SUPLUMMENTARY INFORMATION

Stereoselective Benzylic C(sp $\left.\boldsymbol{p}^{3}\right)$-H Alkenylation Enabled by
 Metallaphotoredox catalysis

Yantao Li,a Haonan Bai,a Qi Gao,a Kai Liu,a Jie Han,a Weipeng Li,a Chengjian Zhu*ab, and Jin Xie*a
> a. State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
> b. Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

Table of Contents

1. General information 2
2. Preparation of substrates 2
3. General procedure 9
4. Characterization of products 11
5. Investigation of the reaction mechanism 37
5.1 Radical inhibition experiments with TEMPO 37
5.2 Byproducts detected experiments. 37
5.3 Kinetic experiments 38
5.4 Luminescence quenching experiment 44
5.5 The reactivity of Z / E vinyl triflates 44
6. NMR spectrum of substrates 49
7. NMR spectrum of products 78
8. HPLC analysis. 144
9. Definition of the absolute configuration 160
10. DFT calculations 164
11. Reference. 170

1. General information

All the reactions were conducted in oven-dried Schlenk tubes under air unless otherwise noted. All solvents were purified by Solvent Purification System. Reagents were purchased from Energy Chemical, TCI and etc. Flash column chromatographic purification of products was accomplished using forced-flow chromatography on Silica Gel (300-400 mesh). ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a 400 MHz or 500 MHz spectrometer in $\mathrm{CDCl}_{3}\left(\delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=77.0 \mathrm{ppm}\right.$ as standard). Data for ${ }^{1} \mathrm{H} \mathrm{NMR}$ are reported as follows: chemical shift (ppm, scale), multiplicity, coupling constant (Hz), and integration. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (ppm, scale), multiplicity, and coupling constant (Hz). Abbreviations for signal couplings are: s , singlet; d , doublet; t , triplet; m , multiple. GCMS analyses were performed on a GC-MS with an EI mode. High resolution mass spectra were obtained using an Agilent 6210 Series TOF LC-MS equipped with electrospray ionization (ESI) probe operating in positive ion mode. Melting points (mp) were determined with a digital electrothermal apparatus without further correction. IR spectra were recorded on a Thermo Scientific Nicolet 380 FT-IR spectrometer. The 45 W blue LED lamps $(\lambda \max =455 \mathrm{~nm})$ were purchased from Kessil (A360NE/WE). High pressure liquid chromatography (HPLC) was performed on Agilent 1260 Series chromatographs using Daicel Chiralcel or Chiralpak columns $(250 \mathrm{~mm})$. Optical rotations were measured on a Rudolph Research Analytical Autopol VI automatic polarimeter using a 50 mm pathlength cell at 589 nm with [$\alpha]_{\mathrm{D}}$ values reported in degrees; concentration (c) is in $\mathrm{g} / 100 \mathrm{~mL}$.

2. Preparation of substrates

Method A: General Procedure for the Synthesis of (Z)-Enol Triflates
The starting acetoacetate derivative (4 mmol) was added to a round-bottom flask and dissolved in either hexanes or toluene ($20 \mathrm{~mL}, 0.2 \mathrm{M}$). The solution was cooled with an ice bath to $5-10^{\circ} \mathrm{C}$ (internal temperature) followed by addition of a saturated aqueous solution of $\mathrm{LiOH}(6 \mathrm{~mL}$, $\sim 30 \mathrm{mmol}$) in one portion. The resulting biphasic mixture was vigorously stirred at $5-10^{\circ} \mathrm{C}$ for ~ 5 minutes followed by the addition of triflic anhydride (10 mmol) dropwise at a rate to maintain the internal temperature between $5-15^{\circ} \mathrm{C}$. Upon completion of the reaction (as judged by TLC, typically $<10 \mathrm{~min}$), the biphasic solution was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted with EtOAc ($1 \times 10 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(1 \times 5 \mathrm{~mL})$, brine ($1 \times 5 \mathrm{~mL}$), and dried over MgSO_{4}. The organic layer was filtered and concentrated under reduced pressure to yield the corresponding crude (Z)-enol triflate. ${ }^{[1]}$
Method B: General Procedure for the Synthesis of (E)-Enol Triflates
The starting acetoacetate derivative (4 mmol) was added to a round-bottom flask and dissolved in either hexanes or toluene ($20 \mathrm{~mL}, 0.2 \mathrm{M}$). The solution was cooled with an ice bath to $5-10^{\circ} \mathrm{C}$ (internal temperature), followed by addition of an aqueous solution of tetramethylammonium hydroxide (7.2 mL of a $25 \mathrm{wt} \%$ solution in water, 20 mmol) in one portion. The resulting
biphasic mixture was vigorously stirred at $5-10^{\circ} \mathrm{C}$ for ~ 5 minutes followed by the addition of triflic anhydride (10 mmol) dropwise at a rate to maintain the internal temperature between 5$15^{\circ} \mathrm{C}$. Upon completion of reaction (as judged by TLC, typically $<10 \mathrm{~min}$), the biphasic solution was diluted with $\mathrm{H} 2 \mathrm{O}(5 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted with EtOAc ($1 \times 10 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{x}$ 5 mL), brine ($1 \times 5 \mathrm{~mL}$), and dried over MgSO 4 . The organic layer was filtered and concentrated under reduced pressure to yield the corresponding crude (E)-enol triflate. ${ }^{[1]}$

ethyl (Z)-2-benzyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (2a). ${ }^{[1]}$ Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 2a, $299.2 \mathrm{mg}, 85 \%$, light yellow oil; $\mathrm{Rf}=0.5$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.32-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.18(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 164.88,149.14,136.77,128.72,128.05,126.86,125.41,118.37(\mathrm{q}, J=$ 319.9 Hz), $61.78,35.02,17.80,13.75 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-74.73 .{ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{2 a}$

ethyl (E)-2-benzyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (2a'). ${ }^{[1]}$ Method B. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 2a', $232.3 \mathrm{mg}, 66 \%$, light yellow oil; $\mathrm{Rf}=0.47$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\left.\delta 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17 \mathrm{~m}, 3 \mathrm{H}\right), 4.12(\mathrm{q}$, $\mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 165.83,153.70,137.26,128.50,126.68,126.40,118.27(\mathrm{q}, J=319.7 \mathrm{~Hz}$), 61.54, 33.69, 18.93, 13.84. ${ }^{19}$ F NMR (376 MHz, Chloroform-d) $\delta-74.45$.

ethyl (Z)-2-methyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (2b). ${ }^{[1]}$ Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{2 b}, 234.6 \mathrm{mg}, 85 \%$, light yellow oil; $\mathrm{Rf}=0.6$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 4.30-4.24(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.92$ $(\mathrm{t}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 165.21, $147.54,121.75,118.23(\mathrm{q}, ~ J=319.7 \mathrm{~Hz}), 61.54,17.41,14.98,13.67 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform-d) $\delta-75.08$.

ethyl (Z)-2-(1-(((trifluoromethyl)sulfonyl)oxy)ethylidene)pent-4-enoate (2c). ${ }^{[1]}$ Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{2 c}, 235.6 \mathrm{mg}, 78 \%$, light yellow oil; $\mathrm{Rf}=0.4$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 5.83-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.09$ $(\mathrm{m}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 164.85,149.00,132.46,123.99,118.30(\mathrm{q}, J=319.7 \mathrm{~Hz}$), $116.95,61.81,33.25,17.56,13.90 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform-d) $\delta-74.67$.

ethyl (Z)-2-methyl-3-(((trifluoromethyl)sulfonyl)oxy)-5-(trimethylsilyl)pent-2-enoate (2d). ${ }^{[1]}$ Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 2d, $314.9 \mathrm{mg}, 87 \%$, light yellow oil; $\mathrm{Rf}=0.7$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 4.26$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.39 $-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.81-0.77(\mathrm{~m}, 2 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 165.59,153.47,120.21,118.31$ ($\mathrm{q}, ~ J=320.0 \mathrm{~Hz}$), 61.64 , $25.81,14.87,13.84,13.39,-2.22 .{ }^{19}$ F NMR (376 MHz , Chloroform- d) $\delta-74.95$.

ethyl (Z)-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (2e). ${ }^{[1]}$ Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 2d, $152.0 \mathrm{mg}, 58 \%$, light yellow oil; $\mathrm{Rf}=0.6$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 5.77(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 162.28,155.06,118.30(\mathrm{q}, J=319.8$ Hz), 112.78, 61.18, 20.82, 13.96. ${ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform-d) $\delta-74.77$.

ethyl (Z)-4-methyl-3-(((trifluoromethyl)sulfonyl)oxy)pent-2-enoate (2f). ${ }^{[1]}$ Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{2 f}, 191.4 \mathrm{mg}, 66 \%$, light yellow oil; $\mathrm{Rf}=0.7$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 5.77(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{~h}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroformd) $\delta 163.99,162.76,118.36(\mathrm{q}, J=320.1 \mathrm{~Hz}), 109.81,61.24,33.34,19.69,13.99 .{ }^{19} \mathrm{~F}$ NMR
(376 MHz , Chloroform- d) δ-74.67.

tert-butyl (Z)-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (2g). ${ }^{[1]}$ Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{2 g}, 246.5 \mathrm{mg}, 85 \%$, light yellow oil; $\mathrm{Rf}=0.6$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 5.69(\mathrm{~s}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 161.53,153.59,118.32\left(\mathrm{q}, J=319.9 \mathrm{~Hz}\right.$), 114.41, 82.33, 27.89, 20.55. ${ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform-d) δ-74.77.

3-ethylpentan-3-yl (Z)-2-benzyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (2h). Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{2 h}, 177.2 \mathrm{mg}, 42 \%$, light yellow oil; $\mathrm{Rf}=0.7$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.31-7.27$ (m, 2H), 7.23 - 7.18 $(\mathrm{m}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 163.34,148.40,136.88,128.65,128.02,126.76,126.29,118.39$ (q, $J=320.0 \mathrm{~Hz}$), 91.48, 35.27, 26.71, 17.56, 7.44. ${ }^{19}$ F NMR (376 MHz , Chloroform- d) $\delta-74.50$. HRMS (ESI) Calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}$ [M+K] ${ }^{+}$: 461.1006, found: 461.1002. IR v (neat, cm^{-} ${ }^{1}$): 2998.5, 1759.4, 1497.1, 1200.8, 1124.3, 997.2, 873.0.

2,4-dimethylpentan-3-yl (Z)-2-benzyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (2i).
Method \mathbf{A}. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{2 i}, 265.9 \mathrm{mg}, 63 \%$, light yellow oil; $\mathrm{Rf}=0.6$ (petroleum ether/ethyl acetate 10:1). ${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 7.29$ (dd, $J=8.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.22-7.18(\mathrm{~m}, 3 \mathrm{H}), 4.68(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.77(\mathrm{~m}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 0.72(\mathrm{dd}, J=9.7,6.8 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 164.29,150.16$, $136.85,128.71,127.89,126.80,124.87,118.39$ (q, $J=320.0 \mathrm{~Hz}$), 84.58, 34.92, 29.20, 19.25, 17.98, 17.06. ${ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-74.51$. HRMS (ESI) Calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}: 461.1006$, found: 461.1003. IR v (neat, cm^{-1}): 3001.4, 1700.5, 1492.5, 1240.8, 1200.5, 997.2, 805.2.

3-ethyl-2-methylpentan-3-yl (Z)-2-benzyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (2j).
Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{2 j}, 231.1 \mathrm{mg}, 53 \%$, light yellow oil; $\mathrm{Rf}=0.6$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.31-7.27$ (m, 2H), $7.22-7.17$ $(\mathrm{m}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{hept}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.86(\mathrm{~m}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H})$, $0.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, Chloroform- d) δ 163.46, $148.44,136.77,128.67,127.94,126.87-126.67(\mathrm{~m}), 126.34,118.40(\mathrm{q}, ~ J=319.9 \mathrm{~Hz}), 93.50$, $35.16,33.59,26.68,17.54,8.56 .{ }^{19}$ F NMR (376 MHz , Chloroform- d) $\delta-74.55$. HRMS (ESI) Calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}: 471.1163$, found: 471.1156. IR v (neat, cm^{-1}): 3012.4, 1754.1, 1495.6, 1200.5, 1180.2, 997.5, 780.3.

4-ethylheptan-4-yl (Z)-2-benzyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (2k). Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{2 k}, 248.1 \mathrm{mg}, 55 \%$, light yellow oil; $\mathrm{Rf}=0.6$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17$ $(\mathrm{m}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.11-1.01$ $(\mathrm{m}, 4 \mathrm{H}), 0.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 0.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 163.40,148.15,136.82,128.63,128.05,126.75,126.41,118.38(\mathrm{q}, J=320.1 \mathrm{~Hz}), 91.00$, $37.02,35.29,27.77,17.51,16.40,14.38,7.60 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-74.49$. HRMS (ESI) Calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}: 489.1319$, found: 489.1312. IR v (neat, cm^{-} ${ }^{1}$): $3080.5,1780.4,1490.2,1250.3,1197.8,998.1,785.6,605.4$.

3-ethylpentan-3-yl (Z)-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (21). Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 21, $285.5 \mathrm{mg}, 86 \%$, light yellow oil; $\mathrm{Rf}=0.4$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 5.73(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.87(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 161.12, $154.16,118.33$ (q, $J=319.8 \mathrm{~Hz}$), 114.03, $90.41,26.64,20.66,7.51 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) δ-74.78. HRMS (ESI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}: 371.0537$, found: 371.0534. IR $v\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right): 2987.5,1756.3,1500.2,1250.7,1244.9,750.2,698.7$.

3-ethylpentan-3-yl (Z)-2-([1,1'-biphenyl]-4-ylmethyl)-3-(((trifluoromethyl)sulfonyl)oxy)but-2enoate ($\mathbf{2 m}$). Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2}
(eluent: petroleum ether/ethyl acetate) to afford $\mathbf{2 m}, 194.2 \mathrm{mg}, 39 \%$, light yellow oil; $\mathrm{Rf}=0.6$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.57-7.52(\mathrm{~m}, 4 \mathrm{H})$, 7.43 (m, $7.44-7.41,2 H), 7.33(\mathrm{~m}, 7.35-7.31,1 \mathrm{H}), 7.26(\mathrm{~m}, 7.27-7.24,2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H})$, $2.19(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroformd) $\delta 163.38,148.40,140.79,139.79,135.99,128.79,128.49,127.39,127.27,127.00,118.42$ $(\mathrm{q}, J=319.9 \mathrm{~Hz}), 91.62,34.99,26.75,17.62,7.49 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform-d) $\delta-$ 74.42. HRMS (ESI) Calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 521.1580, found: 521.1571. IR v (neat, cm^{-1}): 2893.1, 1834.2, 1572.1, 1207.3, 996.2, 758.7 .

3-ethylpentan-3-yl (Z)-2-(4-fluorobenzyl)-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (2n). Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{2 n}, 250.8 \mathrm{mg}, 57 \%$, light yellow oil; $\mathrm{Rf}=0.6$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.96$ $(\mathrm{m}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 163.10(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 160.56,148.42,132.56(\mathrm{~d}, J=3.3 \mathrm{~Hz})$, $129.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 126.23,118.37(\mathrm{q}, J=319.9 \mathrm{~Hz}), 115.45(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 91.64,34.51$, 26.69, 17.50, 7.42. ${ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-74.51$, -116.24. HRMS (ESI) Calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~F}_{4} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}: 479.0912$, found: 479.0906. IR v (neat, cm^{-1}): 3001.2, 1748.3, 1500.4, 1480.6, 1238.1, 804.2, 731.2.

3-ethylpentan-3-yl (Z)-2-(4-fluorobenzyl)-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (20). Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{2 0}, 233.5 \mathrm{mg}, 53 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.97$ $(\mathrm{m}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.68(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 163.65(\mathrm{~d}, J=117.6 \mathrm{~Hz}), 161.79,148.88$, $139.51(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 130.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 125.69,123.62(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 118.37(\mathrm{q}, J=$ $320.0 \mathrm{~Hz}), 115.03(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 113.70(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 91.71,34.96,26.68,17.60,7.41$. ${ }^{19}$ F NMR (376 MHz , Chloroform-d) $\delta-74.50,-101.37--116.29$ (m). HRMS (ESI) Calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~F}_{4} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{K}]^{+}: 479.0912$, found: 479.0911. IR v (neat, cm^{-1}): 2997.3, 1748.2, 1518.2, 1476.8, 1203.7, 1145.8, 824.2.

3-ethylpentan-3-yl (Z)-2-(4-methylbenzyl)-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate
($\mathbf{2 p}$). Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{2 p}, 266.0 \mathrm{mg}, 61 \%$, light yellow oil; $\mathrm{Rf}=0.5$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.08(\mathrm{q}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.65$ (s, 2H), $2.31(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.66(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , Chloroform-d) $\delta 163.44,148.16,136.29,133.71,129.28,127.88,126.48,118.36$ (q, J = 320.5 Hz), 91.43, 34.8, 26.71, 20.97, 17.51, 7.46. ${ }^{19} \mathrm{~F}$ NMR (471 MHz , Chloroform- d) $\delta-74.46$. HRMS (ESI) Calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 459.1424$, found: 459.1427. IR v (neat, cm^{-} ${ }^{1}$): $2890.2,1740.2,1404.2,1240.6,1128.1,689.4$.

3-ethylpentan-3-yl (Z)-2-(3-methylbenzyl)-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (2q). Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{2 q}, 204.9 \mathrm{mg}, 47 \%$, light yellow oil; $\mathrm{Rf}=0.5$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.17$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.03-$ $6.97(\mathrm{~m}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.68(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 163.41,148.26,138.23,136.79,128.84,128.53$, $127.44,126.43,125.10,118.41$ ($\mathrm{q}, ~ J=320.0 \mathrm{~Hz}$), $91.42,35.17,26.74,21.31,17.53,7.42 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-74.58$. HRMS (ESI) Calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 459.1424, found: 459.1418. IR v (neat, cm^{-1}): 3010.2, 1756.1, 1487.5, 1201.7, 1170.5, 998.3, 697.2.

3-ethylpentan-3-yl (Z)-2-(1-(((trifluoromethyl)sulfonyl)oxy)ethylidene)decanoate (2r). Method A. On 1.0 mmol scale; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{2 r}, 160.2 \mathrm{mg}, 36 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1) .{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 2.29-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}$, $3 \mathrm{H}), 1.90(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 10 \mathrm{H}), 0.90-0.83(\mathrm{~m}, 12 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 164.12,145.99,128.17,118.35$ (q, $J=320.0 \mathrm{~Hz}$), 91.16,

3. General procedure

General procedure A (Standard conditions)

Supplementary Figure 1. Reaction device

Photocatalyst $\left.\left[\operatorname{Ir}\left(\mathrm{dF}_{\left(\mathrm{CF}_{3}\right)}\right) \mathrm{ppy}\right)_{2}\left(4,4^{\prime}-\mathrm{dCF}_{3} \mathrm{bpy}\right)\right] \mathrm{PF}_{6}(4.6 \mathrm{mg}, 2 \mathrm{~mol} \%)$, benzylic compound (0.4 $\mathrm{mmol}, 2$ equiv), alkenyl triflates ($0.2 \mathrm{mmol}, 1$ equiv), $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4.8 \mathrm{mg}, 10 \mathrm{~mol} \%$), and anhydrous powder $\mathrm{Li}_{2} \mathrm{CO}_{3}(29.6 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) were added to an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar. The tube was evacuated and backfilled with argon three times. Subsequently, DMF (2 mL) was added under argon. The tube was then sealed and placed $\sim 5 \mathrm{~cm}$ from $2 \times 45 \mathrm{~W}$ blue LEDs. The reaction mixture was stirred for 24 h at room temperature (air-condition was used to keep the temperature is $25^{\circ} \mathrm{C}$ or so). After completion, the reaction mixture was removed from the light, diluted with water and the aqueous layer was extracted with EtOAc ($3 \times 2 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography on silica gel to afford the corresponding products.

General procedure B

Supplementary Figure 2. Reaction device
Preparation of Ni-based catalyst solution: In the nitrogen-filled glove box, a stirring bar, $\mathrm{NiBr}_{2} \cdot$ dme ($4.6 \mathrm{mg}, 15 \mathrm{~mol} \%$), ($3 \mathrm{aS}, 3^{\prime} \mathrm{aS}, 8 \mathrm{aR}, 8^{\prime} \mathrm{a}^{\prime} \mathrm{R}$)-2,2'-cyclopropylidenebis[3a,8a-dihydro8 H -Indeno[1,2-d]oxazole ($7.1 \mathrm{mg}, 20 \mathrm{~mol} \%$) and N, N-Dimethylpropionamide/DCM (1 mL , $\mathrm{V} / \mathrm{V}=1: 1$) were successively added to an oven-dried vial (8 mL screw-cap threaded). The vial was then sealed with a Teflon-lined plastic screw-cap and stirred until the resulting mixture become homogeneous (about 20 min$)$. Photocatalyst $\left[\operatorname{Ir}\left(\mathrm{dF}_{(}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}_{2}\right)_{2}\left(4,4^{\prime}-\mathrm{dCF}_{3} \mathrm{bpy}\right)\right] \mathrm{PF}_{6}(2.3$ $\mathrm{mg}, 2 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(23.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) were added to an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar. The tube was evacuated and backfilled with argon three times. Subsequently, the nickel-catalyst solution was transferred into this Schlenk tube under argon. Then benzylic compound ($0.2 \mathrm{mmol}, 2$ equiv), alkenyl triflates (0.1 mmol, 1 equiv) were added. The tube was then sealed and placed $\sim 5 \mathrm{~cm}$ from $2 \times 45 \mathrm{~W}$ blue LEDs. The reaction mixture was stirred for 36 h at $-40^{\circ} \mathrm{C}$. After completion, the reaction mixture was removed from the light, diluted with water and the aqueous layer was extracted with DCM $(3 \times 2 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography on silica gel to afford the corresponding ketone products.

Gram-scale reaction

Photocatalyst $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \text { ppy }\right)_{2}\left(4,4 \mathrm{C}^{\prime}-\mathrm{dCF}_{3} \mathrm{bpy}^{2}\right)\right] \mathrm{PF}_{6}(17.2 \mathrm{mg}, 0.5 \mathrm{~mol} \%)$, benzylic compound (6 mmol, 2 equiv), alkenyl triflates ($3 \mathrm{mmol}, 1$ equiv), $\mathrm{NiCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}(17.9 \mathrm{mg}, 2.5 \mathrm{~mol} \%$), and anhydrous powder $\mathrm{Li}_{2} \mathrm{CO}_{3}$ ($444 \mathrm{mg}, 6 \mathrm{mmol}, 2$ equiv) were added to an oven-dried 100 mL Schlenk tube equipped with a magnetic stirring bar. The tube was evacuated and backfilled with argon three times. Subsequently, DMF (30 mL) was added under argon. The tube was then sealed and placed $\sim 5 \mathrm{~cm}$ from $2 \times 45 \mathrm{~W}$ blue LEDs. The reaction mixture was stirred for 48 h at room temperature (air-condition was used to keep the temperature is $25^{\circ} \mathrm{C}$ or so). After completion, the reaction mixture was removed from the light, diluted with water and the aqueous layer was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography on silica gel to afford the corresponding products in 79% yield $(0.8011 \mathrm{~g})$.

4. Characterization of products

ethyl (Z)-2-benzyl-4-(4-methoxyphenyl)-3-methylpent-2-enoate (3a). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 3a, $57.5 \mathrm{mg}, 85 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, Chloroformd) $\delta 7.28-7.14(\mathrm{~m}, 7 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), \delta 3.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 169.8,157.9,148.3,139.4,135.3,128.4(2 \mathrm{C})$, 128.3(2C), 128.1(2C), 127.1, 125.9, 113.5(2C), 60.3, 55.2, 40.9, 35.9, 16.9, 14.3, 14.1. HRMS (ESI) Calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 339.1955$, found: 339.1947. IR v (neat, cm^{-1}): 2970, 1708, 1610, 1510, 1454, 1247, 1178, 1077, 1033, 833, 699.

ethyl (Z)-2-benzyl-4-(4-methoxyphenyl)-3-methylbut-2-enoate (3b). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 b}, 48.0 \mathrm{mg}, 74 \%$,
light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 7.28-7.14(\mathrm{~m}, 7 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74$ (s, 2H), $3.68(\mathrm{~s}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroformd) $\delta 169.3,158.0,144.8,139.5,131.4,129.9(2 \mathrm{C}), 128.3(2 \mathrm{C}), 128.2(2 \mathrm{C}), 128.1,125.9$, 113.7(2C), $60.3,55.2,41.0,35.8,19.3,14.1$. HRMS (ESI) Calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 325.1798, found: 325.1790 . IR $v\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right): 2916,1705,1509,1246,1174,1096,1034,698$, 670.

ethyl (Z)-2-benzyl-4-(4-methoxyphenyl)-3-methylhex-2-enoate (3c). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 c}, 42.2 \mathrm{mg}, 60 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 7.28-7.14(\mathrm{~m}, 7 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{dd}, J=9.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.79 (s, 3H), 3.69 (d, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.94-1.74$ (m, 2H), 1.50 (s, 3H), 1.19 (t, $J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 170.0,157.9,146.3$, $139.4,134.7,128.9(2 \mathrm{C}), 128.3,128.3(2 \mathrm{C}), 128.2(2 \mathrm{C}), 125.9,113.5(2 \mathrm{C}), 60.2,55.2,48.3,36.1$, 23.7, 14.2, 13.8, 12.2. HRMS (ESI) Calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 353.2111$, found: 353.2105. IR $v\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right): 2961,2932,1709,1510,1494,1246,1178,1086,1033,815,699$.

ethyl (Z)-2-benzyl-4-(4-ethoxyphenyl)-3-methylpent-2-enoate (3d). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 3d, $59.1 \mathrm{mg}, 84 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 7.27-7.14(\mathrm{~m}, 7 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.01(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.17$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 169.8,157.3,148.3,139.4,135.2$, $128.4(2 \mathrm{C}), 128.3(2 \mathrm{C}), 128.1(2 \mathrm{C}), 127.0,125.9,114.1(2 \mathrm{C}), 63.3,60.2,40.9,35.9,16.9,14.8$, 14.3, 14.1. HRMS (ESI) Calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 353.2111$, found: 353.2104. IR v (neat, cm^{-1}): 2977, 2930, 1708, 1509, 1243, 1177, 1077, 1046, 807, 697.

ethyl (Z)-2-benzyl-4-(2-methoxyphenyl)-3-methylbut-2-enoate (3e). The reaction was carried
out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 e}, 36.9 \mathrm{mg}, 57 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 7.28-7.15(\mathrm{~m}, 7 \mathrm{H}), 6.91-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ $169.3,157.6,145.0,139.8,129.9,128.3,128.3(2 \mathrm{C}), 128.2(2 \mathrm{C}), 127.8,127.2,125.9,120.4$, $110.2,60.1,55.2,35.9,35.2,19.5,14.1$. HRMS (ESI) Calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 325.1798, found: 325.1790. IR v (neat, cm^{-1}): 2931, 1709, 1600, 1455, 1242, 1183, 1114, 1076, 1030, 752, 698.

ethyl (Z)-2-benzyl-4-(4-methoxy-3-methylphenyl)-3-methylbut-2-enoate ($\mathbf{3 f}$). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 f}, 55.4 \mathrm{mg}$, 82%, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.28-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ $(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 169.3,156.2,145.0,139.6,131.3,131.0,128.3(2 \mathrm{C})$, 128.2(2C), 128.0, 127.0, 126.3, 125.9, 109.8, 60.2, 55.3, 41.0, 35.8, 19.4, 16.2, 14.1. HRMS (ESI) Calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 339.1955$, found: 339.1947. IR v (neat, cm^{-1}): 2934, 1708, 1608, 1498, 1453, 1289, 1255, 1197, 1181, 1050, 863, 699.

ethyl (Z)-2-benzyl-4-(4-methoxy-2-methylphenyl)-3-methylbut-2-enoate (3g). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 g}, 60.2 \mathrm{mg}$, 89%, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.36-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~m}, 6.70-6.67,2 \mathrm{H}), 4.10$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 5 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 169.2,157.8,145.0,139.7,137.8,129.9,129.7$, $128.6,128.3,128.2,125.9,115.7,111.0,60.2,55.1,38.1,35.8,19.9,19.5,14.1$. HRMS (ESI) Calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 339.1944$, found: 339.1947. IR v (neat, cm^{-1}): 2978, 2936, 1710, 1608, 1499, 1453, 1289, 1198, 1051, 699.

ethyl (Z)-3-(6-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-2-methylbut-2-enoate (3h). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 h}$, $41.5 \mathrm{mg}, 72 \%$, light yellow oil; $\mathrm{Rf}=0.9$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 6.91$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.66 (dd, $J=8.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.78-2.72(\mathrm{~m}, 2 \mathrm{H})$, $1.92(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 5 \mathrm{H}), 1.73-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{q}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 170.4,157.4,146.0,138.8,130.0,129.6,125.3,113.4$, 112.1, $60.2,55.1,43.7,30.4,28.7,22.7,16.0,16.0,14.2$. HRMS (ESI) Calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 289.1798$, found: 289.1788 . IR v (neat, cm^{-1}): 2932, 1710, 1609, 1500, 1278, 1258, 1217, 1092, 1040.

ethyl (Z)-4-(2-methoxyphenyl)-2,3-dimethylpent-2-enoate (3i). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 i}, 22.0 \mathrm{mg}, 42 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 7.25(\mathrm{dd}, J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.78 (dd, $J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 1.83$ $(\mathrm{s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 170.4,157.7,145.5,132.3,127.5,127.1,123.1,120.0,110.2,59.9,55.2,36.1$, 17.0, 16.3, 14.7, 14.3. HRMS (ESI) Calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 263.1642$, found: 263.1633. IR v (neat, cm^{-1}): 2924, 1712, 1632, 1440, 1275, 1244, 1207, 1106, 1029, 753.

ethyl (Z)-4-(2,4-dimethoxyphenyl)-2,3-dimethylbut-2-enoate ($\mathbf{3} \mathbf{j}$). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 j}, 44.5 \mathrm{mg}, 80 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 7.03(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.44-6.40(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~m}, 6 \mathrm{H})$, $3.65(\mathrm{~s}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 170.1,159.2,158.4,143.6,130.0,124.2,120.3,60.1,55.3,55.3,34.2,19.3$, 16.0, 14.2. HRMS (ESI) Calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 279.1591$, found: 279.1582. IR v (neat, cm^{-1}): 2935, 1709, 1612, 1505, 1463, 1289, 1208, 1156, 1038, 833.

ethyl (Z)-3-(2,3-dihydrobenzofuran-3-yl)-2-methylbut-2-enoate (3k). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 3k, $43.8 \mathrm{mg}, 89 \%$, light yellow oil; $\mathrm{Rf}=0.9$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, Chloroformd) $\delta 7.17-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.74(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{dd}, J=9.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.64(\mathrm{~m}$, $1 \mathrm{H}), 4.32(\mathrm{dd}, J=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 169.6,160.4,128.8,128.4,125.8,125.1$, 120.5, 109.5, 75.1, 60.5, 46.5, 16.1, 15.2, 14.2. HRMS (ESI) Calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 247.1329, found: 247.1321. IR v (neat, cm^{-1}): 2980, 1706, 1596, 1482, 1277, 1231, 1094, 973, 750.

ethyl (Z)-3-(chroman-4-yl)-2-methylbut-2-enoate (31).The reaction was carried out according to the general procedure A on 0.2 mmol scale $(24 \mathrm{~h})$; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $31,46.8 \mathrm{mg}, 90 \%$, light yellow oil; Rf $=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.10-7.06$ $(\mathrm{m}, 1 \mathrm{H}), 6.94-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.57-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{dt}, J=10.9,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.25-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{td}, J=11.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H})$, $1.51(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 170.0,155.5,144.4$, $129.1,127.5,126.7,123.8,120.5,116.8,65.7,60.4,39.9,27.4,16.1,15.8,14.2$. HRMS (ESI) Calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 261.1485$, found: 261.1475. IR v (neat, cm^{-1}): 2977, 2929, $1708,1581,1487,1452,1273,1255,1118,1062,1014,756$.

ethyl (Z)-4-(4-(2-methoxy-2-oxoethoxy)phenyl)-2,3-dimethylbut-2-enoate (3m). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 m}, 50.8 \mathrm{mg}$, 83%, light yellow oil; $\mathrm{Rf}=0.5$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 169.9,169.5,156.2,143.1,132.8,129.9,124.3,114.5,65.4$, 60.2, 52.2, 40.7, 19.3, 15.9, 14.2. HRMS (ESI) Calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 307.1540$,
found: 307.1531 . IR v (neat, cm^{-1}): 2920, 1762, 1706, 1509, 1438, 1273, 1203, 1173, 1102,

ethyl (Z)-4-methoxy-4-(4-methoxyphenyl)-2,3-dimethylbut-2-enoate (3n). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 n}, 36.1 \mathrm{mg}$, 65%, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.34(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.33$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 169.8,158.6,142.5,132.6,127.2$, 127.0, 113.4, 80.9, 60.5, 56.3, 55.2, 16.1, 14.3, 12.6. HRMS (ESI) Calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 279.1591$, found: 279.1582 . IR v (neat, cm^{-1}): 2931, 1710, 1612, 1510, 1463, 1301, 1246, 1213, 1093, 1035, 836.

ethyl (Z)-2,3-dimethyl-4-(1-(triisopropylsilyl)-1H-indol-3-yl)but-2-enoate (3o). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 30, 34.8 mg , 42%, light yellow oil; $\mathrm{Rf}=0.9$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.62-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H})$, $4.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 1.92(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 6 \mathrm{H}), 1.30(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 170.4,143.4$, $141.3,131.2,129.5,123.5,121.2,119.3,119.0,115.6,113.8,60.2,31.5,19.2,18.1,16.1,14.3$, 12.8. HRMS (ESI) Calculated for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 414.2823$, found: 414.2812 . IR v (neat, $\left.\mathrm{cm}^{-1}\right): 2947,2868,1711,1450,1173,1140,1088,740$.

ethyl (Z)-4-(benzofuran-2-yl)-2,3-dimethylbut-2-enoate (3p). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 p}, 23.7 \mathrm{mg}, 46 \%$, light yellow oil; $\mathrm{Rf}=0.9$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 7.48-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 169.2,156.8,154.7,140.7,128.9,125.5,123.2,122.4,120.3$,
$110.8,103.1,60.4,34.7,20.2,16.0$, 14.2. HRMS (ESI) Calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 259.1329, found: 259.1320. IR v (neat, cm^{-1}): 2929, 1709, 1454, 1297, 1271, 1159, 1084, 751.

ethyl (Z)-4-(6-methoxy-4'-methyl-[1, l'-biphenyl]-3-yl)-2,3-dimethylbut-2-enoate (3q). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 q}$, $48.7 \mathrm{mg}, 72 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.29$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 169.9,154.9,143.2,136.5,135.7$, $131.7,131.3,130.3,129.4(2 \mathrm{C}), 128.7(2 \mathrm{C}), 128.6,124.2,111.1,60.2,55.6,40.7,21.1,19.3$, 16.0, 14.3. HRMS (ESI) Calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 339.1955$, found: 339.1947. IR v (neat, cm^{-1}): 2923, 1709, 1518, 1494, 1296, 1239, 1172, 1105, 1044, 821.

11,

ethyl (Z)-4-(5-methoxy-4'-methyl-[1,1'-biphenyl]-2-yl)-2,3-dimethylbut-2-enoate (3r). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 r}$, $49.3 \mathrm{mg}, 73 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.12-7.07(\mathrm{~m}, 5 \mathrm{H}), 6.75(\mathrm{dd}, J=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.41(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 169.7$, $157.5,144.2,143.3,138.8,136.5,129.9,129.1,1289.0,128.7,124.4,115.0,113.1,60.1,55.2$, 37.8, 21.1, 19.3, 15.8, 14.2. HRMS (ESI) Calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 339.1955$, found: 339.1947. IR v (neat, cm^{-1}): 2932, 1708, 1606, 1493, 1296, 1271, 1221, 1175, 1103, 1082, 1017, 823.

ethyl (Z)-4-(4'-ethyl-6-methoxy-[1,1'-biphenyl]-3-yl)-2,3-dimethylbut-2-enoate (3s). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 3s, $49.3 \mathrm{mg}, 70 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2), 7.21-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.88$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 2.68(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.90(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 169.9$, $154.9,143.2,142.7,135.9,131.7,131.4,130.3,129.4,128.6,127.4,124.2,111.1,60.2,55.6$, $40.8,28.5,19.3,16.0,15.4,14.3$. HRMS (ESI) Calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 353.2111$, found: 353.2105. IR v (neat, cm^{-1}): 2963, 2931, 1710, 1517, 1494, 1267, 1241, 1146, 1083, 1028, 834.

ethyl (Z)-4-(4'-ethyl-5-methoxy-[1,1'-biphenyl]-2-yl)-2,3-dimethylbut-2-enoate (3t). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 3t, $52.1 \mathrm{mg}, 74 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.21-7.16(\mathrm{~m}, 5 \mathrm{H}), \delta 6.83(\mathrm{dd}, J=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 2.69(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{~s}$, $3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 169.8,157.5$, $144.2,143.4,142.8,139.0,129.9,129.2,129.0,127.5,124.4,114.9,113.1,60.1,55.2,37.8$, 28.5, 19.4, 15.8, 15.5, 14.2. HRMS (ESI) Calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 353.2111$, found: 353.2102. IR \vee (neat, cm^{-1}): 2963, 3933, 1707, 1605, 1492, 1295, 1271, 1174, 1102, 1016, 835.

(Z)-2-(4-(4-ethoxy-2,3-dimethyl-4-oxobut-2-en-1-yl)phenoxy)ethyl 4-methylbenzoate (3u). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 u}$, $57.8 \mathrm{mg}, 73 \%$, light yellow oil; $\mathrm{Rf}=0.6$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.69-4.64(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 169.9,166.5,157.0,143.7,143.2,132.1,129.9,129.7,1289.0$, 127.1, 124.1, 114.5, 66.0, 63.2, 60.2, 40.7, 21.6, 19.2, 15.9, 14.2. HRMS (ESI) Calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 397.2010$, found: 397.2002. IR v (neat, cm^{-1}): 2926, 1713, 1611, 1509, 1272, 1240, 1176, 1103, 777.

(Z)-2-(4-(4-ethoxy-2,3-dimethyl-4-oxobut-2-en-1-yl)phenoxy)ethyl 4-ethylbenzoate (3v). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 v}$, $67.4 \mathrm{mg}, 82 \%$, light yellow oil; $\mathrm{Rf}=0.6$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.97$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.25 ($\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16 (d, $J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 2.69(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 13 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 169.9,166.6,157.0,149.9,143.2,132.2,129.9,129.8$, $127.8,127.4,124.2,114.6,66.1,63.2,60.2,40.7,28.9,19.2,15.9,15.2,14.2$. HRMS (ESI) Calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 411.2166$, found: 411.2155. IR v (neat, cm^{-1}): 2967, 1715, $1611,1510,1274,1242,1177,1104,853$.

(Z)-2-(4-(4-ethoxy-2,3-dimethyl-4-oxobut-2-en-1-yl)phenoxy)ethyl 4-methylthiophene-2carboxylate (3w). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 w}, 52.4 \mathrm{mg}, 65 \%$, light yellow oil; $\mathrm{Rf}=0.5$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.61(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.17-7.13$ (m, $3 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{dd}, J=5.5,4.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.26-4.19(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.26$ $(\mathrm{s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroformd) $\delta 169.9,162.1,156.9,143.2,138.4,135.5,132.8,132.2,129.9,128.4,124.1,114.5,65.9$, 63.3, 60.2, 40.7, 19.2, 15.9, 15.4, 14.2. HRMS (ESI) Calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 403.1574, found: 403.1567. IR v (neat, cm^{-1}): 2926, 1706, 1509, 1429, 1276, 1234, 1175, 1081, 951, 772.

(Z)-2-(4-(4-ethoxy-2,3-dimethyl-4-oxobut-2-en-1-yl)phenoxy)ethyl

3-methylfuran-2carboxylate ($\mathbf{3 x} \mathbf{x}$. The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 x}, 54.0 \mathrm{mg}, 70 \%$, light yellow oil; $\mathrm{Rf}=0.4$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.44(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.15 (d, $J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.62(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.18$ $(\mathrm{m}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{q}, ~ J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{q}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 169.9,159.3,156.9,145.1,143.2,132.2$, $131.5,129.9,129.4,124.1,115.1,114.5,65.9,62.7,60.2,40.7,19.2,15.9,14.2,11.5$. HRMS (ESI) Calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 387.1802$, found: 387.1795. IR v (neat, cm^{-1}): 2928, 1705, 1509, 1290, 1242, 1177, 1098, 1073, 929, 776.

ethyl (Z)-4-(4-methoxy-3-methylphenyl)-2,3-dimethylbut-2-enoate (3y).The reaction was
carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 y}, 46.6 \mathrm{mg}$, 89%, light yellow oil; $\mathrm{Rf}=0.9$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.05-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ (s, 3H), $3.59(\mathrm{~s}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{q}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{q}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 170.0, 156.1, 143.4, 131.2, 131.1, 126.9, 126.3, 123.9, 109.7, $60.2,55.2,40.7,19.2,16.2,15.9,14.2$. HRMS (ESI) Calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 263.1642, found: 263.1632. IR v (neat, cm^{-1}): 2928, 1710, 1504, 1464, 1443, 1273, 1252, 1174, 1105, 1035.

ethyl (Z)-2-(1-(4-methoxy-3-methylphenyl)propan-2-ylidene)pent-4-enoate (3z). The reaction was carried out according to the general procedure A on 0.2 mmol scale $(24 \mathrm{~h})$; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 z}, 49.0 \mathrm{mg}$, 85%, light yellow oil; $\mathrm{Rf}=0.9$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.03-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.09-4.99$ (m, 2H), $4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ (s, 3 H), $3.60(\mathrm{~s}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}$, $3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 169.4$, 156.2, 144.7, 135.1, 131.3, 131.0, 127.0, 126.6, 126.3, 115.3, 109.8, 60.2, 55.3, 40.9, 34.3, 18.8, 16.2, 14.2. HRMS (ESI) Calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 289.1798$, found: 289.1789. IR v (neat, cm^{-1}): 2979, 1710, 1504, 1442, 1274, 1202, 1134, 1036, 913, 807.

ethyl (E)-3-(4-methoxy-3-methylbenzyl)-2-methyl-5-(trimethylsilyl)pent-2-enoate (3aa). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 3aa, $60.0 \mathrm{mg}, 86 \%$, light yellow oil; $\mathrm{Rf}=0.9$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.02-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.59-0.55(\mathrm{~m}, 2 \mathrm{H}),-0.02(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 170.3,156.1$, $150.2,131.4,127.1,126.2,122.6,109.8,60.2,55.3,37.8,26.2,16.2,15.3,14.8,14.3,-2.0$. HRMS (ESI) Calculated for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}: 349.2193\right.$, found: 349.2178. IR v (neat, cm^{-} ${ }^{1}$): 2952, 1711, 1504, 1250, 1175, 1092, 1036, 861, 836.

ethyl (Z)-4-(4-methoxy-3-methylphenyl)-3-methylbut-2-enoate (3bb). The reaction was carried out according to the general procedure A on 0.2 mmol scale $(24 \mathrm{~h})$; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 b b}, 36.2 \mathrm{mg}, 73 \%$, light yellow oil; $\mathrm{Rf}=0.9$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, Chloroformd) $\delta 7.03-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.92$ $(\mathrm{s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 166.5,158.2,156.3,131.2,130.5,127.0,126.4,116.6,109.8,59.6,55.2,37.9$, $24.5,16.1,14.3$. HRMS (ESI) Calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 249.1485$, found: 249.1475. IR v (neat, cm^{-1}): 2979, 1712, 1649, 1504, 1464, 1253, 1170, 1137,1053, 1036, 807.

ethyl (E)-3-(4-methoxy-3-methylbenzyl)-4-methylpent-2-enoate (3cc). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 3cc, $43.6 \mathrm{mg}, 79 \%$, light yellow oil; $\mathrm{Rf}=0.9$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 7.00-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.98$ ($\mathrm{s}, 2 \mathrm{H}$), $3.79(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 167.6,167.2,156.1,131.2,130.6,126.8,126.3$, $114.1,109.8,59.7,55.3,35.9,34.1,21.8,16.2,14.3$. HRMS (ESI) Calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 277.1798$, found: 277.1790. IR v (neat, cm^{-1}): 2963, 1713, 1641, 1504, 1253, 1164, 1134, 1035.

tert-butyl (Z)-4-(4-methoxy-3-methylphenyl)-3-methylbut-2-enoate (3dd). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 3dd, 37.0 mg , 67%, light yellow oil; $\mathrm{Rf}=0.9$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.02-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroformd) $\delta 166.1,156.2,156.1,131.2,130.6,127.0,126.4,118.5,109.8,79.7,55.3,37.7,28.2,24.3$, 16.2. HRMS (ESI) Calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 277.1798$, found: 277.1789. IR v (neat, $\left.\mathrm{cm}^{-1}\right): 2976,1706,1647,1504,1366,1251,1152,1134,1035,863$.

methyl 2-(4-methoxy-3-methylbenzyl)cyclohex-1-ene-1-carboxylate (3ee). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 3ee, 38.9 mg , 71%, light yellow oil; $\mathrm{Rf}=0.9$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.00-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.62$ $(\mathrm{s}, 2 \mathrm{H}), 2.36-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.03-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.50(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 169.8,156.1,146.8,131.4,131.2,126.8,126.3,125.4,109.7,55.3$, 51.3, 39.8, 30.2, 26.7, 22.2, 22.1, 16.2. HRMS (ESI) Calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 275.1642, found: 275.1632. IR v (neat, cm^{-1}): 2930, 1711, 1503, 1433, 1277, 1251, 1134, 1036. 1079, 1025, 833.

ethyl 2-(4-methoxy-3-methylbenzyl)cyclohex-1-ene-1-carboxylate (3ff). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 f f}, 40.3 \mathrm{mg}$, 70%, light yellow oil; $\mathrm{Rf}=0.9$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.01-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.71(\mathrm{~m}, 1 \mathrm{H}), 4.2(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.60(\mathrm{~s}, 2 \mathrm{H}), 2.36-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.29$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 169.6,156.1,145.8,131.4,131.2$, $126.8,126.2,125.8,109.8,60.1,55.29,39.8,30.1,26.8,22.3,22.2,16.2,14.3$. HRMS (ESI) Calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 275.1642$, found: 275.1632. IR v (neat, cm^{-1}): 2930, 1709, 1504, 1252, 1224, 1134, 1046.

ethyl 4-(4-methoxy-3-methylbenzyl)-1,2,5,6-tetrahydro-[1,1'-biphenyl]-3-carboxylate (3gg). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 g g}, 57.5 \mathrm{mg}, 79 \%$, light yellow oil; $\mathrm{Rf}=0.9$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.02(\mathrm{~m}$, $2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.62(\mathrm{~m}, 2 \mathrm{H}), 2.79$ $-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.18(\mathrm{~s}, 4 \mathrm{H}), 1.89-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.65(\mathrm{~m}$, $1 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 169.0,156.2,146.1,146.1$, $131.3,131.2,128.4,126.9,126.8,126.3,126.2,125.4,109.8,60.2,55.3,39.8,39.4,34.8,30.9$, 29.1, 16.2, 14.3. HRMS (ESI) Calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 365.2111$, found: 365.2098. IR v (neat, cm^{-1}): 2926, 1708, 1503, 1464, 1251, 1235, 1208, 1132, 1036, 755, 701.

ethyl 5,5-difluoro-2-(4-methoxy-3-methylbenzyl)cyclohex-1-ene-1-carboxylate (3hh). ${ }^{1} \mathrm{H}$ NM The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 3hh, $49.9 \mathrm{mg}, 77 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). R (400 MHz , Chloroform- d) $\delta 6.99-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=14.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$, $1.99-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 167.0$, $156.4,147.4,131.1,130.4,126.8,126.6,122.4,121.0(\mathrm{t}, J=5.7 \mathrm{~Hz}), 109.9,60.6,55.3,38.7$, $35.7(\mathrm{t}, J=27.9 \mathrm{~Hz}), 29.8(\mathrm{t}, J=24.3 \mathrm{~Hz}), 28.8(\mathrm{t}, J=5.4 \mathrm{~Hz}), 16.2,14.2 .{ }^{19}$ F NMR (376 MHz , Chloroform- d) δ-96.67. HRMS (ESI) Calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 325.1610$, found: 325.1601. IR v (neat, cm^{-1}): 2928, 1715, 1504, 1374, 1253, 1235, 1115, 1077, 960.

methyl 4-(4-methoxy-3-methylbenzyl)-5,6-dihydro-2H-pyran-3-carboxylate (3ii). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 i i}, 40.3 \mathrm{mg}$, 73%, light yellow oil; $\mathrm{Rf}=0.5$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.01-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.72(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 166.3,156.3,148.6,131.2,130.3,127.0,126.5,123.7,109.9,65.6,63.9,55.3$, 51.3, 38.9, 29.9, 16.2. HRMS (ESI) Calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 277.1434$, found: 277.1428. IR $v\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right): 2951,1716,1503,1256,1231,1130,1078,1040$.

methyl 2-(4-methoxy-3-methylbenzyl)cyclohept-1-ene-1-carboxylate ($\mathbf{3 j j}$). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 j j}, 50.5 \mathrm{mg}$, 83%, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.03-6.99(m, 2 H), 6.73(d, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.55$ $(\mathrm{s}, 2 \mathrm{H}), 2.49-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.15(\mathrm{~m}, 5 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 2 \mathrm{H})$, $1.36-1.30(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 170.8,156.2,151.8,131.5,131.4$, $130.4,127.2,126.2,109.7,55.3,51.4,41.1,34.4,32.3,30.3,26.5,25.6,16.2$. HRMS (ESI) Calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 289.1798$, found: 289.1789. IR v (neat, cm^{-1}): 2923, 2851, $1711,1504,1441,1288,1200,1134,1033$.

ethyl (Z)-2-(4-methoxy-3-methylbenzyl)cyclooct-1-ene-1-carboxylate (3kk). The reaction was carried out according to the general procedure A on 0.2 mmol scale $(24 \mathrm{~h})$; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 k k}, 53.7 \mathrm{mg}$, 85%, light yellow oil; $\mathrm{Rf}=0.9$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.05-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 2.45-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 5 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.43$ $(\mathrm{m}, 6 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 170.0,156.1,148.1$, $131.5,131.1,128.7,127.2,126.2,109.7,60.0,55.3,38.9,31.2,29.9,28.9,28.6,26.7,26.2$, 16.2, 14.3.

HRMS (ESI) Calculated for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 317.2111$, found: 317.2101. IR v (neat, cm^{-1}): 2923, 1707, 1504, 1290, 1253, 1200, 1180, 1133, 1038.

ethyl (Z)-2-(4-methoxy-3-methylbenzyl)cyclododec-1-ene-1-carboxylate (311). The reaction was carried out according to the general procedure A on 0.2 mmol scale $(24 \mathrm{~h})$; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 311, 53.7 mg , 72%, light yellow oil; $\mathrm{Rf}=0.9$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ $(\mathrm{s}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.33$ (m, 16H), $1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 171.1,156.1,142.8$, $131.4,131.1,131.1,126.8,126.3,109.7,60.2,55.3,37.8,27.3,27.1,26.1,25.6,25.4,25.0$, 24.8, 24.8, 22.5, 16.2, 14.3. HRMS (ESI) Calculated for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 373.2737$, found: 373.2728. IR \vee (neat, cm^{-1}): 2927, 2859, 1716, 1504, 1467, 1252, 1212, 1134, 1036.

ethyl (Z)-2-(4-methoxy-3-methylbenzyl)cyclopentadec-1-ene-1-carboxylate (3mm). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{3 m m}$, $69.7 \mathrm{mg}, 84 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 6.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.53-$ 1.25 (m, 25H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 170.7, 156.1, 144.6, 131.3, 131.2, 130.3, $126.9,126.2,109.7,60.1,55.2,38.7,31.3,29.9,27.6,27.4,26.8,26.8,26.7,26.6,26.1,26.1$,
25.4, 25.4, 16.2, 14.2. HRMS (ESI) Calculated for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 415.3208$, found: 415.3198.

IR v (neat, cm^{-1}): 2927, 2857, 1713, 1504, 1462, 1253, 1222, 1134, 1036.

ethyl (S,Z)-4-(4-(2-((2-(6-methoxynaphthalen-2-yl)propanoyl)oxy)ethoxy)phenyl)-2,3-dimethylbut-2-enoate (4a). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{4 a}, 78.6 \mathrm{mg}, 80 \%$, light yellow oil; $\mathrm{Rf}=0.3$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.67-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{dd}, J=8.6,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.74(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.46-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.07(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 174.5,169.9,157.6$, $156.8,143.2,135.4,133.6,132.1,129.8,129.2,128.8,127.1,126.1,125.9,124.1,118.9,114.5$, $105.5,65.8,63.1,60.2,55.2,45.2,40.7,19.2,18.5,15.9,14.2$. HRMS (ESI) Calculated for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 491.2428$, found: 491.2412. IR v (neat, cm^{-1}): 2978, 2936, 1734, 1509, 1270, 1174, 1077, 925.

(Z)-2-(4-(4-ethoxy-2,3-dimethyl-4-oxobut-2-en-1-yl)phenoxy)ethyl

4-(N,Ndipropylsulfamoyl)benzoate (4b). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{4 b}, 81.9 \mathrm{mg}, 75 \%$, light yellow oil; $\mathrm{Rf}=0.2$ (petroleum ether/ethyl acetate $10: 1) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $d) \delta 8.18-8.16(\mathrm{~m}, 2 \mathrm{H})$, $7.88-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.70-4.67(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.29$ (m, 2H), $4.22(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.12-3.08(\mathrm{~m}, 4 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$, $1.59-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 169.9,165.1,156.8,144.3,143.1,133.1,132.4,130.3,129.9,126.9,124.2$, $114.5,65.8,64.0,60.2,49.8,40.7,21.8,19.2,15.9,14.2,11.1$ HRMS (ESI) Calculated for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{NO}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 546.2520$, found: 546.2510. IR v (neat, cm^{-1}): 2967, 1722, 1509, 1343, 1240, 1174, 1087, 993, 778, 694.

ethyl (Z)-4-(4-(2-((2-(4-isobutylphenyl)propanoyl)oxy)ethoxy)phenyl)-2,3-dimethylbut-2enoate (4c). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{4 c}, 79.4 \mathrm{mg}, 85 \%$, light yellow oil; $\mathrm{Rf}=0.5$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.46-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.09(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~s}$, $3 \mathrm{H}), 1.82(\mathrm{dq}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 174.7,169.9,156.9,143.2$, $140.5,137.5,132.1,129.8,129.3,127.1,124.2,114.5,65.9,63.0,60.2,45.0,45.0,40.7,30.1$, 22.3, 19.2, 18.5, 15.9, 14.2. HRMS (ESI) Calculated for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 467.2792$, found: 467.2792. IR v (neat, cm^{-1}): 2955, 2930, 1736, 1710, 1510, 1299, 1244, 1166, 1102, 1077.

(Z)-2-(4-(4-ethoxy-2,3-dimethyl-4-oxobut-2-en-1-yl)phenoxy)ethyl 6-(3-(adamantan-2-yl)-4-methoxyphenyl)-2-naphthoate (4d). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{4 d}, 29.6 \mathrm{mg}, 22 \%$, light yellow oil; $\mathrm{Rf}=0.4$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.07$ (dd, $J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (dd, $J=8.6,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.99$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{dd}, J=5.5,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.34$ (dd, $J=5.4,4.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 6 \mathrm{H}), 2.10(\mathrm{~s}$, $3 \mathrm{H}), 1.91(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 6 \mathrm{H}), 1.66(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) δ 170.0, 166.8, 158.9, 157.0, 143.2, 141.4, 139.0, 136.0, 132.5, $132.3,131.2,131.0,130.0,129.7,128.2,126.6,126.5,126.0,125.7,125.6,124.7,124.2,114.6$, $112.1,66.1,63.5,60.3,55.1,40.8,40.6,37.1,29.1,19.3,16.0,14.3$. HRMS (ESI) Calculated for $\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 673.3524$, found: 673.3510 . IR v (neat, cm^{-1}): 2903, 1715, 1629, 1509, 1278, 1237, 1216, 1139, 1076, 809.

ethyl (Z)-4-(4-(2-(((3S,5S,8R,9S, 10S, 13S, 14S)-10,13-dimethyl-17-oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-2-oxoethoxy)phenyl)-2,3-dimethylbut-2-enoate (4e). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{4 e}$, $87.0 \mathrm{mg}, 77 \%$, light yellow oil; $\mathrm{Rf}=0.2$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.15$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 6.81 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.83 (ddd, $J=11.5$, $6.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{dd}, J=19.3,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.16-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.15(\mathrm{~m}, 13 \mathrm{H}), 1.12-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.85$ (d, $J=3.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.77-0.66(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 221.1,169.9$, $168.5,156.3,143.1,132.7,129.8,124.2,114.5,74.6,65.7,60.2,54.2,51.3,47.7,44.5,40.7$, $36.5,35.7,35.5,34.9,33.7,31.4,30.7,28.2,27.2,21.7,20.4,19.2,15.9,14.2,13.7,12.1$. HRMS (ESI) Calculated for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 565.3524$, found: 565.3516. IR v (neat, cm^{-1}): 2931, 2855, 1737, 1708, 1509, 1444, 1273, 1233, 1195, 1176, 1103, 1080, 1013.

ethyl (Z)-4-(4-(2-(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)-2-oxoethoxy)phenyl)-2,3-dimethylbut-2-enoate $(\mathbf{4 f})$. The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{4 f}, 49.1 \mathrm{mg}, 57 \%$, light yellow oil; $\mathrm{Rf}=0.5$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.80(\mathrm{td}, J=10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ $(\mathrm{s}, 2 \mathrm{H}), 2.06-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.54-1.27(\mathrm{~m}, 6 \mathrm{H})$, $1.10-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.91-0.84(\mathrm{~m}, 7 \mathrm{H}), 0.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 169.9,168.1,156.3,143.1,132.7,129.9,124.2,114.4,75.4,65.6,60.2,46.9$, 40.7, 40.7, 34.1, 31.3, 26.1, 23.3, 21.9, 20.7, 19.2, 16.1, 15.9, 14.2. HRMS (ESI) Calculated for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 431.2792$, found: 431.2791. IR $v\left(\right.$ neat, cm^{-1}): 2955, 2927, 1757, 1711, 1509, 1274, 1196, 1176, 1103, 1081.

ethyl
(Z)-4-(4-(2-(((3aR,5R,6S,6aR)-5-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)oxy)-2-oxoethoxy)phenyl)-2,3-dimethylbut-2enoate ($\mathbf{4 g}$). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{4 g}, 47.1 \mathrm{mg}, 44 \%$, light yellow oil; $\mathrm{Rf}=0.2$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.16(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.79(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.24-4.18(\mathrm{~m}$, $3 \mathrm{H}), 4.15-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.07-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}$, $3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 169.9,167.9$, $156.1,143.0,133.1,130.0,124.4,114.5,112.4,109.4,105.1,83.2,79.8,72.4,67.2,65.4,60.3$, 40.7, 26.9, 26.7, 26.2, 25.2, 19.3, 15.9, 14.3. HRMS (ESI) Calculated for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}$: 525.2538, found: 525.2533. IR v (neat, cm^{-1}): 2987, 1772, 1708, 1509, 1374, 1215, 1164, 1076, 844.

ethyl (Z)-2,3-dimethyl-4-(4-(2-oxo-2-(((3aR,5R,5aS, 8aS, 8bR)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4', 5'-d]pyran-5-yl)methoxy)ethoxy)phenyl)but-2-enoate (4h). The reaction was carried out according to the general procedure A on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{4 h}$, $52.4 \mathrm{mg}, 49 \%$, light yellow oil; $\mathrm{Rf}=0.2$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{dd}, J=7.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=11.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.30$ $(\mathrm{m}, 2 \mathrm{H}), 4.20(\mathrm{dd}, J=7.9,6.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.09-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}$, $3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 169.9,168.9,156.3,143.1,132.7,129.9,124.2,114.6,109.7,108.8,96.2,70.9$, $70.6,70.3,65.8,65.4,64.0,60.2,40.7,26.0,25.9,24.9,24.4,19.3,15.9,14.2$. HRMS (ESI) Calculated for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}: 535.2538$, found: 535.2530. IR v (neat, cm^{-1}): 2985, 1762, 1708, 1509, 1381, 1167, 1004, 859, 511.

ethyl (Z)-4-(4-(2-(($3 S, 8 S, 9 S, 10 R, 13 R, 14 S, 17 R)-10,13-$ dimethyl-17-($(R)-6-m e t h y l h e p t a n-2-$ yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-2-oxoethoxy)phenyl)-2,3-dimethylbut-2-enoate (4i). The reaction was carried out according to the general procedure A on 0.2 mmol scale $(24 \mathrm{~h})$; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{4 i}, 39.7 \mathrm{mg}, 30 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroformd) $\delta 7.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{dd}, J=5.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-$ $4.70(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.04$ $-1.79(\mathrm{~m}, 8 \mathrm{H}), 1.65-1.48(\mathrm{~m}, 10 \mathrm{H}), 1.39-1.24(\mathrm{~m}, 8 \mathrm{H}), 1.19-1.07(\mathrm{~m}, 6 \mathrm{H}), 1.06-0.97(\mathrm{~m}$, $6 \mathrm{H}), 0.45-0.85(\mathrm{~m}, 9 \mathrm{H}), 0.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 169.9,168.5$, $156.3,143.1,139.2,132.7,129.9,124.2,122.9,114.5,75.1,65.7,60.2,56.6,56.1,50.0,42.3$, $40.7,39.7,39.5,37.9,36.9,36.5,36.1,35.7,31.8,31.8,28.2,28.0,27.6,24.2,23.8,22.8,22.5$, 21.0, 19.2, 18.7, 15.92 14.2, 11.8. HRMS (ESI) Calculated for $\mathrm{C}_{43} \mathrm{H}_{64} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 661.4827$, found: 661.4822. IR v (neat, cm^{-1}): 2936, 2868, 1760, 1711, 1509, 1274, 1195, 1176, 1103, 1081.

1-((4-methoxybenzyl)oxy)-2,2,6,6-tetramethylpiperidine (11). The reaction was carried out according to the general procedure A (extra 3 equiv. TEMPO was added) on 0.2 mmol scale (24 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{1 1}, 2.2 \mathrm{mg}, 4 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate 10:1).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 6 \mathrm{H}), 1.26(\mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 159.0,130.4,129.2,113.7,78.4,60.0,55.3,39.7,33.2,20.3,17.2$.

ethyl 2-(4-methoxybenzyl)cyclohex-1-ene-1-carboxylate (13). The reaction was carried out according to the mordified procedure on 0.2 mmol scale. Modified conditions: PC $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}\left(5,5{ }^{\prime}-\mathrm{dFbpy}\right)\right] \mathrm{PF}_{6}(2 \mathrm{~mol} \%), \mathrm{NiCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%), 4,4$ '-Di-tert-butyl-2,2'bipyridine (15%), $\mathbf{1}(0.4 \mathrm{mmol}), \mathbf{2 a}(0.2 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{HPO}_{4}(0.4 \mathrm{mmol}), \mathrm{DMF}(2 \mathrm{~mL})$, blue LEDs, 24 h ; purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{1 3}, 32.9 \mathrm{mg}, 60 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 2.36-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.50$ $(\mathrm{m}, 4 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 169.5,157.9,145.7$, 131.9, 129.7, 126.0, 113.6, 60.1, 55.2, 39.8, 30.1, 26.7, 22.2, 22.2, 14.3. HRMS (ESI) Calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 275.1642$, found: 275.1634. IR v (neat, cm^{-1}): 2931, 2856, 1415, 1246, 1207, 1143, 1052, 883, 832, 612.

3-ethylpentan-3-yl (S,Z)-2-benzyl-4-(4-methoxyphenyl)-3-methylpent-2-enoate (5a). The reaction was carried out according to the general procedure B on 0.1 mmol scale (36 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{5 a}$, $26.6 \mathrm{mg}, 65 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.26-7.13(\mathrm{~m}, 7 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.45-1.43(\mathrm{~m}, 6 \mathrm{H}), 0.72(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 168.9,157.9,147.2,139.6,135.6,128.5$, 128.2, 128.1, 125.8, 113.5, 89.0, 55.2, 40.6, 36.1, 26.9, 16.9, 14.2, 7.6. HRMS (ESI) Calculated for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{3}[\mathrm{M}+\mathrm{K}]^{+}: 447.2296$, found: 447.2286. IR v (neat, cm^{-1}): 2969, 2940, 1703, 1511, $1455,1283,1248,1216,1179,1136,1103,1039,833$. HPLC analysis CHIRALCEL ${ }^{\circledR}$ two ADH columns, n-hexane/iso-propanol $=98.5 / 1.5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector, t_{R} (minor) $=23.820 \mathrm{~min}, t_{\mathrm{R}}($ major $)=25.226 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=-7\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 91 \%$ ee

2,4-dimethylpentan-3-yl (S,Z)-2-benzyl-4-(4-methoxyphenyl)-3-methylpent-2-enoate (5b). The reaction was carried out according to the general procedure B on 0.1 mmol scale (36 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{5 b}$, $28.6 \mathrm{mg}, 70 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400

MHz, Chloroform- d) $\delta 7.27-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.76$ $-4.66(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.45$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.80-0.73(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 169.5,157.9$, $149.7,139.4,135.5,128.5,128.3,128.0,126.9,125.9,113.5,82.9,55.2,40.6,35.8,29.4,29.4$, 19.5, 17.3, 17.1, 14.6. HRMS (ESI) Calculated for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{3}[\mathrm{M}+\mathrm{K}]^{+}: 447.2296$, found: 447.2291. IR \vee (neat, cm^{-1}): 2964, 2934, 1707, 1511, 1463, 1248, 1196, 1076, 833. HPLC analysis CHIRALCEL ${ }^{\circledR}$ two AD-H columns, n-hexane/iso-propanol $=98.5 / 1.5$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector, $t_{\mathrm{R}}($ minor $)=26.577 \mathrm{~min}, t_{\mathrm{R}}($ major $)=27.077 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=-13(\mathrm{c}=$ $1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); 84% ee

3-ethyl-2-methylpentan-3-yl (S,Z)-2-benzyl-4-(4-methoxyphenyl)-3-methylpent-2-enoate (5c). The reaction was carried out according to the general procedure B on 0.1 mmol scale (36 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 5c, $19.8 \mathrm{mg}, 47 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.26-7.13(\mathrm{~m}, 7 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~h}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.78(\mathrm{~m}$, $4 \mathrm{H}), 1.45-1.43(\mathrm{~m}, 6 \mathrm{H}), 0.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.78(\mathrm{td}, J=7.6,3.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 169.1,157.9,147.3,139.5,135.6,128.5,128.2,128.1,125.8,113.5$, 91.0, 55.2, 40.5, 36.0, 33.9, 27.0, 27.0, 17.7, 17.0, 14.1, 8.8. HRMS (ESI) Calculated for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{3}[\mathrm{M}+\mathrm{K}]^{+}: 461.2453$, found: 461.2448. IR v (neat, cm^{-1}): 2968, 2936, 1703, 1511, 1455, 1248, 1220, 1200, 1077, 833. HPLC analysis CHIRALCEL ${ }^{\circledR}$ two AD-H columns, n-hexane/isopropanol $=98.5 / 1.5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector, $t_{\mathrm{R}}($ minor $)=21.223 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=23.154 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=-16\left(\mathrm{c}=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 90 \%$ ee

4-ethylheptan-4-yl (S,Z)-2-benzyl-4-(4-methoxyphenyl)-3-methylpent-2-enoate (5d). The reaction was carried out according to the general procedure B on 0.1 mmol scale (36 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{5 d}$, $21.0 \mathrm{mg}, 48 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.37-7.10(\mathrm{~m}, 7 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.40$ $(\mathrm{m}, 6 \mathrm{H}), 1.18-1.05(\mathrm{~m}, 4 \mathrm{H}), 0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 0.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 169.0,157.9,146.9,139.5,135.6,128.5,128.3,128.2,128.2,125.8$, $113.5,88.6,55.2,40.6,37.3,36.1,28.0,16.9,16.6,14.5,14.1,7.8$. HRMS (ESI) Calculated for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{3}[\mathrm{M}+\mathrm{K}]^{+}: 475.2609$, found: 475.2599. IR $v\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right): 2960,2933,2874,1702,1510$, $1455,1281,1247,1217,1179,1123,1076,808$. HPLC analysis CHIRALCEL ${ }^{\circledR}$ two AD-H columns, n-hexane/iso-propanol $=99.0 / 1.0$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} U V$ detector, t_{R} (minor)

$$
=109.672 \mathrm{~min}, t_{\mathrm{R}}(\text { major })=96.385 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{25}=-27\left(\mathrm{c}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 92 \% \text { ee }
$$

3-ethylpentan-3-yl (R,Z)-4-(4-methoxyphenyl)-3-methylpent-2-enoate (5e). The reaction was carried out according to the general procedure B on 0.1 mmol scale (36 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 5e, 21.9 mg , 69%, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.19(\mathrm{dd}, J=8.9,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.24(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.57(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.39(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 165.78$, $160.6,157.9,135.3,128.4,117.7,113.5,87.9,55.2,37.5,26.9,19.5,17.0,7.7$. HRMS (ESI) Calculated for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 341.2087$, found: 341.2072. IR v (neat, cm^{-1}): 2969, 2942, $1703,1639,1510,1457,1247,1222,1130,1040,832$. HPLC analysis CHIRALCEL ${ }^{\circledR}$ two ADH columns, n-hexane/iso-propanol $=99.0 / 1.0$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector, t_{R} (minor) $=23.898 \mathrm{~min}, t_{\mathrm{R}}($ major $)=25.037 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=-23\left(\mathrm{c}=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 85 \%$ ee

3-ethylpentan-3-yl (S,Z)-2-([1,1'-biphenyl]-4-ylmethyl)-4-(4-methoxyphenyl)-3-methylpent-2enoate (5f). The reaction was carried out according to the general procedure B on 0.1 mmol scale (36 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{5 f}, 30.1 \mathrm{mg}, 62 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dd}$, $J=8.4,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.89-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 0.73 ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) $\delta 169.0,157.9,147.2,141.2$, $138.8,135.6,128.7,128.6,128.5,128.2,127.0,127.0,113.5,89.1,55.2,40.6,35.8,26.9,17.0$, 14.2, 7.6. HRMS (ESI) Calculated for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{3}[\mathrm{M}+\mathrm{K}]^{+}: 523.2609$, found: 523.2605. IR v (neat, cm^{-1}): 2969, 2938, 1702, 1510, 1457, 1285, 1247, 1179, 1072, 832, 758, 698. HPLC analysis CHIRALCEL ${ }^{\circledR}$ two AD-H columns, n-hexane $/$ iso-propanol $=98.5 / 1.5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, 254 nm UV detector, $t_{\mathrm{R}}($ minor $)=31.609 \mathrm{~min}, t_{\mathrm{R}}($ major $)=27.815 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=-11(\mathrm{c}=1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); 91\% ee

3-ethylpentan-3-yl
(S,Z)-2-(4-fluorobenzyl)-4-(4-methoxyphenyl)-3-methylpent-2-enoate $\mathbf{(5 g})$. The reaction was carried out according to the general procedure B on 0.1 mmol scale (36 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{5 g}, 29.9 \mathrm{mg}, 70 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.23$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.15-7.11$ (m, 2H), 6.94 (t, $J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.58(\mathrm{~m}$, $2 \mathrm{H}), 1.79(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.45-1.42(\mathrm{~m}, 6 \mathrm{H}), 0.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-117.80 .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 168.8,161.3$ (d, $J=$ $243.4 \mathrm{~Hz}), 157.9$, 147.3, 135.4, 135.2 (d, $J=3.2 \mathrm{~Hz}$), 129.4 (d, $J=7.7 \mathrm{~Hz}$), 128.4, 128.1, 115.0 (d, $J=21.3 \mathrm{~Hz}$), 113.5, 89.2, 55.2, 40.6, 35.3, 26.9, 16.9, 14.1, 7.6. HRMS (ESI) Calculated for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 449.2462$, found: 449.2453. IR v (neat, cm^{-1}): 2970, 2939, 1702, 1509, 1458, 1285, 1247, 1221, 1179, 1040, 832. HPLC analysis CHIRALCEL ${ }^{\circledR}$ two AD-H columns, n-hexane/iso-propanol $=98.5 / 1.5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} \mathrm{UV}$ detector, $t_{\mathrm{R}}($ minor $)=$ $22.312 \mathrm{~min}, t_{\mathrm{R}}($ major $)=23.787 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=-13\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 86 \%$ ee

3-ethylpentan-3-yl (Z)-2-(3-fluorobenzyl)-4-(4-methoxyphenyl)-3-methylpent-2-enoate (5h). The reaction was carried out according to the general procedure B on 0.1 mmol scale (36 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{5 h}, 26.0 \mathrm{mg}, 61 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.28-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.82(\mathrm{~m}$, $4 \mathrm{H}), 4.65(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H})$, 1.44 (d, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.73$ (t, $J=7.5 \mathrm{~Hz}, 9 \mathrm{H}$). ${ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-113.95$. ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 168.7, 163.0 (d, $J=244.8 \mathrm{~Hz}$), 157.9, 148.1, 142.3 (d, J $=6.8 \mathrm{~Hz}), 135.4,129.6$ (d, $J=8.2 \mathrm{~Hz}$), 128.4, 127.5, 123.8 (d, $J=2.7 \mathrm{~Hz}$), 114.9 (d, $J=21.3$ $\mathrm{Hz}), 113.6,112.7$ (d, $J=21.3 \mathrm{~Hz}$), 89.3, 55.2, 40.6, 35.8, 35.8, 26.9, 16.9, 14.2, 7.6. HRMS (ESI) Calculated for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{K}]^{+}: 465.2202$, found: 465.2193. IR v (neat, cm^{-1}): 2969, 2940, 1702, 1613, 1510, 1454, 1284, 1246, 1178, 1133, 1073, 1038, 776. HPLC analysis CHIRALCEL ${ }^{\circledR}$ two AD-H columns, n-hexane/iso-propanol $=98.5 / 1.5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 254$ nm UV detector, $t_{\mathrm{R}}($ minor $)=23.029 \mathrm{~min}, t_{\mathrm{R}}($ major $)=24.539 \mathrm{~min} .[\alpha]^{25}=-15\left(\mathrm{c}=0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; 90% ee

3-ethylpentan-3-yl (S,Z)-4-(4-methoxyphenyl)-3-methyl-2-(4-methylbenzyl)pent-2-enoate (5i). The reaction was carried out according to the general procedure B on 0.1 mmol scale (36 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford 5i, $28.8 \mathrm{mg}, 68 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.59(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 6 \mathrm{H}), 1.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 0.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroformd) $\delta 169.1,157.8,146.8,136.4,135.6,135.2,128.9,128.5,128.0,113.5,89.0,55.2,40.6,35.6$, 26.9, 21.0, 16.9, 14.1, 7.6. HRMS (ESI) Calculated for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{3}[\mathrm{M}+\mathrm{K}]^{+}: 461.2453$, found: 461.2444. IR \vee (neat, cm^{-1}): 2969, 2941, 1702, 1511, 1284, 1248, 1179, 1040, 832. HPLC analysis CHIRALCEL ${ }^{\circledR}$ two AD-H columns, n-hexane/iso-propanol $=98.5 / 1.5$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector, $t_{\mathrm{R}}($ minor $)=22.294 \mathrm{~min}, t_{\mathrm{R}}($ major $)=23.385 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=-16(\mathrm{c}=$ $0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); 91% ee

3-ethylpentan-3-yl (S,Z)-4-(4-methoxyphenyl)-3-methyl-2-(3-methylbenzyl)pent-2-enoate (5j). The reaction was carried out according to the general procedure B on 0.1 mmol scale (36 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{5 j}, 30.5 \mathrm{mg}, 72 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.94$ $(\mathrm{m}, 3 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.58(\mathrm{~m}, 2 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.44-1.42(\mathrm{~m}, 6 \mathrm{H}), 0.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 169.0,157.8,146.9,139.5,137.6,135.6,129.0,128.5,128.3,128.1$, $126.5,125.2,113.5,89.0,55.2,40.6,35.9,26.9,21.4,16.9,14.1,7.6$. HRMS (ESI) Calculated for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{3}[\mathrm{M}+\mathrm{K}]^{+}: 461.2453$, found: 461.2445 . IR v (neat, cm^{-1}): 2969, 2939, 1702, 1510, 1457, 1284, 1217, 1135, 1072, 832. HPLC analysis CHIRALCEL ${ }^{\circledR}$ two AD-H columns, n-hexane/iso-propanol $=98.5 / 1.5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} U V$ detector, $t_{\mathrm{R}}($ minor $)=21.487 \mathrm{~min}$, $t_{\mathrm{R}}($ major $)=22.989 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=-13\left(\mathrm{c}=0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 92 \%$ ee

3-ethylpentan-3-yl (S,Z)-2-(3-(4-methoxyphenyl)butan-2-ylidene)decanoate (5k). The reaction was carried out according to the general procedure B on 0.1 mmol scale (36 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{5 k}, 21.6$ $\mathrm{mg}, 50 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.21-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ $(\mathrm{s}, 3 \mathrm{H}), 2.30-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.45-1.26(\mathrm{~m}, 18 \mathrm{H}), 0.89-0.84(\mathrm{~m}$, $12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 170.0,157.7,143.0,135.8,130.5,128.4,113.4$, 88.7, 55.2, 40.7, 31.8, 30.6, 29.6, 29.4, 29.3, 28.8, 27.0, 22.7, 16.9, 14.1, 13.1, 7.8. HRMS (ESI) Calculated for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{3}[\mathrm{M}+\mathrm{K}]^{+}: 469.3079$, found: 469.3069. IR v (neat, cm^{-1}): 2965, 2925, $1703,1510,1458,1282,1178,1116,1038,832$. HPLC analysis CHIRALCEL ${ }^{\circledR}$ two AD-H columns, n -hexane/iso-propanol $=99.0 / 1.0$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$ UV detector, t_{R} (minor) $=65.871 \mathrm{~min}, t_{\mathrm{R}}($ major $)=44.660 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=-13\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 90 \%$ ee

3-ethylpentan-3-yl (S,Z)-2-benzyl-4-(4-ethoxyphenyl)-3-methylpent-2-enoate (5I). The reaction was carried out according to the general procedure B on 0.1 mmol scale (36 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{5 1}, 27.5$ $\mathrm{mg}, 65 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.27-7.13(\mathrm{~m}, 7 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{q}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.62(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 9 \mathrm{H}), 0.71(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) $\delta 169.0,157.2,147.2,139.6,135.4,128.4$, $128.2,128.2,128.1,125.8,114.1,89.0,63.3,40.6,36.1,26.9,16.9,14.9,14.2,7.6$. HRMS (ESI) Calculated for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{3}[\mathrm{M}+\mathrm{K}]^{+}: 461.2453$, found: 461.2442. IR v (neat, cm^{-1}): 2971, 2937, $1703,1510,1454,1282,1245,1220,1135,1074,835,737$. HPLC analysis CHIRALCEL ${ }^{\circledR}$ two AD-H columns, n-hexane/iso-propanol $=99.0 / 1.0$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} \mathrm{UV}$ detector, t_{R} $($ minor $)=26.749 \mathrm{~min}, t_{\mathrm{R}}($ major $)=24.300 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=-17\left(\mathrm{c}=0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 88 \%$ ee

3-ethylpentan-3-yl (S,Z)-2-benzyl-4-(4-methoxyphenyl)-3-methylhex-2-enoate (5m). The reaction was carried out according to the general procedure B on 0.1 mmol scale (36 h); purified by flash column chromatography on SiO_{2} (eluent: petroleum ether/ethyl acetate) to afford $\mathbf{5 m}$,
$24.1 \mathrm{mg}, 57 \%$, light yellow oil; $\mathrm{Rf}=0.8$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 5 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{dd}$, $J=9.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.77(\mathrm{~m}$, $7 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 169.1,157.8,145.5,139.7,134.8,129.4,128.9,128.2,125.8,113.5,89.1,55.2$, $47.8,36.3,27.0,23.7,13.8,12.2,7.7$. HRMS (ESI) Calculated for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{3}[\mathrm{M}+\mathrm{K}]^{+}: 461.2453$, found: 461.2448. IR v (neat, cm^{-1}): 2966, 2934, 1701, 1510, 1454, 1245, 1210, 1178, 1134, 1088, 866, 732. HPLC analysis CHIRALCEL ${ }^{\circledR}$ two AD-H columns, n-hexane/iso-propanol $=$ $99.0 / 1.0$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} \mathrm{UV}$ detector, $t_{\mathrm{R}}($ minor $)=24.495 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=$ $26.007 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{25}=-18\left(\mathrm{c}=0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 90 \%$ ee

5. Investigation of the reaction mechanism

5.1 Radical inhibition experiments with TEMPO

The reaction was completely inhibited by TEMPO. The isolated compound $\mathbf{1 1}$ indicated that the reaction probably proceeded via a radical process.

5.2 Byproducts detected experiments

Modified conditions: Photocatalyst $\left.\left.\left[\operatorname{Ir}\left(\mathrm{dF}_{(}\left(\mathrm{CF}_{3}\right)\right)^{\prime}\right)^{2}\right)_{2}\left(5,5^{\prime}-\mathrm{dFbpy}^{\prime}\right)\right] \mathrm{PF}_{6}(4.2 \mathrm{mg}, 2 \mathrm{~mol} \%)$, $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(4.8 \mathrm{mg}, 10 \mathrm{~mol} \%\right.$), 4,4'-Di-tert-butyl-2,2'-bipyridine ($8.0 \mathrm{mg}, 15 \%$) and $\mathrm{K}_{2} \mathrm{HPO}_{4}$ $(34.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv) were added to an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar. The tube was evacuated and backfilled with argon three times. Subsequently, DMF was added under argon. Benzylic compound ($0.4 \mathrm{mmol}, 2$ equiv), alkenyl triflates ($0.2 \mathrm{mmol}, 1$ equiv) were then added. The tube was then sealed and placed $\sim 5 \mathrm{~cm}$ from $2 \times 45 \mathrm{~W}$ blue LEDs. The reaction mixture was stirred for 24 h at room temperature (aircondition was used to keep the temperature is $25^{\circ} \mathrm{C}$ or so). After completion, the reaction
mixture was removed from the light, diluted with water and the aqueous layer was extracted with EtOAc ($3 \times 2 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography on silica gel to afford the corresponding products.
We found the byproduct 12, which further confirms the existence of the benzyl radical.

5.3 Kinetic experiments

5.3.1 The total reaction profile

Photocatalyst $\left.\left[\operatorname{Ir}\left(\mathrm{dF}_{\left(\mathrm{CF}_{3}\right)}\right) \mathrm{ppy}\right)_{2}\left(4,4^{\prime}-\mathrm{dCF}_{3} \mathrm{bpy}\right)\right] \mathrm{PF}_{6}(4.8 \mathrm{mg}, 2 \mathrm{~mol} \%)$, benzylic compound (0.4 $\mathrm{mmol}, 2.0$ equiv), alkenyl triflates ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{NiCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}(4.8 \mathrm{mg}, 10 \mathrm{~mol} \%)$, and anhydrous powder $\mathrm{Li}_{2} \mathrm{CO}_{3}$ ($29.6 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) were added to an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar. The tube was evacuated and backfilled with argon three times. Subsequently, DMF was added under argon. The tube was then sealed and placed $\sim 5 \mathrm{~cm}$ from $2 \times 45 \mathrm{~W}$ blue LEDs. The reaction mixture was stirred at room temperature (air-condition was used to keep the temperature is $25^{\circ} \mathrm{C}$ or so). At $5,10,15,20,25,30,35,40$, $50,60,80,100,120,150,180,240,300,360,420,480,600 \mathrm{~min}, 20 \mu \mathrm{~L}$ the reaction mixture was carefully taken out by micro-syringe into 2.0 mL vial. Then 1.0 ml EA was added into the vial. The reaction mixture was analyzed by GC-MS after filtration.

Supplementary Figure 3. The total reaction profile
5.3.2 Dependence of the reaction rate on concentration of $\mathrm{NiCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$

Photocatalyst $\left.\left[\operatorname{Ir}\left(\mathrm{dF}^{(} \mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}\left(4,4^{\prime}-\mathrm{dCF}_{3} \mathrm{bpyy}^{2}\right)\right] \mathrm{PF}_{6}(4.8 \mathrm{mg}, 2 \mathrm{~mol} \%)$, benzylic compound (0.4 $\mathrm{mmol}, 2.0$ equiv), alkenyl triflates ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{~mol} \%, 0.8 \mathrm{~mol} \%$, $1.0 \mathrm{~mol} \%, 1.2 \mathrm{~mol} \%, 1.4 \mathrm{~mol} \%$), and anhydrous powder $\mathrm{Li}_{2} \mathrm{CO}_{3}$ ($29.6 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) were added to an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar. The tube was evacuated and backfilled with argon three times. Subsequently, DMF was added under argon. The tube was then sealed and placed $\sim 5 \mathrm{~cm}$ from $2 \times 45 \mathrm{~W}$ blue LEDs. The reaction mixture was stirred for 24 h at room temperature (air-condition was used to keep the temperature is $25^{\circ} \mathrm{C}$ or so). At $6,12,18,24,30,36,42,48,54,60 \mathrm{~min}, 20 \mu \mathrm{~L}$ the reaction mixture was carefully taken out by micro-syringe into 2.0 mL vial. Then 1.0 ml EA was added into the vial. The reaction mixture was analyzed by GC-MS after filtration.

Supplementary Figure 4. Dependence of the reaction rate on loading of [Ni]
The plot of Kobs vs [$\mathbf{N i}$] displayed a linear relationship in $[\mathbf{N i}]$, which should suggest a firstorder kinetic dependence in $[\mathbf{N i}]$.

5.3.3 Dependence of the reaction rate on concentration of PC-1

Photocatalyst $\left.\left[\operatorname{Ir}\left(\mathrm{dF}_{\left(\mathrm{CF}_{3}\right)}\right) \mathrm{ppy}_{2}\right)_{2}\left(4,4^{\prime}-\mathrm{dCF}_{3} \mathrm{bpy}^{2}\right)\right] \mathrm{PF}_{6}(0.6 \mathrm{~mol} \%, 0.8 \mathrm{~mol} \%, 1.0 \mathrm{~mol} \%, 1.2 \mathrm{~mol} \%$, $1.4 \mathrm{~mol} \%$), benzylic compound ($0.4 \mathrm{mmol}, 2.0$ equiv), alkenyl triflates ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, and anhydrous powder $\mathrm{Li}_{2} \mathrm{CO}_{3}(29.6 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) were added to an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar. The tube was evacuated and backfilled with argon three times. Subsequently, DMF was added under argon. The tube was then sealed and placed $\sim 5 \mathrm{~cm}$ from $2 \times 45 \mathrm{~W}$ blue LEDs. The reaction mixture was stirred for 24 h at room temperature (air-condition was used to keep the temperature is $25^{\circ} \mathrm{C}$ or so). At $6,12,18,24,30,36,42,48,54,60 \mathrm{~min}, 20 \mu \mathrm{~L}$ the reaction mixture was carefully taken out by micro-syringe into 2.0 mL vial. Then 1.0 ml EA was added into the vial. The reaction mixture was analyzed by GC-MS after filtration.

Supplementary Figure 5. Dependence of the reaction rate on [PC-1]
The plot of Kobs vs [PC-1] suggests a zero-order kinetic dependence in $[\mathbf{P C} \mathbf{- 1}]$.

5.3.4 Dependence of the reaction rate on concentration of $\mathbf{1 b}$

Photocatalyst $\left[\operatorname{Ir}\left(\mathrm{dF}^{\left.\left.\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}\left(4,4^{\prime}-\mathrm{dCF}_{3} \mathrm{bpy}\right)\right] \mathrm{PF}_{6}(2 \mathrm{~mol} \%) \text {, benzylic compound (} 0.3 \mathrm{mmol} \text {, }}\right.\right.$ $0.35 \mathrm{mmol}, 0.40 \mathrm{mmol}, ~ 0.45 \mathrm{mmol}, 0.50 \mathrm{mmol}$), alkenyl triflates ($0.2 \mathrm{mmol}, 1.0$ equiv), NiCl_{2} $\cdot 6 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, and anhydrous powder $\mathrm{Li}_{2} \mathrm{CO}_{3}(29.6 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) were added to an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar. The tube was evacuated and backfilled with argon three times. Subsequently, DMF was added under argon. The tube was then sealed and placed $\sim 5 \mathrm{~cm}$ from $2 \times 45 \mathrm{~W}$ blue LEDs. The reaction mixture was stirred for 24 h at room temperature (air-condition was used to keep the temperature is $25{ }^{\circ} \mathrm{C}$ or so). At $6,12,18,24,30,36,42,48,54,60 \mathrm{~min}, 20 \mu \mathrm{~L}$ the reaction mixture was carefully taken out by micro-syringe into 2.0 mL vial. Then 1.0 ml EA was added into the vial. The reaction mixture was analyzed by GC-MS after filtration.

Supplementary Figure 6. Dependence of the reaction rate on [1b]
The plot of Kobs vs [1a] shows the same reaction rate regardless of the initial concentrations of $\mathbf{1 a}$, which would suggest a zero-order kinetic dependence in [1b].

5.3.5 Dependence of the reaction rate on concentration of $\mathbf{2 b}$

Photocatalyst $\left[\operatorname{Ir}\left(\mathrm{dF}\left(\mathrm{CF}_{3}\right) \text { ppy }\right)_{2}\left(4,4^{\prime}-\mathrm{dCF}_{3}\right.\right.$ bpy $\left.)\right] \mathrm{PF}_{6}(2 \mathrm{~mol} \%)$, benzylic compound $(0.4 \mathrm{mmol})$,
alkenyl triflates ($0.15 \mathrm{mmol}, 0.175 \mathrm{mmol}, 0.20 \mathrm{mmol}, 0.225 \mathrm{mmol}, 0.25 \mathrm{mmol}$), $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ ($10 \mathrm{~mol} \%$), and anhydrous powder $\mathrm{Li}_{2} \mathrm{CO}_{3}(29.6 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) were added to an oven-dried 10 mL Schlenk tube equipped with a magnetic stirring bar. The tube was evacuated and backfilled with argon three times. Subsequently, DMF was added under argon. The tube was then sealed and placed $\sim 5 \mathrm{~cm}$ from $2 \times 45 \mathrm{~W}$ blue LEDs. The reaction mixture was stirred for 24 h at room temperature (air-condition was used to keep the temperature is $25^{\circ} \mathrm{C}$ or so). At $6,12,18,24,30,36,42,48,54,60 \mathrm{~min}, 20 \mu \mathrm{~L}$ the reaction mixture was carefully taken out by micro-syringe into 2.0 mL vial. Then 1.0 ml EA was added into the vial. The reaction mixture was analyzed by GC-MS after filtration.

Supplementary Figure 7. Dependence of the reaction rate on [2b]
The plot of Kobs vs [2a] suggests a first-order kinetic dependence in [2b].

5.4 Luminescence quenching experiment

The luminescence quenching experiment was taken using a F-7000 FL Spectrophotometer (Hitachi, Japan). The experiments were carried out in $1 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$ of $\left[\operatorname{Ir}\left(\mathrm{dF}_{(}\left(\mathrm{CF}_{3}\right) \text { ppy }\right)_{2}\left(4,4^{\prime}-\right.\right.$ $\left.\left.\mathrm{dCF}_{3} \mathrm{bpy}\right)\right] \mathrm{PF}_{6}$ in DMF at $25{ }^{\circ} \mathrm{C}$. The excitation wavelength was 315 nm and the emission intensity was collected at 581 nm . The concentrations of quenchers (1 a and 2a) in DMF were $0,6,12,20,30,42 \mathrm{mM}$.

Supplementary Figure 8. The data of fluorescence quenching of $\left[\operatorname{Ir}\left(\mathrm{dF}_{(}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)_{2}\left(4,4^{\prime}-\right.\right.$ $\left.\left.\mathrm{dCF}_{3} \mathrm{bpy}\right)\right] \mathrm{PF}_{6}$ by $\mathbf{1 a}$ and $\mathbf{2 a}$.

To determine whether a reductive or oxidative quenching cycle is operative in the reaction, fluorescence quenching studies were conducted. Based on the above data, photoexcited $\left.\left[\operatorname{Ir}\left(\mathrm{dF}_{(}\left(\mathrm{CF}_{3}\right) \mathrm{ppy}\right)\right)_{2}\left(4,4^{\prime}-\mathrm{dCF}_{3} \mathrm{bpyy}^{\prime}\right)\right] \mathrm{PF}_{6} *$ can be quenched by 1a, involving a reductive quenching cycle.

5.5 The reactivity of \mathbf{Z} / E vinyl triflates

We have prepared the Z and E vinyl triflate. And we have done the following experiments. (reactions 1-3)
1)

1a, 0.4 mmol

$\mathbf{a}^{\prime}, 0.2 \mathrm{mmol}$

3a, 70\%

3a, 75%

When defined Z , E , or E / Z mixture of the vinyl triflates are treated as substrates, only the Z product is formed in high yields.
For three experiments, the final reaction mixture was first analyzed by GC-MS, proving these reactions produce the same product, without any isomer. Their NMR spectrum are also the same. The NOESY spectrum verified the Z product.
Thus, we speculate that the ester group on the side chain surely plays a role in the stabilization of the transition state with coordination to the nickel center.

5.5.1 GC-MS spectrum

For reaction 1, the GC-MS spectrum of the reaction mixture is as follows:

For the reaction 2,

For the reaction 3

The remain time of the products is nearly the same, $t=13.146,13.147,13.134$. There are no isomers. 5.5.2 NMR analysis.

The comparation of the products' NMR spectrum from reaction 1-3 is as follows.

They have the same ${ }^{1} \mathrm{H}$ NMR spectrum.

They have the same ${ }^{13} \mathrm{C}$ NMR spectrum.

H-H NOESY (product of reaction 1):

H-H NOESY (product of reaction 2):

H-H NOESY (product of reaction 3):

They have the same H-H NOESY spectrum.

6. NMR spectrum of substrates

$\overbrace{\mathrm{Bn}}^{\mathrm{OTf}} \mathrm{CO}_{2}^{\mathrm{Et}}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{2 a}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{2 a}$

$\stackrel{N}{\stackrel{N}{+}}$
\qquad
 f1 (ppm)
${ }^{19}$ F NMR spectrum for compound $\mathbf{2 a}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $2 \mathbf{a}^{\mathbf{\prime}}$
1ytrn-1352bsm1.2.fid

$$
\begin{aligned}
& \stackrel{\stackrel{\sim}{m}}{1} \stackrel{\infty}{\infty} \stackrel{\infty}{\stackrel{\infty}{j}}
\end{aligned}
$$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $2 \mathbf{a}^{\prime}$
${ }^{19} \mathrm{~F}$ NMR spectrum for compound $2 \mathrm{a}^{\prime}$

\circ

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{2 b}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{2 b}$

${ }^{19}$ F NMR spectrum for compound $\mathbf{2 b}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound 2c

${ }^{1} \mathrm{H}$ NMR spectrum for compound 2d

${ }^{13} \mathrm{C}$ NMR spectrum for compound 2d

${ }^{19}$ F NMR spectrum for compound $\mathbf{2 d}$

$$
{ }^{1} \mathrm{H} \text { NMR spectrum for compound } \mathbf{2 e}
$$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{2 e}$

${ }^{19}$ F NMR spectrum for compound $\mathbf{2 e}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{2 f}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{2 f}$

1ytrn-3.3.fid

\qquad
${ }^{19} \mathrm{~F}$ NMR spectrum for compound 2 f

${ }^{1}$ H NMR spectrum for compound $\mathbf{2 g}$

1ytrn-4. 2. fid

mion
$\stackrel{\varrho}{\stackrel{\circ}{1}} \stackrel{0}{\circ}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{2 g}$

${ }^{1}$ H NMR spectrum for compound $\mathbf{2 h}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{2 h}$
1ytrn-13. 3. fid
$\stackrel{\circ}{8}$

${ }^{19}$ F NMR spectrum for compound $\mathbf{2 h}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{2 i}$
1ytrn-11.2.fid

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{2 i}$

${ }^{19} \mathrm{~F}$ NMR spectrum for compound $\mathbf{2 i}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{2 j}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{2} \mathbf{j}$
1ytrn-12.3.fid

${ }^{19}$ F NMR spectrum for compound $\mathbf{2} \mathbf{j}$

${ }^{1}$ H NMR spectrum for compound $\mathbf{2 k}$
1ytrn-10.2.fid

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{2 k}$

${ }^{19} \mathrm{~F}$ NMR spectrum for compound $\mathbf{2 k}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound 21

${ }^{13} \mathrm{C}$ NMR spectrum for compound $2 \mathbf{2 l}$

1ytrn-9.3.fid

$$
\stackrel{\infty}{\stackrel{\infty}{\stackrel{~}{~}}} \stackrel{+}{i}
$$

${ }^{19} \mathrm{~F}$ NMR spectrum for compound 21

1ytrn-6.3.fid

${ }^{19} \mathrm{~F}$ NMR spectrum for compound $\mathbf{2 m}$

${ }^{1}$ H NMR spectrum for compound $\mathbf{2 n}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{2 n}$
1ytrn-5. 3.fid

${ }^{19}$ F NMR spectrum for compound $\mathbf{2 n}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound 20
1ytrn-55.2.fid

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{2 o}$

${ }^{19}$ F NMR spectrum for compound 20

${ }^{1}$ H NMR spectrum for compound $\mathbf{2 p}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{2 p}$
1yt3rn-1. 14.fid
$\stackrel{\leftrightarrow}{\stackrel{\circ}{+}}$

${ }^{19}$ F NMR spectrum for compound $\mathbf{2 p}$

$\stackrel{6}{6}$		
\cdots	ヘ ヘ－－－－	$\bigcirc{ }^{\circ}$
।	\rightarrow	＋

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{2 q}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{2 q}$

${ }^{1}$ H NMR spectrum for compound $2 \mathbf{r}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{2 r}$

1ytrn-7. 3. fid

${ }^{19}$ F NMR spectrum for compound $\mathbf{2 r}$

7. NMR spectrum of products

1	1	1													
240	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90
10															

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 a}$

$$
\begin{aligned}
& \begin{array}{l}
\circ \\
0 \\
i \\
i
\end{array}
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 b}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 b}$

I

${ }^{1}$ H NMR spectrum for compound $\mathbf{3 c}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 c}$

${ }^{1}$ H NMR spectrum for compound 3d

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 d}$

$\underset{\sim}{\tau} \underset{\sim}{\sim} O_{0}^{\infty}-\infty$

$\underbrace{\circ-\mathrm{O}}$

MON
ف~

OMeres

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 e}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 f}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 f}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 g}$
N

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 g}$

${ }^{1}$ H NMR spectrum for compound $\mathbf{3 h}$

${ }^{13} \mathbf{C}$ NMR spectrum for compound $\mathbf{3 h}$

${ }^{1}$ H NMR spectrum for compound $\mathbf{3 i}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 i}$

${ }^{1}$ H NMR spectrum for compound $\mathbf{3} \mathbf{j}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3} \mathbf{j}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 k}$

${ }^{1}$ H NMR spectrum for compound 31

$\stackrel{\circ}{0}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound 31

$\stackrel{N}{N} \underset{\sim}{\wedge} \underset{\sim}{\sim}$	¢¢	
		「「ご

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 m}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 m}$
$\underbrace{\sim M}_{i-1}$

${ }^{1}$ H NMR spectrum for compound $3 n$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 n}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound 30

${ }^{13} \mathrm{C}$ NMR spectrum for compound 30

\circ
0
i
i

${ }^{1}$ H NMR spectrum for compound $\mathbf{3 p}$

${ }^{13} \mathbf{C}$ NMR spectrum for compound $\mathbf{3 p}$

\circ

${ }^{1}$ H NMR spectrum for compound $\mathbf{3 q}$

${ }^{13} \mathbf{C}$ NMR spectrum for compound $\mathbf{3 q}$

${ }^{1}$ H NMR spectrum for compound $\mathbf{3 r}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 r}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 t}$

[^0]

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 v}$

i

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 v}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 w}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 w}$

${ }^{1}$ H NMR spectrum for compound $\mathbf{3 x}$

	ツ $\square^{\text {a }}$				
$\stackrel{8}{6}$	\bigcirc	ঢ゙¢	MOM O N N N	\hat{o}	¢ ¢ ¢ ¢ ¢
\|	1/	\/	$\checkmark 1$		

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 x}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 y}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 y}$

${ }^{1}$ H NMR spectrum for compound $\mathbf{3 z}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 z}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound 3aa

$\stackrel{J}{\stackrel{y}{6}}$
\underbrace{N}
$\stackrel{\infty}{\stackrel{\infty}{\sim}} \stackrel{\infty}{\stackrel{\infty}{c}} \stackrel{-}{m} \stackrel{\sim}{m}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 b b}$
$\stackrel{\leftrightarrow}{\infty}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 b b}$

${ }^{1}$ H NMR spectrum for compound 3cc

$\stackrel{N}{\sim}$
Nor

${ }^{13} \mathrm{C}$ NMR spectrum for compound 3cc

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 d d}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound 3ee

${ }^{13} \mathrm{C}$ NMR spectrum for compound 3ee

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 f f}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 f f}$

${ }^{1}$ H NMR spectrum for compound $\mathbf{3 g g}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 g g}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 h h}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 h h}$

${ }^{19}$ F NMR spectrum for compound $\mathbf{3 h h}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 i i}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound 3ii

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3} \mathbf{j} \mathbf{j}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3} \mathbf{j} \mathbf{j}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 k} \mathbf{k}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 k} \mathbf{k}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound 311
「

${ }^{13} \mathrm{C}$ NMR spectrum for compound 311

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{3 m m}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 m m}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{4 a}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{4 a}$

${ }^{1}$ H NMR spectrum for compound $\mathbf{4 b}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{4 b}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{4 c}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{4 c}$

${ }^{1}$ H NMR spectrum for compound $4 d$

$\stackrel{m}{\circ} \stackrel{\circ}{\circ} \stackrel{m}{\circ}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{4 d}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{4 e}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{4 e}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{4 f}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{4 f}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{4 g}$

[^1]${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{4 g}$

${ }^{1}$ H NMR spectrum for compound $\mathbf{4 h}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{4 h}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{4 i}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{4} \mathbf{i}$
1478a-1.1.fid

${ }^{1}$ H NMR spectrum for compound $\mathbf{8}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound 8

${ }^{1} \mathrm{H}$ NMR spectrum for compound 10

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{1 0}$
${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{5 a}$
$1 \underbrace{\infty}_{1}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{5 a}$

${ }^{1}$ H NMR spectrum for compound $\mathbf{5 b}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{5 b}$

${ }^{1}$ H NMR spectrum for compound 5c

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{5 c}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{5 e}$
$\stackrel{\infty}{\infty}$

[^2]

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{5 f}$

```
O.
```


${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{5 f}$

${ }^{1}$ H NMR spectrum for compound $\mathbf{5 g}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{5 g}$

${ }^{19}$ F NMR spectrum for compound $\mathbf{5 g}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{5 h}$

$11 \underbrace{\sim 1} \underbrace{-\infty}$
N

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{5} \mathbf{h}$

$--113.95$

${ }^{19}$ F NMR spectrum for compound $\mathbf{5 h}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{5 i}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{5 i}$

[^3]
8
0
i

${ }^{1}$ H NMR spectrum for compound $\mathbf{5 j}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{5 j}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{5 k}$

${ }^{13} \mathbf{C}$ NMR spectrum for compound $\mathbf{5 k}$

${ }^{1} \mathrm{H}$ NMR spectrum for compound $\mathbf{5 m}$

${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{5 m}$

8. HPLC analysis.

HPLC using two AD-H columns (hexane: i- $\mathrm{PrOH}=98.5: 1.5,0.5 \mathrm{~mL} / \mathrm{min}$)

号：	VWD1A，Wavelength＝254 nm					名称
保留时间 ［min］	类型	峰宽［min］	峰面积	峰高	峰面积\％	
26． 577	MM m	0． 40	606.27	57． 45	8.05	
27.077	MM m	1． 64	6927.01	488.16	91.95	
		总和	7533.28			

HPLC using two AD－H columns（hexane： $\mathrm{i}-\mathrm{PrOH}=98.5: 1.5,0.5 \mathrm{~mL} / \mathrm{min}$ ）

信号：
VWD1A，Wavelength $=254 \mathrm{~nm}$

保留时间 ［min］	类型	峰宽［min］	峰面积
21.562	BB	2.71	1579.22
23.520	BB	2.70	1572.91
		总和	3152.14

峰高	峰面积

名称

信号：VWD1A，Wavelength＝254 nm

保留时间 ［min］	类型	峰宽［min］	峰面积
21.223	BB	1.81	287.26
23.154	BB	1.92	5248.28
		总和	$\mathbf{5 5 3 5 . 5 4}$

峰高	峰面积\％
6.12	5.19
159.26	94.81

名称

HPLC using two AD－H columns（hexane： $\mathrm{i}-\mathrm{PrOH}=98.5: 1.5,0.5 \mathrm{~mL} / \mathrm{min}$ ）

信号： VWD1A，Wavelength＝254 nm保留时间 类型 峰宽［min］

$[\min]$		
22.812	$B V$	1.33
24.071	VB	2.49
		总和

峰面积
峰高
峰面积\％名称

1520.9

1569． 02
3089． 96
$65.48 \quad 49.22$
59． 74
50． 78
时间［min］

信号：VWD1A，Wavelength＝254 nm

保留时间 ［min］	类型	峰宽［min］	峰面积
23.820	MM m	1.28	48.49
25.226	BB	2.61	1061.51
		总和	1110.00

峰高	峰面积\％
1.44	4.37
28.72	95.63

名称

HPLC using two AD－H columns（hexane： $\mathrm{i}-\mathrm{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}$ ）

信号：

保留时间 ［min］	类型	峰宽［min］	峰面积	峰高	峰面积\％	名称
98.767	BB	9.09	2425.07	13.86	50.04	
107.899	MM m	12.25	2420.94	11.97	49.96	
		总和	4846.01			

信号：	VWD1A，Wavelength＝254 nm		
保留时间 ［min］	类型	峰宽［min］	峰面积
96.385	BM m	12.31	5304.60
109.672	MM m	7.21	232.27
		总和	5536.87

HPLC using two AD－H columns（hexane： $\mathrm{i}-\mathrm{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}$ ）

信号：VWD1A，Wavelength＝254 nm

保留时间 ［min］	类型	峰宽［min］	峰面积	峰高	峰面积\％	名称
31.364	BB	2.92	2058.18	51.81	49.88	
34.350	BB	3.70	2068.12	46.79	50.12	

信号：
VWD1A，Wavelength＝254 nm

保留时间 ［min］	类型	峰宽［min］	峰面积
23.898	MM m	1.11	444.86
25.037	MM m	2.19	5314.57
		总和	5759.43

峰高	峰面积\％
22.48	7.72
249.06	92.28

名称

HPLC using two AD－H columns（hexane： $\mathrm{i}-\mathrm{PrOH}=98.5: 1.5,0.5 \mathrm{~mL} / \mathrm{min}$ ）

信号：VWD1A，Wavelength＝254 nm

保留时间 $[\min]$	类型	峰蒬［min］	峰面积	峰高	峰面积\％
26.439	BB	3.33	14292.21	448.14	49.98
29.849	BB	4.34	14305.32	349.61	50.02
		总和	28597.53		

信号：VWD1A，Wavelength＝254 nm

保留时间 ［min］	类型	峰宽［min］	峰面积	峰高	峰面积\％
27.815	MM m	3.52	43029.57	1267.63	95.38
31.609	MM m	2.54	2084.39	49.75	4.62

HPLC using two AD－H columns（hexane： $\mathrm{i}-\mathrm{PrOH}=98.5: 1.5,0.5 \mathrm{~mL} / \mathrm{min}$ ）

信号：VWD1A，Wavelength＝254 nm

保留时间 ［min］	类型	峰宽［min］	峰面积	峰高	峰面积\％
22.307	BV	1.59	3455.80	117.25	49.93
23.758	$V B$	2.78	3465.19	113.16	50.07
		总和	6921.00		

信号：	VWD1A，Wavelength＝254 nm	
保留时间 ［min］	类型	峰宽［min］
22.312	MM m	1.34
23.787	MM m	2.24
		总和

峰面积	峰高	峰面积\％
630.56	20.22	7.06
8303.26	274.24	92.94

名称

HPLC using two AD－H columns（hexane： $\mathrm{i}-\mathrm{PrOH}=98.5: 1.5,0.5 \mathrm{~mL} / \mathrm{min}$ ）

信号：VWD1A，Wavelength＝254 nm

| 保留时间
 ［min］ | 类型 | 峰宽［min］ | 峰面积 | 峰高 | 峰面积\％ |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| 22.691 | BV | 1.99 | 3774.25 | 123.37 | 49.86 |
| 24.246 | $V B$ | 2.03 | 3795.51 | 118.42 | 50.14 |
| | | 总和 | 7569.76 | | | 名称

信号：VWD1A，Wavelength＝254 nm

保留时间 ［min］	类型	峰宽［min］	峰面积	峰高	峰面积\％
23.029	MM m	1.87	426.03	14.64	5.28
24.539	MB m	2.11	7649.61	250.02	94.72
		总和	8075.65		

HPLC using two AD－H columns（hexane： $\mathrm{i}-\mathrm{PrOH}=98.5: 1.5,0.5 \mathrm{~mL} / \mathrm{min}$ ）

信号：VWD1A，Wavelength＝254 nm

保留时间 ［min］	类型	峰宽［min］
21.610	BV	2.24
23.407	VB	2.63
		总和

峰面积
3498.29
3552.32
7050.60

峰高	峰面积\％
79.13	49.62
104.90	50.38

名称

信号：VWD1A，Wavelength＝254 nm

保留时间 ［min］	类型	峰宽［min］	峰面积	峰高	峰面积\％
21.487	BM m	1.34	287.97	8.53	4.18
22.989	MB m	2.73	6607.34	221.18	95.82

HPLC using two AD－H columns（hexane： $\mathrm{i}-\mathrm{PrOH}=98.5: 1.5,0.5 \mathrm{~mL} / \mathrm{min}$ ）

号：	VWD1A，Wavelength＝254 nm				
保留时间 ［min］	类型	峰宽［min］	峰面积	峰高	峰面积\％
22.459	BV	0． 93	3694.14	221.98	50． 72
23．323	VB	1． 07	3588.84	181.97	49． 28
		总和	7282.97		

峰面积	峰高	峰面积\％
167.21	7.76	4.55
3511.64	141.21	95.45

名称

HPLC using two AD－H columns（hexane： $\mathrm{i}-\mathrm{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}$ ）

信号：	VWD1A，Wavelength＝254 nm	
保留时间 ［min］	类型	峰宽［min］
47.976	MM m	14.08
69.226	MM m	22.42
		总和

峰面积
2354.15
2314.87
4669.02

峰高	峰面积\％
13.38	50.42
7.12	49.58

名称

信号：VWD1A，Wavelength＝254 nm

保留时间 ［min］	类型	峰宽［min］	峰面积
44.660	BB	8.68	
65.871	MM m	7.32	184.54 .85
		总和	3832.39

HPLC using two OD－H columns（hexane： $\mathrm{i}-\mathrm{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}$ ）

号：	VWD1A，Wavelength＝254 nm					
保留时间 ［min］	类型	峰宽［min］	峰面积	峰高	峰面积\％	名称
20.557	BV	1． 41	2312． 13	101.71	49． 33	
21．841	VB	1． 54	2374.99	95.10	50.67	
		总和	4687.12			

信号：
VWD1A，Wavelength $=254 \mathrm{~nm}$

保留时间 ［min］	类型	峰宽［min］	峰面积
20.457	MM m	1.79	5720.16
21.697	MM m	0.96	369.78
		总和	6089.94

[^4]

HPLC using two AD－H columns（hexane： $\mathrm{i}-\mathrm{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}$ ）

号：	VWD1A，Wavelength＝254 nm					
保留时间 ［min］	类型	峰宽［min］	峰面积	峰高	峰面积\％	名称
27． 421	BB	3.92	2964.98	55.12	50.05	
31．362	BB	4.02	2959.10	110.68	49.95	
		总和	5924.08			

信号：	VWD1A，Wavelength＝254 nm		峰面积	峰高	峰面积\％
保留时间 ［min］	类型	峰宽［min］			
24.495	BB	0.97	340.34	23.35	5． 17
26.007	BB	5.71	6239.13	78.76	94.83
		总和	6579.47		

9．Definition of the absolute configuration

The absolute configuration of derivative 7

To a stirred solution of $\mathbf{5 a}(245 \mathrm{mg}, 0.6 \mathrm{mmol})$ in DCM $(4 \mathrm{~mL})$ was added TFA $(0.8 \mathrm{~mL})$ dropwise at $0^{\circ} \mathrm{C}$ ．After being stirred for 1 h ，the reaction mixture was warmed up to room temperature．After 3 h ，the reaction mixture was concentrated in vacuo．After the addition of hexane to the residue，the solvent was evaporated at $40^{\circ} \mathrm{C}$ to remove the residual TFA．The same manipulation was conducted once again with hexane and twice with toluene；
Under Ar，to a stirred solution of the acid in THF，was added $(\mathrm{COCl})_{2}(51 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ ，and a drop of DMF at $0^{\circ} \mathrm{C}$ ，after being stirred for 1 h ，the solvent was removed in vacuo．To a stirred solution of DMAP（ $110 \mathrm{mg}, 0.9 \mathrm{mmol}$ ）， $\mathbf{6}$ in THF，the mixture prepared last step in THF was added dropwise at $0{ }^{\circ} \mathrm{C}$ ．After being stirred overnight，the reaction mixture was concentrated in vacuo and was purified by flash chromatography on silica gel to afford the corresponding product in 42% yield（ 156 mg ）．

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21-6.99(\mathrm{~m}, 11 \mathrm{H}), 6.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.64$ (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform- d) δ 169.3, 157.9, 149.9, 147.4, 145.4, 139.1, 135.1, 134.2, 132.9, $132.4,131.6,129.7(3 \mathrm{C}), 128.5,128.4,128.4,128.1,128.1,126.3,126.6,126.5,126.0,121.4,119.7$, $113.5,65.9,55.2,40.9,35.8,21.7,17.1,14.5$.

CCDC 2312137
Identification code
cu_231126ZH_XJ_Om
Empirical formula
$\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{~S}$
Formula weight
620.73

Temperature/K
Crystal system
193.00

Space group
orthorhombic
a/Å
$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
b / \AA
6.1870(17)
$c / \AA \AA$
8.034(2)
${ }^{\circ}$
65.131(17)
$\alpha /{ }^{\circ}$
90
$\beta /{ }^{\circ}$
90
$\mathrm{Y}^{\circ} \quad 90$
Volume/ \AA^{3}
3237.5(15)

Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
1.274
μ / mm^{-1}
1.264

F(000)
Crystal size/mm ${ }^{3}$
1312.0

Radiation
$0.13 \times 0.12 \times 0.1$
2Θ range for data collection/ ${ }^{\circ} 5.428$ to 136.298

Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[1>=2 \sigma(I)]$
(I)] $\quad R_{1}=0.0516, w R_{2}=0.1224$

Final R indexes [all data] $\quad R_{1}=0.0736, w R_{2}=0.1354$
Largest diff. peak/hole / e $\AA^{-3} \quad 0.24 /-0.21$
Flack parameter
0.043(13)

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for cu_231126ZH_XJ_Om. $U_{\text {eq }}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{I J}$ tensor.

atom	x	y	Z	U(eq)
S(1)	1236(2)	6674.4(15)	5348.0(2)	60.3(4)
$\mathrm{O}(1)$	2605(6)	7648(4)	5520.0(4)	61.1(9)
C(1)	2660(8)	4817(6)	5315.7(6)	53.7(11)
$\mathrm{O}(2)$	1461(6)	7731(4)	5172.7(5)	76.5(11)
C(2)	1885(8)	3349(6)	5401.6(7)	63.6(13)
$\mathrm{O}(3)$	-832(5)	6326(4)	5429.1(5)	73.1(10)
C(3)	3062(9)	1894(6)	5383.2(8)	69.3(14)
$\mathrm{O}(4)$	4043(5)	2411(3)	6636.5(4)	51.0(7)
C(4)	5024(9)	1893(6)	5281.2(7)	61.7(13)
$\mathrm{O}(5)$	7271(6)	3520(4)	6712.0(5)	64.4(9)
C(5)	6304(10)	298(7)	5264.0(8)	84.6(17)
$\mathrm{O}(6)$	8801(6)	-988(4)	7753.0(5)	73.2(10)
C(6)	5767(9)	3354(7)	5194.2(7)	67.6(13)
C(7)	4613(8)	4817(6)	5211.1(7)	60.9(12)
C(8)	2912(8)	6870(6)	5713.7(6)	53.1(11)
C(9)	1385(8)	6997(5)	5861.1(7)	53.9(11)
C(10)	1790(7)	6278(5)	6057.7(6)	50.8(11)
C (11)	269(8)	6358(6)	6218.0(7)	55.5(11)
C(12)	687(8)	5604(6)	6403.0(7)	55.9(12)
C(13)	2664(8)	4794(5)	6440.9(6)	48.7(10)
C(14)	4170(8)	4711(5)	6288.4(6)	52.7(11)
C(15)	3772(7)	5436(5)	6093.2(6)	50.5(10)
C(16)	5324(8)	5379(6)	5933.8(7)	60.2(12)
C(17)	4899(8)	6079(6)	5745.1(7)	60.6(13)

C(18)	3007(8)	4016(6)	6651.6(7)	55.1(11)
C(19)	6172(8)	2301(5)	6676.7(6)	48.9(10)
C(20)	6993(7)	563(5)	6667.0(6)	48.1(10)
C(21)	8749(8)	328(6)	6509.4(6)	54.9(11)
C(22)	8111(8)	634(5)	6288.3(6)	52.6(11)
C(23)	6130(9)	129(7)	6212.5(7)	68.9(13)
C(24)	5654(12)	355(8)	6005.3(9)	91(2)
C(25)	7120(15)	1076(9)	5876.9(9)	99(2)
C(26)	9077(13)	1593(9)	5949.9(9)	94(2)
C(27)	9577(9)	1375(7)	6154.8(7)	69.3(14)
C(28)	6276(7)	-589(5)	6799.9(6)	47.4(10)
C(29)	7054(8)	-2374(5)	6792.1(8)	58.3(12)
C(30)	4708(7)	-204(6)	6972.5(6)	51.8(11)
C(31)	2612(8)	-1181(7)	6946.0(8)	70.7(14)
C(32)	5834(7)	-473(5)	7180.2(6)	47.5(10)
C(33)	5077(8)	-1561(6)	7328.9(7)	56.9(11)
C(34)	6101(9)	-1710(6)	7517.5(7)	64.5(12)
C(35)	7927(8)	-772(6)	7559.6(6)	55.8(12)
C(36)	8739(8)	299(6)	7412.9(6)	55.6(11)
C(37)	7681(8)	429(5)	7226.2(6)	52.1(11)
C(38)	10712(9)	-62(7)	7800.2(8)	76.6(15)

10. DFT calculations

All density functional theory (DFT) calculations are carried out by Gaussian 09B program ${ }^{[2]}$. Geometry optimizations are conducted by B3LYP functional ${ }^{[3]}$ and Grimme's dispersion correction with Becke-Johnson damping ${ }^{[4]}$. And all atoms are treated with the def2-SVP basis set ${ }^{[5]}$. The solvation effects of DMF are taken into consideration by the Integral Equation Formalism PCM (IEFPCM) ${ }^{[6]}$. Vibrational frequency analyses are conducted at the same level to ensure all stationary
points as local minima (zero imaginary frequencies). The single-point energy calculations are evaluated with M06-2X functional ${ }^{[7]}$, and all atoms are treated with def2-TZVP basis set ${ }^{[5]}$. The solvent (DMF) effects are calculated with the Solvent Model Density (SMD) method ${ }^{[8]}$. All optimized geometric figures are plotted by CYLview ${ }^{[9]}$.

Upon completion of the geometry optimizations, BDE and BDFE calculations were performed for the target molecule (AB) and its dissociation products ($\mathrm{A} \cdot$ and $\mathrm{B} \cdot$). The BDE was calculated using the following equation:

$$
\mathrm{BDE}=E(\mathrm{~A} \cdot)+E(\mathrm{~B} \cdot)-E(\mathrm{AB})
$$

where $E(\mathrm{~A} \cdot), E(\mathrm{~B} \cdot)$, and $E(\mathrm{AB})$ represent the single-point energies of the A radical, B radical, and the $A B$ molecule, respectively.

The BDFE was calculated using the following equation:

$$
\mathrm{BDFE}=G(\mathrm{~A} \cdot)+G(\mathrm{~B} \cdot)-G(\mathrm{AB})
$$

where $G\left(\mathrm{~A}^{\cdot}\right), G(\mathrm{~B} \cdot)$, and $G(\mathrm{AB})$ represent the Gibbs free energies of the A radical, B radical, and the AB molecule, respectively.

The calculated BDE and BDFE values for the bond dissociation process are summarized in Table 1.

Supplementary Table 1. The computational BDE and BDFE in 1a and 2a.

	Electronic energy (a.u.)		$\begin{gathered} \mathrm{BDE} \\ (\mathrm{kcal} / \mathrm{mol}) \end{gathered}$	BDFE (kcal/mol)
	-425.375065	$\mathrm{C}-\mathrm{H}^{\text {a }}$	98.29	88.20
		$\mathrm{C}-\mathrm{H}^{\text {b }}$	86.19	75.96
	-1616.368260	$\mathrm{C}-\mathrm{H}^{\mathrm{c}}$	88.56	78.98
$2 a$		$\mathrm{C}-\mathrm{H}^{\mathrm{d}}$	84.73	75.06

Images of key structures

$1 a$

$2 a$

Cartesian Coordinates of All the Optimized Geometries

1a

O	-2.713455000000	-1.484598000000	0.000203000000
C	-1.545989000000	-0.789280000000	0.000098000000
C	-0.364927000000	-1.546154000000	0.000132000000
C	0.879679000000	-0.916595000000	0.000036000000
C	0.992732000000	0.483289000000	-0.000098000000
C	-0.198904000000	1.223240000000	-0.000126000000
C	-1.455746000000	0.612153000000	-0.000032000000
C	2.325652000000	1.209036000000	-0.000223000000
C	-3.933139000000	-0.769833000000	0.000141000000
C	3.571265000000	0.327322000000	0.000009000000
H	-0.443764000000	-2.635468000000	0.000236000000
H	1.776123000000	-1.538735000000	0.000067000000
H	-0.148076000000	2.316244000000	-0.000224000000
H	-2.351182000000	1.233262000000	-0.000057000000
H	2.356424000000	1.880398000000	-0.876916000000
H	2.356371000000	1.880794000000	0.876167000000
H	-4.735888000000	-1.518509000000	0.000216000000
H	-4.034343000000	-0.134540000000	0.897376000000
H	-4.034351000000	-0.134711000000	-0.897213000000
H	4.481073000000	0.946787000000	-0.000066000000
H	3.610174000000	-0.321877000000	0.889418000000
H	3.610268000000	-0.322220000000	-0.889144000000

2a

C	0.267155000000	0.616814000000	1.3253060000000
C	0.871603000000	-0.373359000000	0.635813000000
C	-0.562526000000	0.450324000000	2.556237000000
C	0.650773000000	-1.820642000000	1.038158000000
O	0.442665000000	1.951620000000	0.916108000000
S	-0.789314000000	2.861936000000	0.357399000000
O	-0.335542000000	4.232084000000	0.467473000000
O	-2.067696000000	2.397523000000	0.868994000000
C	-0.773341000000	2.417163000000	-1.472920000000
F	-0.807527000000	1.097263000000	-1.615243000000

F $\quad-1.852490000000$
F 0.311155000000
C 1.676473000000
O 1.815236000000
O 2.241993000000
C 3.607492000000
C 3.011816000000
C $\quad-0.752936000000$
C -1.265778000000
C -2.560773000000
C $\quad-3.366299000000$
C -2.864416000000
C -1.566743000000
H $\quad-0.464246000000$
H $\quad-0.251148000000$
H -1.626823000000
H 1.379058000000
H 0.855526000000
H 4.184503000000
H 2.815960000000
H 4.282168000000
H 3.782509000000
H 2.342207000000
H $\quad-0.638085000000$
H -2.944463000000
H -4.380516000000
H -3.484680000000
H -1.182947000000
2.951135000000
2.904568000000
-0.182432000000
-1.066608000000
1.017447000000
2.663507000000
1.280999000000
-2.309198000000
-2.210597000000
-2.644400000000
-3.184557000000 0.142854000000
-3.288078000000 1.442470000000
$-2.850722000000 \quad 1.730662000000$
$1.339326000000 \quad 3.194374000000$
$-0.434084000000 \quad 3.124870000000$
$0.332833000000 \quad 2.300213000000$
$-2.437209000000 \quad 0.493866000000$
$-1.950036000000 \quad 2.110817000000$
$2.916145000000-2.674821000000$
$3.415711000000-1.641316000000$
$2.711172000000-0.904369000000$
$0.502084000000-2.019341000000$
$1.205468000000-2.786738000000$
$-1.793081000000-1.366705000000$
$-2.561099000000-1.886597000000$
-3.521768000000 -0.084006000000
$-3.706807000000 \quad 2.238801000000$
$-2.930445000000 \quad 2.751243000000$

1a-OMe-H ${ }^{\text {a }}$
O -2.729915000000

-1.469860000000	0.111199000000
-0.781047000000	0.070297000000
-1.546859000000	0.050820000000
-0.917479000000	0.021774000000
0.481810000000	0.011289000000
1.227598000000	0.039870000000
0.618368000000	0.072091000000
1.206236000000	-0.024904000000
-0.864395000000	-0.209274000000
0.325734000000	-0.031791000000
-2.635573000000	0.054181000000
-1.539251000000	0.003977000000
2.320088000000	0.045019000000
1.226621000000	0.118986000000

H	2.326681000000	1.862475000000	-0.913382000000
H	2.357619000000	1.893375000000	0.838755000000
H	-4.762070000000	-1.525330000000	-0.109428000000
H	-3.882596000000	-0.054631000000	-0.944971000000
H	4.468499000000	0.946634000000	-0.056040000000
H	3.614428000000	-0.309700000000	0.866651000000
H	3.586034000000	-0.336633000000	-0.911813000000
$\mathbf{1 a - H}$			
O	-2.727708000000	-1.473148000000	0.048947000000
C	-1.552690000000	-0.798653000000	0.004219000000
C	-0.380140000000	-1.582192000000	0.037003000000
C	0.869801000000	-0.989451000000	-0.003643000000
C	1.020762000000	0.430691000000	-0.079772000000
C	-0.181761000000	1.195118000000	-0.111674000000
C	-1.438796000000	0.603229000000	-0.071147000000
C	2.287290000000	1.062507000000	-0.122229000000
C	-3.939803000000	-0.743555000000	0.021710000000
C	3.591170000000	0.333309000000	-0.093128000000
H	-0.486593000000	-2.667721000000	0.095313000000
H	1.757124000000	-1.624640000000	0.023339000000
H	-0.109946000000	2.284553000000	-0.170016000000
H	-2.326320000000	1.235141000000	-0.098473000000
H	2.300267000000	2.154964000000	-0.180667000000
H	-4.750615000000	-1.481800000000	0.067029000000
H	-4.023776000000	-0.062364000000	0.886055000000
H	-4.039456000000	-0.155282000000	-0.906793000000
H	4.441654000000	1.028646000000	-0.132433000000
H	3.704664000000	-0.280788000000	0.820557000000
H	3.694965000000	-0.368255000000	-0.942824000000
2a-H			
C	0.109656000000	0.659184000000	1.258793000000
C	0.750414000000	-0.396137000000	0.573250000000
C	-0.574019000000	0.570820000000	2.442922000000
C	0.582739000000	-1.810374000000	1.066945000000
O	0.132221000000	1.948561000000	0.673281000000
S	-1.050716000000	2.270307000000	-0.409773000000
O	-2.188292000000	2.871276000000	0.264545000000
O	-1.211057000000	1.149760000000	-1.325403000000
C	-0.135680000000	3.651286000000	-1.316209000000
F	0.535333000000	3.129254000000	-2.330168000000
F	-1.053111000000	4.488867000000	-1.770713000000
F	0.690898000000	4.284376000000	-0.503575000000
l			

C	1.499833000000	-0.236996000000	-0.695478000000
O	1.608572000000	-1.147377000000	-1.497395000000
O	2.079282000000	0.955718000000	-0.856087000000
C	3.707942000000	2.395436000000	-1.849777000000
C	2.880897000000	1.144139000000	-2.042389000000
C	-0.828127000000	-2.349096000000	0.887164000000
C	-1.494756000000	-2.199929000000	-0.339017000000
C	-2.788165000000	-2.698778000000	-0.508032000000
C	-3.434924000000	-3.354933000000	0.545422000000
C	-2.777629000000	-3.508120000000	1.769019000000
C	-1.482933000000	-3.005486000000	1.937561000000
H	-1.060816000000	1.455199000000	2.854347000000
H	-0.634685000000	-0.366706000000	2.991649000000
H	1.285756000000	-2.447278000000	0.512199000000
H	0.863301000000	-1.871226000000	2.130015000000
H	4.324133000000	2.571327000000	-2.744432000000
H	3.068141000000	3.275319000000	-1.692840000000
H	4.377996000000	2.290583000000	-0.982958000000
H	3.508008000000	0.252640000000	-2.188796000000
H	2.204006000000	1.221695000000	-2.907183000000
H	-0.996575000000	-1.683757000000	-1.161331000000
H	-3.295556000000	-2.572583000000	-1.467690000000
H	-4.447811000000	-3.742558000000	0.412878000000
H	-3.273929000000	-4.016983000000	2.599022000000
H	-0.975548000000	-3.125660000000	2.898739000000

$\mathbf{2 a - H}^{\mathbf{d}}$			
C	-0.080835000000	0.635260000000	0.831335000000
C	0.612683000000	-0.330878000000	0.097070000000
C	-0.873041000000	0.444251000000	2.076263000000
C	0.332823000000	-1.710554000000	0.162197000000
O	0.036653000000	1.988395000000	0.471263000000
S	-1.159758000000	2.699427000000	-0.393114000000
O	-1.144733000000	4.103542000000	-0.039039000000
O	-2.364306000000	1.881788000000	-0.374223000000
C	-0.446735000000	2.567816000000	-2.128629000000
F	-0.252556000000	1.290625000000	-2.433541000000
F	-1.320876000000	3.097790000000	-2.968318000000
F	0.698670000000	3.226298000000	-2.197155000000
C	1.798917000000	0.003889000000	-0.773844000000
O	2.269697000000	-0.776175000000	-1.574651000000
O	2.306413000000	1.215417000000	-0.549197000000
C	3.826872000000	3.014165000000	-0.908462000000
C	3.419990000000	1.631148000000	-1.364770000000

C	-0.918992000000	-2.352984000000	0.488808000000
C	-2.173335000000	-1.713847000000	0.321993000000
C	-3.356896000000	-2.388165000000	0.606214000000
C	-3.327967000000	-3.712977000000	1.062973000000
C	-2.099093000000	-4.368994000000	1.210207000000
C	-0.911917000000	-3.704205000000	0.914638000000
H	-0.513770000000	1.173909000000	2.821779000000
H	-0.757677000000	-0.567333000000	2.479016000000
H	-1.945782000000	0.643047000000	1.920772000000
H	1.145537000000	-2.372810000000	-0.145322000000
H	4.670689000000	3.373659000000	-1.516359000000
H	2.991574000000	3.721325000000	-1.017463000000
H	4.139787000000	3.002408000000	0.146703000000
H	4.233926000000	0.898528000000	-1.253211000000
H	3.103415000000	1.618769000000	-2.419475000000
H	-2.212026000000	-0.695391000000	-0.066305000000
H	-4.314099000000	-1.881906000000	0.461059000000
H	-4.260044000000	-4.235970000000	1.288591000000
H	-2.070160000000	-5.406061000000	1.552416000000

H_{2} (anchor)

H	-0.371371000000	-0.006190000000	0.000000000000
H	0.371371000000	0.006190000000	0.000000000000
H • (radical anchor)			
H	0.0000000000000	0.0000000000000	0.000000000000

11. Reference

[1] D. Babinski, O. Soltani, D. E. Frantz, Org. Lett. 2008, 10, 2901-2904.
[2] Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc.,

Wallingford CT, 2013.
[3] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) W. Y. C. Lee, R. G. Parr, Phys. Rev. B: Condens. Matter. 1988, 37, 785-789.
[4] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
[5] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
[6] a) E. S. S. Miertus, Chem. Phys. 1981, 55, 13; b) J. T. S. Miertus, Chem. Phys. 1982, 65, 7; c)E. S. J. L. Pascual-Ahuir, I. Tunon, J. Comput. Chem. 1994, 15, 12.
[7] Zhao, Y., Truhlar, D.G. Theor. Chem. Acc. 120, 215-241 (2008).
[8] M. Aleksandr V, C. Christopher J, T. Donald G, J. Phys. Chem. B. 2009, 113, 6378-6396.
[9] CYLview 1.0b; Legault, C. Y. Université de Sherbrooke, (http://www.cylview.org). (2009).

[^0]:
 ${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{3 t}$

[^1]:

[^2]:
 ${ }^{13} \mathrm{C}$ NMR spectrum for compound $\mathbf{5 e}$

[^3]:

[^4]: 峰面积
 5720． 16
 6089.94

