 55%); m.p. = 100-101 °C; $R_f = 0.26$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 95% by HPLC analysis on Daicel Chirapak IA-

H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, t_R(major) 13.663 min, t_R(minor) 17.602 min; $[\alpha]_D{}^{20}$ = -10.78 (*c* = 0.58, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.81 – 7.71 (m, 4H), 7.46 – 7.37 (m, 3H), 7.26 (d, *J* = 6.0 Hz, 2H), 6.83 (d, *J* = 12.0 Hz, 2H), 6.48 (d, *J* = 18.0 Hz, 1H), 6.00 (ddd, *J* = 15.4, 8.4, 6.8 Hz, 1H), 3.78 (s, 3H), 3.39 (d, *J* = 12.0 Hz, 1H), 2.95 (d, *J* = 18.0 Hz, 1H), 2.88 – 2.85 (m, 1H), 2.45 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.64 (s, 2H), 1.47 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 175.37, 159.13, 134.21, 133.87, 133.37, 132.49, 129.96, 128.92, 128.58, 127.78, 127.63, 127.36, 126.02, 125.59, 121.77, 114.01, 81.51, 62.27, 55.30, 45.86, 44.52, 28.18; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₇H₃₂NO₃⁺ 418.2377; found 418.2376.

 H_2N

Colorless oil (44.2 mg, 57%); $R_f = 0.23$ (petroleum ether/ ethyl acetate = 5:1); the enantiomeric excess was determined to be 93% by HPLC $CO_2'Bu$ analysis on Daicel Chirapak IA-H column (hexane/isopropanol =

90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 9.695 min, $t_R(minor)$ 7.830 min; [α]_D²⁰ = +9.25 (*c* = 0.33, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.33 – 7.27 (m, 6H), 7.23 – 7.18 (m, 4H), 6.50 (d, *J* = 18.0 Hz, 1H), 6.22 – 6.04 (m, 1H), 2.75 - 2.69 (m, 2H), 2.54 – 2.49 (m, 1H), 2.43 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.08 (td, *J* = 13.1, 4.3 Hz, 1H), 1.87 (td, *J* = 13.1, 5.2 Hz, 1H), 1.74 (s, 2H), 1.52 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 175.68, 141.87, 137.09, 134.34, 128.56, 128.51, 128.36, 127.42, 126.21, 125.98, 124.23, 81.33, 61.27, 43.81, 42.27, 30.61, 28.18; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₃H₃₀NO₂⁺ 352.2271; found 352.2268.

tert-Butyl (S,E)-2-amino-2-(tert-butoxymethyl)-5-(4-methoxyphenyl)pen (5m):

^{MeO} H₂N O'Bu Colorless oil (43.6 mg, 59%); $R_f = 0.21$ (petroleum ether/ ethyl cO₂^{*i*}Bu acetate = 2:1); the enantiomeric excess was determined to be 93% by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, t_R (major) 7.878 min, t_R (minor) 6.212 min; $[\alpha]_D^{20} = +12.52$ (*c* = 0.65, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.26 (d, *J* = 6.0 Hz, 2H), 6.83 (d, *J* = 12.0 Hz, 2H), 6.42 (d, *J* = 18.0 Hz, 1H), 5.98 – 5.93 (m, 1H), 3.79 (s, 3H), 3.65 (d, *J* = 6.0 Hz, 1H), 3.28 (d, *J* = 6.0 Hz, 1H), 2.56 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.31 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.93 (s, 2H), 1.47 (s, 9H), 1.16 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 174.89, 159.01, 133.32, 130.06, 127.31, 121.50, 113.93, 80.75, 72.74, 67.95, 61.97, 55.27, 40.29, 28.10, 27.45; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₁H₃₄NO₄⁺ 364.2482; found 364.2482.

di-tert-Butyl (S,E)-2-amino-2-(3-(4-methoxyphenyl)allyl)succinate (5n):

Bu Colorless oil (45.6 mg, 62%); $R_f = 0.23$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 93%

by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, t_R(major) 8.015 min, t_R(minor) 6.315 min; $[\alpha]_D^{20} = +7.54$ (*c* = 0.42, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.26 (d, *J* = 6.0 Hz, 2H), 6.83 (d, *J* = 12.0 Hz, 2H), 6.42 (d, *J* = 18.0 Hz, 1H), 5.98 - 5.93 (m, 1H), 3.80 (s, 3H), 3.64 (d, *J* = 6.0 Hz, 1H), 3.28 (d, *J* = 6.0 Hz, 1H), 2.56 (dd, *J* = 18.0, 6.0 Hz, 1H), 2.31 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.93 (s, 2H), 1.47 (s, 9H), 1.16 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 174.90, 159.01, 133.32, 130.07, 127.32, 121.51, 113.93, 80.76, 72.75, 67.96, 61.98, 55.28, 40.30, 28.10, 27.46; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₂H₃₄NO₅⁺ 364.2482; found 364.2482.

di-tert-Butyl (*R*,*E*)-2-amino-2-(3-(4-methoxyphenyl)allyl)pentanedioate (50):

MeO H₂N CO₂'Bu

Colorless oil (42.1 mg, 52%); $R_f = 0.24$ (petroleum ether/ ethyl acetate = 2:1); the enantiomeric excess was determined to be 94%

by HPLC analysis on Daicel Chirapak IA-H column (hexane/isopropanol = 90/10, flow rate 0.8 mL/min, T = 30 °C), UV 254 nm, $t_R(major)$ 10.869 min, $t_R(minor)$ 9.194 min; $[\alpha]_D^{20} = +9.44$ (c = 0.82, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, J = 12.0 Hz, 2H), 6.83 (d, J = 12.0 Hz, 2H), 6.42 (d, J = 18.0 Hz, 1H), 5.95 (ddd, J = 15.3, 8.2, 6.9 Hz, 1H), 3.79 (s, 3H), 2.64 (dd, J = 12.0, 6.0 Hz, 1H), 2.39 - 2.33 (m, 2H), 2.22 - 2.17 (m, 1H), 2.07 - 2.02 (m, 1H), 1.89 - 1.84 (m, 1H), 1.62 (s, 2H), 1.48 (s, 9H), 1.44 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 175.33, 172.73, 159.09, 133.76, 129.90, 127.32, 121.78, 113.96, 81.34, 80.31, 60.66, 55.27, 43.49, 34.82, 30.42, 28.10, 28.07; HRMS(ESI) m/z: [M+H]⁺ Calculated for C₂₃H₃₆NO₅⁺ 406.2588; found 406.2586.

4. Determination of the absolute configuration of 4b

The absolute configuration of compound **4b** was established by comparing its optical rotation value with the literature data:

(<i>R</i>)-product (4b) in this work	(<i>S</i>)-product in literature ^[5]
H ₂ N Me CO ₂ ['] Bu <i>tert</i> -butyl (<i>R,E</i>)-2-amino-2-methyl-5-phenylpent-4-enoate	H ₂ N Me CO ₂ 'Bu <i>tert-</i> butyl (<i>S,E</i>)-2-amino-2-methyl-5-phenylpent-4-enoate
$[\alpha]_{\rm D}^{20} = +16.25 \ (c = 0.90, {\rm CHCl}_3)$	$[\alpha]_{D^{20}} = -7.4 \ (c = 1.00, \text{CHCl}_3)$

Literature:

1H NMR (400 MHz, CDCl3) δ = 7.35 -7.26 (m, 4H), 7.24 -7.18 (m, 1H), 6.48 (d, J = 15.8 Hz, 1H), 6.23 - 5.96 (m, 1H), 2.65 (ddd, J = 13.5, 6.8, 1.4 Hz, 1H), 2.38 (ddd, J = 13.5, 8.3, 1.1 Hz, 1H), 1.82 (s, 2H), 1.47 (s, 9H), 1.34 (s, 3H).

This work:

¹**H NMR** (600 MHz, CDCl₃) δ 7.36-7.29 (m, 4H), 7.25-7.22 (m, 1H), 6.50 (d, *J* = 18.0 Hz, 1H), 6.25 - 5.93 (m, 1H), 2.67 (dd, *J* = 18.0, 6.0 Hz, 1H), 2.42 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.79 (s, 2H), 1.50 (s, 9H),

1.36 (s, 3H).

5. Mechanistic Studies

To a 10 mL vial charged with $[Pd(C_3H_5)Cl]_2$ (3.6 mg, 0.01 mmol) and L1 (11.7 mg, 0.02 mmol) was added 0.5 mL toluene, and the mixture was stirred under nitrogen atmosphere at room temperature for 30 min. Then, **1a** (0.2 mmol), **2b** (0.36 mmol), **3b** (0.3 mmol), chiral aldehyde **CA-1** (7.7 mg, 0.02 mmol), ZnBr₂ (45.0 mg, 0.2 mmol), LiBF₄ (7.5mg, 0.08 mmol) and TMG (56.2 uL, 0.44 mmol) were added. The mixture was continuously stirred at indicated reaction temperature under nitrogen atmosphere. After the reaction completed, the solvent was removed by rotary evaporation, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ ethyl acetate/ triethylamine =200/100/3). The reaction yielded **4b** in 81% yield and 96% ee.

To a 10 mL vial charged with $[Pd(C_3H_5)Cl]_2$ (3.6 mg, 0.01 mmol) and L1 (11.7 mg, 0.02 mmol) was added 0.5 mL toluene, and the mixture was stirred under nitrogen atmosphere at room temperature for 30 min. Then, **2b** (0.36 mmol), **3b** (0.3 mmol), chiral aldehyde **CA-1** (7.7 mg, 0.02 mmol), ZnBr₂ (45.0 mg, 0.2 mmol), LiBF₄ (7.5mg, 0.08 mmol) and TMG (56.2 uL, 0.44 mmol) were added. The mixture was continuously stirred at indicated reaction temperature under nitrogen atmosphere. After the reaction completed, the solvent was removed by rotary evaporation, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ ethyl acetate/ triethylamine =300/100/3). The reaction yielded **3a** in 79% yield and 97% ee.

To a 10 mL vial charged with $[Pd(C_3H_5)Cl]_2$ (3.6 mg, 0.01 mmol) and L1 (11.7 mg, 0.02 mmol) was added 0.5 mL toluene, and the mixture was stirred under nitrogen atmosphere at room temperature for 30 min. Then, IV (0.2 mmol), **3b** (0.3 mmol), chiral aldehyde CA-1 (7.7 mg, 0.02 mmol), ZnBr₂ (45.0 mg, 0.2 mmol), LiBF₄ (7.5mg, 0.08 mmol) and TMG (56.2 uL, 0.44 mmol) were added. The mixture was continuously stirred at indicated reaction temperature under nitrogen atmosphere. After the reaction completed, the solvent was removed by rotary evaporation, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ ethyl acetate/ triethylamine =200/100/3). The reaction yielded **4b** in 90% yield and 92% ee.

To a 10 mL vial charged with $[Pd(C_3H_5)Cl]_2$ (3.6 mg, 0.01 mmol) and L1 (11.7 mg, 0.02 mmol) was added 0.5 mL toluene, and the mixture was stirred under nitrogen atmosphere at room temperature for 30 min. Then, **1a** (0.2 mmol), **3a** (0.3 mmol), chiral aldehyde **CA-1** (7.7 mg, 0.02 mmol), ZnBr₂ (45.0 mg, 0.2 mmol), LiBF₄ (7.5mg, 0.08 mmol) and TMG (56.2 uL, 0.44 mmol) were added. The mixture was continuously stirred at indicated reaction temperature under nitrogen atmosphere. After the reaction completed, the solvent was removed by rotary evaporation, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ ethyl acetate/ triethylamine =200/100/3). The reaction yielded **4b** in 65% yield and 96% ee.

To a 10 mL vial charged with $[Pd(C_3H_5)Cl]_2$ (3.6 mg, 0.01 mmol) and L1 (11.7 mg, 0.02 mmol) was added 0.5 mL toluene, and the mixture was stirred under nitrogen atmosphere at room temperature for 30 min. Then, **1b** (0.2 mmol), **2b** (0.36 mmol), **3b** (0.3 mmol), chiral aldehyde CA-1 (7.7 mg, 0.02 mmol), ZnBr₂ (45.0 mg, 0.2 mmol), LiBF₄ (7.5mg, 0.08 mmol) and TMG (56.2 uL, 0.44 mmol) were added. The mixture was continuously stirred at indicated reaction temperature under nitrogen atmosphere. After the reaction completed, the solvent was removed by rotary evaporation, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ ethyl acetate/ triethylamine =200/100/3). The reaction yielded **4x** in 56% yield and 88% ee.

To a 10 mL vial charged with $[Pd(C_3H_5)Cl]_2$ (3.6 mg, 0.01 mmol) and L1 (11.7 mg, 0.02 mmol) was added 0.5 mL toluene, and the mixture was stirred under nitrogen atmosphere at room temperature for 30 min. Then, IV-1 (0.2 mmol), **3b** (0.3 mmol), chiral aldehyde CA-1 (7.7 mg, 0.02 mmol), ZnBr₂ (45.0 mg, 0.2 mmol), LiBF₄ (7.5mg, 0.08 mmol) and TMG (56.2 uL, 0.44 mmol) were added. The mixture was continuously stirred at indicated reaction temperature under nitrogen atmosphere. After the reaction completed, the solvent was removed by rotary evaporation, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ ethyl acetate/ triethylamine =200/100/3). The reaction yielded **4x** in 83% yield and 89% ee.

To a 10 mL vial charged with $[Pd(C_3H_5)Cl]_2$ (3.6 mg, 0.01 mmol) and L1 (11.7 mg, 0.02 mmol) was added 0.5 mL toluene, and the mixture was stirred under nitrogen atmosphere at room temperature for 30 min. Then, **1a** (0.2 mmol), **3a** (0.3 mmol), chiral aldehyde **CA-1** (7.7 mg, 0.02 mmol), ZnBr₂ (45.0 mg, 0.2 mmol), LiBF₄ (7.5mg, 0.08 mmol) and TMG (56.2 uL, 0.44 mmol) were added. The mixture was continuously stirred at indicated reaction temperature under nitrogen atmosphere. After the reaction completed, the solvent was removed by rotary evaporation, and the residue was purified by flash chromatography column on silica gel (eluent: petroleum ether/ ethyl acetate/ triethylamine =200/100/3). No desired product **4x** was generated in this reaction.

6. References

- [1] a) Urvashi, S. Mishra, N. T. Patil, Gold-catalyzed alkenylation and arylation of phosphorothioates. *Chem. Sci.* 2023, 14, 13134. b) J. A. Cadge, H. A. Sparkes, J. F. Bower, C. A. Russell, *Angew. Chem. Int. Ed.* 2020, 59, 6617–6621.
- [2] O. I. Shmatova, N. E. Shevchenko, E. S. Balenkova, G.-V. Röschenthaler, V. G. Nenajdenko, Friedel-Crafts alkylation of natural amino acid-derived pyrroles with CF₃-substituted cyclic imines. *Mendeleev Commun.* 2013, 23, 92-93.
- [3] K. Manna, H. M. Begam, K. Samanta, R. Jana, Overcoming the deallylation problem: palladium(II)-catalyzed chemo-, regio-, and stereoselective allylic oxidation of aryl allyl ether, amine, and amino acids. Org. Lett. 2020, 22, 7443-7449.
- [4] B. Xu, et al. Catalytic asymmetric direct α-alkylation of amino esters by aldehydes via imine activation. *Chem. Sci.* 2014, 5, 1988-1991.
- [5] X.-H. Huo, R. He, J. -K. Fu, J.-C. Zhang, G.-Q. Yang, W.-B. Zhang, Stereoselective and Site-Specific Allylic Alkylation of Amino Acidsand Small Peptides via a Pd/Cu Dual Catalysis. J. Am. Chem. Soc. 2017, 139, 9819–9822.

7. Copies of ¹H NMR and ¹³C NMR spectra

