Electronic Supplementary Information (ESI) for

Heterogeneously catalyzed thioether metathesis by a supported Au–Pd alloy nanoparticle design based on Pd ensemble control

Takehiro Matsuyama,^a Takafumi Yatabe,^{*ab} Tomohiro Yabe, ^a and Kazuya Yamaguchi *^a

^aDepartment of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

^bPrecursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

*e-mail: yatabe@appchem.t.u-tokyo.ac.jp, kyama@appchem.t.u-tokyo.ac.jp

Table of Contents

Methods and Spectral Data of Synthesized Substrates	S2–S12
Spectral Data of Products	S13–S20
Supplementary References	S21
Supplementary Figures	S22–S31
Supplementary Tables	S32–S35
NMR Spectra	S36–S46
Cartesian Coordinates of Optimized Structures	S47-S72

Methods and Spectral Data of Synthesized Substrates

Instrumental and Reagents

Gas chromatography (GC) analyses were conducted on Shimadzu GC-2014 equipped with a flame ionization detector (FID) and an InertCap-5 (60 m) using Shimadzu C-R8A Chromatopac Data Processor for area calculations. GC mass spectrometry (GC-MS) spectra were performed by Shimadzu GCMS-QP2020 equipped with an InertCap-5 MS/NP capillary column (30 m) at an ionization voltage of 70 eV. Liquid-state NMR spectra were recorded on JEOL JNM-ECA-500. ¹H and ¹³C NMR spectra were measured at 500.16 and 125.77 Hz respectively. ¹H and ¹³C NMR chemical shifts were referenced to tetramethylsilane (TMS) signal ($\delta = 0$ ppm) or the solvent peak (¹³C NMR using dimethyl sulfoxide- d_6 : $\delta = 39.5$ ppm). ¹⁹F NMR spectra were measured at 470.62 Hz using CF₃COOH as an external reference ($\delta = -77.0$ ppm). ICP-AES analyses were conducted by Shimadzu ICPS-8100. Scanning transmission electron microscopy (STEM) observations were performed on a JEOL JEM-ARM200F. XRD patterns were recorded on a Rigaku SmartLab diffractometer (Cu K α , λ = 1.5405 Å, 45 kV, 20 mA). Au loadings of supported Au–Pd alloy nanoparticle catalysts were determined by Xray fluorescence spectrometry (XRF) measurement using ZSX PrimusII (Rigaku, Japan). X-ray absorption spectroscopy (XAS) was carried out at the BL14B2 beamline of SPring-8 (Proposal No. 2023A1512). The XPS spectra were measured on an Ulvac-Phi PHI5000 VersaProbe at the Advanced Characterization Nanotechnology Platform of the University of Tokyo. The binding energies were calibrated by using the C 1s signal at 284.8 eV. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) was performed using FT/IR-6700spectrometer (JASCO). Supported nanoparticle catalysts were exposed to 16 Torr of CO followed by evacuation for 1 min, and then, the DRIFT measurement of CO adsorbed on the catalysts was performed. Only in the case of Au_{1.6}/TiO₂, the DRIFT of adsorbed CO was measured under 16 Torr of CO. The DRIFT spectra measured in vacuo were subtracted as the backgrounds. Solvents and substrates were obtained from Tokyo Chemical Industry, Aldrich, Kanto Chemical, or FUJIFILM Wako Pure Chemical (reagent grade), and purified prior to being used, if necessary.

XAS Measurements and EXAFS Fitting

X-ray absorption spectroscopy (XAS) was carried out at the BL14B2 beamline of SPring-8 (Proposal No. 2023A1512). Pd K-edge and Au L_{III}-edge X-ray absorption fine structure (XAFS) measurements were conducted in transmission and fluorescence mode using a Si (311) crystal monochromator. Each sample was formed into a pellet, doubly wrapped in a plastic laminate pack, and heat-sealed in an air atmosphere. X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data were analyzed using Athena and Artemis software (Demeter, ver. 0.9.025; Bruce Ravel). The data reduction procedure for EXAFS consisted briefly of the following steps: pre-edge subtraction, background determination, normalization, and spectra

averaging. The edge position is defined to be the first inflection point on the leading absorption peak. The energy was calibrated using Pd foil for the Pd K-edge XAS and Au foil for the Au L_{III} -edge XAS. The background in the EXAFS region was approximated using a cubic spline routine and optimized according to the criteria described by Cook and Sayers.^{S1} Then, the spectra were normalized by the edge-step at 50 eV after the absorption edge. The k^3 -weighted EXAFS functions were Fourier transformed, filtered, and fitted in *R*-space in the range of 3–13 $Å^{-1}$ for Au and 3–12 $Å^{-1}$ for Pd. Fourier filtering was used to isolate the contributions of specific shells and to eliminate low frequency background and high frequency noise. Fourier filtering was done by choosing a window in the Fourier transform spectrum and calculating the inverse Fourier Transform of the selected R range. The interatomic distance (R), the first nearest-neighbor coordination number (C.N.), the difference of the Debye–Waller factor from the reference (σ^2), and the correction of the threshold energy (ΔE_{i0}) were treated as free parameters during the fitting. The quality of the fit was estimated from R-factor. Rfactor represented the residuals between the observed and calculated spectrum in the fitted range. Low values of *R*-factor indicated a good agreement between the data and model. Fitting analysis using k^3 weighted Fourier transforms was applied to obtain a unique set of C.N. and σ^2 parameters. Those parameters are highly correlated, and there are several different combinations of C.N. and σ^2 that can lead to similar fits; however, the set of combinations depends on the k^3 -weight factor.^{S2} Therefore, a unique set of parameters might be found by fitting on k^3 -weighted Fourier transforms. To analyze the spectra, simulations of reference compounds using FEFF6 were used to calculate phase shifts and backscattering amplitude. FEFF references were obtained for Pd-Pd by utilizing crystallographic data of Pd (crystal system: cubic).^{S3} for Pd–O by utilizing crystallographic data of PdO (crystal system: tetragonal),^{S4} for Au–Au by utilizing crystallographic data of Au (crystal system: cubic),^{S5} for Pd–Au by utilizing a model in which one of the Au or Pd atoms was substituted for Pd or Au in the crystal data model of Au or Pd.

Preparation of Supported Catalysts

Au_{4.4}–Pd₁/TiO₂ was prepared as follows: The aqueous solution (60 mL) of HAuCl₄·4H₂O (247.1 mg, 10.0 mM), PdCl₂ (17.7 mg, 1.7 mM), and KCl (29.8 mg, 6.7 mM) containing TiO₂ (2.0 g) was vigorously stirred at room temperature. After 15 min, the pH of the solution was adjusted to 9.0 by addition of an aqueous solution of NaOH (1.0 M), and the resulting slurry was stirred overnight. The solid was then filtered off, washed with a large amount of water (2 L), and dried to afford 2.0 g of Au_{4.4}(OH)_x–Pd₁(OH)_x/TiO₂ as an ocher powder. Au_{4.4}(OH)_x–Pd₁(OH)_x/TiO₂ (2.0 g) was added to water (60 mL), and then added NaBH₄ (240 mg) in an open air. The mixture was vigorously stirred at room temperature for 2 h. The solid was then filtered off, washed with deionized water (2 L), and dried under an Ar atmosphere to afford 2.0 g of Au_{4.4}–Pd₁/TiO₂ as black powder (Au content: 3.85 wt%, Pd content: 0.47 wt%). Various supported Au–Pd alloy nanoparticle catalysts, such as Au_{5.4}–

Pd₁/LDH (Au content: 5.4 wt%, Pd content: 0.54 wt%), Au_{1.4}–Pd₁/CeO₂ (Au content: 1.2 wt%, Pd content: 0.45 wt%), Au_{2.5}–Pd₁/ZrO₂ (Au content: 1.9 wt%, Pd content: 0.42 wt%), Au_{3.6}–Pd₁/Al₂O₃ (Au content: 3.2 wt%, Pd content: 0.47 wt%), and Au_{2.6}–Pd₁/HAP (Au content: 2.3 wt%, Pd content: 0.48 wt%) were prepared in the same method by changing the supports. Also, TiO₂-supported Au–Pd alloy nanoparticle catalysts with various Au/Pd ratios, such as Au_{3.0}–Pd₁/TiO₂ (Au content: 1.43 wt%, Pd content: 0.48 wt%), Au_{1.4}–Pd₁/TiO₂ (Au content: 0.65 wt%, Pd content: 0.46 wt%), Au_{0.7}–Pd₁/TiO₂ (Au content: 0.48 wt%) were prepared in the same method by changing the amount of metal sources. The supported amounts of Pd and Au were determined by ICP-AES. As for TiO₂-supported Au–Pd alloy nanoparticle catalysts, the Au loadings were determined by XRF. Other metal catalysts, such as Ru₆–Pd₁/TiO₂, Co₆–Pd₁/TiO₂, Ni₆–Pd₁/TiO₂, and Ag₆–Pd₁/TiO₂ were prepared in the same method using RuCl₃·*n*H₂O, CoCl₂·6H₂O, NiCl₂·6H₂O, and AgNO₃ as a metal source, respectively. As for Co₆–Pd₁/TiO₂ the catalysts were reduced and stored in an Ar-filled glovebox.

A Typical Procedure for Thioether Metathesis

In an Ar-filled glovebox, Au_{4.4}–Pd₁/TiO₂ (Pd: 2.5 mol%), phenyl sulfide (**1a**, 0.5 mmol), *p*tolyl sulfide (**1b**, 0.1 mmol), 1,3,5-trimethoxybenzene or dodecane (0.1 mmol, internal standard), xylene (2 mL), and a Teflon-coated magnetic stir bar were placed in a Pyrex glass reactor (volume: ~20 mL). The mixture was stirred at 120 °C for 3 h, then the mixture was cooled down to room temperature. When naphthalene was used as the internal standard, it was added to the reaction mixture after the reaction. Conversions and product yields were determined by GC analysis using 1,3,5trimethoxybenzene, dodecane, or naphthalene as an internal standard. As for isolation of the products, an internal standard was not added. After the reaction, the catalyst was removed by simple filtration and the filtrate was concentrated by evaporation, and then subjected to silica-gel column chromatography, giving the pure product. The products were identified by GC-MS, and NMR (¹H, ¹³C, and ¹⁹F).

Leaching Test

A magnetic stir bar, 1,3,5-trimethoxybenzene, **1a** (0.5 mmol), **1b** (0.1 mmol), $Au_{4.4-}$ Pd₁/TiO₂ (Pd: 2.5 mol%), and xylene (2 mL) were added to a Pyrex glass reactor (volume: ~20 mL), and the reaction was carried out at 140 °C in an Ar-filled glovebox. 30 min after the start of the reaction, the reaction solution was filtered by hot filtration using a disposable syringe with a PTFE membrane filter into another Pyrex glass reactor that had been previously heated to 140 °C with a magnetic stir bar, and then the reaction solution was stirred at 140 °C for additional 150 min.

As for investigation of the leaching metal amounts, the reaction was prepared as described above, and the solution 4 h after the start of the reaction was filtered using a disposable syringe with a PTFE membrane filter. The solvent toluene was removed using a rotary evaporator before aqua regia (1 mL) was added, and the amount of Au and Pd species leached into the reaction solution was measured by ICP-AES. The measurement wavelengths were 324.270 nm (Pd) and 242.795 nm (Au).

The results showed that the reaction was immediately stopped by hot filtration, and Pd and Au species in the solution after the reaction were hardly observed by ICP-AES (Pd: below the detection limit, Au: 0.004% of the Au species used for the reaction), confirming that Au_{4.4}–Pd₁/TiO₂ functioned as a heterogeneous catalyst.

Reuse Experiment

A magnetic stir bar, 1,3,5-trimethoxybenzene, **1a** (0.5 mmol), **1b** (0.1 mmol), $Au_{4,4-}$ Pd₁/TiO₂ (Pd: 5 mol%), and 1,4-dioxane (2 mL) were added to a Pyrex glass reactor (volume: ~20 mL), and the reaction was carried out at 140 °C for 3 h. After the decarbonylation reaction using $Au_{4,4-}$ Pd₁/TiO₂, the catalyst was retrieved by filtration in an open air through washing with 100 mL of Et₂O followed by drying *in vacuo*. Then, the catalyst was calcinated at 300 °C for 3 h in an air, reduced by NaBH₄ in water, and then, subjected to the metathesis between **1a** and **1b** under the same reaction conditions.

Density Functional Theory (DFT) Calculation

In this work, we used Pd₂₀, Au₄Pd₁₆, and Au₂Pd₁₈ models to calculate the adsorption structures and oxidative adducts of phenyl sulfide (**1a**) based on previous reports.^{S6} The DFT calculations with the M06 functional were performed using Gaussian16 Rev. C as the calculation software, the Stuttgart/Dresden basis set (SDD) with the effective core potential for Au and Pd and 6-31G(d,p) as the basis sets for the other elements, including H, C, and S atoms, based on previous reports.^{S6,S7} The DFT calculations using Pd₂₀, Au₁₆Pd₄, and Au₁₈Pd₂ models were performed with spin multiplicity of 1 and charge of 0. We confirmed that the optimized structures contained no imaginary frequency. All thermodynamic data were calculated at the standard state (25 °C and 1 atm). Each structure was depicted by software Avogadro and GaussView. The Cartesian coordinates of the optimized structures are given in the end of this SI. The optimized structure of **1a**, Pd₂₀, Au₁₆Pd₄, and Au₁₈Pd₂ are shown in Fig. S8.

DFT Calculations for 1a adsorbed on Pd₂₀

Considering the symmetry of Pd₂₀ cluster, *S*-atom of **1a** can adsorb on three kinds of sites on Pd₂₀: center, side, and top Pd atom of Pd₂₀ (Fig. S9a). We conducted the DFT calculations of the structures of **1a** adsorbed on center, side, and top Pd atom of Pd₂₀, named Pd₂₀_**1a**_C, Pd₂₀_**1a**_S, and Pd₂₀_**1a**_T structure, respectively. The optimized structures of Pd₂₀_**1a**_C, Pd₂₀_**1a**_S, and Pd₂₀_**1a**_T and the corresponding adsorption Gibbs energies and enthalpies ($\Delta G = G_{cluster interacted with 1a} - G_{cluster} -$ G_{Ia}) ($\Delta H = H_{cluster interacted with 1a} - H_{cluster} - H_{Ia}$) are summarized in Fig. S9b–d. Although Pd₂₀_1a_C and Pd₂₀_1a_T are almost equally stable in the viewpoint of both adsorption Gibbs energies and enthalpies among the three structures, we used Pd₂₀_1a_C structure for further investigation because the majority of Pd species involved in the reaction is considered to be located at the facet of Pd nanoparticles based on the fact that a mean diameter of Pd nanoparticles in Pd₁/TiO₂ is 2.97 nm (Fig. S7a).

DFT Calculations for 1a adsorbed on Au-Pd alloy nanoclusters

Based on the aforementioned results of 1a adsorption on Pd₂₀, experimental results that TiO₂-supported Au–Pd alloy nanoparticle catalyst with high Au/Pd ratio exhibited higher catalytic performance (Table 1), and CO-DRIFT spectra of the Au-Pd alloy catalysts (Fig. 2a), DFT calculations of 1a adsorption on the Pd atom of Au₁₆Pd₄ and Au₁₈Pd₂ cluster models which possess four or two center Pd atoms with symmetrical initial structures were investigated, respectively. As shown in Fig. S8, the adsorption Gibbs energy and enthalpy of 1a on Au₁₆Pd₄ (Au₁₆Pd₄ $_1a_C$) were comparable with those on $Au_{18}Pd_2$ ($Au_{18}Pd_2$ **1a**_C) (Fig. S10a,b), but the optimized structure of Au₁₆Pd₄ in Au₁₆Pd₄_**1a**_C was distorted while the counterpart using Au₁₈Pd₂ was not (Fig. S10c). Thus, we used the Au₁₈Pd₂ cluster model as the Au–Pd alloy nanoparticle model in the following calculation. Noteworthily, the adsorption Gibbs energy (ΔG) of Au₁₈Pd₂**1a**_C is moderate, but that of Pd_{20} **1a** C is too large to proceed with the product desorption step in the direct metathesis reaction. In fact, the optimized structure of 1a on Pd₂₀ revealed the strong π -adsorption 1a onto the facet of Pd₂₀, whereas the adsorption mode of **1a** on Au₁₈Pd₂ was totally different: almost no π -adsorption was observed while S-atom in 1a was coordinated to Pd center. It was corroborated by the fact that natural bond orbital (NBO) charge of phenyl group in **1a** adsorbed on Pd₂₀ increased compared with free **1a** probably due to π -back donation from Pd species to phenyl rings of **1a** but that on Au₁₈Pd₂ decreased possibly as the result of σ -donation from S atom to Pd atom (Fig. S11).

DFT Calculations for oxidative adducts of 1a on Au-Pd alloy nanoclusters

DFT calculations of **1a** oxidative adducts to $Au_{18}Pd_2$ were performed. As a result, even when an oxidative adduct of **1a** to the Pd center was used as an initial structure (Fig. S12a), the thiolate species moved onto Au species in a bridged adsorption manner after the geometry optimization (Fig. S12b), suggesting that spillover of thiolate or aryl species can easily occur after the oxidative addition step. Then, we calculated the four oxidative adduct structures after the spillover in bridged adsorption manners: whether it is Ph or SPh that moves onto Au and whether the Au species which a fragment moves onto are near or far from another Pd atom. The optimized structures and their ΔG were summarized in Fig. S13. The optimized structure of **1a** oxidative adduct in which SPh species moved onto Au near another Pd atom proved to be the most stable structure with a ΔG value of -27.1 kcal/mol, which is also moderate value to proceed with the product desorption step in the direct metathesis reaction.

Synthesis of Thioethers

Condition A

Step 1 (thioester synthesis): Acyl chlorides (6.3 mmol) and thiols (6.0 mmol) were dissolved in dehydrated dichloromethane (10 mL) in an Ar atmosphere. The solution was stirred at 0 °C for a few minutes. Triethylamine (12.0 mmol) was added to the solution in a dropwise manner followed by stirring at room temperature overnight. After the reaction, aqueous HCl solution (10 mL) was added and the organic layer was washed with brine (10 mL \times 3) and deionized water (10 mL \times 1) to afford analytically pure thioesters. The products were purified by silica-gel column chromatography if necessary.^{S8}

Step 2 (thioester decarbonylation): Thioesters, a hydroxyapatite-supported Pd nanoparticle catalyst (Pd/HAP, Pd: 8 mol%), xylene (2 mL), and a Teflon-coated magnetic stir bar were placed in a Pyrex glass reactor (volume: ~20 mL) in an Ar atmosphere. The mixture was stirred at 160 °C for 24 h. After 24 h, Pd/HAP was removed by simple filtration. The crude thioethers were purified by silica-gel column chromatography using hexane and ethyl acetate as eluents, giving the pure products. **1b–1f**, **1h–1n** were synthesized under the Condition A.^{S9}

Condition B

$$Ar^{I} + CS_2 \longrightarrow Ar^{S_{AI}}$$

Aryl iodides (1 mmol), CuI (10 mol%), and a Teflon-coated magnetic stir bar were placed in a Pyrex glass reactor (volume: ~20 mL). In an Ar-filled glovebox, 1,8-diazabicyclo[5.4.0]undec-7ene (DBU) (2 mmol) and toluene (1.5 mL) were added. Then, dropwise CS₂ (1 mmol) was added and heated at 100 °C for 12 h. After the reaction, ethyl acetate (5 mL) and deionized water (5 mL) were added, and the aqueous layer was extracted with brine (5 mL × 3). The crude thioethers were purified by silica-gel column chromatography using hexane and ethyl acetate as eluents, giving the pure products. **1p**, **1s**, and **1t** were synthesized under the Condition B.^{S10} **Condition C**

For the synthesis of bis[4-(*N*,*N*-dimethylamino)phenyl] sulfide (**1s**), *N*-methylation of bis(4aminophenyl)sulfide (**1p**) was conducted. Bis(4-aminophenyl)sulfide and K₂CO₃ (10 eq.) were dissolved in acetone in an Ar atmosphere, then iodomethane (4.5 eq.) was added. The resulting mixture was heated under reflux conditions overnight. After the reaction, deionized water (30 mL) was added, and the products were extracted with ethyl acetate (10 mL \times 3). The crude thioethers were purified by silica-gel column chromatography using hexane and ethyl acetate as eluents, giving the pure products.^{S11}

Condition D

For the synthesis of N,N'-(thiodi-4,1-phenylene)bis acetamide (1t), N-amidation of bis(4-aminophenyl)sulfide (1p) was conducted. Bis(4-aminophenyl)sulfide was dissolved in dichloromethane (20 mL) at room temperature. Dropwise acetic anhydride (2.4 eq.) was added to afford precipitates immediately. After the reaction for 12 h, the precipitates were washed with ethyl acetate to afford the analytically pure product.^{S12}

Spectral Data of Thioether Substrates

p-tolylsulfide (CAS No. 6620-94-0, 1b). 63% isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.21– 7.23 (m, 4H), 7.08–7.09 (m, 4H), 2.31 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 137.0, 132.8, 131.2, 130.0, 21.2. MS (EI): *m/z* (%): 215 (17), 214 (100) [*M*⁺], 213 (16), 199 (38), 198 (16), 184 (23), 181 (13), 105 (17), 91 (27), 65 (14).^{S13}

m-tolylsulfide (CAS No. 3111-77-1, 1c). >99% isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.16– 7.19 (m, 4H), 7.11–7.13 (m, 2H), 7.03–7.05 (m, 2H), 2.30 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 139.1, 135.7, 131.7, 129.1, 128.2, 128.0, 21.4. MS (EI): *m/z* (%): 215 (16), 214 (100) [*M*⁺], 213 (12), 199 (48), 198 (20), 197 (12), 184 (41), 165 (13), 105 (22), 91 (17), 77 (11), 65 (26), 63 (10).^{S13}

o-tolylsulfide (CAS No. 4537-05-7, 1d). 87% isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.22– 7.24 (m, 2H), 7.14–7.18 (m, 2H), 7.04–7.10 (m, 4H), 2.38 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 138.9, 134.3, 131.1, 130.4, 127.1, 126.7, 20.4. MS (EI): *m/z* (%): 215 (16), 214 (100) [*M*⁺], 199 (22), 197 (13), 184 (15), 166 (10), 165 (15), 123 (19), 122 (97), 121 (65), 105 (27), 92 (11), 91 (47), 89 (16), 78 (19), 77 (22), 65 (35), 63 (14), 51 (10).^{S13}

1,1'-thiobis[**4-(1,1-dimethylethyl)benzene** (CAS No. 52908-55-1, **1e**). 79% isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.31–7.33 (m, 4H), 7.26–7.28 (m, 4H), 1.30 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 152.7, 135.1, 133.3, 128.8, 37.1, 33.9. MS (EI): *m/z* (%): 299 (10), 298 (45) [*M*⁺], 284 (21), 283 (100), 134 (12), 106 (22).^{S13}

4,4'-dimethoxydiphenyl sulfide (CAS No. 3393-77-9, **1f**). 76% isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.25–7.28 (m, 4H), 6.81–6.84 (m, 4H), 3.77 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 159.1, 132.8, 127.5, 114.9, 55.4. MS (EI): *m/z* (%): 247 (17), 246 (100) [*M*⁺], 231 (47), 215 (10), 214 (12), 203 (12), 199 (10), 188 (10), 171 (12), 115 (10).^{S13}

bis[(**4-trifluoromethyl)phenyl]sulfide** (CAS No. 90141-51-8, **1g**). 93% isolated yield. ¹H NMR (500 MHz, CDCl₃): *δ* 7.58–7.59 (m, 4H), 7.43–7.45 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): *δ* 139.7, 131.2, 129.8 (q, *J* = 32.3 Hz), 126.4 (q, *J* = 3.6 Hz), 124.0 (q, *J* = 270.6 Hz); ¹⁹F NMR (470 MHz, CDCl₃): –61.9. MS (EI): *m/z* (%): 323 (16), 322 (100) [*M*⁺], 303 (13), 301 (17), 253 (13), 252 (11), 233 (27), 184 (13).^{S13}

bis[(3-trifluoromethyl)phenyl]sulfide (CAS No. 1580-30-9, 1h). 90% isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.62 (m, 2H), 7.53–7.54 (m, 2H), 7.48–7.50 (m, 2H), 7.43–7.46 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 136.4, 134.4, 132.1 (q, *J* = 33.4 Hz), 130.0, 127.8 (q, *J* = 3.6 Hz), 124.5 (q, *J* = 3.5 Hz), 123.7 (q, *J* = 270.6 Hz); ¹⁹F NMR (470 MHz, CDCl₃): –62.1. MS (EI): *m/z* (%): 323 (15), 322 (100) [*M*⁺], 303 (12), 301 (15), 233 (32), 184 (12).^{S13}

bis(4-fluorophenyl)sulfide (CAS No. 405-31-2, 1i). 84% isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.28–7.32 (m, 4H), 6.98–7.03 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 162.2 (d, J = 246.8 Hz), 133.0 (d, J = 7.1 Hz), 131.1 (d, J = 3.6 Hz), 116.4 (d, J = 22.8 Hz); ¹⁹F NMR (470 MHz, CDCl₃): –113.6. MS (EI): m/z (%): 224 (5), 223 (16), 222 (100) [M^+], 221 (49), 220 (20), 202 (18), 201 (15), 83 (23), 75 (14).^{S13}

4-([**1**,**1**'-**biphenyl**]-**4**-**ylthio**)-**1**,**1**'-**biphenyl** (CAS No. 64554-57-0, **1k**). 72% isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.54–7.59 (m, 8H), 7.42–7.46 (m, 8H), 7.34–7.37 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 140.3, 140.1, 134.8, 131.4, 128.9, 127.9, 127.5, 127.0. MS (EI): *m/z* (%): 340 (8), 339 (26), 338 (100) [*M*⁺], 337 (9), 321 (5), 306 (7), 261 (8), 260 (5), 184 (8), 169 (6), 152 (15), 115 (5). ^{S13}

2-napthylsulfide (CAS No. 613-81-0, **1I**). 78% isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.87 (m, 2H), 7.71–7.81 (m, 6H), 7.42–7.49 (m, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 134.0, 133.2, 132.5, 129.9, 129.0, 128.8, 127.9, 127.6, 126.8, 126.4. MS (EI): *m/z* (%): 287 (23), 286 (100) [*M*⁺], 285 (54), 284 (28), 253 (20), 252 (27), 143 (10), 142 (14), 126 (14), 115 (12).^{S13}

4,4'-thiobis[*N*,*N*-dimethylbenzenamine] (CAS No. 13604-44-9, **1n**). >99% isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.22–7.25 (m, 4H), 6.63–6.66 (m, 4H), 2.92 (s, 12H); ¹³C NMR (125 MHz, CDCl₃): δ 149.6, 132.6, 123.0, 113.1, 40.5. MS (EI): *m/z* (%): 273 (19), 272 (100) [*M*⁺], 241 (19), 240 (88), 225 (18), 224 (13), 152 (19), 136 (17), 120 (15), 119 (11).^{S13}

4,4'-thiobis[benzonitrile] (CAS No. 46836-99-1, **1o**). 53% isolated yield. ¹H NMR (500 MHz, CDCl₃): δ7.61–7.63 (m, 4H), 7.41–7.43 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 140.6, 133.0, 131.2, 118.2, 111.4. MS (EI): *m/z* (%): 237 (18), 236 (100) [*M*⁺], 235 (46), 209 (15), 208 (18), 75 (12).^{S13}

N,*N*'-(thiodi-4,1-phenylene)bis[acetamide] (CAS No. 7355-56-8, 1q). >99% isolated yield. ¹H NMR (500 MHz, dimethyl sulfoxide- d_6): δ 10.11 (s, 2H), 7.56–7.59 (m, 4H), 7.22–7.25 (m, 4H), 2.03 (s, 6H); ¹³C NMR (125 MHz, dimethyl sulfoxide- d_6): δ 168.4, 138.7, 131.4, 128.6, 119.9, 24.0. MS (EI): m/z (%): 301 (21), 300 (100) [M^+], 259 (10), 258 (52), 217 (21), 216 (71), 215 (15), 184 (22), 183 (11), 124 (17).^{S13}

1,1'-dimethyl-4,4'-thiobis[benzoate] (CAS No. 14387-31-6, **1r**). 45% isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.96–8.00 (m, 4H), 7.37–7.40 (m, 4H), 3.92 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 166.5, 140.8, 130.5, 130.4, 129.1, 52.3. MS (EI): *m/z* (%): 303 (18), 302 (100) [*M*⁺], 272 (17), 271 (93), 184 (40), 120 (19), 92 (15).^{S13}

1,1'-(thiodi-4,1-phenylene)bis[ethanone] (CAS No. 2615-09-0, **1s**). 35% isolated yield. ¹H NMR (500 MHz, CDCl₃): δ 7.88–7.91 (m, 4H), 7.39–7.42 (m, 4H), 2.59 (s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 197.1, 141.0, 135.9, 130.6, 129.2, 26.6. MS (EI): *m/z* (%): 271 (11), 270 (59) [*M*⁺], 256 (17), 255 (100), 185 (13), 184 (18), 120 (11).^{S13}

Spectral Data of Products

phenyl *p*-tolyl sulfide (CAS No. 3699-01-2, 1ab): 77% GC yield. GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 10.3 min; relative sensitivity for quantification (vs naphthalene, internal standard), 1.43 (calculated by calibration curve). MS (EI): m/z (%): 202 (5), 201 (16), 200 (100) [M^+], 199 (26), 186 (6), 185 (37), 184 (33), 167 (12), 165 (8), 152 (7), 99 (12), 91 (24), 77 (9), 65 (12), 51 (9), 45 (5), 39 (7).^{S13}

phenyl *m*-tolyl sulfide (CAS No. 13865-48-0, 1ac): 78% GC yield. GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 10.2 min; relative sensitivity for quantification (vs naphthalene, internal standard), 1.43 (estimated to be equal to that of 1ab). MS (EI): m/z (%): 202 (5), 201 (15), 200 (100) [M^+], 199 (24), 186 (8), 185 (44), 184 (41), 167 (6), 165 (8), 152 (8), 99 (12), 91 (10), 77 (9), 65 (17), 63 (5), 51 (11).^{S13}

phenyl *o*-tolyl sulfide (CAS No. 13963-35-4, 1ad): 71% GC yield. GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 10.1 min; relative sensitivity for quantification (vs naphthalene, internal standard), 1.43 (estimated to be equal to that of 1ab). MS (EI): m/z (%): 202 (6), 201 (16), 200 (100) [M^+], 199 (12), 197 (5), 185 (22), 184 (18), 167 (10), 166 (5), 165 (13), 152 (7), 123 (6), 122 (38), 121 (26), 99 (13), 91 (27), 89 (9), 78 (8), 77 (10), 65 (18), 63 (6), 51 (12).^{S13}

1-(1,1-dimethylethyl)-4-[(4-methylphenyl)thio]benzene (CAS No. 875713-05-6, 1be): 79% GC yield. GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 12.4 min; relative sensitivity for quantification (vs 1,3,5-trimethoxybenzene, internal standard), 2.77 (estimated by 1ab and the effective carbon number concept). MS (EI): *m/z* (%): 257 (10), 256 (50) [*M*⁺], 243 (6), 242 (18), 241 (100), 213 (7), 163 (5), 123 (21), 118 (6), 117 (11), 115 (6), 106 (9), 105 (5), 91 (8), 79 (5).^{S13}

1-methoxy-4-(phenylthio)benzene (CAS No. 5633-57-8, **1af**): 78% GC yield (81% isolated yield). GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 12.0 min; relative sensitivity for quantification (vs naphthalene, internal standard), 1.33 (estimated by **1ab** and the effective carbon number concept). ¹H NMR (500 MHz, CDCl₃): δ 7.38–7.43 (m, 2H), 7.19–7.25 (m, 2H), 7.10–7.18 (m, 3H), 6.86–6.91 (m, 2H), 3.81 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 159.8, 138.6, 135.3, 128.9, 128.2, 125.7, 124.3, 115.0, 55.4. MS (EI): *m/z* (%): 218 (6), 217 (15), 216 (100) [*M*⁺], 215 (11), 202 (8), 201 (55), 200 (5), 185 (8), 184 (7), 173 (8), 172 (5), 171 (8), 139 (5), 129 (15), 128 (6), 77 (10), 51 (9).^{S13}

1-(phenylthio)-4-(trifluoromethyl)benzene (CAS No. 53451-90-4, **1ag**): 75% GC yield. GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 10 °C·min⁻¹ (20 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 14.1 min; relative sensitivity for quantification (vs naphthalene, internal standard), 1.33 (estimated by **1ab** and the effective carbon number concept). MS (EI): m/z (%): 256 (6), 255 (15), 254

(100) $[M^+]$, 253 (15), 235 (7), 233 (23), 186 (6), 185 (36), 184 (28), 109 (5), 77 (14), 69 (6), 65 (6), 51 (17), 50 (5).^{S13}

1-(phenylthio)-3-(trifluoromethyl)benzene (CAS No. 2715-07-3, **1ah**): 72% GC yield. GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 10 °C·min⁻¹ (20 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 13.8 min; relative sensitivity for quantification (vs naphthalene, internal standard), 1.33 (estimated by **1ab** and the effective carbon number concept). MS (EI): m/z (%): 256 (6), 255 (16), 254 (100) [M^+], 253 (13), 235 (6), 234 (6), 233 (25), 186 (5), 185 (31), 184 (25), 109 (5), 77 (15), 65 (6), 51 (16).^{S13}

1-fluoro-4-[(4-methylphenyl)thio]benzene (CAS No. 42917-47-5, **1bi**): 81% GC yield. GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 10.1 min; relative sensitivity for quantification (vs dodecane, internal standard), 1.06 (estimated by **1ab** and the effective carbon number concept). MS (EI): m/z (%): 220 (5), 219 (15), 218 (100) [M^+], 217 (22), 204 (5), 203 (32), 202 (26), 185 (17), 183 (10), 108 (11), 98 (6), 91 (27), 83 (6), 77 (5), 65 (13), 63 (5).^{S13}

1-chloro-4-[(4-methylphenyl)thio]benzene (CAS No. 22865-55-0, **1bj**): 78% GC yield. GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 11.4 min; relative sensitivity for quantification (vs naphthalene, internal standard), 1.41 (estimated by **1ab** and the effective carbon number concept). MS (EI): m/z (%): 237 (5), 236 (36), 235

(17), 234 (100) [*M*⁺], 233 (8), 219 (7), 201 (14), 200 (6), 199 (31), 198 (17), 197 (10), 185 (6), 184 (43), 166 (7), 165 (10), 116 (5), 108 (6), 99 (7), 98 (13), 91 (29), 89 (5), 77 (7), 75 (5), 65 (15), 63 (7), 51 (5), 45 (7), 39 (8).^{S14}

4-[(4-methylphenyl)thio]-1,1'-biphenyl (CAS No. 1361950-30-2, **1bk**): 63% GC yield (55% isolated yield). GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 17.0 min; relative sensitivity for quantification (vs 1,3,5-trimethoxybenzene, internal standard), 3.10 (estimated by **1ab** and the effective carbon number concept). ¹H NMR (500 MHz, CDCl₃): δ 7.52–7.56 (m, 2H), 7.46–7.50 (m, 2H), 7.38–7.43 (m, 2H), 7.29–7.36 (m, 5H), 7.12–7.17 (m, 2H), 2.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 140.4, 139.3, 137.7, 136.3, 132.4, 131.2, 130.1, 130.0, 128.8, 127.7, 127.3, 126.9, 21.1. MS (EI): *m/z* (%): 278 (7), 277 (22), 276 (100) [*M*⁺], 275 (14), 261 (20), 260 (16), 244 (5), 243 (5), 228 (6), 184 (8), 152 (12), 115 (5), 91 (9), 77(5), 65 (5).^{S13}

2-[(4-methylphenyl)thio]naphthalene (CAS No. 52258-16-9, **1bl**): 90% GC yield (57% isolated yield). GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 14.6 min; relative sensitivity for quantification (vs 1,3,5-trimethoxybenzene, internal standard), 2.74 (estimated by **1ab** and the effective carbon number concept). ¹H NMR (500 MHz, CDCl₃): δ 7.67–7.79 (m, 4H), 7.40–7.47 (m, 2H), 7.30–7.37 (m, 3H), 7.12–7.16 (m, 2H), 2.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 137.6, 134.3, 133.8, 132.1, 132.0, 131.4, 130.1, 128.7, 128.4, 127.9, 127.7, 127.4, 126.5, 125.9, 21.1. MS (EI): *m/z* (%): 252 (6), 251 (20), 250 (100) [*M*⁺], 249 (19), 236 (8), 235 (39), 234 (38), 217 (8), 215 (8), 202 (13), 127 (5), 126 (5), 125 (5), 124 (10), 117 (8), 115 (12), 91 (6), 77 (5).^{S14}

4-(phenylthio)pyridine (CAS No. 33399-48-3, **1am**): 26% GC yield. GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 10.1 min; relative sensitivity for quantification (vs 1,3,5-trimethoxybenzene, internal standard), 1.65 (calculated by calibration curve). ¹H NMR (500 MHz, CDCl₃): δ 8.33–8.36 (m, 2H), 7.54–7.58 (m, 2H), 7.44–7.48 (m, 3H), 6.92–6.95 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 150.3, 149.5, 135.2, 129.9, 129.7, 129.4, 120.8. MS (EI): *m/z* (%): 189 (5), 188 (16), 187 (100) [*M*⁺], 186 (73), 160 (7), 154 (7), 115 (15), 109 (6), 92 (5), 78 (8), 77 (9), 65 (6), 51 (34), 50 (5), 39 (6).^{S13}

4-(phenylthio)benzenamine (CAS No. 1135-14-4, **1an**): 75% GC yield (80% isolated yield). GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 12.1 min; relative sensitivity for quantification (vs naphthalene, internal standard), 1.30 (estimated by **1ab** and the effective carbon number concept). ¹H NMR (500 MHz, CDCl₃): δ 7.28–7.33 (m, 2H), 7.17–7.22 (m, 2H), 7.06–7.14 (m, 3H), 6.63–6.68 (m, 2H), 3.68 (brs, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 147.0, 139.7, 136.1, 128.8, 127.3, 125.2, 120.4, 115.9. MS (EI): *m/z* (%): 203 (5), 202 (16), 201 (100) [*M*⁺], 200 (53), 199 (8), 184 (6), 169 (19), 168 (5), 167 (5), 124 (16), 99 (5), 80 (17), 65 (8), 51 (7), 39 (6).^{S13}

N,*N*-dimethyl-4-[(4-methylphenyl)thio]benzenamine (CAS No. 2849-63-2, 1bo): 63% GC yield (23% isolated yield). GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 13.6 min; relative sensitivity for quantification (vs 1,3,5-trimethoxybenzene, internal standard), 2.39 (estimated by **1ab** and the effective carbon number

concept). ¹H NMR (500 MHz, CDCl₃): δ 7.33–7.38 (m, 2H), 7.00–7.07 (m, 4H), 6.66–6.70 (m, 2H), 2.96 (s, 6H), 2.27 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 150.4, 136.2, 135.5, 135.1, 129.4, 127.8, 118.7, 113.0, 40.3, 20.9. MS (EI): *m/z* (%): 245 (6), 244 (18), 243 (100) [*M*⁺], 242 (14), 228 (8), 227 (10), 226 (6), 212 (12), 211 (38), 210 (33), 195 (9), 184 (10), 152 (11), 136 (5), 121 (7), 120 (6), 105 (5), 91 (5), 77 (5), 65 (5).^{S13}

4-[(4-methylphenyl)thio]benzonitrile (CAS No. 104128-50-9, **1bp**): 80% GC yield (79% isolated yield). GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 12.7 min; relative sensitivity for quantification (vs 1,3,5-trimethoxybenzene, internal standard), 2.17 (calculated by calibration curve). ¹H NMR (500 MHz, CDCl₃): δ 7.43–7.47 (m, 2H), 7.39–7.43 (m, 2H), 7.22–7.26 (m, 2H), 7.09–7.14 (m, 2H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 146.6, 139.9, 134.9, 132.3, 130.7, 126.8, 126.7, 118.9, 108.3, 22.0. MS (EI): *m/z* (%): 227 (6), 226 (17), 225 (100) [*M*⁺], 224 (23), 211 (5), 210 (32), 209 (18), 192 (22), 190 (6), 165 (5), 111 (10), 91 (39), 89 (6), 77 (8), 65 (19), 63 (8), 51 (6).^{S13}

4-nitrophenyl phenyl sulfide (CAS No. 1952-97-6, **1aq**): 89% GC yield (93% isolated yield). GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 12.6 min; relative sensitivity for quantification (vs naphthalene, internal standard), 1.22 (estimated by **1ab** and the effective carbon number concept). ¹H NMR (500 MHz, CDCl₃): δ 8.03–8.09 (m, 2H), 7.51–7.57 (m, 2H), 7.43–7.48 (m, 3H), 7.15–7.20 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 148.5, 145.3, 134.7, 130.4, 130.0, 129.7, 126.7, 124.0. MS (EI): *m/z* (%): 233 (6), 232 (14), 231 (100) [*M*⁺], 201 (20), 186 (5), 185 (17), 184 (64), 183 (5), 152 (13), 139 (6), 115 (6), 109 (6), 92 (6), 77 (6), 69 (6), 65 (8), 51 (8), 50 (5), 45 (7).^{S13}

N-[4-[(4-methylphenyl)thio]phenyl]acetamide (CAS No. 339096-10-5, 1br): 64% GC yield (53% isolated yield). GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 16.6 min; relative sensitivity for quantification (vs 1,3,5-trimethoxybenzene, internal standard), 2.54 (estimated by 1ab and the effective carbon number concept). ¹H NMR (500 MHz, CDCl₃): δ 7.70 (brs, 1H), 7.40–7.46 (m, 2H), 7.23–7.28 (m, 2H), 7.19–7.23 (m, 2H), 7.07–7.12 (m, 2H), 2.31 (s, 3H), 2.14 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 168.6, 137.1, 136.9, 132.3, 131.7, 131.4, 131.1, 130.0, 120.7, 24.5, 21.1. MS (EI): *m/z* (%): 259 (6), 258 (18), 257 (100) [*M*⁺], 217 (5), 216 (17), 215 (78), 214 (26), 200 (23), 199 (10), 184 (5), 183 (18), 182 (8), 124 (7), 91 (6), 65 (8).^{S13}

methyl 4-[(4-methylphenyl)thio]benzoate (CAS No. 1818399-49-3, **1bs**): 80% GC yield (62% isolated yield). GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 13.3 min; relative sensitivity for quantification (vs 1,3,5-trimethoxybenzene, internal standard), 2.27 (estimated by **1ab** and the effective carbon number concept). ¹H NMR (500 MHz, CDCl₃): δ 7.85–7.88 (m, 2H), 7.38–7.42 (m, 2H), 7.19–7.23 (m, 2H), 7.12–7.16 (m, 2H), 3.88 (s, 3H), 2.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 166.7, 145.4, 139.2, 134.4, 130.5, 130.0, 128.1, 127.0, 126.7, 52.0, 21.3. MS (EI): *m/z* (%): 260 (6), 259 (16), 258 (100) [*M*⁺], 228 (10), 227 (59), 225 (5), 199 (20), 198 (7), 197 (7), 185 (6), 184 (43), 165 (5), 113 (5), 91 (9), 79 (5), 77 (5), 65 (6).^{S13}

1-[4-[(4-methylphenyl)thio]phenyl]ethanone (CAS No. 99433-27-9, **1bt**): 80% GC yield (71% isolated yield) (The isolated yield was shown after the subtraction of the amounts of residual solvents calculated from ¹H NMR). GC conditions and analysis: InertCap5 capillary column, 0.25 mm \times 60 m,

GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 10 min, injection temp., 280 °C detection temp., 280 °C; retention time, 12.4 min; relative sensitivity for quantification (vs 1,3,5-trimethoxybenzene, internal standard), 2.27 (calculated by calibration curve). ¹H NMR (500 MHz, CDCl₃): δ 7.77–7.81 (m, 2H), 7.38–7.43 (m, 2H), 7.20–7.24 (m, 2H), 7.13–7.17 (m, 2H), 2.53 (s, 3H), 2.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 197.1, 145.9, 139.3, 134.5, 134.1, 130.5, 128.8, 127.9, 126.7, 26.4, 21.3. MS (EI): *m/z* (%): 243 (12), 242 (72) [*M*⁺], 229 (6), 228 (16), 227 (100), 199 (9), 197 (6), 185 (7), 184 (47), 165 (6), 152 (5), 113 (5), 79 (5), 77 (5), 65 (6).^{S14}

1,4-bis[(4-methylphenyl)thio]benzene (CAS No. 55709-45-0, **1bab**): 29% GC yield. GC conditions and analysis: InertCap5 capillary column, 0.25 mm × 60 m, GL Science Inc.; carrier gas (N₂) flow rate, 1.7 mL·min⁻¹; initial column temp., 80 °C final column temp., 280 °C, progress rate, 20 °C·min⁻¹ (10 min), 280 °C for 20 min, injection temp., 280 °C detection temp., 280 °C; retention time, 22.4 min; relative sensitivity for quantification (vs 1,3,5-trimethoxybenzene, internal standard), 3.20 (estimated by **1ab** and the effective carbon number concept). MS (EI): m/z (%): 324 (12), 323 (23), 322 (100) [M^+], 201 (5), 200 (13), 199 (86), 198 (9), 197 (13), 184 (23), 166 (7), 165 (8), 91 (7), 65 (8).^{S13}

Supplementary References

(S1) J. W. Cook Jr. and D. E. Sayers, J. Appl. Phys., 1981, 52, 5024.

- (S2) A. L. Ankudinov and J. J. Rehr, Phys. Rev. B, 1997, 56, R1712.
- (S3) Y. Sakamoto, F. L. Chen and R. McNicholl, J. Alloys Compd., 1993, 192, 145.
- (S4) A. G. Christy and S. M. Clark, Phys. Rev. B, 1995, 52, 9259.
- (S5) M. Ellner, K. Kolatschek and B. Predel, J. Less-Common Met., 1991, 170, 171.
- (S6) (a) R. N. Dhital, C. Kamonsatikul, E. Somsook, K. Bobuatong, M. Ehara, S. Karanjit and H.

Sakurai, J. Am. Chem. Soc., 2012, **134**, 20250; (b) X.-F. Lang, P.-G. Yin, T.-T. You and L. Guo, ChemPhysChem, 2012, **13**, 237.

(S7) (a) R. Miyazaki, X. Jin, D. Yoshii, T. Yatabe, T. Yabe, N. Mizuno, K. Yamaguchi and J. Hasegawa, *Catal. Sci. Technol.*, 2021, **11**, 3333; (b) D. Takei, T. Yatabe, T. Yabe, R. Miyazaki, J. Hasegawa and K. Yamaguchi, *JACS Au*, 2022, **2**, 394.

(S8) H. Cao, X. Liu, F. Bie, Y. Shi, Y. Han, P. Yan, M. Szostak and C. Liu, *J. Org. Chem.*, 2021, **86**, 10829.

- (S9) T. Matsuyama, T. Yatabe and K. Yamaguchi, Org. Biomol. Chem., 2024, 22, 579.
- (S10) P. Zhao, H. Yin, H. Gao and C. Xi, J. Org. Chem., 2013, 78, 5001.
- (S11) P. An, Z.-F. Shi, W. Dou, X.-P. Cao and H.-L. Zhang, Org. Lett., 2010, 12, 4364.
- (S12) B. Wang, C. Jiang, J. Qian, S. Zhang, X. Jia and Y. Yuan, Org. Biomol. Chem., 2018, 16, 101.
- (S13) T. Matsuyama, T. Yatabe, T. Yabe and K. Yamaguchi, Catal. Sci. Technol., 2024, 14, 76.
- (S14) D. Liu, H.-X. Ma, P. Fang and T.-S. Mei, Angew. Chem. Int. Ed., 2019, 58, 5033.

Supplementary Figures

Fig. S1 (a) Pd 3d and (b) Au 4f XPS spectra of $Au_{4,4}$ –Pd₁/TiO₂. Gray broken lines and red broken lines indicate the deconvoluted signals and the sum of these lines. Black lines indicate the data plots.

Fig. S2 Fourier-transformed k^3 -weighted (a) Pd K-edge and (b) Au L_{III}-edge EXAFS spectra of Au_{4.4}-Pd₁/TiO₂. Experimental data and fitted data are shown. All *R*-space spectra are shown without phase correction.

Fig. S3 Effect of removal of Au_{4.4}–Pd₁/TiO₂ catalyst on the metathesis between **1a** and **1b**. Reaction conditions: **1a** (0.5 mmol), **1b** (0.1 mmol), Au_{4.4}–Pd₁/TiO₂ (Pd: 2.5 mol%), xylene (2 mL), Ar (1 atm), 140 °C. Yields were determined by GC analysis using 1,3,5-trimethoxybenzene as an internal standard.

Fig. S4 $Au_{4,4}$ -Pd₁/TiO₂ reuse experiments. The yields after 3 h are shown. The reaction conditions are indicated in this figure.

Fig. S5 (a) HAADF-STEM image of $Au_{4,4}$ -Pd₁/TiO₂ after the 1st use and (b) particle size distribution of $Au_{4,4}$ -Pd₁/TiO₂ after the 1st use.

Fig. S6 XRD patterns of $Au_{4,4}$ -Pd₁/TiO₂ before use and after the 4th reuse.

Fig. S7 TEM images and particle size distributions of (a) Pd₁/TiO₂ and (b) Au_{1.4}-Pd₁/TiO₂.

Fig. S8 Optimized structures of (a) Pd₂₀, (b) Au₁₆Pd₄, and (c) Au₁₈Pd₂ cluster models

Fig. S9 Summary of adsorption energies and optimized structures of (a) Pd_{20} , (b) $Pd_{20}_{1a}C$, (c) $Pd_{20}_{1a}S$, and (d) $Pd_{20}_{1a}T$.

 $\checkmark \Delta G = -23.4$ kcal/mol, $\Delta H = -38.7$ kcal/mol $\checkmark \Delta G = -24.7$ kcal/mol, $\Delta H = -38.0$ kcal/mol

Fig. S10 Summary of adsorption energies and optimized structures of (a) $Au_{16}Pd_4_1a_C$, (b) $Au_{18}Pd_2_1a_C$, and (c) $Au_{18}Pd_2$ in $Au_{18}Pd_2_1a_C$.

(b) $Au_{18}Pd_2_1a_C$ (NBO charge)

✓ Total NBO charge of aromatic rings: −3.00

(c) 1a (NBO charge)

✓ Total NBO charge of aromatic rings: −2.79

Fig. S11 NBO charge in (a) Pd_{20} _1a_C, (b) $Au_{18}Pd_2$ _1a_C, and (c) free 1a.

✓ Total NBO charge of aromatic rings: -2.58

Fig. S12 (a) An initial structure of the **1a** oxidative adduct only on the Pd atom of $Au_{18}Pd_2$ and (b) the optimized structure after the DFT calculation using the initial structure with the adsorption energy.

Fig. S13 Summary and adsorption energies of optimized structures of 1a oxidative adducts on Au₁₈Pd₂.

Fig. S14 GC charts of the reaction solution after $Au_{4,4}$ -Pd₁/TiO₂-catalyzed thioether metathesis between (a) **1a** and **1b**, (b) **1a** and **1c**, (c) **1a** and **1d**, and (d) **1b** and **1e**. The reaction conditions are shown in Scheme 2.

(e)

(f)

Fig. S14 (continued) GC charts of the reaction solution after $Au_{4,4}$ -Pd₁/TiO₂-catalyzed thioether metathesis between (e) 1a and 1g, (f) 1a and 1h, (g) 1b and 1i, and (h) 1b and 1j. The reaction conditions are shown in Scheme 2.

Fig. S14 (continued) GC charts of the reaction solution after $Au_{4,4}$ – Pd_1 /TiO₂-catalyzed thioether metathesis between (i) **1a'** and **1b**. The reaction conditions are shown in Scheme 2.

Supplementary Tables

Table S1 Effect of Pd catalysts on the metathesis between 1a and 1b.^a

S (0.5 mmol)		1b (0.1 mmol)	catalyst (P xylen 120 °C, Ar	Pd: 2.5 mol%) e (2 mL) r (1 atm), 3 h	1ab
entry	. 1 .	conv. (%)		yield (%)	
	catalyst	1a	1b	1ab	
	1	Pd ₁ /TiO ₂	9	11	1
	2	Pd ₃ /TiO ₂	13	16	2
	3	Pd ₅ /TiO ₂	12	13	2
	4^b	$Pd_1/TiO_2 + PCy_3$	< 1	3	<1

^{*a*}Reaction conditions: **1a** (0.5 mmol), **1b** (0.1 mmol), catalyst (Pd: 2.5 mol%), xylene (2 mL), 120 °C, 3 h in test tube. Conversions and yields were determined by GC analysis using 1,3,5trimethoxybenzene as an internal standard. ^{*b*}PCy₃ (2.5 mol%). PCy₃ = tricyclohexylphosphine.

Table S2 Fitted parameters from (a) Pd K-edge and (b) Au L_{III} -edge EXAFS spectra of Au_{4.4}-Pd₁/TiO₂.

(a)					
Shell	C.N.	<i>R</i> (Å)	ΔE_{j0} (eV)	$\begin{matrix} \sigma^2 \times 10^2 \\ (\text{\AA}^2) \end{matrix}$	R-factor (%)
Pd–O	0.9±0.2	2.04	10 (fixed)	0.577	
Pd–Pd (in Pd)	0.7±0.2	2.82	-10 (fixed)	0.506	
Pd–Au	5.0±0.6	2.83	-1.72 (fixed)	0.773	0.38
Pd–Pd (in Au–Pd)	1.1±1.0	3.94	-8.62 (fixed)	0.634	
(b)					
Shell	C.N.	R (Å)	ΔE_{j0} (eV)	$ \begin{array}{c} \sigma^2 \times 10^2 \\ (\text{\AA}^2) \end{array} $	R-factor (%)
Au-Pd	1.1±0.3	2.80	3.51 (fixed)	0.751	0.17
Au–Au	8.2±0.5	2.82	4.39 (fixed)	0.930	0.17

1a (0.5	S	S C S S S S S S S S S S S S S S S S S S	catalyst (P xylen 140 °C, Ar	d: 2.5 mol%) e (2 mL) - (1 atm), 3 h	Iab
		4 - 1 4	conv	. (%)	yield (%)
	entry	catalyst	1a	1b	1ab
	1	Au _{4.4} -Pd ₁ /TiO ₂	23	80	69
	2	Ru ₆ -Pd ₁ /TiO ₂	6	30	28
	3	Co ₆ -Pd ₁ /TiO ₂	4	20	19
	4	Ni ₆ -Pd ₁ /TiO ₂	3	5	1
	5	$Ag_6 - Pd_1/ZrO_2$	8	8	2

Table S3 Effect of the second metals with Pd on the metathesis between 1a and 1b.^a

^{*a*}Reaction conditions: **1a** (0.5 mmol), **1b** (0.1 mmol), catalyst (Pd: 2.5 mol%), xylene (2 mL), 140 °C, 3 h in test tube. Conversions and yields were determined by GC analysis using 1,3,5-trimethoxybenzene as an internal standard.

Table S4 Effect of the supports on the metathesis between 1a and 1b.^a

1a (0.5	S mmol)	1b (0.1 mmol)	catalyst (xyler 140 °C, A	Pd: 2.5 mol%) ne (2 mL) ar (1 atm), 3 h	S 1ab
	ontru	ootolyst	con	w. (%)	yield (%)
entry	catalyst	1a	1b	1ab	
	1	Au _{4.4} -Pd ₁ /TiO ₂	23	80	69
	2	Au _{1.4} -Pd ₁ /CeO ₂	24	70	57
	3	Au _{5.4} -Pd ₁ /LDH	18	51	39
	4	$Au_{3.6}-Pd_1/Al_2O_3$	13	34	24
	5	Au _{2.6} -Pd ₁ /HAP	14	33	21
	6	$Au_{2.5}-Pd_1/ZrO_2$	12	19	8

^{*a*}Reaction conditions: **1a** (0.5 mmol), **1b** (0.1 mmol), catalyst (Pd: 2.5 mol%), xylene (2 mL), 140 °C, 3 h in test tube. Conversions and yields were determined by GC analysis using 1,3,5-trimethoxybenzene as an internal standard.

⊖ ^s ⊖	D ^S	Au _{4.4} - (Pd: 2	Pd₁/TiO₂ .5 mol%)	s C		
1a (0.5 mmol)		1b (0.1 mmol)	120 °C, Ar	r (1 atm), 3 h	1ab	
			conv	y. (%)	yield (%)	
entry	solvent	1 a	1b	- 1ab yield (%) 1ab 55 44 34 33		
	1	xylene	18	66	55	
	2	1,4-dioxane	12	45	44	
	3	heptane	12	41	34	
	4	NMP	15	37	33	
	5	MCH	10	34	22	
	6	DMA	10	24	17	

Table S5 Effect of the solvents on the metathesis between 1a and 1b^a

^{*a*}Reaction conditions: **1a** (0.5 mmol), **1b** (0.1 mmol), Au_{4.4}–Pd₁/TiO₂ (Pd: 2.5 mol%), solvent (2 mL), 140 °C, 3 h in test tube. Conversions and yields were determined by GC analysis using 1,3,5trimethoxybenzene as an internal standard. NMP = *N*-methylpyrrolidone, MCH = methylcyclohexane, DMA = *N*,*N*-dimethylacetamide.

Table S6 Effect of the reaction temperatures on the metathesis between 1a and 1b^a

\bigwedge	.s.	∧_s	Au _{4.4} - (Pd: 2	Au _{4.4} -Pd ₁ /TiO ₂ (Pd: 2.5 mol%)	SS	
1a (0.8	5 mmol)	1b (0.1 mmol)	xyler Ar (1	ne (2 mL) atm), 3 h	1ab	
	o entre s	Toma anotana (°C)	con	v. (%)	yield (%)	
	entry	Temperature (C)	1a	1b	1ab	
	1	140	23	80	69	
	2	120	18	66	55	
	3	100	12	25	17	
	4^b	140	21	84	77	
	5 ^{<i>b</i>}	120	22	80	70	
	6 ^{<i>b</i>}	100	19	62	51	

^{*a*}Reaction conditions: **1a** (0.5 mmol), **1b** (0.1 mmol), Au_{4.4}–Pd₁/TiO₂ (Pd: 2.5 mol%), xylene (2 mL), 3 h in test tube. Conversions and yields were determined by GC analysis using 1,3,5trimethoxybenzene as an internal standard. ^{*b*}24 h.

Ia	1 b (0.1 mmol)	Au _{4.4} – (Pd: 2 mesityle 120 °C, Ar	Pd ₁ /TiO ₂ .5 mol%) ene (2 mL) r (1 atm), 3 h	- S 1ab
outur.	1. amount (mm al)	conv. (%)		yield (%)
entry	Ta amount (mmol)	1 a	1b	1ab
1	0.1	52	54	46
2	0.3	28	69	60
3	0.5	18	66	55
4	0.7	8	28	21
5^b	0.1	52	58	48
6^b	0.3	26	74	68
7^b	0.5	21	84	77
8^b	0.7	11	56	49

Table S7 Effect of 1a amounts on the metathesis between 1a and 1b^a

^{*a*}Reaction conditions: **1a** (0.5 mmol), **1b** (0.1 mmol), Au_{4.4}–Pd₁/TiO₂ (Pd: 2.5 mol%), xylene (2 mL), 120 °C, 3 h in test tube. Conversions and yields were determined by GC analysis using 1,3,5-trimethoxybenzene as an internal standard. ^{*b*}140 °C, 24 h.

NMR Spectra

 ^1H NMR spectrum (500 MHz, CDCl_3) of 1af

¹³C NMR spectrum (125 MHz, CDCl₃) of **1af**

6.0 5 5.0 Ph 4.0 3.05 3.0 8 2.0 1.0 JILLEB RARAS ARABABARA abundance 0 8.0 12.0 11.0 9.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 -1.0 -2.0 10.0 0 UIL 2.342 X : parts per Million : Proton

 ^{13}C NMR spectrum (125 MHz, CDCl₃) of 1bk

¹H NMR spectrum (500 MHz, CDCl₃) of **1bl**

¹H NMR spectrum (500 MHz, CDCl₃) of **1am**

¹³C NMR spectrum (125 MHz, CDCl₃) of 1am

¹H NMR spectrum (500 MHz, CDCl₃) of **1an**

¹H NMR spectrum (500 MHz, CDCl₃) of **1bo**

S41

6.0 3.05 5.0 4.0 CN S CP 3.0 2.0 1.0 abundance 1251 C 10.0 6.0 3.0 12.0 11.0 9.0 8.0 7.0 5.0 4.0 2.0 1.0 -2.0 0 -1.0 7.453 7.439 7.439 7.415 7.415 7.415 7.412 7.412 7.399 7.399 7.234 7.121 7.121 7.107 7.103 2.400 X : parts per Million : Proton

¹H NMR spectrum (500 MHz, CDCl₃) of **1bp**

 ^{13}C NMR spectrum (125 MHz, CDCl₃) of 1bp

¹H NMR spectrum (500 MHz, CDCl₃) of **1aq**

 ^{13}C NMR spectrum (125 MHz, CDCl_3) of 1aq

¹H NMR spectrum (500 MHz, CDCl₃) of **1br**

7.0 3.00 3.01 18 6.0 0.9 5.0) O 2.01 4.0 3.0 2.0 1.0 1 DATE NAME abundance 9.0 8.0 7.0 5.0 3.0 2.0 11.0 10.0 6.0 4.0 1.0 -1.0 -2.0 12.0 0 2.385 3.875 X : parts per Million : Proton

¹H NMR spectrum (500 MHz, CDCl₃) of **1bs**

¹³C NMR spectrum (125 MHz, CDCl₃) of 1bs

¹H NMR spectrum (500 MHz, CDCl₃) of **1bt**

S46

Cartesian Coordinates of Optimized Structures

1a

С	3.64652000	-0.02296400	-0.63281400
С	3.66346200	1.08878400	0.20185300
С	2.54102500	1.39414400	0.96867600
С	1.41119200	0.58836500	0.91326600
С	1.39003700	-0.52012500	0.06316300
С	2.50956000	-0.82144200	-0.71280900
S	-0.00019700	-1.63807500	0.00015500
С	-1.39013900	-0.51975500	-0.06304000
С	-2.51081500	-0.82238300	0.71077100
С	-3.64756900	-0.02365800	0.63058600
С	-3.66323000	1.08961000	-0.20209200
С	-2.53966600	1.39623300	-0.96673500
С	-1.40996400	0.59026000	-0.91115900
Η	4.51668000	-0.26482200	-1.23890900
Η	4.54836200	1.71838400	0.25548900
Η	2.55008200	2.26022700	1.62681400
Η	0.53942600	0.81684100	1.52302500
Η	2.48229400	-1.67894100	-1.38221300
Η	-2.48459900	-1.68108400	1.37868200
Η	-4.51861600	-0.26652200	1.23500500
Η	-4.54799600	1.71938600	-0.25583600
Н	-2.54767000	2.26351700	-1.62330700
Н	-0.53729500	0.81980300	-1.51922200

 Pd_{20}

Pd0.038557003.947129002.68423600Pd-0.03896200-3.966264002.65646200Pd3.94617900-0.02829000-2.95914500Pd-3.945416000.04888200-2.95970700Pd-1.411960000.009205000.96356400Pd1.41152200-0.015291000.96340400Pd-0.01558000-1.62592900-0.93528700Pd0.015225001.63213600-0.92465200Pd0.012853001.299739002.97665500Pd1.30135800-0.00277000-2.71456500Pd-1.300547000.02060300-2.71456500Pd-0.01304500-1.321122002.96769000Pd-1.52218002.684162000.96282900Pd2.87102600-1.44540400-0.95697500Pd1.52207000-2.690462000.94476500Pd2.870468001.45256700-0.94814000Pd2.899393001.40023400-0.94909700Pd-2.89927100-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000				
Pd-0.03896200-3.966264002.65646200Pd3.94617900-0.02829000-2.95914500Pd-3.945416000.04888200-2.95970700Pd-1.411960000.009205000.96356400Pd1.41152200-0.015291000.96340400Pd-0.01558000-1.62592900-0.93528700Pd0.015225001.63213600-0.92465200Pd0.012853001.299739002.97665500Pd1.30135800-0.00277000-2.71456500Pd-1.300547000.02060300-2.71531700Pd-0.01304500-1.321122002.96769000Pd-1.522218002.684162000.96282900Pd2.87102600-1.44540400-0.95697500Pd1.52207000-2.690462000.94476500Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94800700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	0.03855700 3.94712900	2.68423600	
Pd3.94617900-0.02829000-2.95914500Pd-3.945416000.04888200-2.95970700Pd-1.411960000.009205000.96356400Pd1.41152200-0.015291000.96340400Pd-0.01558000-1.62592900-0.93528700Pd0.015225001.63213600-0.92465200Pd0.012853001.299739002.97665500Pd0.012853001.299739002.97665500Pd1.30135800-0.00277000-2.71456500Pd-1.300547000.02060300-2.71531700Pd-0.01304500-1.321122002.96769000Pd-1.52218002.684162000.96282900Pd2.87102600-1.44540400-0.95697500Pd1.52207000-2.690462000.94476500Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94800700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	-0.03896200 -3.96626400	2.65646200	
Pd-3.945416000.04888200-2.95970700Pd-1.411960000.009205000.96356400Pd1.41152200-0.015291000.96340400Pd-0.01558000-1.62592900-0.93528700Pd0.015225001.63213600-0.92465200Pd0.012853001.299739002.97665500Pd1.30135800-0.00277000-2.71456500Pd-1.300547000.02060300-2.71531700Pd-0.01304500-1.321122002.96769000Pd-1.522218002.684162000.96282900Pd2.87102600-1.44540400-0.95697500Pd1.52207000-2.690462000.94476500Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94909700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	3.94617900 -0.02829000	-2.95914500	
Pd-1.411960000.009205000.96356400Pd1.41152200-0.015291000.96340400Pd-0.01558000-1.62592900-0.93528700Pd0.015225001.63213600-0.92465200Pd0.012853001.299739002.97665500Pd1.30135800-0.00277000-2.71456500Pd-1.300547000.02060300-2.71531700Pd-0.01304500-1.321122002.96769000Pd-1.522218002.684162000.96282900Pd2.87102600-1.44540400-0.95697500Pd1.52207000-2.690462000.94476500Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94909700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	-3.94541600 0.04888200	-2.95970700	
Pd1.41152200-0.015291000.96340400Pd-0.01558000-1.62592900-0.93528700Pd0.015225001.63213600-0.92465200Pd0.012853001.299739002.97665500Pd1.30135800-0.00277000-2.71456500Pd-1.300547000.02060300-2.71531700Pd-0.01304500-1.321122002.96769000Pd-1.522218002.684162000.96282900Pd2.87102600-1.44540400-0.95697500Pd1.52207000-2.690462000.94476500Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94909700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	-1.41196000 0.00920500	0.96356400	
Pd-0.01558000-1.62592900-0.93528700Pd0.015225001.63213600-0.92465200Pd0.012853001.299739002.97665500Pd1.30135800-0.00277000-2.71456500Pd-1.300547000.02060300-2.71531700Pd-0.01304500-1.321122002.96769000Pd-1.522218002.684162000.96282900Pd2.87102600-1.44540400-0.95697500Pd1.52207000-2.690462000.94476500Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94909700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	1.41152200 -0.01529100	0.96340400	
Pd0.015225001.63213600-0.92465200Pd0.012853001.299739002.97665500Pd1.30135800-0.00277000-2.71456500Pd-1.300547000.02060300-2.71531700Pd-0.01304500-1.321122002.96769000Pd-1.522218002.684162000.96282900Pd2.87102600-1.44540400-0.95697500Pd1.52207000-2.690462000.94476500Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94909700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	-0.01558000 -1.62592900	-0.93528700	
Pd0.012853001.299739002.97665500Pd1.30135800-0.00277000-2.71456500Pd-1.300547000.02060300-2.71531700Pd-0.01304500-1.321122002.96769000Pd-1.522218002.684162000.96282900Pd2.87102600-1.44540400-0.95697500Pd1.52207000-2.690462000.94476500Pd-2.870468001.45256700-0.94814000Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94909700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	0.01522500 1.63213600	-0.92465200	
Pd1.30135800-0.00277000-2.71456500Pd-1.300547000.02060300-2.71531700Pd-0.01304500-1.321122002.96769000Pd-1.522218002.684162000.96282900Pd2.87102600-1.44540400-0.95697500Pd1.52207000-2.690462000.94476500Pd-2.870468001.45256700-0.94814000Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94909700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	0.01285300 1.29973900	2.97665500	
Pd-1.300547000.02060300-2.71531700Pd-0.01304500-1.321122002.96769000Pd-1.522218002.684162000.96282900Pd2.87102600-1.44540400-0.95697500Pd1.52207000-2.690462000.94476500Pd-2.870468001.45256700-0.94814000Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94909700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	1.30135800 -0.00277000	-2.71456500	
Pd-0.01304500-1.321122002.96769000Pd-1.522218002.684162000.96282900Pd2.87102600-1.44540400-0.95697500Pd1.52207000-2.690462000.94476500Pd-2.870468001.45256700-0.94814000Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94909700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	-1.30054700 0.02060300	-2.71531700	
Pd-1.522218002.684162000.96282900Pd2.87102600-1.44540400-0.95697500Pd1.52207000-2.690462000.94476500Pd-2.870468001.45256700-0.94814000Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94909700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	-0.01304500 -1.32112200	2.96769000	
Pd2.87102600-1.44540400-0.95697500Pd1.52207000-2.690462000.94476500Pd-2.870468001.45256700-0.94814000Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94909700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	-1.52221800 2.68416200	0.96282900	
Pd1.52207000-2.690462000.94476500Pd-2.870468001.45256700-0.94814000Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94909700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	2.87102600 -1.44540400	-0.95697500	
Pd-2.870468001.45256700-0.94814000Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94909700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	1.52207000 -2.69046200	0.94476500	
Pd1.574482002.657694000.95996600Pd2.899393001.40023400-0.94909700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	-2.87046800 1.45256700	-0.94814000	
Pd2.899393001.40023400-0.94909700Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	1.57448200 2.65769400	0.95996600	
Pd-1.57519800-2.663911000.94208300Pd-2.89927100-1.39290600-0.95877000	Pd	2.89939300 1.40023400	-0.94909700	
Pd -2.89927100 -1.39290600 -0.95877000	Pd	-1.57519800 -2.66391100	0.94208300	
	Pd	-2.89927100 -1.39290600	-0.95877000	

Au₁₆Pd₄

0
0
0
0
0
)
0
00
0
0
00
00
00
0
0
00
0
0
0

$Au_{18}Pd_2$

Au	-4.19441400	0.02824400	-2.94858800	
Au	-0.01919600	-4.16763400	3.03047600	
Au	0.02023700	4.15111100	3.05278600	
Au	4.19393600	-0.01085700	-2.94961100	
Au	-0.00810100	-1.55906600	-0.95245400	
Pd	-1.55448700	0.00348200	1.02773700	
Pd	1.55530000	-0.00985400	1.02654700	
Au	0.00699000	1.56342600	-0.94335000	
Au	-2.97264600	-1.51402300	-0.94515200	
Au	1.68625500	2.85333300	1.09697800	
Au	2.97235400	1.51934200	-0.93736400	
Au	-1.68642900	-2.85996200	1.08192400	
Au	-1.37823400	0.01564600	-3.03343100	
Au	0.00704400	1.39658700	2.99784700	
Au	-0.00541500	-1.41345100	2.99010800	
Au	1.37715600	0.00219400	-3.03327000	
Au	-2.95804100	1.54604600	-0.93587100	
Au	-1.65919000	2.86856600	1.09794000	
Au	1.65936500	-2.87438200	1.08115000	
Au	2.95785500	-1.54141200	-0.94628300	

Pd20_1a_C

Pd	2.98667200	-0.00105400	3.68398600
Pd	-4.78833300	0.00646200	2.05953800
Pd	0.07004800	-3.98617200	-2.75702300
Pd	0.07814300	3.98545900	-2.75896200
Pd	-0.52413200	1.51806500	0.96423800
Pd	-0.52836000	-1.51896100	0.96116100
Pd	-1.66833300	0.00251200	-1.23068800
Pd	1.14805400	-0.00190100	-0.66400800
Pd	0.40984900	-0.00261900	3.08645400
Pd	0.08615700	-1.32659500	-2.85156200
Pd	0.09223000	1.32504900	-2.85164700
Pd	-2.17934500	0.00053500	2.61707100
Pd	2.21212100	1.51646000	1.58192500
Pd	-1.67532100	-2.80018600	-1.13882300
Pd	-3.27067900	-1.45844100	0.45420500
Pd	1.25310200	2.89956600	-0.61207200
Pd	2.20916500	-1.52040900	1.58412400
Pd	1.24897600	-2.90029400	-0.61212900
Pd	-3.26569200	1.46598000	0.45567600
Pd	-1.66684200	2.80357300	-1.13752800
Н	3.22971300	-2.54722100	-2.61498300
S	3.34431700	-0.00319100	-1.63650000
С	3.41872700	-2.63432700	-1.54560300
Н	3.23318600	2.54024800	-2.61544300

С	3.85268100	1.50545900	-0.81419200
С	3.42300400	2.62765100	-1.54624800
Н	3.03972100	-4.77655300	-1.50558700
С	3.84952300	-1.51244000	-0.81370800
С	3.25075900	-3.89272700	-0.90709800
С	4.18942500	1.64384700	0.55925200
С	3.25673500	3.88643700	-0.90813500
Н	4.75504900	0.88285400	1.08235500
Н	3.04722500	4.77055600	-1.50673800
С	4.00720500	2.90293200	1.19488300
С	3.49676800	3.99833500	0.47345700
С	4.18553900	-1.65088300	0.56001000
Н	4.38209900	3.04513600	2.20669500
С	3.49005000	-4.00456200	0.47449000
Н	3.34364400	4.95055200	0.97339500
Н	4.75223800	-0.89040700	1.08266500
С	4.00157700	-2.90950700	1.19592600
Н	3.33555900	-4.95636800	0.97478400
Н	4.37643500	-3.05227900	2.20767900

Pd20_1a_S

Pd	4.33878700	-1.35580400	2.99082200
Pd	0.22798300	4.55027900	0.81676100
Pd	-3.60060800	-1.94214400	2.05096300
Pd	1.18387300	-1.29869000	-4.13352900
Pd	2.16020100	0.72301400	-0.99516400
Pd	0.51174400	1.02232300	1.37700900
Pd	-0.70640100	0.56609200	-1.35805900
Pd	0.61754400	-1.56208300	0.04693800
Pd	3.35128700	0.52333400	1.31344600
Pd	-2.01114100	-2.48269900	-0.14511900
Pd	-0.58097300	-1.89995100	-2.30848500
Pd	2.25962500	2.89796800	0.67766900
Pd	3.50275300	-2.01545700	0.54268800
Pd	-2.60870700	0.18648300	0.52057400
Pd	-1.43506900	2.54648800	0.59115600
Pd	2.46647300	-1.71585500	-1.84722800
Pd	1.65786300	-1.30906100	2.50032000
Pd	-0.99302900	-1.06086100	2.16906000
Pd	0.45916900	3.03080300	-1.45980900
Pd	0.95082800	1.13477900	-3.28959100
Н	-3.40649900	-4.26717300	-1.72548200
С	-3.84934900	-3.54444600	-1.04310400
Н	-3.51645000	-1.84634900	-2.37806900
С	-3.91085500	-2.17413600	-1.41604000
С	-4.50835200	-3.98114500	0.12112500

Н	-4.47046000	-5.03046900	0.40035900
С	-4.64490600	-1.26121900	-0.61861300
S	-4.44125700	0.48157900	-1.03765500
С	-5.25289000	-3.08019900	0.89661700
С	-5.77680100	1.25347800	-0.12266600
С	-5.32163800	-1.70300500	0.53218800
С	-7.05997700	1.23641700	-0.67071500
С	-5.52671300	1.88279500	1.09643200
Н	-7.23471400	0.74736100	-1.62723600
Н	-4.51427100	1.87862300	1.50573100
Н	-5.88695400	-3.45302600	1.69888800
С	-8.10294800	1.84612100	0.01764600
С	-6.57641700	2.49936500	1.77209000
С	-7.86042800	2.47840800	1.23533300
Н	-9.10589400	1.83381200	-0.40152600
Н	-6.38694900	2.99297100	2.72192000
Н	-5.99386900	-1.02738600	1.05979200
Н	-8.67746400	2.95980300	1.76704300

Pd	2.06254500	-3.69839200	2.00860500
Pd	-0.20129200	3.79058100	2.71889500
Pd	-3.55834400	-1.30667100	-2.25159400
Pd	2.98155500	0.67672600	-3.73956900
Pd	2.32810800	0.83272800	0.76469300
Pd	-0.12944900	-0.30358600	0.63571300
Pd	-0.30275500	1.55647600	-1.19534800
Pd	1.33564300	-2.51936600	-0.33414900
Pd	1.50703500	-1.19109700	2.80621200
Pd	-0.98597400	-0.46814700	-2.76213700
Pd	1.50224300	-0.48570800	-1.89112400
Pd	0.55539400	1.25917400	2.77928000
Pd	3.44629000	-1.57245900	0.90721600
Pd	-2.71254400	0.15926200	-0.24639900
Pd	-1.66013600	2.06729100	1.31518900
Pd	3.99796600	-0.01278700	-1.24469700
Pd	-0.53433200	-2.70930700	1.77316200
Pd	-1.29388800	-2.23771000	-0.81219200
Pd	1.05034200	3.09617400	0.46886200
Pd	2.38731100	2.26060400	-1.68771900
Н	-6.28132800	-3.58662800	1.50510900
С	-6.65440200	-2.66841200	1.05875300
Н	-4.89625200	-2.37065100	-0.17907500
С	-5.88044400	-1.99978100	0.11472400

С	-7.89730400	-2.16221200	1.42954300
Н	-8.49813600	-2.68917600	2.16663900
С	-6.36644200	-0.82068300	-0.45028600
S	-5.40893400	0.07787400	-1.67455000
С	-8.37645300	-0.98578400	0.85778700
С	-4.51487500	1.26828600	-0.64841200
С	-7.61327500	-0.31037900	-0.08849100
С	-3.99285900	2.42143400	-1.33127600
С	-4.49355500	1.22130300	0.77447000
Н	-4.02625400	2.44686200	-2.41918100
Н	-5.01683400	0.43244400	1.31005800
Н	-9.34893400	-0.59456900	1.14565500
С	-3.41960100	3.44228700	-0.62070000
С	-3.92838400	2.30221900	1.49883300
С	-3.35323800	3.40051600	0.80963300
Н	-2.99791600	4.29670300	-1.14411200
Н	-4.05469600	2.33556000	2.57887900
Н	-7.97722000	0.60789300	-0.54515300
Н	-3.09759100	4.30863300	1.35317000

Au₁₆Pd₄_1a_C

Au	-2.38871400	-3.12529800	2.98389900
Au	4.72151100	-2.19192500	-1.37179800
Au	1.28840900	4.28233600	2.46019000
Au	-2.75535300	1.10435200	-3.38827000
Pd	-0.08862500	-1.56216100	-0.61957800
Pd	1.37844000	-0.57368700	1.54448400
Pd	1.24239100	1.24184100	-0.74023600
Pd	-1.81247600	0.77485600	-0.61580400
Au	0.19170600	-3.19210700	1.77533600
Au	0.58178900	3.98772600	-0.19658500
Au	-0.69596200	2.79965100	-2.30325600
Au	2.44336700	-2.89853600	0.26555300
Au	-2.46341000	-2.92158900	0.15038300
Au	2.66745800	1.96922500	1.69869300
Au	3.78308900	-0.04405300	0.16827100
Au	-2.48333700	-1.54010300	-2.23316900
Au	-1.51996700	-0.72968000	1.76091300
Au	-0.23109300	1.84821800	1.60768300
Au	2.25821500	-1.08384400	-2.07121300
Au	-0.15509600	0.04899900	-2.96858200
Н	-2.22640200	3.86771700	1.97803900
S	-3.64979000	2.07956200	0.29522100
С	-2.52814200	3.02475500	2.60082100
Н	-4.41804100	-0.60481900	-0.58033900
С	-5.23153700	1.23585500	0.17932500
С	-5.32323900	-0.07162300	-0.28684900
Н	-1.48127800	3.73009500	4.34140400

С	-3.35763100	2.02430500	2.07479000
С	-2.13098800	2.95514700	3.93930700
С	-6.37449400	1.93921400	0.56427800
С	-6.57024400	-0.68593700	-0.36394500
Н	-6.28813400	2.96482300	0.91874700
Н	-6.63816500	-1.70928200	-0.72672300
С	-7.61468800	1.31525700	0.49129300
С	-7.71319800	0.00454100	0.02691500
С	-3.82439000	0.99344200	2.88952800
Н	-8.50814300	1.85726900	0.79114600
С	-2.57842900	1.91470400	4.75195500
Н	-8.68611800	-0.47716800	-0.03223500
Н	-4.47317100	0.21930500	2.48186000
С	-3.43674200	0.95138200	4.22982600
Н	-2.26399800	1.86104800	5.79056100
Н	-3.79147500	0.13630900	4.85677500

Au₁₈Pd₂**1a**_C

Au	-1.48819000	3.82169800	2.85584800
Au	5.37392800	-0.36888700	0.44013600
Au	-0.98578400	0.85242500	-4.94837800
Au	-1.94235800	-4.42331600	1.47970000
Au	0.77349900	-0.36535900	1.83642000
Au	1.11066300	1.65374600	-0.58591000
Pd	0.92856400	-1.33797200	-0.99991700
Pd	-1.52063900	-0.01960000	-0.30529500
Au	0.94753000	2.55610300	2.18070600
Au	-1.20534800	-1.13608400	-2.96544300
Au	-1.54380700	-2.86287500	-0.82693000
Au	3.21615500	1.18341600	1.39836500
Au	-1.62671500	1.02022700	2.57112000
Au	1.26505200	0.42565600	-3.22840500
Au	3.38109400	0.07964400	-1.46922600
Au	-1.81623400	-1.69773100	2.10518900
Au	-1.37607300	2.90909100	0.20339300
Au	-1.15848800	1.99170300	-2.40657400
Au	3.04424000	-1.87672400	0.86577800
Au	0.61970000	-3.19732400	1.14583500
Н	-5.22772400	2.09214700	-2.23156400
S	-3.81127300	0.14389300	-0.84376100
С	-5.24369500	2.40821700	-1.19027800
Н	-4.66632700	-2.21395200	-2.05091000
С	-4.66998700	-1.26464400	-0.11568000
С	-4.92881400	-2.31371600	-0.99858700

Н	-6.30276700	4.23563400	-1.58048700
С	-4.64177300	1.61009800	-0.21586700
С	-5.84155600	3.60920800	-0.82125700
С	-4.98918900	-1.37872900	1.23603300
С	-5.50852300	-3.48606200	-0.52197000
Н	-4.77093700	-0.57383400	1.93239500
Н	-5.70279800	-4.30602000	-1.20879100
С	-5.58716700	-2.54806900	1.69834500
С	-5.84064500	-3.60308600	0.82524000
С	-4.63188000	2.01013400	1.11930900
Н	-5.83525700	-2.63770800	2.75319800
С	-5.84626000	4.00560100	0.51307200
Н	-6.29435600	-4.51859100	1.19652900
Н	-4.11006700	1.41839300	1.87153900
С	-5.24597700	3.20432500	1.48124600
Н	-6.31096800	4.94589800	0.79903700
Н	-5.23045300	3.51708500	2.52310800

An initial structure of the 1a oxidative adduct only on the Pd atom of Au₁₈Pd₂

Au	-4.19441000	0.02824000	-2.94859000
Au	-0.01920000	-4.16763000	3.03048000
Au	0.02024000	4.15111000	3.05279000
Au	4.19394000	-0.01086000	-2.94961000
Au	-0.00810000	-1.55907000	-0.95245000
Pd	-1.55449000	0.00348000	1.02774000
Pd	1.55530000	-0.00985000	1.02655000
Au	0.00699000	1.56343000	-0.94335000
Au	-2.97265000	-1.51402000	-0.94515000
Au	1.68626000	2.85333000	1.09698000
Au	2.97235000	1.51934000	-0.93736000
Au	-1.68643000	-2.85996000	1.08192000
Au	-1.37823000	0.01565000	-3.03343000
Au	0.00704000	1.39659000	2.99785000
Au	-0.00541000	-1.41345000	2.99011000
Au	1.37716000	0.00219000	-3.03327000
Au	-2.95804000	1.54605000	-0.93587000
Au	-1.65919000	2.86857000	1.09794000
Au	1.65936000	-2.87438000	1.08115000
Au	2.95785000	-1.54141000	-0.94628000
Н	4.70239000	3.94681000	1.68548000
Н	5.34348000	-5.40604000	2.68746000
Н	3.44841000	2.24783000	0.37976000
Н	3.88807000	-3.87608000	1.38175000
С	4.00923000	3.28005000	2.19325000
С	3.30697000	2.32845000	1.45595000

С	4.80722000	-4.60763000	3.19524000
С	3.99202000	-3.75079000	2.45793000
С	3.82120000	3.39187000	3.56818000
Н	4.35781000	4.14668000	4.13717000
С	4.95000000	-4.44187000	4.57016000
С	2.40066000	1.46657000	2.08442000
Н	5.60015000	-5.10140000	5.13915000
С	3.30062000	-2.70859000	3.08640000
S	2.31279000	-1.58030000	2.13133000
С	2.94312000	2.52270000	4.21694000
С	2.23778000	1.55893000	3.48627000
С	4.24651000	-3.42621000	5.21892000
С	3.41986000	-2.56422000	4.48825000
Н	2.81125000	2.57916000	5.29606000
Н	4.32501000	-3.30614000	6.29805000
Н	1.61584000	0.82434000	3.99697000
Н	2.80443000	-1.82418000	4.99895000

An optimized structure of the $\boldsymbol{1a}$ oxidative adduct only on the Pd atom of $Au_{18}Pd_2$

Au	-3.09601700	-4.19875500	0.39062900
Au	-1.16299100	3.23826300	3.81523900
Au	-0.20548300	1.67205700	-4.91249200
Au	4.90209800	-1.65188500	0.78506100
Au	0.16193700	-0.91907700	1.73807300
Pd	-1.53571800	0.41030600	-0.29759500
Pd	1.22537300	1.42229500	-0.09817300
Au	0.53486800	-1.46483800	-1.28278800
Au	-2.64044800	-1.63337400	1.46359300
Au	1.49145300	0.86350000	-2.84353100
Au	3.24339600	-0.36895400	-1.07419500
Au	-2.01964500	0.81802500	2.55958800
Au	-0.36512200	-3.56065500	0.55717800
Au	-0.99928500	2.43841000	-2.37105900
Au	-0.94146800	3.10966700	1.03689900
Au	2.26938700	-2.69715100	0.67983800
Au	-2.28642200	-2.19847300	-1.41739600
Au	-1.31371100	-0.33813200	-3.18924600
Au	0.95646600	1.73331300	2.75840400
Au	2.90537300	-0.02145400	1.90650200
Н	5.51995900	4.16371200	0.65364300
Н	-6.14579800	3.23151500	1.95235900
Н	4.14770800	2.13370800	0.85596300
Н	-4.14181300	4.43433900	1.13469200
С	4.54710600	4.13171100	0.16736600
С	3.77001100	2.97886000	0.28366600
С	-5.57676500	2.82352000	1.12034900

С	-4.45687900	3.50824300	0.65666200
С	4.08704800	5.22796200	-0.55619400
Н	4.69877400	6.12276800	-0.64144500
С	-5.95322100	1.61497200	0.53995700
С	2.51614800	2.93480400	-0.32615200
Н	-6.81523300	1.07179000	0.91861500
С	-3.71132200	2.98543900	-0.40192600
S	-2.22341100	3.89907000	-0.88271800
С	2.84255200	5.17027600	-1.17405100
С	2.05508700	4.02185300	-1.07012100
С	-5.21956600	1.10587000	-0.52810600
С	-4.10705100	1.79234600	-1.01000100
Н	2.47238300	6.01586400	-1.74996200
Н	-5.49951800	0.16196400	-0.99174500
Н	1.08986000	3.99160800	-1.57596700
Н	-3.55122200	1.39429800	-1.85959800

Ph spill-over (near another Pd)

Au	-4.74558400	-1.42724800	-2.04460200
Au	3.28364900	0.35885300	-3.80547400
Au	1.14671500	-3.56753600	3.55084400
Au	-0.70844100	4.53248300	2.30664300
Au	-0.80021200	1.27355100	-1.32289300
Pd	-0.04993900	-1.54547500	-0.76331800
Pd	1.41896400	0.42422800	0.72578000
Au	-1.60057200	-0.16589600	1.37924700
Au	-2.05924100	-0.92988800	-2.75050000
Au	0.62696500	-0.84930500	3.15313000
Au	0.06660700	1.88082500	2.73936300
Au	0.58267400	-0.38147400	-3.32242700
Au	-3.58314500	0.67697400	-0.58029100
Au	2.01853300	-2.50226100	1.09641200
Au	2.76470100	-1.10207300	-1.46875500
Au	-2.22516300	2.60363600	0.89613700
Au	-2.80969100	-2.28193700	-0.20070900
Au	-0.85242300	-2.97815700	1.62060200
Au	2.00899600	1.82172400	-1.77560400
Au	0.63119500	3.29465100	0.13531100
Н	5.12362700	-5.45692800	-1.48902800
Н	5.58223600	3.11285900	-1.74619700
Н	2.95965600	-4.24864000	-1.40838000
Н	4.81528600	1.24266900	-0.31603100
С	5.04953000	-4.51157700	-0.95653600
С	3.83589600	-3.83499200	-0.91269800

С	5.00394700	3.32347600	-0.84860200
С	4.57443700	2.27020400	-0.04681600
С	6.16812800	-3.97904200	-0.31622300
Н	7.11499000	-4.51308200	-0.35230200
С	4.67570200	4.63686100	-0.51463300
С	3.72960000	-2.60416400	-0.22436600
Н	4.99680700	5.45725600	-1.15162700
С	3.80224700	2.52207700	1.09674800
S	3.16413800	1.18289700	2.07526400
С	6.08217700	-2.76989200	0.37169800
С	4.87425000	-2.08143700	0.42004400
С	3.94451100	4.89700600	0.64389900
С	3.51389400	3.84792700	1.45011400
Н	6.95719300	-2.36301200	0.87328400
Н	3.69715800	5.92068100	0.91593900
Н	4.79636800	-1.13849000	0.96455800
Н	2.92984000	4.04227300	2.34828000

Ph spill-over (far from another Pd)

Au	-5.18560400	-1.35066700	-0.24962700
Au	1.01107800	2.72634400	-4.20315700
Au	2.70387900	-4.39849500	-0.06427300
Au	0.69356800	2.47583100	4.33883600
Au	-1.29511300	1.40386100	-0.03082000
Pd	-0.49040600	-1.00843800	-1.52224700
Pd	1.58296000	0.15584300	-0.01951500
Au	-0.68608500	-1.24226000	1.53074100
Au	-3.20457000	0.03566500	-1.68393800
Au	2.05629600	-2.20900600	1.52574500
Au	1.51408500	0.26812600	2.80016200
Au	-1.14383900	1.42213700	-2.92985500
Au	-3.37502900	-0.01662600	1.42373100
Au	2.19835600	-2.11854300	-1.66818600
Au	1.68001800	0.30060800	-2.90245400
Au	-1.38127500	1.25235700	2.87945400
Au	-2.60257600	-2.50519500	-0.20664300
Au	0.00109300	-3.48763500	-0.18936600
Au	1.01315400	2.76358400	-1.39430200
Au	0.75938100	2.87563900	1.56512900
Н	4.28280200	6.14120000	0.22544500
Н	6.26877000	-2.21813200	-1.95027700
Н	3.48025100	3.79583700	0.28095900
Н	4.79452000	-0.25108400	-1.60423600
С	3.21825300	5.93221800	0.14997800
С	2.76865600	4.61623000	0.18344200

С	5.95610100	-1.94817400	-0.94395200
С	5.12994800	-0.84405900	-0.75498900
С	2.30643100	6.97804900	0.01849300
Н	2.66319500	8.00516800	-0.00749800
С	6.37455500	-2.70649100	0.14792100
С	1.38823200	4.33427400	0.08428600
Н	7.01520300	-3.57201500	-0.00320900
С	4.70990500	-0.49324300	0.53387100
S	3.64790200	0.91765900	0.78081000
С	0.94010200	6.71778800	-0.08072500
С	0.47813900	5.40712600	-0.04876300
С	5.97287000	-2.35137800	1.43485300
С	5.14296900	-1.25171200	1.62954300
Н	0.23363900	7.53813200	-0.18377200
Н	6.29980300	-2.93715900	2.29092100
Н	-0.58774000	5.20058800	-0.12849100
Н	4.82005500	-0.97196600	2.63154400

SPh spill-over (near another Pd)

Au	-0.45252600	-5.22871600	-0.26738200
Au	2.21185500	1.60761600	-4.35133800
Au	2.03776400	1.14919200	4.60645000
Au	-4.89486600	1.89510700	0.03002700
Au	-1.06471200	-0.64568500	-1.60699700
Pd	1.39574000	-0.64849400	0.02277500
Pd	-0.02494300	1.89606000	0.05822500
Au	-1.13909900	-0.77639400	1.51901200
Au	0.65060300	-2.99274400	-1.58274500
Au	-0.10906300	1.62848100	2.87654600
Au	-2.50606500	1.81878000	1.49544300
Au	1.53450000	-0.75948900	-2.91477500
Au	-2.11506900	-2.97074900	-0.15756300
Au	2.68246300	1.24859300	1.90785800
Au	2.55712700	1.63140500	-1.58779000
Au	-3.56615400	-0.60310100	-0.05272000
Au	0.55384700	-3.14844600	1.34654500
Au	1.35161100	-1.08832700	2.96695400
Au	-0.11048300	1.86921700	-2.81044000
Au	-2.54922400	1.82885300	-1.51867500
Н	2.18167700	6.21749500	1.38491600
Н	5.28502900	-2.93227800	-0.28840300
Н	1.91771400	3.77814200	1.25707100
Н	3.72120500	-1.06780600	0.09975000
С	1.28381100	5.80595300	0.92873700
С	1.13670800	4.41990200	0.84964400

С	5.66425100	-1.91270500	-0.29644100
С	4.78239600	-0.86128300	-0.07850300
С	0.29090800	6.64788300	0.43927500
Н	0.40725700	7.72684600	0.50584600
С	7.01598400	-1.66146800	-0.52367900
С	-0.00738500	3.88302100	0.25941100
Н	7.70288400	-2.48672100	-0.69379400
С	5.25119200	0.45366900	-0.09249600
S	4.20277200	1.89907700	0.15974600
С	-0.85480200	6.10166800	-0.13123800
С	-1.01511400	4.71852500	-0.22175700
С	7.48225700	-0.35116900	-0.53169000
С	6.60463800	0.70894100	-0.31811700
Н	-1.63961300	6.74989200	-0.51567200
Н	8.53576700	-0.14602000	-0.70601800
Н	-1.91797900	4.31127000	-0.67235400
Н	6.96777700	1.73462300	-0.32655800

SPh spill-over (far from another Pd)

Au	-5.07757800 1.15511300 1.51835500
Au	2.36335700 4.54250000 -0.48129000
Au	-0.43261700 -2.14762300 -4.71849400
Au	1.62541200 -3.52515900 3.27688100
Au	-0.23021500 0.79253600 1.61182900
Pd	-0.99223900 1.14494100 -1.16260000
Pd	1.57828200 -0.39085200 -0.65894300
Au	-1.38471600 -1.56229800 0.00854700
Au	-2.59924800 2.35365200 0.93721900
Au	0.29210300 -2.68882000 -2.07114700
Au	1.05201600 -3.03083700 0.55718100
Au	-0.13291700 3.44433100 0.33591000
Au	-2.85162800 -0.35005600 2.27195600
Au	0.66085800 0.03192200 -3.30160900
Au	1.55366300 2.22915200 -1.87120500
Au	-0.58631700 -1.81846900 2.85942300
Au	-3.64820600 0.09944000 -0.70142800
Au	-2.10429000 -0.95211700 -2.75806800
Au	2.38463200 2.12671300 0.95107400
Au	2.20440600 -0.98078300 2.30015400
Н	6.35827100 0.79291300 -1.96900600
Н	7.19954500 -1.93196500 0.99965900
Н	4.08323500 1.28708200 -1.21475200
Н	4.93427300 -1.53134200 1.90917700
С	5.63976600 -0.02116600 -1.89684000
С	4.34441300 0.25940600 -1.46338400

С	6.87096800	-0.91264600	1.18875100
С	5.59639100	-0.69122200	1.69951000
С	6.01057400	-1.32107300	-2.22449100
Н	7.02154800	-1.53202600	-2.56592100
С	7.71397500	0.15923800	0.91076800
С	3.41458600	-0.77658800	-1.35066800
Н	8.71009600	-0.02021100	0.51342800
С	5.16198200	0.61512000	1.93103400
S	3.58745800	0.96713700	2.71271200
С	5.07978700	-2.34825600	-2.11252800
С	3.77718000	-2.08447400	-1.68424400
С	7.27643400	1.46193600	1.13691200
С	6.00231100	1.69483800	1.64199700
Н	5.35321000	-3.37074800	-2.36529600
Н	7.92873000	2.30443600	0.91910000
Н	3.06088200	-2.89932100	-1.61462900
Н	5.65425400	2.71162600	1.81705000