Supplemental Information for:

Exploring the Influence of H -Bonding and Ligand Constraints on Thiolate Ligated Non-Heme Iron Mediated Dioxygen Activation

Maike N. Lundahl, ${ }^{a}$ Maria B. Greiner, ${ }^{a}$ Marc C. Piquette, ${ }^{\text {b }}$ Paige M. Gannon, ${ }^{a}$ Werner Kaminsky ${ }^{\text {ta }}$ and Julie A. Kovacs*a

${ }^{\mathrm{b}}$ Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States

Experimental	Page
General Methods.	S3
Evans Method of [$\mathrm{Fe}^{\mathrm{I} \mathrm{\prime}}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right]$ (1).	S3
Kinetic Measurements.	S3-S5
Preparation of Saturated Dioxygen Solutions	S5
Dilution of Dioxygen Solutions.	S5-S6
Preparation of Potassium Superoxide Solutions.	S6
Computational Details.	S6-S7
X-ray Crystallographic Structure Determination	S8
Derivation of the Rate Expression	S9-S10
Supplementary Figures	
Figure S1. Kinetic trace at $\lambda=523 \mathrm{~nm}$ acquired $-40^{\circ} \mathrm{C}$ with $[1]=0.25 \mathrm{mM}$ and $\left[\mathrm{O}_{2}\right]=4.0 \mathrm{mM}$ in THF (concentrations in the mixing cell are given). The experimental trace is shown in black; the pseudo-first order fit is shown in red; residuals in blue are appended to the bottom of the graph. Figure S2. Plot of observed rate constants (kobs) for the formation of Fell"-superoxo $\mathbf{2}$ versus [$\mathrm{Fe}{ }^{11}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right]$ (1) concentration at $-40^{\circ} \mathrm{C}$ in THF . $\left[\mathrm{O}_{2}\right]$ after mixing $=3.95 \mathrm{mM}$ Figure S3. Plot of observed rate constants (kobs) for the formation of Fell"-superoxo $\mathbf{2}$ versus the concentration of $\left[\mathrm{Fe}^{\prime \prime}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right](1)\right.$ at $0{ }^{\circ} \mathrm{C}$ in $\mathrm{MeOH} .\left[\mathrm{O}_{2}\right]$ after mixing $=4.25 \mathrm{mM}$. Figure S4. The dissociation rate constant, koff, obtained from the y-intercept of the kobs vs [O_{2}] plots of Figure 3 (main text), does not correlate with temperature in THF. This, coupled with the \sim zero intercept of Fig. 2 would be consistent with irreversible O_{2} binding to 1 in this solvent. Figure S5. Correlation between temperature and rate constants for O_{2} release from superoxo 2, $\mathrm{k}_{\text {off }}$, in MeOH . Dissociation rate constants, koff, were obtained from the y -intercept of the $\mathrm{k}_{\mathrm{obs}}$ vs $\left[\mathrm{O}_{2}\right]$ plots (Fig. 4 of main text). Figure S6. Arrhenius plot for O_{2} binding to 1 in MeOH , from which activation parameter $\mathrm{E}_{\mathrm{a}}=$ 32(2) $\mathrm{kJ} \mathrm{mol}^{-1}$ was obtained. Figure S7. Arrhenius plot for O_{2} binding to 1 in THF, from which activation parameter $\mathrm{E}_{\mathrm{a}}=$ $21.4(8) \mathrm{kJ} \mathrm{mol}^{-1}$ was obtained. Figure S8. Kinetic trace for superoxide $\left(\mathrm{KO}_{2}\right)$ binding to 3 monitored at $\lambda=523 \mathrm{~nm}$ with [1] $=$ 0.1 mM and $\left[\mathrm{KO}_{2}\right]=5.0 \mathrm{mM}$ in THF at $-40^{\circ} \mathrm{C}$ under a constant ionic strength of 0.01 M with added $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ (concentrations listed are after mixing in the stopped-flow cell). The experimental data points are shown in blue; the pseudo-first order fit to eqn (1) of the main text is shown in red; residuals in red are appended to the bottom of the graph. Figure S9. Zero order dependence of kobs on Fe (III) concentration under pseudo first order conditions with excess $\mathrm{KO}_{2}(5 \mathrm{mM})$. This would be consistent with $1^{\text {st }}$ order dependence on Fe (III) overall.. Figure S10. Arrhenius plot for superoxide $\left(\mathrm{KO}_{2}\right.$ solubilized with KryptoFix$)$ binding to Fe (III)3 in THF.	S11 S12 S12 S13 S13 S14 S14 S15 S16 S17

Figure S11. Arrhenius plot for O_{2} release from superoxo 2 in MeOH , from which the activation parameter $\mathrm{E}_{\mathrm{a}}=34(4) \mathrm{kJ} \mathrm{mol}^{-1}$ was obtained.
Figure S12. DFT optimized structure of $\left[\mathrm{Fe}^{\| l}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me}} 2 \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdots \cdots \mathrm{H}-\mathrm{OMe}(1)\right.$ containing a MeOH solvent molecule H -bonded to one of the thiolate sulfurs, $\mathrm{S}(2)$. Calculated $\mathrm{MeO}(1)$ $\mathrm{H} \cdot \cdot \mathrm{S}(2)$ distance is $2.211 \AA$ (see Table S10).
Figure S13. Electronic absorption spectrum of Felll-superoxo 2 (0.25 mM) in THF vs MeOH.
Figure S14. Time-dependent DFT (TD-DFT) calculated electronic absorption spectrum for $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right]\right.$ (1) in THF solvent molecule.
Figure S15. Time-dependent DFT (TD-DFT) calculated electronic absorption spectrum for $\left[\mathrm{Fe}^{\prime \prime}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdots \cdots \mathrm{H}-\mathrm{OMe}(1)\right.$ containing a MeOH solvent molecule H -bonded to one of the thiolate sulfurs, showing that H-bonding causes the $S \rightarrow$ Fe charge transfer band to blue shift relative to that shown in Fig. S14.

Figure S16. Chemdraw depiction of the ligands in Table 2 of the main text.
Supplementary Tables
Table S1. Temperature-dependent pseudo $1^{\text {st }}$ order rate constants for the reaction between
$1\left([1]_{0}=0.25 \mathrm{mM}\right)$ and O_{2} in THF. All reported concentrations are after mixing in the

Table S2. Observed rate constants for the reaction between 1 ($[1]_{0}=0.25 \mathrm{mM}$) and O_{2} in
MeOH . All reported concentrations are after mixing in the stopped-flow cell.
Table S3. Temperature-dependent pseudo $1^{\text {st }}$ order rate constants for the reaction between between $3\left([3]_{0}=0.1 \mathrm{mM}\right)$ and KO_{2} solubilized with Kryptofix $®^{\circledR} 222$ in THF, under constant ionic strength $(0.01 \mathrm{M})$ with $9.8-17.8 \mathrm{mM} \mathrm{Bu} \mathrm{N}_{4} \mathrm{NPF}_{6}$. All reported concentrations are after mixing in the stopped-flow cell.
Table S4. DFT calculated (using the B3LYP functional and def2-TZVP basis set) Mulliken
charges for the optimized structure of $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right](1)\right.$ in $\mathrm{THF}, \mathrm{Fe}^{11}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdot \cdots \mathrm{H}-$ $\mathrm{OMe}(100 \cdot \mathrm{H}-\mathrm{OMe})$ in MeOH and $\left[\mathrm{Fe}^{111}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\left(\mathrm{O}_{2}\right)\right](2)\right.$ in MeOH .
Table S5. Crystal data and structure refinement for $\left[\mathrm{Fe}^{\prime \prime}\left(\mathrm{S}_{2} \mathrm{Me}^{2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdot \cdots \mathrm{H}-\mathrm{OMe}(1 \cdot \bullet \cdot \mathrm{H}-\right.$
S26
OMe)
Table S6. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} x\right.$ $\left.10^{3}\right)$ for $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdots \cdot \mathrm{H}-\mathrm{OMe}(1 \cdot \bullet \cdot \mathrm{H}-\mathrm{OMe}) . \mathrm{U}(\mathrm{eq})\right.$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.
Table S7. Bond lengths $\left[\AA\right.$] and angles [$\left.{ }^{\circ}\right]$ for $\left[\mathrm{Fe}^{11}\left(\mathrm{~S}_{2} \mathrm{Me}^{2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdots \cdot \mathrm{H}-\mathrm{OMe}(1 \cdot \bullet \cdot \mathrm{H}-\mathrm{OMe})\right.$.
Table S8. Anisotropic displacement parameters $\left(\AA^{2} x 10^{3}\right)$ for $\left[\mathrm{Fe}^{11}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me}}{ }^{2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdot \bullet \mathrm{H}-\mathrm{OMe}\right.$ (1•00H-OMe).
Table S9. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\left[\mathrm{Fe}^{11}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me}} \mathrm{N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdots \mathrm{H}-\mathrm{OMe}(1 \bullet \bullet \bullet \mathrm{H}-\mathrm{OMe})\right.$.
Table S10. DFT optimized bond lengths (using the B3LYP functional and def2-TZVP basis set) versus experimental distances for $\left[\mathrm{Fe}^{\prime \prime}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdots \cdot \mathrm{H}-\mathrm{OMe}(1 \cdots \cdots \cdot \mathrm{H}-\mathrm{OMe})\right.$ containing a MeOH solvent molecule H -bonded to one of the thiolate sulfurs, $\mathrm{S}(2)$.
Table S11. DFT optimized bond lengths (using the B3LYP functional and def2-TZVP basis
set) of $\left[\mathrm{Fe}^{11}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right]\right.$ (1) in THF versus experimental distances.
Table S12. DFT optimized bond lengths (using the B3LYP functional and def2-TZVP basis
S28-S33
S34 set) of $\left[\mathrm{Fe}^{I I I}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\left(\mathrm{O}_{2}\right)\right](2)\right.$ in MeOH .
Table S13. DFT optimized coordinates (using the B3LYP functional and def2-TZVP basis set) for $\left[\mathrm{Fe}^{\mathrm{ll}}\left(\mathrm{S}_{2}{ }^{\mathrm{Me}} \mathrm{N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \bullet \bullet \mathrm{H}-\mathrm{OMe}(1 \cdot \bullet \cdot \mathrm{H}-\mathrm{OMe})\right.$ in MeOH
Table S14. DFT optimized coordinates (using the B3LYP functional and def2-TZVP basis \quad S40-S41
set) for $\left[\mathrm{Fe}^{\mathrm{Il}}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right]\right.$ (1)
Table S15. DFT optimized coordinates (using the B3LYP functional and def2-TZVP basis

EXPERIMENTAL PROCEDURES

General Methods. Reagents purchased from commercial vendors were of the highest purity available and used without further purification. [$\mathrm{Fe}^{11}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right.$] (1) and $\left[\mathrm{Fe}^{\mathrm{III}}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \mathrm{PF}_{6}\right.$ (3) were synthesized as previously described. ${ }^{1,2}$ Methanol (MeOH) was distilled over magnesium turnings and iodine and degassed prior to use. Unstabilized tetrahydrofuran (THF) was rigorously degassed and purified using solvent purification columns housed in a custom stainless-steel cabinet, dispensed via a stainless steel Schlenk line (GlassContour). All manipulations were performed using Schlenk line techniques or under an N_{2} atmosphere in a glovebox.

Evans Method of $\left[\mathrm{Fe}^{\prime \prime}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathbf{N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right](1) .{ }^{1} \mathrm{H}-\mathrm{NMR}\right.$ spectra were recorded on Bruker AV 301 FT-NMR spectrometers and are referenced to residual protio-solvent. Chemical shifts are reported in ppm. The magnetic moment of 1 was determined to be $\mu_{\text {eff }}=4.69$ B.M (MeOH), and $\mu_{\text {eff }}=4.08$ B.M. (THF) using the Evans method.

Kinetic Measurements. Solutions were prepared in a N_{2}-filled anaerobic glove-box ([O_{2}] $<1 \mathrm{ppm}$) and placed in Hamilton gastight ${ }^{\circledR}$ syringes equipped with three-way valves. Timeresolved spectra (350-820 nm) were acquired at low temperatures using a TgK Scientific (U.K.) CSF-61DX2 Multi-Mixing CryoStopped-Flow Instrument equipped with a tungsten visible light source. The stopped-flow instrument is equipped with PEEK tubing fitted inside stainless-steel plumbing, a $1.00 \mathrm{~cm}^{3}$ quartz mixing cell, and an anaerobic kit purged with an inert gas. The temperature in the mixing cell was maintained to $\pm 0.1^{\circ} \mathrm{C}$, and the mixing time was $2-3 \mathrm{~ms}$. All flow lines of the instrument were extensively washed with degassed, anhydrous THF or MeOH before charging the driving syringes with solutions containing the reactants. The reactions were studied by rapid scanning
spectrophotometry under pseudo-first order conditions with excess oxygen or superoxide. Saturated solutions of O_{2} were prepared as described below. The O_{2} concentration was assumed not to change upon cooling, given that the system is closed, and the solutions were not in contact with the gas phase (small variations in the solvent density were not taken into account). Dilutions of the O_{2}-saturated solvent were performed anaerobically to obtain the desired $\left[\mathrm{O}_{2}\right]$. Potassium superoxide solutions were prepared as described below. All concentrations reported in stopped-flow experiments refer to the "after mixing" conditions. Experiments were performed in single-mixing mode, with a $1: 1(\mathrm{v} / \mathrm{v})$ mixing ratio. A series of three or four measurements with outliers (Grubbs test, 95% confidence interval) ${ }^{3}$ removed prior to data averaging gave an acceptable standard deviation (within 10%). Rates reported for the oxygen dependence are the average of at least three different experiments. Data analysis was performed with Kinetic Studio software from TgK Scientific. ${ }^{4}$ Data was fit at a single wavelength (523.5 nm) using the following equation:

$$
\begin{equation*}
A_{t}=A_{\infty}-\left(A_{\infty}-A_{0}\right) e^{-k_{o b s} t} \tag{1}
\end{equation*}
$$

The reaction order with respect to O_{2} was determined by varying the O_{2} concentration over the range of 1.975 mM to 3.95 mM in THF, and 2.55 mM to 4.25 mM in MeOH , while maintaining a constant $\mathrm{Fe}(\mathrm{II})$ concentration (0.1 mM).

Kinetics for the formation of 2 via an alternate

A

B

C route involving $\mathrm{KO}_{2}+\mathrm{Fe}(\mathrm{III})-3$ were monitored at $\lambda=523 \mathrm{~nm}$ under pseudo first order
conditions with excess KO_{2} (solubilized with Kryptofix $\circledR^{\circledR} 222$) using a TgK stopped-flow instrument and CCD detector. Constant ionic strength (0.01 M) conditions were maintained by adding an appropriate amount of $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$. Kinetic traces were fit to the single exponential of eqn (1) with very small residuals (Figure S8). ${ }^{4}$ Data was analyzed using Grubb's test ${ }^{3}$ providing a 95\% confidence level.

Preparation of Saturated Dioxygen Solutions. Degassed solvent (MeOH or THF)

 was added to a round bottom flask fitted with a septum cap under a nitrogen atmosphere in the glovebox. Dry O_{2} (from a gas cylinder) was bubbled through the solvent at 1 atm for 15 min . The solution was then allowed to equilibrate over 15 minutes at $25{ }^{\circ} \mathrm{C}$ in a temperature-controlled water bath. The concentration of O_{2} was taken as 8.5 mM in MeOH , and 7.9 mM in THF both at $25^{\circ} \mathrm{C} .{ }^{5}$ To load the syringe in preparation for stoppedflow experiments, the flask was inverted and a gastight syringe equipped with a 3-way valve and needle was inserted through the septum (Position A in Figure on the right). The valve was then turned to allow the saturated solution to flow through the open arm of the 3-way valve, leaving no headspace in the needle (Position B). The valve was then closed, and the dioxygen solution drawn into the syringe (Position C).Dilution of Dioxygen Solutions. Dilutions of the O_{2}-saturated solvent were performed anaerobically by attaching a second syringe filled with an excess of an appropriate
quantity of deoxygenated solvent to the open arm of the 3-way valve (Position D in Figure below). Air bubbles trapped in the valve by this process were purged by flowing the excess solvent through the needle down to the quantity of solvent necessary for the desired O_{2} concentration (Position E). The valve was then turned to allow the two needles to communicate, and the saturated O_{2} solution was drawn into the
deoxygenated solvent
until the desired O_{2} concentration is met

D

(Position F). The dilute O_{2} solution was then allowed to equilibrate for 30 min after which time it was ready for use. This dilution process can be repeated in the same manner if it is not practical to attain the desired O_{2} concentration via one dilution.

Preparation of Potassium Superoxide Solutions. A very fine powder of KO_{2} was weighed out on an analytical balance, and then 1 eq. of Kryptofix®222 was added to solubilize the KO_{2} in THF. The solution was vigorously stirred at RT in a glovebox for at least 20 mins and used within 6 hrs of preparation. An appropriate amount of Bu4NPF6 (9.8-17.8 mM pre-mix concentration) was added to maintain a constant ionic strength of 10 mM (post-mix concentration). Kinetic traces were fit to the single exponential of eqn (1) with very small residuals (Figure S14).

Computational Details. Calculations were performed using the ORCA v. 5.0.4 quantum chemistry package developed by Neese and coworkers, ${ }^{6}$ and employed a polarized triple-
zeta def2-TZVP basis set, the def2/J auxiliary basis set for Coulomb fitting, and the atompairwise dispersion correction of Grimme (D3BJ). ${ }^{7}$ Tight convergence criteria were required for self-consistent field (SCF) solutions. The DEFGRID3 integration grid size, and the conductor-like polarizable continuum model with the dielectric constant $\varepsilon=7.25$ for tetrahydrofuran solvent (CPCM(THF)), or the dielectric constant $\varepsilon=32.63$ for methanol solvent (CPCM(MeOH)), were used for geometry optimizations. ${ }^{8}$ Geometry optimizations and analytical frequency calculations were performed using the B3LYP functional, with the resolution of identity (RI) chain-of-spheres (RIJCOSX) approximation, ${ }^{9,10}$ and initiated from the crystallographic coordinates when available. Analytical frequency calculations were performed on all optimized structures to determine whether the obtained stationary points corresponded to local minima.

Calculations for the $\mathrm{Fe}(\mathrm{IIII})$-superoxo complex, $\left[\mathrm{Fe}^{\mathrm{lII}}\left(\mathrm{S}_{2}{ }^{\mathrm{Me}} \mathrm{N}_{3}(\mathrm{Pr}, \mathrm{Pr})\left(\mathrm{O}_{2}\right)\right]\right.$
employed the broken-symmetry formalism to model coupled paramagnetic sites. The previously reported ${ }^{1}$ DFT optimized structure of superoxo $\left[\mathrm{Fe}^{11 \mathrm{l}}\left(\mathrm{S}_{2}{ }^{\mathrm{Me}} \mathrm{N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right)\left(\mathrm{O}_{2}\right)\right]$ (2) was used as a starting point for the calculated structure in a polarizable continuum model in MeOH . Hybrid time-dependent DFT (TD-DFT) calculations employed the RIJCOSX and the Tamm-Dancoff approximations (TDA). ${ }^{11,12}$ The Fermi level, i.e., the halfway between the calculated HOMO and LUMO energies, was set to 0 eV in molecular orbital (MO) analysis. Excited states from TD-DFT calculations were analyzed using Natural Transition orbitals (NTOs) and by visualizing their difference densities between the ground and excited states. Canonical molecular orbital isosurfaces and natural transition orbitals in the TD-DFT calculations were visualized at an isovalue of $0.08 \mathrm{ao}^{3}$ using UCSF Chimera. ${ }^{13}$

X-ray Crystallographic Structure Determination. A yellow needle, measuring 0.36 x $0.04 \times 0.03 \mathrm{~mm}^{3}$ was mounted on a loop with oil. Data was collected at $-173^{\circ} \mathrm{C}$ on a Bruker APEX II single crystal X-ray diffractometer, Mo-radiation, equipped with a Miracol X-ray optical collimator.

Crystal-to-detector distance was 40 mm and exposure time was 20 seconds per frame for all sets. The scan width was 0.5°. Data collection was 100% complete to 25° in ϑ. A total of 20760 reflections were collected covering the indices, $-25<=\mathrm{h}<=25$, -$16<=k<=16,-12<=\mid<=12.5450$ reflections were symmetry independent and the $\mathrm{R}_{\text {int }}=$ 0.0595 indicated that the data was good. Indexing and unit cell refinement indicated a primitive orthorhombic lattice. The space group was found to be P c a 2_{1} (No. 29).

The data was integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker. ${ }^{14}$ Solution by direct methods (SHELXT ${ }^{15}$, ${ }^{16}$) produced a complete heavy atom phasing model consistent with the proposed structure. The structure was completed by difference Fourier synthesis with SHELXL. ${ }^{16,17}$ Scattering factors are from Waasmair and Kirfel. ${ }^{18}$ Hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with $\mathrm{C}---\mathrm{H}$ distances in the range 0.95-1.00 Angstrom. Isotropic thermal parameters $U_{\text {eq }}$ were fixed such that they were $1.2 \mathrm{U}_{\text {eq }}$ of their parent atom Ueq for $\mathrm{CH}^{\prime} \mathrm{s}$ and $1.5 \mathrm{U}_{\text {eq }}$ of their parent atom $\mathrm{U}_{\text {eq }}$ in case of methyl groups. All non-hydrogen atoms were refined anisotropically by full-matrix leastsquares.

Crystallographic data is presented as ray-traced ORTEP plot. ${ }^{19}$ The structural overlays (Fig. 11, main text) were generated using BIOVIA Discovery Studio software. ${ }^{20}$

Derivation of the Rate Expression. The general kinetic scheme, eqn (2), and a derivation of the rate expression is shown in eqns (3) - (10). ${ }^{21}$ This derivation uses mass balance (eqn (4)), and assumes that the concentration of $\mathbf{2}$ at any given time, $\left[\mathrm{FeO}_{2}\right]$, is equal to the initial concentration of $1,\left[\mathrm{Fe}^{1}\right]_{0}$, minus the concentration of 1 at any given

$$
\begin{align*}
& \mathrm{Fe}^{\mathrm{II}}+\mathrm{O}_{2} \stackrel{k_{\text {on }}}{k_{\text {off }}} \mathrm{Fe}^{\mathrm{III}} \mathrm{O}_{2} \tag{2}\\
& \begin{aligned}
& \frac{\mathrm{d}\left[\mathrm{Fe}^{\mathrm{III}} \mathrm{O}_{2}\right]}{\mathrm{dt}}=k_{\text {on }}\left[\mathrm{Fe}^{\mathrm{II}}\right]_{\mathrm{t}}\left[\mathrm{O}_{2}\right]-k_{\text {off }}\left[\mathrm{Fe}^{\mathrm{III}} \mathrm{O}_{2}\right]_{\mathrm{t}} \\
& {\left[\mathrm{Fe}^{\mathrm{II}}\right]_{0} }=\left[\mathrm{Fe}^{\mathrm{II}}\right]_{\mathrm{t}}+\left[\mathrm{Fe}^{\mathrm{III}} \mathrm{O}_{2}\right]_{\mathrm{t}} \\
& {\left[\mathrm{Fe}^{\mathrm{II}} \mathrm{O}_{2}\right]_{\mathrm{t}}=\left[\mathrm{Fe}^{\mathrm{II}}\right]_{0}-\left[\mathrm{Fe}^{\mathrm{II}}\right]_{\mathrm{t}} }
\end{aligned} \tag{3}\\
& \begin{aligned}
\frac{\mathrm{d}\left[\mathrm{Fe}^{\mathrm{III}} \mathrm{O}_{2}\right]}{\mathrm{dt}} & =k_{\text {on }}\left[\mathrm{Fe}^{\mathrm{II}}\right]_{\mathrm{t}}\left[\mathrm{O}_{2}\right]-k_{\text {off }}\left(\left[\mathrm{Fe}^{\mathrm{II}}\right]_{0}-\left[\mathrm{Fe}^{\mathrm{II}}\right]_{\mathrm{t}}\right) \\
= & k_{\text {on }}\left[\mathrm{Fe}^{\mathrm{II}}\right]_{\mathrm{t}}\left[\mathrm{O}_{2}\right]+k_{\text {off }}\left[\mathrm{Fe}^{\mathrm{II}}\right]_{\mathrm{t}}-k_{\text {off }}\left[\mathrm{Fe}^{\mathrm{II}}\right]_{0} \\
= & {\left[\mathrm{Fe}^{\mathrm{II}}\right]_{\mathrm{t}}\left(k_{\text {on }}\left[\mathrm{O}_{2}\right]+k_{\text {off }}\right)-k_{\text {off }}\left[\mathrm{Fe}^{\mathrm{II}}\right]_{0} } \\
\frac{\mathrm{~d}\left[\mathrm{Fe}^{\mathrm{III}} \mathrm{O}_{2}\right]}{\mathrm{dt}}= & k_{\text {obs }}\left[\mathrm{Fe}^{\mathrm{II}}\right]_{\mathrm{t}}-\mathrm{C} \\
& k_{\text {obs }}=k_{\text {on }}\left[\mathrm{O}_{2}\right]+k_{\text {off }}
\end{aligned} \tag{4}
\end{align*}
$$

time, $\left[\mathrm{Fe}^{1}\right]_{\mathrm{t}}$. Solving for the unknown concentration of superoxo 2, $\left[\mathrm{FeO}_{2}\right]_{\mathrm{t}}$ in terms of $\left[\mathrm{Fe}^{11}\right]_{0}$ and $\left[\mathrm{Fe}^{l}\right]_{\mathrm{t}}$ (eqn (5)), and substituting this into eqn (3), we obtain eqn (6), which simplifies to eqn (8). Under pseudo first order conditions with excess O_{2} the rate expression is that of eqn (9), with $\mathrm{k}_{\mathrm{obs}}$ defined in eqn (10). The term $k_{\text {off }}\left[\mathrm{Fe}^{l}\right]_{0}$ is a constant, C (eqn (9)), that does not change with time, therefore it does not affect the measured rate constant $k_{\text {obs }}$. The magnitude of C is small relative to the other terms when working with sub-mM concentrations of [Fe " $]$, and thus it can be dropped from eqn (9). ${ }^{21}$ For a reversible process under pseudo first-order conditions with excess O_{2}, $\mathrm{k}_{\text {obs }}$
would be dependent on both $k_{\text {off }}$ and $k_{\mathrm{on}},{ }^{21}$ wherein the former can be obtained from the intercept, and the latter from the slope.

Figure S1. Kinetic trace at $\lambda=523 \mathrm{~nm}$ acquired $-40^{\circ} \mathrm{C}$ with [1] $=0.25 \mathrm{mM}$ and [O_{2}] = 4.0 mM in THF (concentrations in the mixing cell are given). The experimental trace is shown in black; the pseudo-first order fit is shown in red; residuals in blue are appended to the bottom of the graph.

Figure S2. Plot of observed rate constants ($\mathrm{K}_{\mathrm{obs} \text {) }}$ for the formation of Fe ${ }^{\text {IIII }}$-superoxo 2 versus $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right](1)\right.$ concentration at $-40^{\circ} \mathrm{C}$ in THF. $\left[\mathrm{O}_{2}\right]$ after mixing $=3.95$ mM .

Figure S3. Plot of observed rate constants ($\mathrm{Kobss}^{\text {) for the formation of Felli-superoxo } 2}$ versus the concentration of $\left[\mathrm{Fe}^{11}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me}} \mathrm{N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right](\mathbf{1})\right.$ at $0{ }^{\circ} \mathrm{C}$ in $\mathrm{MeOH} .\left[\mathrm{O}_{2}\right]$ after mixing $=$ 4.25 mM .

Figure S4. The dissociation rate constant, $\mathrm{k}_{\text {off }}$, obtained from the y -intercept of the $\mathrm{k}_{\mathrm{obs}} \mathrm{vs}$ [O_{2}] plots of Figure 3 (main text), does not correlate with temperature in THF. This, coupled with the ~zero intercept of Figure 3 would be consistent with irreversible O_{2} binding to 1 in this solvent.

Figure S5. Correlation between temperature and rate constants for O_{2} release from superoxo 2, koff, in MeOH . Dissociation rate constants, koff, were obtained from the yintercept of the kobs vs [O_{2}] plots (Figure 4 of main text)

Figure S6. Arrhenius plot for O_{2} binding to 1 in MeOH , from which activation parameter $\mathrm{E}_{\mathrm{a}}=$ $32(2) \mathrm{kJ} \mathrm{mol}^{-1}$ was obtained.

Figure S7. Arrhenius plot for O_{2} binding to 1 in THF, from which activation parameter $\mathrm{E}_{\mathrm{a}}=$ $21.4(8) \mathrm{kJ} \mathrm{mol}^{-1}$ was obtained.

Figure S8. Kinetic trace for superoxide $\left(\mathrm{KO}_{2}\right)$ binding to 3 monitored at $\lambda=523 \mathrm{~nm}$ with [1] $=0.1 \mathrm{mM}$ and $\left[\mathrm{KO}_{2}\right]=5.0 \mathrm{mM}$ in THF at $-40^{\circ} \mathrm{C}$ under a constant ionic strength of 0.01 M with added $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$ (concentrations listed are after mixing in the stopped-flow cell). The experimental data points are shown in blue; the pseudo-first order fit to eqn (1) of the main text is shown in red; residuals in red are appended to the bottom of the graph.

Figure S9. Zero order dependence of kobs on Fe (III) concentration under pseudo first order conditions with excess $\mathrm{KO}_{2}(5 \mathrm{mM})$. This would be consistent with $1^{\text {st }}$ order dependence on Fe (III) overall.

Figure S10. Arrhenius plot for superoxide (KO_{2} solubilized with KryptoFix) binding to $\mathrm{Fe}(\mathrm{III})-3$ in THF.

Figure S11. Arrhenius plot for O_{2} release from superoxo $\mathbf{2}$ in MeOH , from which the activation parameter $\mathrm{E}_{\mathrm{a}}=34(4) \mathrm{kJ} \mathrm{mol}^{-1}$ was obtained.

Figure S12. DFT optimized structure of $\left[\mathrm{Fe}^{11}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me}}{ }^{2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdot \cdots \cdot \mathrm{H}-\mathrm{OMe}\right.$ (1) containing a MeOH solvent molecule H-bonded to one of the thiolate sulfurs, $\mathrm{S}(2)$. Calculated $\mathrm{MeO}(1)$ $\mathrm{H} \cdots \mathrm{O}(2)$ distance is $2.224 \AA$ (see Table S10).

Figure S13. Experimental electronic absorption spectrum of Fe ${ }^{\text {III-superoxo } 2(0.25 ~ m M) ~}$ in THF vs MeOH.

Figure S14. Time-dependent DFT (TD-DFT) calculated electronic absorption spectrum of $\left[\mathrm{Fe}^{11}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right]\right.$ (1) modeled in THF (purple dashed line) overlaid with the experimental spectra (purple solid line). The computed transition of interest (black vertical sticks, a) is depicted with an electron difference density map where purple regions indicated electron density loss and the teal regions gain in electron density.

Figure S15. Time-dependent DFT (TD-DFT) calculated electronic absorption spectrum of $\left[\mathrm{Fe}^{11}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right]\right.$ (1) modeled in MeOH (purple dashed line) overlaid with the experimental spectra (purple solid line) A MeOH solvent molecule H -bonded to one of the thiolate sulfurs causes the $\mathrm{S} \rightarrow \mathrm{Fe}$ charge transfer band to blue shift relative to that shown in Figure S13. The computed transition of interest (black vertical sticks, a \& b) is depicted with an electron difference density map where purple regions indicated electron density loss and the teal regions gain in electron density.

Figure S16. Chemdraw depiction of the ligands in Table 2 of main text.

Table S1. Temperature-dependent pseudo $1^{\text {st }}$ order rate constants for the reaction between 1 ($[1]_{0}=0.25$ mM) and O_{2} in THF. All reported concentrations are after mixing in the stopped-flow cell.

Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$	$\left[\mathrm{O}_{2}\right]$ (mM)	$k_{\text {obs }}\left(\mathbf{s}^{-1}\right)$
0	$\begin{aligned} & 1.975 \\ & 2.37 \\ & 2.765 \\ & 3.4 \\ & 3.95 \end{aligned}$	$0.534(6)$ $0.586(7)$ $0.651(1)$ $0.912(1)$ $1.02(2)$
-5	$\begin{aligned} & 1.975 \\ & 2.37 \\ & 2.765 \\ & 3.4 \\ & 3.95 \end{aligned}$	$\begin{aligned} & \hline 0.434(13) \\ & 0.514(8) \\ & 0.593(9) \\ & 0.709(10) \\ & 0.907(9) \\ & \hline \end{aligned}$
-10	$\begin{aligned} & 1.975 \\ & 2.37 \\ & 2.765 \\ & 3.4 \\ & 3.95 \end{aligned}$	$\begin{aligned} & 0.345(73) \\ & 0.421(21) \\ & 0.496(72) \\ & 0.618(12) \\ & 0.711(61) \\ & \hline \end{aligned}$
-15	$\begin{aligned} & 1.975 \\ & 2.37 \\ & 2.765 \\ & 3.4 \\ & 3.95 \end{aligned}$	$0.300(4)$ $0.364(5)$ $0.406(1)$ $0.487(11)$ $0.630(8)$
-20	$\begin{aligned} & 1.975 \\ & 2.37 \\ & 2.765 \\ & 3.4 \\ & 3.95 \end{aligned}$	$0.243(9)$ $0.265(10)$ $0.310(4)$ $0.382(4)$ $0.486(3)$
-25	$\begin{aligned} & 1.975 \\ & 2.37 \\ & 2.765 \\ & 3.4 \\ & 3.95 \end{aligned}$	$\begin{aligned} & 0.157(1) \\ & 0.216(1) \\ & 0.259(3) \\ & 0.317(6) \\ & 0.399(7) \end{aligned}$
-30	$\begin{aligned} & 1.975 \\ & 2.37 \\ & 2.765 \\ & 3.4 \\ & 3.95 \end{aligned}$	$0.109(7)$ $0.167(16)$ $0.197(4)$ $0.236(11)$ $0.281(30)$
-35	$\begin{aligned} & 1.975 \\ & 2.37 \\ & 2.765 \\ & 3.4 \\ & 3.95 \end{aligned}$	$\begin{aligned} & 0.089(3) \\ & 0.128(1) \\ & 0.155(1) \\ & 0.204(3) \\ & 0.234(2) \\ & \hline \end{aligned}$
-40	$\begin{aligned} & 1.975 \\ & 2.37 \\ & 2.765 \\ & 3.4 \\ & 3.95 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.0767(20) \\ & 0.110(8) \\ & 0.118(23) \\ & 0.147(13) \\ & 0.183(11) \\ & \hline \end{aligned}$

Table S2. Observed rate constants for the reaction between 1 ([1] $=0.25 \mathrm{mM}$) and O_{2} in MeOH . All reported concentrations are after mixing in the stopped-flow cell.

Temperature (${ }^{\circ} \mathrm{C}$)	[O_{2}] (mM)	$k_{\text {obs }}\left(\mathbf{s}^{-1}\right)$
0	$\begin{aligned} & 2.55 \\ & 2.975 \\ & 3.40 \\ & 3.825 \\ & 4.25 \end{aligned}$	$\begin{aligned} & 0.0152(6) \\ & 0.0168(9) \\ & 0.0199(8) \\ & 0.021(1) \\ & 0.0223(10) \end{aligned}$
-5	$\begin{aligned} & 2.55 \\ & 2.975 \\ & 3.40 \\ & 3.825 \\ & 4.25 \end{aligned}$	$\begin{aligned} & \hline 0.0121(1) \\ & 0.0134(1) \\ & 0.0154(1) \\ & 0.0167(1) \\ & 0.0178(2) \end{aligned}$
-10	$\begin{aligned} & 2.55 \\ & 2.975 \\ & 3.40 \\ & 3.825 \\ & 4.25 \end{aligned}$	$\begin{aligned} & 0.00835(21) \\ & 0.00919(76) \\ & 0.0105(7) \\ & 0.0112(1) \\ & 0.0122(8) \\ & \hline \end{aligned}$
-15	$\begin{aligned} & 2.55 \\ & 2.98 \\ & 3.40 \\ & 3.825 \\ & 4.25 \end{aligned}$	$\begin{aligned} & \hline 0.00674(17) \\ & 0.00740(35) \\ & 0.00834(10) \\ & 0.00908(1) \\ & 0.00957(2) \end{aligned}$
-20	$\begin{aligned} & 2.55 \\ & 2.98 \\ & 3.40 \\ & 3.825 \\ & 4.25 \end{aligned}$	$\begin{aligned} & \hline 0.00485(21) \\ & 0.00575(53) \\ & 0.00619(31) \\ & 0.00658(15) \\ & 0.00703(5) \end{aligned}$
-25	$\begin{aligned} & 2.55 \\ & 2.98 \\ & 3.40 \\ & 3.825 \\ & 4.25 \end{aligned}$	$\begin{aligned} & 0.00369(1) \\ & 0.00389(3) \\ & 0.00470(17) \\ & 0.00495(12) \\ & 0.00539(27) \\ & \hline \end{aligned}$
-30	$\begin{aligned} & 2.55 \\ & 2.98 \\ & 3.40 \\ & 3.825 \\ & 4.25 \end{aligned}$	$\begin{aligned} & \hline 0.00262(22) \\ & 0.00301(2) \\ & 0.00337(25) \\ & 0.00354(2) \\ & 0.00403(3) \\ & \hline \end{aligned}$

Table S3. Temperature-dependent pseudo $1^{\text {st }}$ order rate constants for the reaction between between 3 ([3]o $=0.1 \mathrm{mM}$) and KO_{2} solubilized with Kryptofix ${ }^{\circledR} 222$ in THF, under constant ionic strength (0.01 M) with $1.5-11.5 \mathrm{mM}$ $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$. All reported concentrations are after mixing in the stopped-flow cell.

Temperature (${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & {\left[\mathrm{O}_{2}{ }^{\circ}\right]} \\ & (\mathrm{mM}) \end{aligned}$	$K_{\text {obs }}\left(\mathbf{s}^{-1}\right)$
-20	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0.393(1) \\ & 0.642(12) \\ & 0.959(87) \\ & 1.226(30) \\ & 1.592(12) \end{aligned}$
-25	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 0.322(13) \\ & 0.442(14) \\ & 0.637(26) \\ & 0.936(65) \\ & 1.251(63) \end{aligned}$
-30	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0.225(4) \\ & 0.296(5) \\ & 0.431(51) \\ & 0.562(20) \\ & 0.801(31) \\ & \hline \end{aligned}$
-35	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & 4.0 \\ & 5.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.172(5) \\ 0.195(4) \\ 0.288(7) \\ 0.406(36) \\ 0.539(33) \end{array}$
-40	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 0.123(5) \\ & 0.159(16) \\ & 0.226(18) \\ & 0.288(83) \\ & 0.351(9) \end{aligned}$
-45	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & 4.0 \\ & 5.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.092(8) \\ 0.117(3) \\ 0.166(5) \\ 0.204(23) \\ 0.278(13) \\ \hline \end{array}$
-50	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0.0585(67) \\ & 0.0761(57) \\ & 0.110(5) \\ & 0.133(5) \\ & 0.174(11) \end{aligned}$
-55	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0.0443(51) \\ & 0.0588(10) \\ & 0.0685(20) \\ & 0.0992(23) \\ & 0.125(10) \end{aligned}$
-60	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0.0368(12) \\ & 0.0488(13) \\ & 0.0585(67) \\ & 0.0694(7) \\ & 0.0844(51) \\ & \hline \end{aligned}$

Table S4. DFT calculated (using the B3LYP functional and def2-TZVP basis set) Mulliken charges for the optimized structure of $\left[\mathrm{Fe}^{\prime \prime}\left(\mathrm{S}_{2} \mathrm{Me}^{2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right](1)\right.$ in THF, $\mathrm{Fe}^{\prime \prime \prime}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdot \bullet \cdot \mathrm{H}-\mathrm{OMe}(1 \cdot \bullet \bullet \mathrm{H}-$ OMe) in MeOH and $\left[\mathrm{Fe}^{\text {III }}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\left(\mathrm{O}_{2}\right)\right](2)\right.$ in MeOH .

	Mulliken Charges		
Atom	$\mathbf{1}$ in THF	$\mathbf{1 \bullet 0 \bullet}$ H-Ome in MeOH	$\mathbf{2}$ in MeOH
Fe	+0.425	+0.447	+0.044
$\mathrm{~S}(1)$	-0.676	-0.678	-0.482
$\mathrm{~S}(2)$	-0.663	-0.662	-0.519
N(1)	-0.133	-0.132	+0.002
N(2)	-0.314	-0.318	-0.186
N(3)	-0.133	-0.149	+0.088
O(1)	NA	-0.525	NA
H(1)	NA	+0.295	NA

Table S6. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$)
for $\left[\mathrm{Fe}^{\prime l}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdots \cdot \bullet \mathrm{H}-\mathrm{OMe}(1 \bullet \bullet \bullet \mathrm{H}-\mathrm{OMe}) . \mathrm{U}(\mathrm{eq})\right.$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Fe}(1)$	3775(1)	3022(1)	4521(1)	12(1)
S(1)	4763(1)	2529(1)	5843(1)	18(1)
S(2)	2810(1)	3791(1)	5604(1)	16(1)
C(3)	5131(2)	429(2)	6602(3)	25(1)
C(2)	4162(2)	1310(3)	8013(3)	23(1)
C(16)	2605(2)	5953(2)	6249(3)	24(1)
N(2)	3653(1)	2996(2)	2174(2)	13(1)
N(3)	4030(1)	4726(2)	4216(2)	14(1)
C(8)	3414(2)	1944(2)	1551(3)	16(1)
C(7)	2831(1)	1469(2)	2473(3)	18(1)
C(6)	3084(1)	713(2)	3670(3)	17(1)
C(4)	3944(2)	662(2)	5511(3)	17(1)
C(5)	3805(2)	-543(2)	5702(3)	27(1)
C(1)	4492(2)	1172(2)	6492(3)	17(1)
C(9)	4239(2)	3450(2)	1316(3)	19(1)
C(10)	4362(2)	4657(2)	1610(3)	20(1)
$\mathrm{C}(11)$	4584(1)	4942(2)	3157(3)	19(1)
C(12)	3732(1)	5469(2)	4970(3)	15(1)
C(13)	3892(2)	6679(2)	4895(3)	26(1)
C(14)	3191(1)	5119(2)	6101(3)	15(1)
C(15)	3567(2)	5006(2)	7583(3)	20(1)
C(18)	6536(2)	1817(3)	4486(6)	58(1)
$\mathrm{O}(1)$	5954(2)	2000(2)	3601(3)	49(1)
$\mathrm{N}(1)$	3612(1)	1253(2)	4584(3)	14(1)

Table S7. Bond lengths $[\AA \AA]$ and angles $\left[{ }^{\circ}\right]$ for $\left[\mathrm{Fe}^{\prime \prime}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdot \cdots \mathrm{H}-\mathrm{OMe}(1 \cdot \bullet \cdot \mathrm{H}-\mathrm{OMe})\right.$.

$\mathrm{Fe}(1)-\mathrm{N}(3)$	2.153(2)
$\mathrm{Fe}(1)-\mathrm{N}(2)$	2.154(2)
$\mathrm{Fe}(1)-\mathrm{N}(1)$	2.1802(19)
$\mathrm{Fe}(1)-\mathrm{S}(2)$	2.3103(7)
$\mathrm{Fe}(1)-\mathrm{S}(1)$	2.3372(8)
$\mathrm{S}(1)-\mathrm{C}(1)$	1.833(3)
$\mathrm{S}(2)-\mathrm{C}(14)$	1.837(3)
$\mathrm{C}(3)-\mathrm{C}(1)$	1.534(4)
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9800
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	0.9800
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{C})$	0.9800
$\mathrm{C}(2)-\mathrm{C}(1)$	1.536(4)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9800
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	0.9800
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	0.9800
$\mathrm{C}(16)-\mathrm{C}(14)$	1.529(4)
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9800
$\mathrm{N}(2)-\mathrm{C}(8)$	1.477(3)
$\mathrm{N}(2)-\mathrm{C}(9)$	1.483(3)
$\mathrm{N}(2)-\mathrm{H}(2)$	1.0000
$\mathrm{N}(3)-\mathrm{C}(12)$	1.275(3)
$\mathrm{N}(3)-\mathrm{C}(11)$	1.466(3)
$\mathrm{C}(8)-\mathrm{C}(7)$	1.522(4)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900
$\mathrm{C}(7)-\mathrm{C}(6)$	1.510(4)
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9900
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9900
$\mathrm{C}(6)-\mathrm{N}(1)$	1.473(3)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	0.9900
$\mathrm{C}(4)-\mathrm{N}(1)$	1.283(3)

$\mathrm{C}(4)-\mathrm{C}(5)$	1.503(4)
$\mathrm{C}(4)-\mathrm{C}(1)$	1.520(4)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9800
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	0.9800
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	0.9800
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.515(4)$
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9900
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9900
$\mathrm{C}(10)-\mathrm{C}(11)$	1.515 (4)
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9900
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9900
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9900
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9900
$\mathrm{C}(12)-\mathrm{C}(13)$	1.508(4)
$\mathrm{C}(12)-\mathrm{C}(14)$	1.530(4)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9800
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9800
$\mathrm{C}(14)-\mathrm{C}(15)$	1.541(4)
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9800
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9800
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	0.9800
$\mathrm{C}(18)-\mathrm{O}(1)$	1.401 (5)
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9800
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9800
$\mathrm{O}(1)-\mathrm{H}(1)$	0.8400
$\mathrm{N}(3)-\mathrm{Fe}(1)-\mathrm{N}(2)$	84.87(8)
$\mathrm{N}(3)-\mathrm{Fe}(1)-\mathrm{N}(1)$	172.24(8)
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(1)$	89.77(8)
$\mathrm{N}(3)-\mathrm{Fe}(1)-\mathrm{S}(2)$	81.33(6)
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{S}(2)$	110.05(6)
$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{S}(2)$	105.83(6)
$\mathrm{N}(3)-\mathrm{Fe}(1)-\mathrm{S}(1)$	97.32(6)
$\mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{S}(1)$	126.76(6)

$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{S}(1)$	81.40(6)
$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{S}(1)$	122.93(3)
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{Fe}(1)$	99.51(9)
$\mathrm{C}(14)-\mathrm{S}(2)-\mathrm{Fe}(1)$	97.95(9)
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	109.5
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.5
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	109.5
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{C})$	109.5
$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{C})$	109.5
$\mathrm{H}(3 \mathrm{~B})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{C})$	109.5
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109.5
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	109.5
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	109.5
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	109.5
$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	109.5
$\mathrm{H}(2 \mathrm{~B})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{C})$	109.5
$\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(9)$	111.1(2)
$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{Fe}(1)$	115.43(16)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{Fe}(1)$	115.86(16)
$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{H}(2)$	104.3
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{H}(2)$	104.3
$\mathrm{Fe}(1)-\mathrm{N}(2)-\mathrm{H}(2)$	104.3
$\mathrm{C}(12)-\mathrm{N}(3)-\mathrm{C}(11)$	123.8(2)
$\mathrm{C}(12)-\mathrm{N}(3)-\mathrm{Fe}(1)$	120.83(18)
$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{Fe}(1)$	115.25(17)
$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	110.5(2)
$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.6
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.6
$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.6
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.6

$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.1
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	113.0(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.0
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.0
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.0
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.0
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	107.8
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	111.2(2)
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.4
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.4
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.4
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.4
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108.0
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	122.4(2)
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(1)$	120.4(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(1)$	117.2(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	109.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.5
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	109.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5
$\mathrm{H}(5 \mathrm{~B})-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{C})$	109.5
$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{C}(3)$	110.9(2)
$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{C}(2)$	106.7(2)
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	109.8(2)
$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{S}(1)$	112.23(18)
$\mathrm{C}(3)-\mathrm{C}(1)-\mathrm{S}(1)$	108.9(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{S}(1)$	108.17(19)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	112.9(2)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.0
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.0
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.0
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.0
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	107.8
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	115.6(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.4

$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.4
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	108.4
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	108.4
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	107.4
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	111.5(2)
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.3
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.3
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.3
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.3
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	108.0
$\mathrm{N}(3)-\mathrm{C}(12)-\mathrm{C}(13)$	125.3(2)
$\mathrm{N}(3)-\mathrm{C}(12)-\mathrm{C}(14)$	118.3(2)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(14)$	116.3(2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{C}(16)-\mathrm{C}(14)-\mathrm{C}(12)$	112.4(2)
$\mathrm{C}(16)-\mathrm{C}(14)-\mathrm{C}(15)$	109.4(2)
$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{C}(15)$	107.1(2)
$\mathrm{C}(16)-\mathrm{C}(14)-\mathrm{S}(2)$	108.03(19)
$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{S}(2)$	110.74(18)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{S}(2)$	109.10(18)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{H}(15 \mathrm{~B})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
H(18A)-C(18)-H(18B)	109.5
$\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5

$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{C}(18)-\mathrm{O}(1)-\mathrm{H}(1)$	109.5
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(6)$	$117.9(2)$
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{Fe}(1)$	$120.06(18)$
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{Fe}(1)$	$121.85(16)$

*Symmetry transformations used to generate equivalent atoms.

Table S8. Anisotropic displacement parameters $\left(\AA^{2} x^{1} 10^{3}\right)$ for $\left[\mathrm{Fe}^{11}\left(\mathrm{~S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdot \bullet \cdot \mathrm{H}-\mathrm{OMe}(1 \cdot \bullet \cdot \mathrm{H}-\mathrm{OMe})\right.$. The anisotropicdisplacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Fe}(1)$	$12(1)$	$12(1)$	$11(1)$	$0(1)$	$0(1)$	$0(1)$
$\mathrm{S}(1)$	$16(1)$	$17(1)$	$21(1)$	$0(1)$	$-5(1)$	$1(1)$
$\mathrm{S}(2)$	$13(1)$	$16(1)$	$18(1)$	$-3(1)$	$4(1)$	$-3(1)$
$\mathrm{C}(3)$	$23(2)$	$24(2)$	$26(2)$	$3(1)$	$0(1)$	$7(1)$
$\mathrm{C}(2)$	$24(2)$	$28(2)$	$16(1)$	$0(1)$	$-1(1)$	$2(1)$
$\mathrm{C}(16)$	$16(2)$	$20(2)$	$35(2)$	$-10(1)$	$-1(1)$	$4(1)$
$\mathrm{N}(2)$	$12(1)$	$16(1)$	$12(1)$	$0(1)$	$0(1)$	$2(1)$
$\mathrm{N}(3)$	$12(1)$	$17(1)$	$13(1)$	$2(1)$	$1(1)$	$-2(1)$
$\mathrm{C}(8)$	$18(2)$	$18(1)$	$14(1)$	$-3(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(7)$	$18(2)$	$19(1)$	$16(1)$	$-3(1)$	$-4(1)$	$0(1)$
$\mathrm{C}(6)$	$19(2)$	$15(1)$	$18(1)$	$-2(1)$	$-1(1)$	$-4(1)$
$\mathrm{C}(4)$	$21(1)$	$15(1)$	$14(1)$	$-1(1)$	$3(1)$	$2(1)$
$\mathrm{C}(5)$	$41(2)$	$15(1)$	$24(2)$	$5(1)$	$-6(1)$	$0(1)$
$\mathrm{C}(1)$	$19(2)$	$16(1)$	$16(1)$	$1(1)$	$1(1)$	$5(1)$
$\mathrm{C}(9)$	$18(2)$	$25(2)$	$16(1)$	$0(1)$	$5(1)$	$-1(1)$
$\mathrm{C}(10)$	$19(2)$	$24(2)$	$16(1)$	$5(1)$	$5(1)$	$-4(1)$
$\mathrm{C}(11)$	$16(2)$	$22(2)$	$19(1)$	$2(1)$	$4(1)$	$-5(1)$
$\mathrm{C}(12)$	$13(1)$	$13(1)$	$18(1)$	$1(1)$	$-3(1)$	$-2(1)$
$\mathrm{C}(13)$	$29(2)$	$15(1)$	$36(2)$	$0(1)$	$3(1)$	$-3(1)$
$\mathrm{C}(14)$	$14(1)$	$14(1)$	$19(1)$	$-2(1)$	$0(1)$	$0(1)$
$\mathrm{C}(15)$	$19(2)$	$23(2)$	$17(1)$	$-3(1)$	$0(1)$	$-2(1)$
$\mathrm{C}(18)$	$43(2)$	$59(3)$	$72(2)$	$-23(3)$	$22(3)$	$-25(2)$
	$60(2)$	$49(2)$	$39(2)$	$-13(1)$	$24(1)$	$-4(1)$
	$16(1)$	$14(1)$	$13(1)$	$0(1)$	$1(1)$	$-1(1)$

Table S9. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\left[\mathrm{Fe}^{\prime \prime}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdots \cdot \mathrm{H}-\mathrm{OMe}(1 \cdot \bullet \cdot \mathrm{H}-\mathrm{OMe})\right.$.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(3A)	5003	-259	7088	37
H(3B)	5491	800	7173	37
H(3C)	5305	271	5616	37
H(2A)	3783	1841	7955	34
H(2B)	4512	1574	8707	34
H(2C)	3982	601	8349	34
H(16A)	2792	6655	6589	35
H(16B)	2264	5683	6959	35
H(16C)	2381	6055	5295	35
H(2)	3263	3516	1983	16
H(8A)	3804	1419	1519	20
H(8B)	3250	2062	536	20
H(7A)	2567	2078	2924	21
H(7B)	2511	1058	1826	21
H(6A)	2689	489	4292	21
H(6B)	3284	43	3224	21
H(5A)	3304	-673	5676	40
H(5B)	3990	-787	6647	40
$\mathrm{H}(5 \mathrm{C})$	4028	-953	4908	40
H(9A)	4144	3346	259	23
H(9B)	4664	3035	1558	23
H(10A)	3931	5062	1386	24
H(10B)	4723	4921	924	24
H(11A)	4997	4505	3421	23
H(11B)	4713	5728	3201	23
H(13A)	4328	6790	4367	40
H(13B)	3934	6973	5890	40
H(13C)	3518	7059	4379	40
H(15A)	3765	5716	7862	29
H(15B)	3938	4462	7495	29
S35				

$\mathrm{H}(15 \mathrm{C})$	3237	4769	8334	29
$\mathrm{H}(18 \mathrm{~A})$	6519	2305	5339	87
$\mathrm{H}(18 \mathrm{~B})$	6957	1968	3921	87
$\mathrm{H}(18 \mathrm{C})$	6540	1052	4815	87
$\mathrm{H}(1)$	5603	2078	4134	74

Table S10. DFT optimized bond lengths (using the B3LYP functional and def2-TZVP basis set) versus experimental distances for $\left[\mathrm{Fe}^{\prime \prime}\left(\mathrm{S}_{2}{ }^{\mathrm{Me}}{ }^{2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdots \cdot \mathrm{H}_{-O M e}(1 \bullet \bullet \bullet \mathrm{H}-\mathrm{OMe})\right.$ containing a MeOH solvent molecule H -bonded to one of the thiolate sulfurs, $\mathrm{S}(2)$.

Bond	Calcd Bond Length $(\boldsymbol{\AA})$	Exptl Bond Length $(\boldsymbol{\AA})$
$\mathrm{Fe}-\mathrm{S}(1)$	2.338	$2.3103(7)$
$\mathrm{Fe}-\mathrm{S}(2)$	2.356	$2.3372(8)$
$\mathrm{Fe}-\mathrm{N}(1)$	2.194	$2.1802(19)$
$\mathrm{Fe}-\mathrm{N}(2)$	2.165	$2.154(2)$
$\mathrm{Fe}-\mathrm{N}(3)$	2.185	$2.153(2)$
$\mathrm{S}(2) \cdot \bullet \cdot \mathrm{H}$	2.224	2.318
$\mathrm{O}(1)-\mathrm{H}$	0.985	0.840
τ	0.78	0.76

Table S11. DFT optimized bond lengths (using the B3LYP functional and def2-TZVP basis set) versus experimental distances for $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{S}_{2}{ }^{\mathrm{Me}} \mathrm{N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right]\right.$ (1).

Bond	Calcd Bond Length (\AA)	Exptl Bond Length (\AA)
$\mathrm{Fe}-\mathrm{S}(1)$	2.338	$2.3263(5)$
$\mathrm{Fe}-\mathrm{S}(2)$	2.336	$2.3306(5)$
$\mathrm{Fe}-\mathrm{N}(1)$	2.184	$2.1556(16)$
$\mathrm{Fe}-\mathrm{N}(2)$	2.203	$2.1656(16)$
$\mathrm{Fe}-\mathrm{N}(3)$	2.174	$2.1815(15)$
τ	0.79	0.79

Table S12. DFT optimized bond lengths (using the B3LYP functional and def2-TZVP basis set) for $\left[\mathrm{Fe}^{\text {III }}\left(\mathrm{S}_{2}{ }^{\mathrm{Me}}{ }^{2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\left(\mathrm{O}_{2}\right)\right]\right.$ (2) in MeOH .

Bond	Calcd Bond Length (\AA)
$\mathrm{Fe}-\mathrm{S}(1)$	2.241
$\mathrm{Fe}-\mathrm{S}(2)$	2.266
$\mathrm{Fe}-\mathrm{N}(1)$	1.999
$\mathrm{Fe}-\mathrm{N}(2)$	2.118
$\mathrm{Fe}-\mathrm{N}(3)$	1.996
$\mathrm{Fe}-\mathrm{O}(1)$	1.973
$\mathrm{O}(1)-\mathrm{O}(2)$	1.310

Table S13. DFT optimized coordinates (using the B3LYP functional and def2-TZVP basis set) for $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right] \cdots \cdot \bullet \mathrm{H}-\mathrm{OMe}(1 \cdot \bullet \cdot \mathrm{H}-\mathrm{OMe})\right.$ in MeOH

Fe	0.187840000	0.031874000	2.207628000
S	2.516433000	0.158277000	2.542709000
S	-1.087148000	1.968776000	1.908785000
N	0.218245000	-0.269054000	4.372063000
N	0.206799000	0.078130000	0.042963000
N	-1.000941000	-1.793120000	1.941660000
O	2.537274000	-3.021609000	2.951929000
H	2.470473000	-2.044771000	2.848378000
C	3.382440000	-3.497198000	1.912449000
C	-1.458421000	-2.393969000	3.211330000
C	0.067044000	1.266016000	-2.096312000
C	2.518161000	0.562024000	4.350048000
C	-0.409893000	-2.797316000	1.031673000
C	3.742861000	-0.114823000	4.988821000
C	-0.259649000	-2.294192000	-0.398245000
C	0.711017000	-1.128021000	-0.601647000
C	-0.107098000	1.131375000	-0.602170000
H	-2.314984000	3.715220000	0.016495000
H	-2.683419000	2.101621000	-0.601732000
H	-1.710854000	3.226931000	-1.566366000
H	-1.425665000	0.120974000	5.626442000
H	-2.504589000	-0.548820000	3.557839000
H	0.081005000	4.324113000	0.639446000
H	-2.799208000	-1.773363000	4.775403000
H	0.305437000	0.604831000	6.912920000
H	1.772279000	2.583192000	4.033897000
H	-0.697003000	-1.466463000	5.829725000
H	0.716525000	3.712487000	-0.893226000
H	2.636691000	2.375830000	5.569669000
H	1.338761000	3.079669000	0.643204000
H	2.070031000	0.688456000	6.957514000
H	-1.821357000	-1.403575000	1.480762000
H	-0.675368000	0.656593000	-2.617278000
H	-2.212233000	-3.158952000	2.998669000
H	1.253899000	-0.875223000	6.947679000
H	-0.052192000	2.292777000	-2.426167000
H	3.537154000	2.446021000	4.049530000
H	-0.603739000	-2.897794000	3.667538000
H	-1.241104000	-2.012344000	-0.793346000
H	1.053582000	0.921820000	-2.405648000

H	3.875139000	0.176652000	6.031987000
H	-1.043927000	-3.691968000	1.021694000
H	0.885828000	-0.997917000	-1.669493000
H	0.557774000	-3.086203000	1.444010000
H	4.637113000	0.183937000	4.442100000
H	3.658076000	-1.200769000	4.937644000
H	1.669173000	-1.370957000	-0.134165000
H	0.094287000	-3.131944000	-1.003552000
C	1.239191000	0.102947000	5.045455000
H	2.950831000	-3.313503000	0.921927000
H	4.372631000	-3.030736000	1.949640000
H	3.499975000	-4.573265000	2.043241000
C	-0.981308000	-0.718954000	5.083156000
C	1.224795000	0.143659000	6.550458000
C	0.445014000	3.432735000	0.128148000
C	-2.021127000	-1.329622000	4.151331000
C	-0.651344000	2.350094000	0.144792000
C	-1.916522000	2.875921000	-0.553424000
C	2.617569000	2.090501000	4.514826000

Table S14. DFT optimized coordinates (using the B3LYP functional and def2-TZVP basis set) for $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\right]\right.$ (1)

Fe	0.151055000	-0.153370000	-0.036351000
S	2.477303000	-0.250168000	-0.247789000
S	-1.247675000	-1.997855000	0.278330000
N	0.269386000	0.057142000	-2.206808000
N	-0.928519000	1.763793000	0.070718000
N	0.016241000	-0.069024000	2.132000000
C	2.568112000	-0.747811000	-2.028832000
C	1.322739000	-0.339939000	-2.811064000
C	-1.028758000	-2.264901000	2.101089000
C	-0.433209000	-1.049130000	2.811087000
C	-1.306898000	2.304878000	-1.249418000
C	-1.921562000	1.215370000	-2.127842000
C	-0.897945000	0.475340000	-2.984013000
C	-0.252421000	2.761692000	0.923418000
C	-0.231228000	2.365651000	2.394932000
C	0.589982000	1.121986000	2.745249000
C	1.379951000	-0.457950000	-4.312116000
C	-0.374488000	-1.097541000	4.320683000
H	-1.786078000	1.479348000	0.539604000
H	-2.006129000	3.137244000	-1.116387000
H	-0.404878000	2.709552000	-1.713902000
H	-2.463002000	0.510480000	-1.491398000
H	-2.657319000	1.660370000	-2.800446000
H	0.471149000	-0.922202000	-4.696208000
H	-0.578503000	1.135086000	-3.796011000
H	0.765694000	2.886930000	0.546971000
H	-0.759661000	3.729426000	0.828449000
H	0.182384000	3.206604000	2.956476000
H	-1.258579000	2.226426000	2.747786000
H	0.667812000	1.048144000	3.830167000
H	1.601133000	1.235294000	2.344946000
H	-1.367235000	-0.398653000	-3.447039000
H	2.233819000	-1.038332000	-4.646162000
H	1.451765000	0.537169000	-4.760971000
H	0.634024000	-0.881032000	4.673977000
H	-0.666809000	-2.068104000	4.707096000
H	-1.043417000	-0.347712000	4.749274000
C	2.690446000	-2.281797000	-2.113409000
H	4.686319000	-0.355270000	-2.048674000

C	-0.063159000	-3.446644000	2.314498000
C	-2.405733000	-2.598468000	2.700653000
H	0.911188000	-3.226919000	1.877278000
H	0.071283000	-3.671117000	3.375967000
H	-0.466931000	-4.334254000	1.827358000
H	-2.833516000	-3.442679000	2.160180000
H	-2.341056000	-2.873266000	3.755383000
H	-3.086418000	-1.751708000	2.601763000
H	1.824992000	-2.759595000	-1.653823000
C	3.814067000	-0.089487000	-2.645613000
H	2.769948000	-2.620712000	-3.150061000
H	3.994014000	-0.423263000	-3.669356000
H	3.719258000	0.997255000	-2.643714000
H	3.585638000	-2.602131000	-1.580285000

Table S15. DFT optimized coordinates (using the B3LYP functional and def2-TZVP basis set) for $\left[\mathrm{Fe}^{\mathrm{III}}\left(\mathrm{S}_{2}{ }^{\mathrm{Me} 2} \mathrm{~N}_{3}(\mathrm{Pr}, \mathrm{Pr})\left(\mathrm{O}_{2}\right)\right]\right.$ (2) in MeOH

Fe	0.070175000	-0.233500000	0.011578000
S	2.292906000	-0.517674000	-0.018409000
S	-0.449790000	-2.407961000	0.382216000
N	0.135832000	-0.490511000	-1.969385000
N	-1.957531000	0.348280000	0.196171000
N	0.074661000	-0.129327000	2.004716000
0	0.423965000	1.693274000	-0.225298000
0	0.040972000	2.280132000	-1.331942000
C	2.575821000	-0.501265000	-1.839479000
C	1.258572000	-0.543855000	-2.586763000
C	0.050558000	-2.548595000	2.155468000
C	0.110917000	-1.160264000	2.764134000
C	-2.694983000	0.452799000	-1.077509000
C	-2.385408000	-0.700666000	-2.014831000
C	-1.086798000	-0.548183000	-2.787931000
C	-2.212466000	1.551055000	1.026887000
C	-1.673053000	1.473994000	2.449417000
C	-0.170081000	1.199792000	2.563334000
C	1.332525000	-0.628989000	-4.086691000
C	0.170415000	-1.070641000	4.265610000
H	-2.309651000	-0.468746000	0.691134000
H	-3.767867000	0.490946000	-0.863137000
H	-2.414395000	1.399167000	-1.541466000
H	-2.402536000	-1.644329000	-1.465902000
H	-3.181769000	-0.757172000	-2.760614000
H	-1.138645000	0.369118000	-3.381620000
H	-1.004277000	-1.380037000	-3.489884000
H	-1.776991000	2.400236000	0.505117000
H	-3.294487000	1.713908000	1.073684000
H	-1.892126000	2.428470000	2.933628000
H	-2.210738000	0.702060000	3.007945000
H	0.136582000	1.272178000	3.604324000
H	0.395541000	1.926528000	1.986057000
H	0.903998000	-1.571500000	-4.436135000
H	2.354250000	-0.567632000	-4.445349000
H	0.754751000	0.176709000	-4.543585000
H	0.880396000	-0.310620000	4.588255000
H	0.466201000	-2.021550000	4.698588000
H	-0.809582000	-0.808184000	4.671969000
C	3.417715000	-1.737443000	-2.204058000

C	3.334217000	0.783135000	-2.224960000
C	1.414456000	-3.245734000	2.284161000
C	-1.023372000	-3.383370000	2.876879000
H	2.176705000	-2.702423000	1.729328000
H	1.718583000	-3.318269000	3.331704000
H	1.340323000	-4.257055000	1.882425000
H	-1.151241000	-4.325533000	2.343126000
H	-0.734413000	-3.616256000	3.903350000
H	-1.982428000	-2.864422000	2.888685000
H	2.874527000	-2.655404000	-1.977468000
H	4.335459000	-1.727824000	-1.615154000
H	3.695558000	-1.743015000	-3.259871000
H	3.572045000	0.803138000	-3.290967000
H	2.745451000	1.665750000	-1.978736000
H	4.271337000	0.824032000	-1.669282000

Reference

1. M. N. Blakely, M. A. Dedushko, P. C. Y. Poon, G. Villar-Acevedo and J. A. Kovacs, Formation of a Reactive, Alkyl Thiolate-Ligated Felll-Superoxo Intermediate Derived from Dioxygen, J. Am. Chem. Soc., 2019, 141, 1867-1870.
2. J. J. N. Ellison, A.; Shoner, S. C.; Barnhart, D.; Cowen, J. A., Kovacs, J. A., Reactivity of FiveCoordinate Models for the Thiolate-Ligated Fe Site of Nitrile Hydratase, J. Am. Chem. Soc., 1998, 120, 5691-5700.
3. F. E. Grubbs, Procedures for Detecting Outlying Observations in Samples, Technometrics, 1969, 11, 1-21.
4. Kinetic Studio,(5.1.0.6), TgK Scientific, Salisbury, UK,2018.
5. S. V. Kryatov, E. V. Rybak-Akimova and S. Schindler, Kinetics and Mechanisms of Formation and Reactivity of Non-heme Iron Oxygen Intermediates, Chemical reviews, 2005, 105, 2175-2226.
6. F. Neese, The ORCA program system, Comput. Molec. Sci., 2012, 2, 73-78.
7. S. E. Grimme, S.; Goerigk, L., J. Comput. Chem, 2011, 32, 1456-1465.
8. V. C. Barone, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, J. Phys. Chem., 1998, 102, 1995 -2001.
9. C. B. Adamo, V., Toward reliable density functional methods without adjustable parameters: The PBEO model, J. Chem. Phys., 1999, 110, 6158-6170.
10. F. W. Neese, F.; Hansen, A.; Becker, U., Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A 'chain-of-spheres' algorithm for the Hartree-Fock exchange, Chem. Phys., 2009, 356, 98-109.
11. S. H.-G. Hirata, M., Time-dependent density functional theory within the Tamm-Dancoff approximation, Chem. Phys. Lett., 1999, 314, 291-299.
12. F. O. Neese, G., Efficient use of the resolution of the identity approximation in time-dependent density functional calculations with hybrid density functionals, Chem. Phys. Lett., 2002, 362, 170-178.
13. E. F. G. Pettersen, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E., UCSF Chimera- a visualization system for exploratory research and analysis, J. Comput. Chem., 2004, 25, 1605-1612.
14. S. V. A. Bruker. APEX2 (Version 2.1-4), SADABS (Version 2007/4). 2007.
15. G. Sheldrick, A short history of SHELX, Acta Crystallographica Section A, 2008, 64, 112-122.
16. G. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallographica Section C, 2015, 71, 3-8.
17. G. M. Sheldrick, SHELXL-97, Program for the Solution of Crystal Structures University of Göttingen, Germany,1997.
18. D. K. Waasmaier, A., Acta Crystallogr. A., 1995, 51, 416.
19. L. Farrugia, WinGX and ORTEP for Windows: an update, Journal of Applied Crystallography, 2012, 45, 849-854.
20. D. S. BIOVIA, BIOVIA Discovery Studio Dassault Systèmes, San Diego,2020.
21. J. H. Espenson, Chemical Kinetics and Reaction Mechanisms, McGraw-Hill, New York, 1981.
