Table of Contents

1. Materials and methods	2
2. Synthetic procedures and characterization data	4
3. Self-assembly of metallacages and characterization data	10
4. Crystallographic data and refinement details	18
5. Photophysical properties of compounds	22
6. Monitoring the supramolecular self-assembly and fusion process	23
7. The effect of solvent and counterion in the formation of the metallacage 4c	24
8. Host-guest complexation study	26
9. Energy Comparisons	27
10. References	27

1. Materials and methods

General procedure. All reagents and deuterated solvents were used as purchased without further purification. Ligand 1 was purchased in the carboxylic acid form and obtained by the neutralization reaction with NaOH. Ligand 2 was prepared according to the literature procedure^[S1]. Column chromatography was conducted using SiO₂ (200 -300 mesh). ³¹P{¹H} and ¹H NMR spectra were recorded at 295 K on a 400 MHz or 600 MHz Bruker Avance spectrometer. ¹H NMR chemical shifts were recorded relative to residual solvent signals. ³¹P{¹H} NMR chemical shifts were referenced to an external unlocked sample of 85% H_3PO_4 ($\delta 0.0$). UV/vis absorption spectroscopy was conducted on a Lambd 950 absorption spectrophotometer. The fluorescence spectroscopy was conducted on a Hitachi F-7000 fluorescence spectrophotometer. Electrospray ionization-mass spectrometry (ESI-MS) was collected on a Waters Synapt G2-Si mass spectrometer (Waters Corp., Milford, MA, USA) with traveling wave ion mobility separation capability. The ESI-MS experiments were performed under the following conditions: ESI capillary voltage, 1-5 kV; sample cone voltage, 30-100 V; source temperature, 100 °C; desolvation temperature, 100 °C; cone gas flow, 10 L/h; desolvation gas flow, 800 L/h (N₂); source gas control, 0 mL/min; trap gas control, 2-3 mL/min; helium cell gas control, 180-200 mL/min; ion mobility (IM) cell gas control, 30 mL/min; sample flow rate, 5 µL/min; IM traveling wave height, 25–40 V; and IM traveling wave velocity, 800-1000 m/s. X-ray diffraction analysis was conducted a Bruker D8 VENTURE PHOTON II MetalJet, in which crystals were frozen in paratone oil inside a cryoloop under a cold stream of N2. An empirical absorption correction using SADABS was applied for all data. The structures were solved and refined to convergence on F2 for all independent reflections by the full-matrix least squares method using the OLEX2 1.2. The anions of metallacage 4c was exchanged into $PF_6^$ and NO₃⁻ according to the published procedure^[S2]. Generally, 4c (10.00 mg) was first dissolved in 1.0 mL of CH₃CN. The addition of a saturated aqueous solution of KPF₆ or KNO₃ (5 mL) to give a precipitate which was collected, washed with water and then dried to give the corresponding metallacage in different anionic forms $4c-PF_6^-$ and 4cNO₃⁻. The geometry optimization and energy calculations were performed by using the semi-empirical GFN1-xTB method^[S3]. During the optimization, the GEO_OPT method with L-BFGS optimization algorithm^[S4] was employed, and for the electrostatic calculations, periodic boundary conditions were specified with no constraints in the electrostatic boundary conditions direction (NONE). A self-consistent field (SCF) convergence criterion of 1.0E-06 was utilized, and the activated orbital transformation (OT) method^[S5,S6] facilitates the direct minimization of the energy functional by optimizing molecular orbitals.

To calculate the hydrodynamic radii, we used the Stokes-Einstein equation^[S7]:

$$r = \frac{kT}{6\pi\eta D}$$

where *r* is radius, *k* is Boltzmann constant, *T* is temperature, η is dynamic viscosity of CD₃CN (3.69 × 10⁻⁴ Pa s⁻¹)²³ and *D* is diffusion value estimated by the DOSY experiment.

2. Synthetic procedures and characterization data

2.1 Synthesis of compound 1

Compound **5** (500.0 mg, 0.68 mmol) and NaOH (170.79 mg, 4.27 mmol) were added in H₂O (50.0 mL) and stirred at room temperature for 6 h. Then the mixture was concentrated and washed by acetone to give **1** (556 mg, 94%) as a white solid.¹H NMR (400 MHz, CD₃OD, 295 K) δ 8.43 (s, 3H), 8.33 (s, 6H), 7.74 (d, *J* = 8.2 Hz, 6H), 7.26 (d, *J* = 8.2 Hz, 6H).

2.2 Synthesis of compound 7

A solution of *N*,*N*-dicyclohexylcarbodiimide (4.80 g, 11.16 mmol) and 4dimethylaminopyridine (0.60 g, 6.05 mmol) in dry DCM (100.0 mL) was stirred at 0 °C under argon, and then a solution of 2-(4-bromophenyl)acetic acid (**6**, 5.20 g, 24.18 mmol) in dry DCM (20.0 mL) was added dropwise. The resulting mixture was stirred at room temperature for another 24 h. The white precipitate was filtered off, and the filtrate was concentrated and purified by flash column chromatography (dichloromethane: petroleum ether = 1: 5) to give the pure product 7 (4.85 g, 65%) as yellow solid. ¹H NMR (400 MHz, CDCl₃, 295K) δ 7.45 (d, *J* = 8.3 Hz, 4H), 7.01 (d, *J* = 8.3 Hz, 4H), 3.68 (s, 4H). The ¹H NMR spectrum of 7 matched well with reported literature.^[S1]

-3.68

Figure S2. ¹H NMR spectrum (CDCl₃, 400 MHz, 295 K) recorded for 7.

2.3 Synthesis of compound 9

A solution of KOH (0.30 g, 5.35 mmol) in ethanol (5.0 mL) was added to a mixture of 1,3-bis(4-bromophenyl)propan-2-one 7 (2.70 g, 7.34 mmol) and 4,4'-dibromobenzil (8, 2.70 g, 7.34 mmol) in ethanol (20.0 mL). The resulting mixture was heated at reflux for 3 h. The mixture was then cooled to 0 °C through ice bath, and the resulting precipitate was collected by filtration and dried to give product 9 (4.38 g, 85%) as a dark purple solid. ¹H NMR (400 MHz, CDCl₃, 295K) δ 7.38 (dd, *J* = 12.2, 8.5 Hz, 8H), 7.06 (d, *J* = 8.5 Hz, 4H), 6.77 (d, *J* = 8.5 Hz, 4H). The ¹H NMR spectrum of 9 matched well with reported literature.^[S1]

Figure S3. ¹H NMR spectrum (CDCl₃, 400 MHz, 295 K) recorded for 9.

2.4 Synthesis of compound 11

A mixture of compound **9** (3.50 g, 5.00 mmol) and bis(4-bromophenyl) acetylene (**10**, 1.68 g, 5.00 mmol) in diphenyl ether (5.0 mL) was heated at 260 °C under N₂ for 48h. The resulting mixture was cooled to 25 °C and then diluted with ethanol. The precipitate was collected by filtration, washed with ethanol and hexane, and dried to give product **11** (4.14 g, 82%) as a light yellow solid. ¹H NMR (400 MHz, CDCl₃, 295K) δ 7.06 (d, J = 8.4 Hz, 12H), 6.61 (d, J = 8.4 Hz, 12H). The ¹H NMR spectrum of **11** matched well with reported literature.^[S1]

~7.26 ~7.05 ~7.05 ~7.05 ~7.05 ~6.62

Figure S4. ¹H NMR spectrum (CDCl₃, 400 MHz, 295 K) recorded for 11.

2.5 Synthesis of compound 2

4,4''-dibromo-3',4',5',6'-tetrakis(4-bromophenyl)-1,1':2',1''-terphenyl (11, 2.00 g, 1.98 mmol), pyridine-4-boronic acid (2.44 g, 19.84 mmol), Pd(PPh₃)₄ (100.0 mg, 158.72 µmol), Cs₂CO₃ (7.76 g, 23.81 mmol) were mixed in a 250.0 mL Schlenk flask. After degassing and backfill with nitrogen for three times. Then toluene/ethanol/water (80.0 mL/20.0 mL/20.0 mL) was added and the whole mixture was heated at 90°C for 6 days under N₂ atmosphere. After being cooled to room temperature, a saturated NaHCO₃ was added the organic components were extracted with CH₂Cl₂. The organic layer was washed with water and brine, dried over MgSO₄, filtrated and evaporated under reduced pressure. The residue was purified by flash column chromatography (dichloromethane: methanol = 20:1) to give ligand **2** (0.63 g, 32%) as a white solid. ¹H NMR (600 MHz, CDCl₃, 295K) δ 8.54 (d, *J* = 3.6 Hz, 8H), 7.33 (d, *J* = 3.6 Hz, 8H), 7.25 (d, *J* = 7.6 Hz, 8H), 7.02 (d, *J* = 7.6 Hz, 8H). ESI-HR-MS: m/z 997.22 [**2** + H⁺], calcd. For [C₇₂H₄₉N₆]⁺, 997.40.

8.54 8.53 8.53 7.34 7.26 7.03 7.02 7.03

Figure S5. ¹H NMR spectrum (CDCl₃, 600 MHz, 295 K) recorded for 2.

Figure S6. ESI-HR-MS spectrum of 2.

3. Self-assembly of metallacages and characterization data

3.1 Self-assembly of metallacage 4a

1 (10.00 mg, 11.50 µmol) and 3 (25.17 mg, 34.50 µmol) were mixed in acetonitrile/water (20.0 mL, 4:1, v/v). The whole reaction mixture was heated at 60 °C for 12 h, and then cooled to room temperature. The solvent was removed by nitrogen flow. The residue was redissolved in CH₃CN (5.0 mL) and filtered, and then ethyl ether (20.0 mL) was added to give a precipitate, which was collected by centrifugation to give metallacage **4a** (5.35 mg, 19%) as a white solid. ¹H NMR (600 MHz, CD₃CN, 295 K) δ 8.32 (s, 12H), 8.12 (s, 24H), 7.45 (d, *J* = 8.6 Hz, 24H), 7.10 (d, *J* = 8.6 Hz, 24H), 1.84–1.93 (m, 288H), 1.25–1.28 (m, 432H). ³¹P{¹H} NMR (162 MHz, CD₃CN, 295 K), δ 2.52 (s, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3706 Hz). ESI-TOF-MS: 1035.5970 [**4a** + 8Na]⁸⁺, 1180.2861 [**4a** + 7Na]⁷⁺, 1373.1576 [**4a** + 6Na]⁶⁺, 1643.2198 [**4a** + 5Na]⁵⁺.

Figure S9. ³¹P{¹H} NMR spectrum (CD₃CN, 243 MHz, 295 K) recorded for 4a.

3.2 Self-assembly of metallacage 4b

2 (10.00 mg, 10.03 µmol) and **3** (21.95 mg, 30.08 µmol) were mixed in acetonitrile (16.0 mL). The whole reaction mixture was heated at 60 $^{\circ}$ C for 12h, then cooled to room temperature. The solvent was removed by nitrogen flow. The residue was redissolved in CH₃CN (5.0 mL) and filtered, and then ethyl ether (20.0 mL) was added to give a precipitate, which was collected by centrifugation to give metallacage **4b** (27.82 mg, 87%) as a white solid. ¹H NMR (600 MHz, CD₃CN) δ 8.83 (s, 24H), 8.70 (s, 24H), 7.47 (d, *J* = 4.9 Hz, 24H), 7.36 (d, *J* = 4.9 Hz, 24H), 7.12 (dd, *J* = 21.7, 8.1 Hz, 48H), 6.93 (dd, *J* = 46.6, 8.1 Hz, 48H), 1.84–1.94 (m, 288H), 1.20–1.26(m, 432H). ³¹P{¹H} NMR (162 MHz, CD₃CN, 295 K), δ 0.47 (s, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3081 Hz). ESI-TOF-MS: 1125.2874 [**4b** – 10OTf]¹⁰⁺, 1266.9669 [**4b** – 9OTf]⁹⁺, 1443.9618 [**4b** – 8OTf]⁸⁺, 1671.5303 [**4b** – 7OTf]⁷⁺, 1974.9288 [**4b** – 6OTf]⁶⁺.

Figure S10. ESI-TOF-MS spectrum of 4b.

Figure S12. ³¹P{¹H} NMR spectrum (CD₃CN,243 MHz, 295 K) recorded for 4b.

Figure S13. 2D DOSY spectrum (400 MHz, CD₃CN, 295 K) of 4b

3.3 Self-assembly of metallacage 4c

1 (8.72 mg, 10.03 μ mol), **2** (10.00 mg, 10.03 μ mol) and **3** (43.89 mg, 60.17 μ mol) were mixed in acetonitrile/water (20.0 mL, 4:1, v/v). The whole reaction mixture was heated at 60 °C for 12h, then cooled to room temperature. The solvent was removed by

nitrogen flow. The residue was redissolved in CH₃CN (5.0 mL) and filtered, and then ethyl ether (20.0 mL) was added to give a precipitate, which was collected by centrifugation to give metallacage **4c** (47.55 mg, 87%) as a white solid. ¹H NMR (600 MHz, CD₃CN) δ 8.77 (s, 24H), 8.51 (s, 24H), 8.07 (s, 6H), 7.93 (s, 12H), 7.66 (d, *J* = 14.8 Hz, 48H), 7.54 – 7.42 (m, 48H), 7.35 (d, *J* = 7.8 Hz, 24H), 7.22 (dd, *J* = 13.2, 8.6 Hz, 48H), 7.17 (d, *J* = 8.1 Hz, 24H), 1.93–1.94 (m, 576H), 1.08–1.27 (m, 864H). ³¹P{¹H} NMR (162 MHz, CD₃CN, 295 K), δ 5.35 (d, ²*J*_{P-P} = 21.6 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3346 Hz), 0.10 (d, ²*J*_{P-P} = 21.5 Hz, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 3346 Hz). ESI-TOF-MS: 1153.5021 [**4c** – 16OTf]¹⁶⁺, 1339.8600 [**4c** – 14OTf]¹⁴⁺, 1454.3834 [**4c** – 13OTf]¹³⁺, 1588.0000 [**4c** – 12OTf]¹²⁺, 1745.9076 [**4c** – 11OTf]¹¹⁺, 1935.3961 [**4c** – 10OTf]¹⁰⁺.

Figure S14. ESI-TOF-MS spectrum of 4c.

Figure S15. ¹H NMR spectrum (CD₃CN, 600 MHz, 295 K) recorded for 4c.

Figure S16. ³¹P{¹H} NMR spectrum (CD₃CN,243 MHz, 295 K) recorded for 4c.

Figure S17. 2D DOSY spectrum (400 MHz, CD₃CN, 295 K) of 4c

4. X-ray structure determination

Compound	4a
Empirical formula	C ₃₁₂ H ₄₄₄ N ₄ O ₄₈ P ₂₄ Pt ₁₂
F_w	8102.96
Crystal system	cubic
Space group	<i>P</i> -43n
<i>a</i> /Å	29.1614(16)
b /Å	29.1614(16)
c /Å	29.1614(16)
α /°	90
$\beta/^{\circ}$	90
γ/°	90
V/Å ³	24798(4)
Z	8
$D_{\rm calc}/{ m g~cm^{-3}}$	1.085
F (000)	8048.0
μ /mm ⁻¹	4.950
θ max	114.486
Independent reflns	8540
Reflns $[I > 2\sigma(I)]$	170473
$R_1; wR_2 [I > 2\sigma(I)]$	0.0417; 0.1154

Table S1. Crystallographic data and refinement details for metallacage 4a

Compound	4c
Empirical formula	C ₇₄₄ H ₉₉₆ N ₂₈ O ₄₈ P ₄₈ Pt ₂₄
F_w	17260.44
Crystal system	trigonal
Space group	R -3
<i>a</i> /Å	59.444(6)
b /Å	59.444(6)
c /Å	167.23(3)
α /°	90
$\beta / ^{\circ}$	90
γ/°	120
V/Å ³	511754(140)
Z	12
$D_{\rm calc}/{ m g~cm^{-3}}$	0.633
F (000)	91632.0
μ /mm ⁻¹	4.207
θ max	50.667
Independent reflns	114995
Reflns $[I > 2\sigma(I)]$	312328
$R_1; wR_2 [I > 2\sigma(I)]$	0.1570; 0.3446

Table S2. Crystallographic data and refinement details for metallacage 4c

Figure S18. Crystal structures of metallacage 4a, Hydrogen atoms, counterions, solvent molecules units are omitted for clarity.

Figure S19. Optical image of crystals of metallacage 4c.

Figure S20. Crystal structures of metallacage 4a, Hydrogen atoms, counterions, solvent molecules units are omitted for clarity.

Figure S21. Crystal packing model of metallacage 4c viewed from (a) a axis, (b) b axis,and (c) c axis. Hydrogen atoms, counterions, triethylphosphine units and solventmoleculesareomittedforclarity.

5. Photophysical properties of compounds

Figure S22. UV/Vis absorption spectrum of ligand 1 in CH₃CN/H₂O (v:v=9:1), ligand 2 and metallacages 4a–4c in CH₃CN.

Figure S23. Plot of the emission at 450 nm of the equimolar mixture of **4a** and **4b** in CH₃CN ($\lambda_{ex} = 265$ nm, c = 10.0 µM).

6. Monitoring the supramolecular self-assembly and fusion process

Figure S24. Time-dependent ESI-TOF-MS spectra of equimolar mixture of 4a and 4b.

Figure S25. ESI-TOF-MS spectrum of equimolar mixture of 4a and 4b after being stirring overnight.

7. The effect of solvent and counterion in the formation of the metallacage 4c

(CD₃CN), (b) 4c (Acetone- d_6) and (c) 4c (DMSO- d_6).

(b) **4c**-NO₃⁻ and (c) **4c**- PF₆⁻.

8. Host-guest complexation study

Coronene, (b) 4b@Coronene and (c) 4b.

Figure SSI. Partial 'H NMR spectra (600 MHz, CD_3CN , 295 K) recorded f Coronene, (b) 4c@Coronene and (c) 4c.

9. Energy Comparisons

Figure S32. Relative energy of the metallacages in the transformation process.

10. References

1. H. Liu, Z. Zhang, C. Mu, L. Ma, H. Yuan, S. Ling, H. Wang, X. Li and M. Zhang, *Angew. Chem., Int. Ed.*, 2022, **61**, e202207289.

2. C. Mu, Z. Zhang, Y. Hou, H. Liu, L. Ma, X. Li, S. Ling, G. He and M. Zhang, *Angew. Chem., Int. Ed.*, 2021, **60**, 12293–12297.

3. S. Grimme, C. Bannwarth and P. Shushkov, *J. Chem. Theory Comput.* 2017, **13**, 1989–2009.

4. R. H. Byrd, P. Lu, J. Nocedal and C. Zhu, *SIAM J. Sci. Comput.* 1995, **16**, 1190–1208.

5. J. VandeVondele and J. Hutter, J. Chem. Phys. 2003, 118, 4365–4369.

V. Weber, J. VandeVondele, J. Hutter and A. Niklasson, *J. Chem. Phys.* 2008, **128**, 084113.

Y. Gu, E. A. Alt, H. Wang, X. Li, A. P. Willard and J. A. Johnson, *Nature*, 2018, 560, 65–69.