Supplementary Information for

Unraveling the atomic structure and dissociation of interfacial water on anatase TiO² (101) under ambient conditions with solidstate NMR spectroscopy†

Longxiao Yang,‡a Min Huang,‡^b Ningdong Feng,^{*a} Meng Wang,^c Jun Xu,a Ying Jiang,^d Ding Ma,^{*c} Feng Deng^{*a}

aState Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071; University of Chinese Academy of Sciences, Beijing 100049, P. R. China. ningdong.feng@wipm.ac.cn, dengf@wipm.ac.cn ^bSchool of Physics, Hubei University, Wuhan 430062, P. R. China. ^cBeijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China. dma@pku.edu.cn d International Center for Quantum Materials, School of Physics, Peking University, Beijing, P. R. China. †Electronic supplementary information (ESI) available. ‡These authors contributed equally to this work.

Experimental Sections

Sample Preparation. The anatase TiO₂ samples with predominantly exposed (101) facets were prepared according to previous report $1,2$. For the preparation of Ti(OH)₄ precursor, 6.6 mL of TiCl₄ was added to aqueous HCl (0.43 mol/L) drop by drop under strong stirring in an ice bath to obtain an aqueous $TiCl₄$. This aqueous TiCl₄ was then added to aqueous $NH₃·H₂O$ (5.5 wt.%) drop by drop under stirring. White $Ti(OH)₄$ precipitate could be formed during the process. Afterward, the aqueous $NH₃$ H₂O (4.0 wt.%) was added to adjust the pH value to 6 − 7. After aging at room temperature for 2 h, the suspension was centrifuged, and the precipitate was washed with distilled water for three times and absolute ethanol for one time.

4.0 g the fresh $Ti(OH)₄$ precursor was first dispersed in the mixture of 30 mL deionized water and 30 ml isopropanol. After stirring and ultrasonic treatment, the suspension was transferred to a 100 mL Teflon-lined autoclave and heated for 15 h at 180 °C. The products were collected by centrifugation and washed with NaOH solution (0.1 M) and absolute ethanol for five times respectively. To remove the Cl- and N attached on the surface, the product was dispersed in 200 mL NaOH solution (0.1 M) with magnetic stirring for 12 h. Finally, the white TiO₂ sample is obtained by washing with distilled water until the pH reaches 6 − 7 and drying at 60 °C for 12 h.

¹⁷**O** enrichment. 100 mg TiO₂ sample was enriched by 360 µmol of H_2 ¹⁷O (Cambridge Isotope Laboratories, 90%) at room temperature for 2 h, and then the 17 O-enriched TiO $_2$ was dehydrated at 160 °C. Different amount of H $_2$ 17O was

introduced onto the dehydrated $TiO₂$ catalyst (100 mg) in a glass tube connecting to a vacuum line at the liquid $N₂$ temperature, and then the glass tube was sealed off. The glass tube was placed at room temperature for 2 h to equilibrate the ¹⁷O enrichment process. Prior to the NMR experiments, the ¹⁷O enriched samples with or without loaded $\rm H_2$ ¹⁷O were transferred into a NMR rotor in the glove box.

2H enrichment. The dehydrated ²H-enriched TiO₂ (100 mg) was prepared by exchanging TiO₂ with 470 umol of ${}^{2}H_{2}O$ (Sigma-Aldrich, 99.9%) at room temperature for 2 h, and then the ²H-enriched sample was dehydrated at 160 °C. The dehydrated ²H-enriched TiO₂ was then loaded with different amount (0.3 − 4.7 mmol/g) of ${}^{2}H_{2}O$.

Characterization. X-ray diffraction patterns (XRD) of the samples were acquired on a X'PERT³ POWDER with Cu radiation (λ = 0.15418 nm). The morphology of $TiO₂$ was characterized by transmission electron microscopy (TEM) on a Tecnai F30 at an accelerating voltage of 300 KV. Nitrogen adsorption/desorption isotherm measurements were conducted at an ASAP 2460 for the BET area. Xray photoelectron spectroscopy (Thermo Escalab 250Xi, Al Ka irradiation, XPS) was adopted to detect the residue of Cl⁻, N impurities on the TiO $_2$ surface. The C 1s peak (284.6 eV) arising from adventitious carbon was chosen as the reference of the binding energy.

¹⁷O MAS NMR experiments were conducted at 11.7 T (¹⁷O Larmor frequency of 67.8MHz) on a Bruker-Advance III 500 spectrometer using a 4 mm double-resonance probe. The 1D 17 O MAS NMR spectra were recorded by using a π/12 pulse width of 0.3 μs, a repetition time of 0.5 s, a magic angle spinning

rate of 13.5 kHz, and 600000 scans accumulations. 2D ¹⁷O 3Q MAS NMR experiments were carried out using Z-fliter sequence with a pulse delay of 0.5 s and a magic angle spinning rate of 13.5 kHz. The increment interval in the indirect dimension was set to 52.59 μ s, and 32 t_1 increments and 36000 scans accumulations for each t_1 increment were used in the NMR experiments. The total time for acquiring a 1D 170 MAS spectrum is ca. three-four days and that for acquiring a 2D $17O$ 3Q MAS NMR spectrum is up to six days. 2D $1H\{17O\}$ J-HMQC spectra were collected at a magic angle spinning speed of 13.5 kHz with a recycle delay of 1.5 s. The increment interval in the indirect dimension was set to 74.07 μ s, and 80 t₁ increments were used in the NMR experiments. A total of 128, 512, 128 scans were collected respectively for the 2D ¹H{¹⁷O} J-HMQC spectra in the ¹⁷O chemical shift range of -50 − 40, 110 − 190, 590 − 710 ppm. The total time for acquiring a 2D $^{1}H_{1}^{17}O$ } J-HMQC spectrum is 4 - 16 hours.

The 1D ¹⁷O MAS NMR spectra were also recorded at 18.8 T (¹⁷O Larmor frequency of 108.5 MHz) on a Bruker-Advance III 800 spectrometer using a 1.9 mm double-resonance probe. A $\pi/2$ pulse width of 2.5 us and a repetition time of 1 s were used to collect the 1D ¹⁷O MAS NMR spectra at a spinning speed of 35 kHz.

Variable-temperature static ²H NMR experiments were performed on a Bruker Avance III 400 MHz DNP spectrometer and a double-resonance 1.9 mm probe. A solid echo pulse sequence $[\pi/2 - \tau - \pi/2 - \tau -$ acquire] was used to acquire static ²H NMR spectra, in which echo delay, π/2 pulse length and recycle

delay were 30 μs, 2.9 μs and 2 s, respectively. Deconvolution of the ²H NMR spectra was conducted using DMFIT software.

²H MAS NMR experiments were performed on a Bruker-Advance III 500 spectrometer with a double-resonance 4.0 mm probe. A $\pi/2$ pulse width of 5 μ s and a recycle delay of 4 s were used to collect the 1D ²H MAS NMR spectra at a spinning speed of 10 kHz.

Theoretical calculations. Density functional theory (DFT) calculations were performed by using Vienna Ab initio Simulation Package (VASP) computer package with the Perdew-Burke-Ernzerhof (PBE) generalized gradient corrected approximation (GGA) for the exchange-correlation function 3,4. Projectoraugmented wave (PAW) potentials were used to take into account the electronion interaction, and the wave function was described with a plane wave basis set of 500 eV. Similar to previous study which showed standard DFT can give reliable structural information, we used standard DFT method to do all the calculations ⁵ . To make our calculation results more reliable, we used the experimental values (a = 3.78 Å and $c = 9.50$ Å) for the lattice constant of bulk anatase TiO $_2$ in our calculations 6 . The anatase TiO $_2$ (101) surfaces were modeled by (2×2) surface slabs with 24 atomic layers and vacuum thickness of 15 Å to maintain trivial fluctuations of chemical shift values in their middle layers. The chemical shifts of O were calculated by using the linear response method. The k-point meshes employed in the calculations were generated according to the Monkhorst-Pack scheme ⁷. The resulting Brillouin-zone sampling used for the supercells was equivalent to the one obtained with (4×4×1) grids for the primitive

(1×1) slabs of the surface. Spin polarization was included in the calculations. All of the atoms were allowed to relax during structure optimization until the change of the total energy was less than 1×10⁻⁵eV and all the forces on each atom were smaller than 0.01 eV/Å.

The isotropic chemical shift (*δ*) can be computed as *δ = δcal + δref* where *δcal* is the chemical shift calculated by VASP, *δref* is the reference chemical shift. The *δref* for each model was determined by aligning the average *δcal* of middle four layers to the experimental δ_{iso} of bulk O_{3C} (561 ppm).

Figure S1. XRD patterns and standard PDF card of the anatase TiO₂ sample.

Figure S2. (a) Low magnification and (b) high resolution TEM images of the TiO₂ sample. Inset in b shows the schematic diagram of the $TiO₂$ nanoparticle. The TEM results indicate that the $TiO₂$ sample exhibits an octahedral morphology with an average size of 20 nm. The lattice spacing parallel to the lateral facets is 3.56 Å, corresponding to the (101) facet of anatase $TiO₂$, and the percentage of the dominant facet is about 95%, which is the most frequently exposed surface with the lowest energy ^{8,9}.

Figure S3. Ti $2p$, and O 1s XPS spectra of the TiO₂ sample. According to the XPS results, titanium atoms exist in the form of Ti4+−O bonds as confirmed by the Ti *2p3/2* and *2p1/2* XPS peaks at 458.8 and 464.5 eV, and the O *1s* XPS spectra shows two peaks at 529.7 and 531.4 eV, due to lattice oxygen in Ti−O−Ti bonds and OH groups, respectively¹⁰.

Figure S4. XPS patterns of the TiO₂ sample. Cl⁻ (200 eV) and N (400 eV) species are not observed on the surface, indicating the absence of chlorine and nitrogen species on the $TiO₂$ surface.

Figure S5. ESR spectra (acquired at liquid nitrogen temperature) of the TiO₂ sample before and after dehydration at 160 °C.

Figure S6. 1D ¹⁷O MAS NMR spectra of dehydrated ¹⁷O-enriched TiO₂ loaded with 3.1 mmol/g H $_2$ 17O at 298 K and 383 K, acquired at magnetic field of 11.7 T.

Figure S7. 2D ¹⁷O 3Q MAS NMR spectrum of dehydrated ¹⁷O-enriched TiO₂ with 0.3 mmol/g H_2 ¹⁷O loading, acquired at magnetic field of 11.7 T.

Figure S8. 1D ¹⁷O MAS NMR spectra of dehydrated ¹⁷O-enriched TiO₂ samples with H_2 ¹⁷O loading from 0 to 3.1 mmol/g, acquired at magnetic field of 18.7 T. The signal (gray) at 500 − 600 ppm is due to the bulk oxygen species.

Figure S9. 2D ¹H{¹⁷O} J-HMQC NMR spectra of dehydrated ¹⁷O-enriched TiO₂ samples with (a) 0.5, (b) 1.3 and (c) 3.1 mmol/g $\rm H_2$ ¹⁷O loading. When the $\rm H_2$ ¹⁷O loading is 0.5 mmol/g, two correlations are visible between the ¹H signal (at 5.4 ppm) of molecular H₂O and the ¹⁷O signals of O_{II} (at 700 ppm) and O_{III} (at 628 ppm) sites (Figure S9a). When the $\rm H_2$ 17O loading is 1.3 mmol/g, the 1H signal (at 5.4 ppm) of molecular H₂O also interacts with the two types of surface O_{2C} sites (that is O_{II} and O_{III} , Figure S9b). With the increase of H₂O loading to 3.1 mmol/g, four correlations are evident between the ¹H signal (at 5.4 ppm) of molecular H₂O and the ¹⁷O signals of O_{II} (at 678 ppm), O_{III} (at 628 ppm), O_V (at 658 ppm), and O_{VI} (at 640 ppm) sites (Figure S9c). Note that there is no correlation observed between these O_{2C} sites and surface OH groups. Thus, the formation of O_{II} − O_{VI} sites is only associated with interaction between $O₁$ (the bare O_{2c} site) and molecular H_2O , and has nothing to do with surface OH groups. Additionally, the correlation signal between the ¹H signal (at 5.4 ppm) of adsorbed H_2O and the ¹⁷O signal (at 615 ppm) of O_{IV} is not observable, probably due to its low amount and high mobility.

Figure S10. Experimental (left) and simulated (right) static ²H NMR spectra of TiO₂ with 1.3 mmol/g D₂O loading, acquired at variable temperature. Two peaks with different lineshape are evident at low temperature (150 − 220 K), confirming the existence of two types of adsorbed D_2O (that is chemisorbed and physisorbed D_2O). According to the 2D ¹H{¹⁷O} J-HMQC NMR experiments, the chemisorbed D_2O not only interacts with two types of surface hydroxyl groups (Figure 2 in main text) and O_{2C} sites (Figure S9), but also bonds to Ti_{5C} site (D_2O-Ti_{5c}) on the TiO₂ surface, forming a relatively rigid structure. The peak of the chemisorbed D_2O shows a broad $\frac{2H}{1}$ quadrupolar pattern at 150 K, and its NMR parameters ($\delta_{\rm iso}$, C_O, and η) are listed in Table S4. While the physisorbed D_2 O only interacts with the chemisorbed D_2 O and terminal hydroxyl group, and has relatively high mobility, leading to a narrow peak with Gaussian lineshape. When the temperature increases from 150 K to 220 K, the ²H quadrupolar pattern gradually disappears, which can be ascribed to the fast exchange between chemisorbed and physisorbed D_2O molecules.

Figure S11. 2D ¹H{¹⁷O} J-HMQC NMR spectra (a, b) of dehydrated ¹⁷O-enriched TiO $_2$ with 1.3 mmol/g H $_2$ 17O loading in different 17O chemical shift range.

Figure S12. Calculated structure of the bare TiO₂ (101) facet. Isotropic chemical shifts δ_{iso} of the oxygen sites in each layer are listed, for which δ_{ref} = 133. Titanium and oxygen atoms are plotted in blue (Ti) and red (O).

Figure S13. Calculated structure of the TiO₂ (101) facet with adsorbed water molecules. In this model, one water molecule is chemisorbed on one surface Ti_{5C} site. This structure is denoted as $1H₂O/1Ti_{5C}$ in the text. Isotropic chemical shifts δ_{iso} of the oxygen sites in each layer are listed, for which δ_{ref} = 135. Titanium, oxygen and hydrogen atoms are plotted in blue (Ti), red (O) and pink (H).

2H ₂ O/2Ti _{sc}	Layer of O	$\delta_{\rm iso}/\rho$ pm
	H ₂ O 1 2 3 4 5 6 $\overline{7}$ 8 9	-36 729, 727 499, 498 555, 542 569, 550 546, 555 547, 545 556.556 561, 561 559, 559
	10 11 12 13 14	556, 556 556, 556 561, 561 557.557 555, 555
	15 16 17 18 19	553, 553 558, 558 552, 552 559, 556 547, 547
	20 21 22 23 24 H_2O	546, 554 550, 570 543, 557 500, 500 724, 726 -37

Figure S14. Calculated structure of the TiO₂ (101) facet with adsorbed water molecules. In this model, two water molecules are chemisorbed on two surface Ti_{5C} site. This structure is denoted as $2H_2O/2Ti_{5C}$ in the text. Isotropic chemical shifts δ_{iso} of the oxygen sites in each layer are listed, for which δ_{ref} = 135. Titanium, oxygen and hydrogen atoms are plotted in blue (Ti), red (O) and pink (H).

Figure S15. Calculated structure of the TiO₂ (101) facet with adsorbed water molecules. In this model, one water molecule is chemisorbed on one surface Ti_{5C} site and another water molecule is physisorbed on the H₂O-Ti_{5C} through hydrogen bond. This structure is denoted as $2H_2O/1Ti_{5C}$ in the text. Isotropic chemical shifts δ_{iso} of the oxygen sites in each layer are listed, for which δ_{ref} = 133. Titanium, oxygen and hydrogen atoms are plotted in blue (Ti), red (O) and pink (H).

Figure S16. Calculated structure of the TiO₂ (101) facet with adsorbed water molecules. In this model, three water molecules are chemisorbed on three surface Ti_{5C} sites. This structure is denoted as $3H₂O/3Ti_{5C}$ in the text. Isotropic chemical shifts δ_{iso} of the oxygen sites in each layer are listed, for which δ_{ref} = 133. Titanium, oxygen and hydrogen atoms are plotted in blue (Ti), red (O) and pink (H).

$\mathsf{H}_2\mathsf{O}$ 1 $\overline{2}$ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	25, -37, -56 712, 728, 703, 690 519, 526, 481, 489 550, 548, 442, 528 555, 546, 563, 544 546, 560, 551, 549 547, 545, 550, 546 556, 554, 558, 561 564, 554, 566, 558 565, 565, 565, 565 555, 555, 555, 555 557, 557, 557, 557 561, 561, 561, 561 560, 560, 560, 560 561, 561, 561, 561 554, 554, 554, 554 561, 561, 561, 561 556, 556, 556, 556 560, 558, 554, 556 549, 547, 546, 545 551, 553, 549, 562 543, 562, 547, 555 530, 539, 548, 549 484, 488, 526, 512
24	692, 704, 726, 723
H,O	10, -38, -57

Figure S17. Calculated structure of the TiO₂ (101) facet with adsorbed water molecules. In this model, two water molecules are chemisorbed on two surface Ti_{5C} site and another one water molecule is physisorbed on the H₂O-Ti_{5C} through hydrogen bond. This structure is denoted as $3H_2O/2Ti_{5C}$ in the text. Isotropic chemical shifts δ_{iso} of the oxygen sites in each layer are listed, for which δ_{ref} = 135. Titanium, oxygen and hydrogen atoms are plotted in blue (Ti), red (O) and pink (H).

4H ₂ O/4Ti _{5c}	Layer of O	$\delta_{\rm iso}/\text{ppm}$
	H ₂ O 1	-19 654
		541
	$\frac{2}{3}$	540
		591
	$\frac{4}{5}$	549
	6	542
	$\overline{7}$	537
	8	550
	9	552
	10	524
	11	520
	12	561
	13	559
	14	529
ro 0	15	525
	16	551
	17	551
	18	534
	19	516
	20	550
	21	599
	22	556
	23	531
	24	648
	H ₂ O	-19

Figure S18. Calculated structure of the TiO₂ (101) facet with adsorbed water molecules. In this model, four water molecules are chemisorbed on four surface Ti_{5C} sites. This structure is denoted as $4H₂O/4Ti_{5C}$ in the text. Isotropic chemical shifts δ_{iso} of the oxygen sites in each layer are listed, for which δ_{ref} = 132. Titanium, oxygen and hydrogen atoms are plotted in blue (Ti), red (O) and pink (H).

Figure S19. Calculated structure of the TiO₂ (101) facet with adsorbed water molecules. In this model, two water molecules are chemisorbed on two surface Ti_{5C} sites and another two water molecules are physisorbed on the H₂O-Ti_{5C} through hydrogen bond. This structure is denoted as $4H₂O/2Ti_{5C}$ in the text. Isotropic chemical shifts δ_{iso} of the oxygen sites in each layer are listed, for which δ_{ref} = 130. Titanium, oxygen and hydrogen atoms are plotted in blue (Ti), red (O) and pink (H).

Figure S20. Calculated structure of the TiO₂ (101) facet with adsorbed water molecules. In this model, three water molecules are chemisorbed on three surface Ti_{5C} sites and another water molecule is physisorbed on the H₂O−Ti_{5C} through hydrogen bond. This structure is denoted as $4H₂O/3Ti_{5C}$ in the text. Isotropic chemical shifts δ_{iso} of the oxygen sites in each layer are listed, for which δ_{ref} = 133. Titanium, oxygen and hydrogen atoms are plotted in blue (Ti), red (O) and pink (H).

Layer of $O = \delta_{iso}$ /ppm

H,O	18, -23, -35, -25, -37
-1	642, 652, 652, 628
2	531, 493, 532, 498
3	562, 551, 556, 548
4	553, 559, 560, 560
5	542, 542, 549, 541
6	549, 554, 550, 552
7	556, 556, 556, 556
8	554, 554, 554, 554
9	562, 562, 562, 562
10	552, 552, 552, 552
11	553, 553, 553, 553
12	559, 559, 559, 559
13	561, 561, 561, 561
14	557, 557, 557, 557
15	553, 553, 553, 553
16	557, 557, 557, 557
17	557, 557, 557, 557
18	560, 560, 560, 560
19	552, 550, 556, 551
20	541, 543, 546, 548
21	558, 552, 556, 561
22	546, 560, 549, 564
23	499, 529, 495, 529
24	627, 646, 651, 652
H,O	-31, 14, -31, -31, -37

Figure S21. Calculated structure of the TiO₂ (101) facet with adsorbed water molecules. In this model, four water molecules are chemisorbed on four surface Ti_{5C} sites and another one water molecule is physisorbed on the H₂O-Ti_{5C} through hydrogen bond. This structure is denoted as $5H₂O/4Ti_{5C}$ in the text. Isotropic chemical shifts δ_{iso} of the oxygen sites in each layer are listed, for which δ_{ref} = 131. Titanium, oxygen and hydrogen atoms are plotted in blue (Ti), red (O) and pink (H).

Layer of $O = \delta_{\text{iso}}/ppm$

Figure S22. Calculated structure of the TiO₂ (101) facet with adsorbed water molecules. In this model, three water molecules are chemisorbed on three surface Ti_{5C} sites and another three water molecules are physisorbed on the H₂O−Ti_{5C} through hydrogen bond. This structure is denoted as 6H₂O/3Ti_{5C} in the text. Isotropic chemical shifts δ_{iso} of the oxygen sites in each layer are listed, for which δ_{ref} = 130. Titanium, oxygen and hydrogen atoms are plotted in blue (Ti), red (O) and pink (H).

Figure S23. Calculated structure of the TiO₂ (101) facet with adsorbed water molecules. In this model, four water molecules are chemisorbed on four surface Ti_{5C} sites and another two water molecules are physisorbed on the H₂O−Ti_{5C} through hydrogen bond. This structure is denoted as $6H₂O/4Ti_{5C}$ in the text. Isotropic chemical shifts δ_{iso} of the oxygen sites in each layer are listed, for which δ_{ref} = 132. Titanium, oxygen and hydrogen atoms are plotted in blue (Ti), red (O) and pink (H).

Figure S24. Calculated structure of the TiO₂ (101) facet with adsorbed water molecules. In this model, four water molecules are chemisorbed on four surface Ti_{5C} sites and another four water molecules are physisorbed on the H₂O-Ti_{5C} through hydrogen bond. This structure is denoted as $8H₂O/4Ti_{5C}$ in the text. Isotropic chemical shifts δ_{iso} of the oxygen sites in each layer are listed, for which δ_{ref} = 166. Titanium, oxygen and hydrogen atoms are plotted in blue (Ti), red (O) and pink (H).

Figure S25. Calculated ¹⁷O chemical shifts of various O_{2C} sites interacting with H₂O on (101) facet of TiO₂ (Bar), and the corresponding NMR experimental values (Red dot). According to our NMR results, two types of adsorbed H_2O (chemisorbed H₂O, i.e. Ti_{5C}−OH₂ and physisorbed H₂O) are present on the (101) facet of TiO₂, and the formation of O_{II} − O_{VI} sites is associated with the interaction between $O₁$ (the bare O_{2C} site) and adsorbed H₂O. Thus, a series of structures with different H₂O adsorption configuration on (2×2) TiO₂ (101) surface slabs are optimized and shown in Figures S12−S24. Theoretical calculations indicate that the two types of adsorbed H_2O can form hydrogen bonds with nearby O_{2C} sites. Six O_{2C} sites having interaction with H_2O in different adsorption configuration are summarized from the calculated structures on (2×2) surface slabs (Figure 3b in main text). Based on our theoretically calculated and experimental ¹⁷O NMR chemical shifts (Figure S25), as well as the evolution of surface O_{2C} sites with the increase of H₂O loading (Figure 3a in main text), the following assignments can be made: O_I is due to surface O_{2C} site without interaction with H₂O; O_{II} and O_{III} correspond to surface O_{2C} sites interacting with one and two chemisorbed H₂O, respectively; O_{IV} is assigned to surface O_{2C} site interacting with two chemisorbed H_2O and two physisorbed H_2O ; O_V is attributed to surface O_{2C} site interacting with one chemisorbed H_2O and one physisorbed H₂O; O_{VI} is due to surface O_{2C} site interacting with two chemisorbed H₂O and one physisorbed H_2O .

Figure S26. Experimental and simulated ²H MAS NMR spectra of dehydrated ²H-enriched TiO₂ samples with ²H₂O loading from 0 to 4.7 mmol/g.

Figure S27. The optimized dissociation states of the interfacial H₂O on the (101) facet of TiO₂ at a 40% coverage with different amount of OH – H₂O interaction in the form of $M_1 - M_{VI}$ conformations (Figure 2 in main text), and the energy difference of the different OH / H_2O configurations (Structure A with six OH – H_2O interactions, Structure B with six $OH - H₂O$ interactions, Structure C with five OH $- H₂O$ interactions, Structure D with four OH $- H₂O$ interactions, and Structure E with three $OH - H₂O$ interactions). To verify the interactions between OH and

 $H₂O$ on anatase TiO₂ (101) surface, we performed structure optimization of five geometries with OH species (including Ti_{5C}−OH and O_{2C}H) and H₂O molecules on TiO₂ (101) surface. The calculations were performed by using a large (5×5×1) supercell slab (a=b=27.21 Å) with 300 atoms (100 Ti atoms and 200 O atoms) containing a vacuum gap of 15 Å. With such a big supercell, we use gamma point only to sample the surface Brillouin zone. The OH species and H_2O molecules were put on one side of the supercell and the atoms in the most bottom layer atoms were fixed during the calculations. With the increase of the OH – H_2O interactions, the energy of the OH/H₂O configurations decrease gradually, indicating that the $OH - H₂O$ interactions can stabilize the dissociation of H2O, and hinder the reaction of bridging OH groups and adjacent terminal OH groups to regenerate molecular H_2O .

Figure S28. (a) The dissociation state of interfacial H_2O on the (101) facet of TiO₂ at a 65% coverage of water. In this model, the physisorbed H_2O is shown in the green square. (b) The molecular H_2O adsorbed on the (101) facet of TiO₂ at the 65% coverage of water. (c) Scheme of regenerating H_2O via the interaction between two OH groups originated from $H₂O$ dissociation. According to the ²H MAS NMR results (Figure 4 in main text), the proton of bridging OH group is active and can exchange with ²H of D₂O. As such, when the physisorbed H₂O is adsorbed on the proton of bridged OH group through hydrogen bond, its original interaction with chemisorbed H_2O is broken, and an H_3O^* -like transition state could be formed as revealed in the previous report 11 , which can react with adjacent terminal OH group to re-generate H_2O .

O sites	Experimental results		Calculated structures
	$\delta_{\rm iso}/\text{ppm}$	P_Q /MHz	
O ₁	785 ^a	8.2 ^a	
O _{II}	702	0.9	
O _{III}	628	0.0	
O _{IV}	615	0.0	
O_V	658	0.4	
O_{VI}	641	0.7	

Table S1. ¹⁷O NMR parameters for oxygen sites on TiO₂ (101) surface.

Isotropic chemical shifts ($\delta_{\rm iso}$) and quadrupolar parameters (P $_{\rm Q})\,$ are derived from the 2D ¹⁷O 3Q MAS spectra in Figure 1d and 1E. $\delta_{iso} = \frac{17}{27} \delta_{F1} + \frac{10}{27} \delta_{F2}$ $rac{17}{27}\delta_{F1} + \frac{10}{27}\delta$ $\frac{1}{27}\delta_{F2}$. , where v_0 is resonance frequency of oxygen $P_{Q} = v_0 \sqrt{\frac{17}{67500}}$ $\frac{17}{675000}(\delta_{F1} - \delta_{F2}) = C_Q \times \sqrt{\frac{\eta^2}{3}} +$ $\frac{1}{3}$ + 1
where v_{0} is $r_{\varrho} - v_{0} \sqrt{675000}$ ^{($v_{F1} - v_{F2} = v_{\varrho} \sqrt{3} + 1$}, where v_{0} is resonance frequency of oxygen nucleus the η is the asymmetric parameter of the electric field gradient (EFG)

tensor.

^a Extracted by fitting the 1D ¹⁷O MAS spectra in Figure 1c using the Dimfit program. The C $_{\text{\tiny Q}}$ and $_{\text{\tiny T}}$ of O $_{\text{\tiny I}}$ is 8.0 MHz and 0.38, respectively.

Table S2. Theoretical calculated adsorption energy of H_2O on TiO₂ with different H₂O adsorption. $\Delta E = E(M) - [E(Bare-TiO₂) + n \times E(H₂O)]$, where ΔE is the adsorption energy of H₂O, $E(M)$ is the total energy of the adsorption complex, $E(Bare-TiO_2) = -1266.6306 \text{ eV}$, $E(H_2O) = -14.209828 \text{ eV}$, and n is the number of adsorbed H_2O .

Note 1: nH₂O/TiO₂ represents n H₂O molecules adsorbed on TiO₂ surface. **Note 2:** nH₂O/mTi_{5C} (n≥m) represents m H₂O molecules chemisorbed on m Ti_{5C} sites (Ti_{5C}−OH₂) of (2 × 2) surface slabs and (n-m) H₂O molecules physisorbed on (n-m) Ti_{5C} −OH₂.

Table S3. The structural parameters (bond length and bond angle) of interfacial H₂O and TiO₂ framework for the (2 \times 2) TiO₂ (101) surface slabs with variable H₂O adsorption.

Table S4. ²H NMR parameters for chemisorbed D_2O on TiO₂ (101) surface. Isotropic chemical shifts (δ_{iso}) and quadrupolar parameters (C_{Ω} and η) are extracted by spectral fitting of variable-temperature static ²H NMR spectra using the Dimfit program.

Temperature/K	$\delta_{\rm iso}/\text{ppm}$	C_0/kHz	η
150	4.8	209	0.1
180	4.8	205	0.1
200	4.8	190	0.1
220	4.8	150	0.1

SI References

- 1 L. Liu, X. Gu, Z. Ji, W. Zou, C. Tang, F. Gao and L. Dong, Anion-Assisted Synthesis of TiO₂ Nanocrystals with Tunable Crystal Forms and Crystal Facets and Their Photocatalytic Redox Activities in Organic Reactions, *J. Phys. Chem. C*, 2013, **117**, 18578−18587.
- 2 A. Jia, Y. Zhang, T. Song, Z. Zhang, C. Tang, Y. Hu, W. Zheng, M. Luo, J. Lu and W. Huang, Crystal-plane effects of anatase $TiO₂$ on the selective hydrogenation of crotonaldehyde over Ir/TiO₂ catalysts, *J. Catal.*, 2021, 395, 10−22.
- 3 G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, *Comp. Mater. Sci.*, 1996, **6**, 15−50.
- 4 J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, *Phys. Rev. Lett.*, 1996, **77**, 3865−3868.
- 5 Y. Li, X.-P. Wu, N. Jiang, M. Lin, L. Shen, H. Sun, Y. Wang, M. Wang, X. Ke, Z. Yu, F. Gao, L. Dong, X. Guo, W. Hou, W. Ding, X.-Q. Gong, C. P. Grey and L. Peng, Distinguishing Faceted Oxide Nanocrystals with ¹⁷O Solid-State NMR Spectroscopy, *Nat. Commun.*, 2017, **8**, 581.
- 6 J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson and J. V. Smith, Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K, *J. Am. Chem. Soc.*, 1987, **109**, 3639−3646.
- 7 D. J. Chadi, Special points for Brillouin-zone integrations, *Phys. Rev. B*, 1977, **16**, 1746−1747.
- 8 J. Yu, J. Low, W. Xiao, P. Zhou and M. Jaroniec, Enhanced photocatalytic $CO₂$ -reduction activity of anatase TiO₂ by co-exposed {001} and {101} facets, *J. Am. Chem. Soc.*, 2014, **136**, 8839-8842.
- 9 C. Xu, W. Yang, Q. Guo, D. Dai, M. Chen and X. Yang, Molecular hydrogen formation from photocatalysis of methanol on anatase-TiO₂(101), *J. Am. Chem. Soc.*, 2014, **136**, 602-605.
- 10 Q. Han, C. Wu, H. Jiao, R. Xu, Y. Wang, J. Xie, Q. Guo and J. Tang, Rational design of high-concentration Ti^{3+} in porous carbon-doped $TiO₂$ nanosheets for efficient photocatalytic ammonia synthesis, *Adv. Mater.*, 2021, **33**, e2008180.
- 11 L. R. Merte, G. Peng, R. Bechstein, F. Rieboldt, C. A. Farberow, L. C. Grabow, W. Kudernatsch, S. Wendt, E. Lægsgaard, M. Mavrikakis and F. Besenbacher, Water-Mediated Proton Hopping on an Iron Oxide Surface, *Science*, 2012, **336**, 889−893.