Electronic Supporting Information

Leveraging a reduced polyoxomolybdate-alkoxide cluster for the formation of a stable U(V) sandwich complex

Dominic Shiels¹*, William W. Brennessel¹, Matthew R. Crawley², and Ellen M. Matson¹*

¹ Department of Chemistry, University of Rochester, Rochester NY, 14627 USA

²Department of Chemistry, University at Buffalo, The State University of New York, Buffalo NY 14620, USA.

Corresponding Author Contact Information:

Dominic Shiels: dshiels@ur.rochester.edu

Ellen M. Matson: matson@chem.rochester.edu

Contents

1. ¹ H NMR spectraS4
Figure S1: ¹ H NMR spectrum (400 MHz) of (TBA) ₂ [Mo ₅ O ₁₃ (OMe) ₄ NO][Na(MeOH)] (1-NaMo ₅) in CD ₃ CN. The peak marked with an asterisk corresponds to MeOH
Figure S2: ¹ H NMR spectrum (500 MHz) of (TBA) ₄ [Ba{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] in CD ₃ CN. Peaks marked with an asterisk correspond to MeOH
Figure S3: ¹ H NMR spectrum (500 MHz) of (TBA) ₃ [Bi{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] in CD ₃ CN S6
Figure S4: ¹ H NMR spectrum (500 MHz) of (TBA) ₂ [Zr{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] (2-Zr(Mo₅) ₂) in CD ₂ Cl ₂
Figure S5: ¹ H NMR spectrum (500 MHz) of (TBA) ₂ [Hf{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] (3-Hf(Mo₅) ₂) in CD ₂ Cl ₂
Figure S6: ¹ H NMR spectrum (500 MHz) of (TBA) ₂ [Th{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] (4-Th(Mo₅) ₂) in CD ₂ Cl ₂
Figure S7: ¹ H NMR spectrum (500 MHz) of (TBA) ₂ [U{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] (5-U(Mo₅) ₂) in CD ₂ Cl ₂ . Peaks marked with asterisks correspond to toluene impurity
Figure S8: ¹ H NMR spectrum (500 MHz) of (TBA) ₂ [U{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] (5-U(Mo ₅) ₂) in CDCl ₃
Figure S9: ¹ H NMR spectrum (500 MHz) of (TBA) ₂ [U{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] (5-U(Mo₅) ₂) in acetone-d ₆
Figure S10: ¹ H NMR spectrum (500 MHz) of (TBA) ₂ [U{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] (5-U(Mo₅) ₂) in CD ₃ CN
Figure S11: ¹ H NMR spectrum (500 MHz) of (TBA) ₂ [U{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] (5-U(Mo₅) ₂) in DMSO-d ₆

Figure S14: ¹H NMR spectrum (500 MHz) of crude (TBA)[U{Mo₅O₁₃(OMe)₄NO}₂] (**6-U(Mo₅)**₂), obtained from oxidation of (TBA)₂[U{Mo₅O₁₃(OMe)₄NO}₂] (**5-U(Mo₅)**₂) with an excess of

[NO][PF ₆]. Spectrum recorded in CD ₂ Cl ₂ . The peak marked with an asterisk corresponds to the -OMe groups of 5-U(Mo 5)2
2. Electronic absorption spectra
Figure S15: UV-Vis spectra of 1 mM, 2 mM, 3 mM, and 4 mM solutions 1-NaMo₅ in MeCN.
Figure S16: Conc. vs abs. plot at the λ_{max} (546 nm) for 1-NaMo ₅ in MeCN
Figure S17: UV-Vis spectra of 0.5 mM, 0.75 mM, 1 mM, and 2 mM solutions of (TBA)₄[Ba{Mo₅O13(OMe)₄NO}2] in MeCN
Figure S18: Conc. vs abs. plot at the λ_{max} (550 nm) for (TBA) ₄ [Ba{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] in MeCN.
Figure S19: UV-Vis spectra of 0.5 mM, 1 mM, 1.5 mM, and 2 mM solutions of (TBA) ₃ [Bi{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] in MeCN
Figure S20: Conc. vs abs. plot at the λ_{max} (560 nm) for (TBA)_3[Bi{Mo_5O_{13}(OMe)_4NO}_2] in MeCN
Figure S21: UV-Vis spectra of 0.5 mM, 1 mM, 1.5 mM, and 2 mM solutions of 2-Zr(Mo₅) ₂ in MeCN
Figure S22: Conc. vs abs. plot at the λ_{max} (588 nm) for 2-Zr(Mo ₅) ₂ in MeCN
Figure S23: UV-Vis spectra of 0.75 mM, 1 mM, 1.5 mM, and 2 mM solutions of 3-Hf(Mo₅)₂ in MeCN
Figure S24: Conc. vs abs. plot at the λ_{max} (588 nm) for 3-Hf(Mo ₅) ₂ in MeCN S22
Figure S25: UV-Vis spectra of 0.75 mM, 1 mM, 1.5 mM, and 2 mM solutions of 4-Th(Mo₅)₂ in MeCN
Figure S26: Conc. vs abs. plot at the λ_{max} (572 nm) for 4-Th(Mo ₅) ₂ in MeCN S23
Figure S27: UV-Vis spectra of 0.5 mM, 1 mM, 1.5 mM, and 2 mM solutions of 5-U(Mo₅)₂ in MeCN
Figure S28: Conc. vs abs. plot for the <i>f-f</i> transition at 682 nm of 5-U(Mo₅) ₂ in MeCN S24
Figure S29: Conc. vs abs. plot for the <i>f-f</i> transition at 1100 nm of 5-U(Mo₅) ₂ in MeCN. S25
Figure S30: Conc. vs abs. plot for the <i>f-f</i> transition at 1156 nm of 5-U(Mo₅) ₂ in MeCN. S25
Figure S31: UV-Vis/NIR spectra of 6-U(Mo₅)₂ in DCM at room temperature (21 °C) recorded every day for 5 days. The solution was sealed in a screw-top quartz cuvette and was assumed to protected from air and moisture
3. Single crystal X-ray diffraction information
Table S1: Crystallographic parameters for 2-Zr(Mo5)2 and 3-Hf(Mo5)2

	Table S2: Crystallographic parameters for 4-Th(Mo₅)₂ and 5-U(Mo₅)₂
	Table S3: Crystallographic parameters for 6-U(Mo5)2
	Table S4: Average bond length data for the structures discussed. All values in Å. Aschematic is given below to highlight bond assignments
	Calculation of U ⁵⁺ ionic radius:
4.	Electrochemistry
	Figure S32: CV of (TBA) ₄ [Ba{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] (1 mM) in MeCN (0.1 M TBA(PF ₆]). Scan rate = 200 mv/s
	Figure S33: CV of (TBA) ₃ [Bi{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] (1 mM) in MeCN (0.1 M TBA(PF ₆]). Scan rate = 200 mv/s
	Figure S34: CV of $(TBA)_2[Zr\{Mo_5O_{13}(OMe)_4NO\}_2]$ (1 mM) in MeCN (0.1 M TBA(PF ₆]) when scanned to more negative potentials. Scan rate = 200 mv/s
	Figure S35: CV of $(TBA)_2[Zr\{Mo_5O_{13}(OMe)_4NO\}_2]$ (1 mM) in MeCN (0.1 M TBA(PF ₆]) when scanned to more negative potentials. Scan rate = 200 mv/s
	Figure S36: CV of $(TBA)_2[U\{Mo_5O_{13}(OMe)_4NO\}_2]$ (1 mM) in MeCN, DCM, and THF (0.1 M TBA(PF ₆]). Scan rate = 200 mv/s
	Figure S37: Pre bulk electrolysis CV of (TBA) ₂ [U{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] (1 mM) in MeCN (0.1 M TBA(PF ₆]). Scan rate = 200 mv/s
	Figure S38: Bulk oxidation of a 1 mM solution of $(TBA)_2[U\{Mo_5O_{13}(OMe)_4NO\}_2]$ in DCM (0.1 M TBA(PF ₆). Chronoamperometry was performed at +0.78 V vs Fc/Fc ⁺ S36
	Figure S39: Post bulk electrolysis CV of (TBA) ₂ [U{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] (1 mM) in MeCN (0.1 M TBA(PF ₆]). Scan rate = 200 mv/s
	Figure S40: CV of crude (TBA)[U{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] (1 mM) in DCM (0.1 M TBA(PF ₆]) obtained by oxidation of (TBA) ₂ [U{Mo ₅ O ₁₃ (OMe) ₄ NO} ₂] with an excess of [NO][PF ₆]. Scan rate = 200 mv/s

1.¹H NMR spectra

Figure S1: ¹H NMR spectrum (400 MHz) of $(TBA)_2[Mo_5O_{13}(OMe)_4NO][Na(MeOH)]$ (**1-NaMo**₅) in CD₃CN. The peak marked with an asterisk corresponds to MeOH.

Figure S2: ¹H NMR spectrum (500 MHz) of $(TBA)_4[Ba\{Mo_5O_{13}(OMe)_4NO\}_2]$ in CD₃CN. Peaks marked with an asterisk correspond to MeOH.

Figure S3: ¹H NMR spectrum (500 MHz) of $(TBA)_3[Bi\{Mo_5O_{13}(OMe)_4NO\}_2]$ in CD₃CN.

Figure S4: ¹H NMR spectrum (500 MHz) of $(TBA)_2[Zr\{Mo_5O_{13}(OMe)_4NO\}_2]$ (2-Zr(Mo₅)₂) in CD_2Cl_2 .

Figure S5: ¹H NMR spectrum (500 MHz) of $(TBA)_2[Hf\{Mo_5O_{13}(OMe)_4NO\}_2]$ (3-Hf(Mo₅)₂) in CD_2Cl_2 .

Figure S6: ¹H NMR spectrum (500 MHz) of $(TBA)_2[Th\{Mo_5O_{13}(OMe)_4NO\}_2]$ (4-Th $(Mo_5)_2$) in CD_2Cl_2 .

Figure S7: ¹H NMR spectrum (500 MHz) of $(TBA)_2[U\{Mo_5O_{13}(OMe)_4NO\}_2]$ (**5-U(Mo₅)**₂) in CD_2Cl_2 . Peaks marked with asterisks correspond to toluene impurity.

Figure S8: ¹H NMR spectrum (500 MHz) of (TBA)₂[U{Mo₅O₁₃(OMe)₄NO}₂] (5-U(Mo₅)₂) in CDCl₃.

Figure S9: ¹H NMR spectrum (500 MHz) of $(TBA)_2[U\{Mo_5O_{13}(OMe)_4NO\}_2]$ (**5-U(Mo₅)**₂) in acetone-d₆.

Figure S10: ¹H NMR spectrum (500 MHz) of $(TBA)_2[U\{Mo_5O_{13}(OMe)_4NO\}_2]$ (5-U(Mo₅)₂) in CD₃CN.

Figure S11: ¹H NMR spectrum (500 MHz) of $(TBA)_2[U\{Mo_5O_{13}(OMe)_4NO\}_2]$ (5-U(Mo₅)₂) in DMSO-d₆.

Figure S12: ¹H DOSY NMR spectrum (500 MHz) of a 2mM solution $(TBA)_2[U\{Mo_5O_{13}(OMe)_4NO\}_2]$ (**5-U(Mo_5)**₂) in CDCl₃. The obtained diffusion coefficient (D in m²/s) for each peak in the ¹H NMR spectrum is given with the standard deviation (σ -D). The peaks at -2.723, -3.915, and -4.188 ppm can be assigned to the TBA cation, while the peak at 9.663 ppm is assigned to {U(Mo₅)₂} cluster.

Figure S13: ¹H DOSY NMR spectrum (500 MHz) of a 2 mM solution of $(TBA)_2[U\{Mo_5O_{13}(OMe)_4NO\}_2]$ (**5-U(Mo_5)**₂) in CD₃CN. The obtained diffusion coefficient (D in m²/s) for each peak in the ¹H NMR spectrum is given with the standard deviation (σ -D). The peaks at 0.093, 0.195, 1.251 and 1.696 ppm can be assigned to the TBA cation, while the peak at 9.519 ppm is assigned to {U(Mo₅)₂} cluster.

Figure S14: ¹H NMR spectrum (500 MHz) of crude (TBA)[U{ $Mo_5O_{13}(OMe)_4NO$ }] (**6-U(Mo_5**)₂), obtained from oxidation of (TBA)₂[U{ $Mo_5O_{13}(OMe)_4NO$ }] (**5-U(Mo_5**)₂) with an excess of [NO][PF₆]. Spectrum recorded in CD₂Cl₂. The peak marked with an asterisk corresponds to the -OMe groups of **5-U(Mo_5**)₂.

2. Electronic absorption spectra

Figure S16: Conc. vs abs. plot at the λ_{max} (546 nm) for **1-NaMo**₅ in MeCN.

Figure S17: UV-Vis spectra of 0.5 mM, 0.75 mM, 1 mM, and 2 mM solutions of $(TBA)_4[Ba\{Mo_5O_{13}(OMe)_4NO\}_2]$ in MeCN.

Figure S18: Conc. vs abs. plot at the λ_{max} (550 nm) for (TBA)₄[Ba{Mo₅O₁₃(OMe)₄NO}₂] in MeCN.

Figure S19: UV-Vis spectra of 0.5 mM, 1 mM, 1.5 mM, and 2 mM solutions of $(TBA)_3[Bi\{Mo_5O_{13}(OMe)_4NO\}_2]$ in MeCN.

Figure S20: Conc. vs abs. plot at the λ_{max} (560 nm) for (TBA)₃[Bi{Mo₅O₁₃(OMe)₄NO}₂] in MeCN.

Figure S21: UV-Vis spectra of 0.5 mM, 1 mM, 1.5 mM, and 2 mM solutions of 2-Zr(Mo₅)₂ in MeCN.

Figure S22: Conc. vs abs. plot at the λ_{max} (588 nm) for 2-Zr(Mo₅)₂ in MeCN.

Figure S23: UV-Vis spectra of 0.75 mM, 1 mM, 1.5 mM, and 2 mM solutions of 3-Hf(Mo₅)₂ in MeCN.

Figure S24: Conc. vs abs. plot at the λ_{max} (588 nm) for 3-Hf(Mo₅)₂ in MeCN.

Figure S25: UV-Vis spectra of 0.75 mM, 1 mM, 1.5 mM, and 2 mM solutions of 4-Th(Mo₅)₂ in MeCN.

Figure S26: Conc. vs abs. plot at the λ_{max} (572 nm) for 4-Th(Mo₅)₂ in MeCN.

Figure S27: UV-Vis spectra of 0.5 mM, 1 mM, 1.5 mM, and 2 mM solutions of $5-U(Mo_5)_2$ in MeCN.

Figure S28: Conc. vs abs. plot for the *f-f* transition at 682 nm of 5-U(Mo₅)₂ in MeCN.

Figure S29: Conc. vs abs. plot for the *f-f* transition at 1100 nm of 5-U(Mo₅)₂ in MeCN.

Figure S30: Conc. vs abs. plot for the *f-f* transition at 1156 nm of **5-U(Mo**₅)₂ in MeCN.

Figure S31: UV-Vis/NIR spectra of **6-U(Mo**₅)₂ in DCM at room temperature (21 °C) recorded every day for 5 days. The solution was sealed in a screw-top quartz cuvette and was assumed to protected from air and moisture.

3. Single crystal X-ray diffraction information

Table S1: Crystallographic parameters for 2-Zr(Mo₅)₂ and 3-Hf(Mo₅)₂

	2-Zr(Mo₅) ₂	3-Hf(Mo₅)₂
Empirical formula	$C_{45.10}H_{106.75}Mo_{10}N_5O_{36.78}Zr$	$C_{45.13}H_{106.82}HfMo_{10}N_5O_{36.78}$
Formula weight	2358.35	2446.14
Temperature	100.00(10) K	100.00(10) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Monoclinic
Space group	P2 _{1/c}	P2 _{1/c}
Unit cell dimensions	a = 21.4037(2) Å b = 15.0940(2) Å c = 24.2093 Å α = 90° β = 92.6550(10)° γ = 90°	a = 21.3965(2) Å b = 15.0939(2) Å c = 24.2325(3) Å α = 90° β = 92.6250(10)° γ = 90°
Volume	7812.84(16) ų	7817.83(16) ų
Z	4	4
Reflections collected	147354	148392
Independent reflections	26637	26606
Goodness-of-fit on F ²	1.046	1.025
Final R indices [I>2sigma(I)]	R1 = 0.0445 wR2 = 0.0891	R1 = 0.0394 wR2 = 0.0779

	4-Th(Mo₅)₂	5-U(Mo₅)₂
Empirical formula	$C_{42}H_{99}Mo_{10}N_5O_{36}Th$	$C_{45.75}H_{108}Mo_{10}N_5O_{36}U$
Formula weight	2441.70	2501.80
Temperature	100K	100 K
Wavelength	0.56087 Å	0.56087 Å
Crystal system	Triclinic	Monoclinic
Space group	<i>P</i> -1	P2 _{1/c}
Unit cell dimensions	a = 12.8161(2) Å b = 15.4649(2) Å c = 19.9194(3) Å α = 87.176(1)° β = 84.075(1)° γ = 73.714(1)°	a = 21.7821(5) Å b = 15.0682(4) Å c = 24.1223(6) Å α = 90° β = 92.925(2)° γ = 90°
Z	2	4
Reflections collected	27268	17419
Independent reflections	22524	12760
Goodness-of-fit on F ²	1.040	1.061
Final R indices [I>2sigma(I)]	R1 = 0.0252 wR2 = 0.0530	R1 = 0.0450 wR2 = 0.1141

Table S2: Crystallographic parameters for $4-Th(Mo_5)_2$ and $5-U(Mo_5)_2$

	6-U(Mo₅)₂
Empirical formula	$C_{26.61}H_{65.22}Cl_{5.22}Mo_{10}N_3O_{36}U$
Formula weight	2385.74
Temperature	100.00(10) K
Wavelength	1.54184 Å
Crystal system	Monoclinic
Space group	P2 _{1/n}
Unit cell dimensions	a = 16.31000(10) Å b = 21.22060(10) Å c = 18.90170(10) Å $\alpha = 90^{\circ}$ $\beta = 103.3130(10)^{\circ}$ $\gamma = 90^{\circ}$
Volume	6366.22(6) ų
Z	4
Reflections collected	109066
Independent reflections	13749
Goodness-of-fit on F ²	1.093
Final R indices [I>2sigma(I)]	R1 = 0.0389 wR2 = 0.1028

Table S3: Crystallographic parameters for $6-U(Mo_5)_2$

	2-Zr(Mo₅)₂	3-Hf(Mo₅)₂	4-Th(Mo₅)₂	5-U(Mo₅)₂	6-U(Mo₅)₂
Mo-O-Mo (eq)	1.911	1.911	1.904	1.905	1.914
Mo-O-Mo (ax)	2.200	2.202	2.204	2.194	2.172
Mo(II)-O	2.009	2.009	2.002	2.002	2.015
Mo-O-M	1.774	1.774	1.773	1.778	1.803
M-O	2.201	2.191	2.410	2.358	2.277
Mo=O	1.690	1.690	1.693	1.690	1.681
Mo-O(µ₅) (eq)	2.312	2.311	2.323	2.323	2.321
Mo-O(µ₅) (ax)	2.093	2.091	2.124	2.117	2.111
M₅O- μ₅O	6.652	6.643	6.940	6.843	6.749
0-0	2.751	2.751	3.105	3.012	2.889
Mo-NO	1.773	1.773	1.776	1.768	1.768

Table S4: Average bond length data for the structures discussed. All values in Å. A schematic is given below to highlight bond assignments.

Calculation of U⁵⁺ ionic radius:

U-O bond lengths	O ²⁻ ionic radius	Calc. U ionic radius
2.232	1.35	0.882
2.234		0.884
2.36		1.01
2.285		0.935
2.341		0.991
2.307		0.957
2.205		0.855
2.254		0.904
		0.92725

Method 1: Average value obtained from subtraction of O²⁻ ionic radius (1.35 Å)¹ from U-O bond lengths.

Method 2: BVS analysis was performed on 6-U(Mo₅)₂. The bond valence sum for the U center was calculated according to previously reported methods², using the equations shown below, where V_i is the valence of the jth atom or ion, v_{ij} is the bond valence contribution from the "bond" between the ith and jth atom/ion, R_{ij} is a constant (here it is taken as 2.0935, the average of the U^{IV} and U^{VI} bond valance parameters given in ref. 2) that is dependent on the ij pair, d_{ij} is the observed bond length and b is 0.37.³

b

$$V_{i} = \sum_{j} v_{ij}$$
(1)
$$v_{ij} = \exp\left[\frac{\left(R_{ij} - d_{ij}\right)}{b}\right]$$
(2)

U-O	e[(<i>R_{ij} - d_{ij}</i>)/B]	BVS (<i>V</i> ;)
2.232	0.68775382	4.916087
2.234	0.68404626	
2.36	0.48662072	
2.285	0.59596844	
2.341	0.51226208	
2.307	0.56156541	
2.205	0.73981779	
2.254	0.64805236	

A single average bond length (d_{ij}) was then back calculated by re-arrangement of equation 3 to give equation 4.

$$R_{ij} = b \ln\left[\frac{V_i}{\sum_j \exp\left(-\frac{d_{ij}}{b}\right)}\right]$$
(3)

$$\sum_{j} \exp\left(-\frac{d_{ij}}{b}\right) = \frac{V_i}{\exp\left(\frac{R_{ij}}{b}\right)} \tag{4}$$

Plugging in values of R_{ij} = 2.0945, b = 0.37 and V_i = 4.916087 (from BVS calculations) gives:

$$\sum_{j} \exp\left(-\frac{d_{ij}}{b}\right) = 0.017153 \tag{5}$$

The co-ordination number is 8, so the summation is eight instances:

$$\exp\left(-\frac{d_{ij}}{b}\right) = \frac{0.017153}{8} = 0.002144\tag{6}$$

And therefore $d_{ij} = 2.273664$. Subtracting the ionic radius of O²⁻ (1.35 Å)¹ gives an effective ionic radius for the eight co-ordinate U⁵⁺ center of 0.9236664 Å

Averaging the values obtained by method 1 and 2 gives 0.925457 Å, rounded to 0.93 Å.

References:

- 1. R. D. Shannon, Acta Crystallogr. Sect. A: Found. Crystallogr., 1976, 32, 751-767.
- 2. N. E. Brese and M. O'Keeffe, Acta Crystallogr. Sect. B, 1991, 47, 192-197.
- 3. I. D. Brown and D. Altermatt, Acta Crystallogr. Sect. B, 1985, 41, 244-247.

4. Electrochemistry

Figure S32: CV of $(TBA)_4[Ba\{Mo_5O_{13}(OMe)_4NO\}_2]$ (1 mM) in MeCN (0.1 M TBA(PF₆]). Scan rate = 200 mv/s.

Figure S33: CV of $(TBA)_3[Bi\{Mo_5O_{13}(OMe)_4NO\}_2]$ (1 mM) in MeCN (0.1 M TBA(PF₆]). Scan rate = 200 mv/s.

Figure S34: CV of $(TBA)_2[Zr\{Mo_5O_{13}(OMe)_4NO\}_2]$ (1 mM) in MeCN (0.1 M TBA(PF₆]) when scanned to more negative potentials. Scan rate = 200 mv/s.

Figure S35: CV of $(TBA)_2[Zr\{Mo_5O_{13}(OMe)_4NO\}_2]$ (1 mM) in MeCN (0.1 M TBA(PF₆]) when scanned to more negative potentials. Scan rate = 200 mv/s.

Figure S36: CV of $(TBA)_2[U\{Mo_5O_{13}(OMe)_4NO\}_2]$ (1 mM) in MeCN, DCM, and THF (0.1 M TBA(PF₆]). Scan rate = 200 mv/s.

Figure S37: Pre bulk electrolysis CV of $(TBA)_2[U\{Mo_5O_{13}(OMe)_4NO\}_2]$ (1 mM) in MeCN (0.1 M TBA(PF₆]). Scan rate = 200 mv/s.

Figure S38: Bulk oxidation of a 1 mM solution of $(TBA)_2[U\{Mo_5O_{13}(OMe)_4NO\}_2]$ in DCM (0.1 M TBA(PF₆). Chronoamperometry was performed at +0.78 V vs Fc/Fc⁺.

Figure S39: Post bulk electrolysis CV of $(TBA)_2[U\{Mo_5O_{13}(OMe)_4NO\}_2]$ (1 mM) in MeCN (0.1 M TBA(PF₆]). Scan rate = 200 mv/s.

Figure S40: CV of crude (TBA)[U{Mo₅O₁₃(OMe)₄NO}₂] (1 mM) in DCM (0.1 M TBA(PF₆]) obtained by oxidation of (TBA)₂[U{Mo₅O₁₃(OMe)₄NO}₂] with an excess of [NO][PF₆]. Scan rate = 200 mv/s.