Manipulating Electron Redistribution between Iridium and Co₆Mo₆C Bridging with Carbon Layer Leads to a Significantly Enhanced Overall Water Splitting Performance at Industrial-Level Current Density

Weimo Li,^{‡a} Wenqiong Gou,^{‡b} Linfeng Zhang,^a Mengxiao Zhong,^a Siyu Ren,^a Guangtao Yu,^b Ce Wang,^a Wei Chen,^b* Xiaofeng Lu^a*

^aAlan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P.R. China. E-mail: xflu@jlu.edu.cn

^bEngineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Academy of Carbon Neutrality of Fujian Normal University, Fujian

[‡]These authors contributed equally to this work.

[†]Electronic supplementary information (ESI) available.

Keywords: Ir nanoparticles, Co₆Mo₆C, nitrogen-doped Carbon, industrial-level current density, bifunctional electrocatalyst

1. Experimental section

1.1 Chemicals

Poly(vinylpyrrolidone) (PVP, $M_w = 1,300,000 \text{ g mol}^{-1}$) was obtained from Alfa Aesar. Iridium oxide (IrO₂), cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O), pyrrole (C₄H₅N), bls(acetylacetonato)dioxomolybdenum(VI) (C₁₀H₁₄MoO₆) and sodium dodecyl sulfate (SDS) were acquired from Aladdin Chemistry Co., Ltd. N, Ndimethylformamide (DMF) was purchased from Tianjin Tiantai Chemical Co., Ltd. Iridium chloride hydrate (IrCl₃·xH₂O) and 5 wt% Nafion solution were available from Sigma-Aldrich. Commercial Pt/C (20 wt%) was procured from Johnson Matthey. Ethanol was brought from Sinopharm Chemical Reagent Co. Ltd. Sodium borohydride (NaBH₄) was provided by Xilong Chemical Co., Ltd. Iron(III) chloride hexahydrate (FeCl₃·6H₂O) was received from Tianjin East China Reagent Factory. Ir black was purchased from Heraeus Holding.

1.2 Synthesis of CoMoO₄ nanofibers

Initially, a typical electrospinning technique was carried out to fabricate precursor nanofibrous membrane. Specifically, 0.2326 g of $Co(NO_3)_2 \cdot 6H_2O$, 0.2609 g of $C_{10}H_{14}MoO_6$ and 0.5 g of PVP were dissolved in the mixture solution comprising 3 mL of DMF and 3 mL of ethanol under continuous stirring until it became a homogenous solution. The prepared electrospun precursor solution was then sealed into a syringe with the propulsion rate of 0.02 mm min⁻¹ and the tip of its needle is 20 cm far away from the aluminum foil collector. Under the high voltage of 16 kV, precursor nanofibrous membrane was fabricated. Subsequently, a calcination procedure was performed and the above prepared membrane was conveyed into the muffle furnace under an air atmosphere at 150 °C for 1 h with a heating speed of 1 °C min⁻¹, followed by 550 °C for 2 h with a heating speed of 2 °C min⁻¹. The final product was CoMoO₄ nanofibers (CoMoO₄ NFs).

1.3 Synthesis of CoMoO₄-PPy nanofibers

The formation of CoMoO₄-PPy nanofibers (CoMoO₄-PPy NFs) was accomplished via an in situ polymerization process. 5 mg of CoMoO₄ NFs were dispersed into 15 mL

of water under vigorous stirring. Subsequently, 70 μ L of pyrrole and 1 mg of SDS were added into the above dispersion and stirred for 1 h. The solution was subjected to refrigeration for a modest duration of 5 min prior to the introduction of 10 mL of FeCl₃ solution (7 mg mL⁻¹) within the solution. Following a rigorous in situ polymerization procedure with a continuous stirring for 2 h, the resultant CoMoO₄-PPy NFs were thoroughly washed with water for several times and finally freeze-dried in vacuum overnight. Moreover, CoMoO₄ NFs with varied contents of PPy was accomplished by adding diverse contents of pyrrole and FeCl₃. The CoMoO₄-50PPy NFs and CoMoO₄-90PPy NFs are synthesized by adding 50 and 90 μ L of pyrrole and 10 mL of FeCl₃ (5 and 9 mg mL⁻¹), respectively, alongside other procedure steps remaining unchanged.

1.4 Synthesis of Co₆Mo₆C-Ir nanofibers

CoMoO₄-PPy NFs were firstly put into a tubular furnace and subjected to a calcination process under an Ar atmosphere at 800 °C for 3 h with a heating speed of 2 °C min⁻¹. After that, the Co₆Mo₆C nanofibers (Co₆Mo₆C NFs) were obtained. In the following, 4 mg of Co₆Mo₆C NFs and a certain amount of IrCl₃ solution (10 mg mL⁻¹) were added into 10 mL of water with a vigorous shaking on the rotary shaker for 45 min, followed by the addition of 200 μ L of NaBH₄ solution (10 mg mL⁻¹). At last, the obtained Co₆Mo₆C-Ir NFs were rinsed with water for several times and freeze-dried in vacuum overnight. The volume additions of IrCl₃ solution in the dispersion of Co₆Mo₆C NFs are 70, 100 and 130 μ L (denoted as Co₆Mo₆C-Ir-1 NFs, Co₆Mo₆C-Ir-2 NFs and Co₆Mo₆C-Ir-3 NFs, respectively). Moreover, CoMoO₄-50PPy NFs and CoMoO₄-90PPy-800 NFs, CoMoO₄-50PPy-800 NFs, CoMoO₄-50PPy-800 NFs, CoMoO₄-50PPy-800 NFs, respectively.

1.5 Characterizations

The morphology details pertaining to the as-synthesized catalysts were characterized by field-emission scanning emission microscopy (FESEM, FEI Nova NanoSEM) and transmission electron microscopy (TEM, JEOL JEM-2100), respectively. The associated elemental composition distributions and crystalline structures were confirmed via the high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image, elemental mapping analysis, energydispersive X-ray (EDX) patterns and high-resolution TEM (HRTEM) images, which were accomplished by FEI Tecnai G2 F20. An inductively coupled plasma (ICP, Agilent 725) was employed to quantify each element content in the synthesized catalysts. X-ray diffraction (XRD, PANalytical B.V. Empyrean with Cu Kα radiation), Raman profiling (LabRAM HR Evolution) and X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific ESCALAB 250) were employed to further probe the valence states and atomic arrangement of the as-synthesized catalysts.

1.6 Electrochemical measurements

All the electrochemical measurements were executed on the CHI660E electrochemical workstation under alkaline environment at ambient temperature. The evaluations of HER and OER performance tests were accomplished through a three-electrode configuration in 1 M KOH solution. During the electrochemical tests, catalyst-loaded carbon paper (CP), Hg/HgO electrode as along with Pt wire (for OER test) or graphite rod (for HER test) are utilized as the working electrode, reference electrode and counter electrode, respectively. In the preparation procedure of working electrode, 4 mg of catalyst is blended with 990 μ L of water, 990 μ L of ethanol and 20 μ L of 5 wt% Nafion solution and then conducts a continuous ultrasonication. Next, 50 μ L of the prepared catalyst ink is dropped on the surface of CP (0.09 cm²) to achieve the modified working electrode. Furthermore, to obtain precise electrode (RHE) in alkaline environment is also conducted (Fig. S48).

Prior to the acquisition of electrochemical data, several cyclic voltammetry (CV) cycles were executed in an Ar-saturated 1 M KOH solution to attain a steady state throughout the system. During the electrochemical tests, for the precise electrochemical data, linear scan voltammetry (LSV) was implemented with a scan rate of 1 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) was executed at a frequency domain of $0.1-10^5$ Hz and executed at -1.2 and 0.68 V *vs*. Hg/HgO electrode for HER and OER process, respectively. The double-layer capacitance (C_{dl}) was acquired via CV

measurements with various scan rates (10, 20, 30, 40, 50, 60, 70, 80, 90, 100 mV s⁻¹) within the potential domains of -0.3 to -0.2 V vs. Hg/HgO electrode. The electrochemical active surface area (ECSA) is also calculated, which is linearly proportional to the C_{dl} . The corresponding formula is illustrated below:

 $ECSA = C_{dl}/C_s$

Roughness factor (RF) is also calculated below:

$$RF = ECSA/S$$

The mass activity with regard to noble metal (MA_{NM}) is calculated below:

Mass activity (MA) = $j \times S/m_{NM}$

Turnover frequency (TOF) values is calculated below:

$$TOF = j \times S/(z \times F \times n_{metal})$$

where C_s denotes the specific capacitance for a 1 cm² flat surface, which is predominantly recognized as 0.04 mF cm⁻² in alkaline solution; S signifies the surface area covered by catalysts; j depicts the current density; m_{NM} signifies the mass of noble metal; z refers to the accepted or donated electrons for the generation of each H₂ or O₂ molecule (2 for HER process and 4 for OER process); F signifies the Faraday constant (96485.3 C mol⁻¹); n_{metal} denotes the quantity of moles of all the active metal (the lowest TOF values are calculated). All aforementioned electrochemical data were collected with iR compensation.

A two-electrode system was employed to assess the OWS performance of the assembled alkaline electrolyzers. The LSV curves were performed at 1 mV s⁻¹. The Faraday efficiencies (FEs) of the electrolyzers were measured by collecting gas through drainage method at the current density of 200 mA cm⁻².

The FE is calculated as follows:

$$FE = [z \times F \times n_{gas} / (I \times t)] \times 100\%$$
$$n_{gas} = V_{gas} / V_m$$

z denotes the captured or donated electrons for the generation of each H_2 or O_2 molecule (2 for HER process and 4 for OER process); F signifies the Faraday constant (96485.3 C mol⁻¹); n_{gas} represents the quantity of moles of gas evolved; I symbolizes the constant current applied for t min; V_m denotes molar volume of gas (24.5 L mol⁻¹ at room temperature). All the OWS electrochemical examinations were conducted with the CP as the substrate, except for the durability test (nickel foam was chosen as the substrate).

2. Theothetical section

2.1 Computational methods

Under the density functional theory (DFT), all computations are performed within the rigorous framework of the Vienna *ab initio* simulation package (VASP) [1]. The exploitation of exchange correlation energy is informed by the generalized gradient approximation (GGA) fortified with the Perdew-Burke-Enzzerhof (PBE) formulation [2], wherein the semi-empirical van der Waals (vdW) methodology (DFT-D2) devised by Grimme is incorporated to encompass the dispersion interaction [3,4]. The utilization of projector-augmented plane wave (PAW) serves to simulate the electronion interactions [5], and a 450-eV energy cutoff is applied for the plane-wave basis set. Three different configurations of $3\times3\times3$, $3\times3\times1$ and $2\times3\times1$ Monkhorst-Pack grid kpoints are employed respectively for the geometric optimization of the bulk structure and the corresponding slab model of Co₆Mo₆C, as well as the intricate assembly composed of the ultra-thin carbon layer overlying the Co₆Mo₆C. The convergence threshold is set as 10^{-4} eV in energy. For all simulations of the slab models, the symmetrization was switched off and the dipolar correction was included.

2.2 Theoretical models

The bulk Co₆Mo₆C possesses a cubic structure and is classified into the space group $Fd^{3}m$ (Fig. S33a online). The optimized lattice parameter *a* is approximately 10.772 Å, which conforms nicely to the corresponding experimental value (10.897 Å). By disassembling the optimized bulk Co₆Mo₆C framework through the low-index (100) plane, we obtained two different surfaces terminated by Co- and MoC-layers, as shown in Figs. S33b and S33c (online). Each configuration can be simulated with the corresponding slab model comprising five stoichiometric Co₆Mo₆C layers. Within the theoretical models, the upper two layers are relaxed devoid of any symmetry or direction restrictions, while the underlying layers remain fixed throughout the computational process. Based on the aforementioned models, the corresponding surface energies (γ) are estimated by the equation below, which was used to quantify the excess energy of the surface with respect to the bulk [6].

$$y = \frac{E_{slab} - nE_{bulk}}{A} - \frac{E_{slab}^{unrelax} - nE_{bulk}}{2A}$$

where E_{slab} is the total energy of the slab (relaxed on one side), $E_{unrelax}$ is the total energy of the unrelaxed slab, *n* is the number of Co₆Mo₆C units in the slab structure. Moreover, E_{bulk} is the energy of a Co₆Mo₆C formula unit in bulk structure, and *A* is the surface area of one side of the slab. Our results verify that the calculated surface energies are 0.220 and 0.231 J/m² for the Co-terminated and MoC-terminated slabs, respectively, implying that the configuration of Co-termination is more stable in terms of energy. It will be selected as the structural unit for constructing the theoretical model of subsequent composite system.

Specifically, based on the relevant experimental data, we formulated the corresponding theoretical model of Co_6Mo_6C -Ir NFs system by enveloping the N-doped graphene on the Co-terminated Co_6Mo_6C slab, to simulate the ultra-thin N-doped carbon layer enveloping the Co_6Mo_6C system. The lattice mismatch between them is noted to be be almost negligible (within 4%). Within this theoretical model, two distinct types of nitrogen atoms (*i.e.*, pyridine nitrogen and graphitic nitrogen) are introduced into the N-doped graphene, considering the circumstance that they can be predominantly observed in our experiment. Subsequently, the Ir₄ structure representing the Ir metal cluster is deposited on the surface of N-doped graphene covering Co_6Mo_6C system. Our computational findings disclose that the Ir₄ cluster can be stably anchored on the material surface, and the three representative Ir atoms at the bottom are connected by carbon, pyridine nitrogen or carbon atoms adjacent to graphitic nitrogen, respectively. Throughout the computations, the bottom layer comprising stoichiometric Co_6Mo_6C units is frozen, while the rest are completely relaxed.

2.3 The free-energy calculations on hydrogen evolution reaction (HER)

The HER catalytic activity can be assessed by determining the adsorption free

energy of H* ($\Delta G_{\text{H*}}$). The $\Delta G_{\text{H*}}$ value can be calculated via the equation $\Delta G_{\text{H*}} = \Delta E_{\text{H*}}$ + ΔE_{ZPE} - T ΔS , where $\Delta E_{\text{H*}}$, ΔE_{ZPE} and ΔS represent the binding energy, zero point energy change and entropy change of H* adsorption, respectively. Among them, $\Delta E_{\text{H*}}$ can be obtained through the formula $\Delta E_{\text{H*}} = E_{\text{slab-H}} - E_{\text{slab}} - 1/2 E_{\text{H2}}$, wherein E_{H2} denotes the total energy of an individual H₂ molecule, and $E_{\text{slab-H}}/E_{\text{slab}}$ is the total energy of the slab model with/without H*. Furthermore, due to the negligible vibrational entropy of H*, we can compute ΔS via the relationship $\Delta S = S_{\text{H*}} - 1/2S_{\text{H2}} \approx -1/2S_{\text{H2}}$. Hence, the T ΔS value can be -0.205 eV, given that T S_{H2} is 0.41 eV for H₂ at 300 K and 1.0 atm. Additionally, we can ascertain ΔE_{ZPE} for H* through the formula $\Delta E_{\text{ZPE}} = E_{\text{ZPE}}(\text{H*}) - 1/2E_{\text{ZPE}}(\text{H}_2)$. Our calculated $\Delta E_{\text{ZPE}}(\text{H}_2)$ value is approximately 0.305 eV, which aligns closely with the reported result by Norskov *et al* [7].

2.4 The free-energy calculations on oxygen evolution reaction (OER)

The OER reaction is one of the half reactions in water splitting process, which usually consists of four fundamental reaction steps, as shown in the following formulas (1)-(4):

$$H_{2}O + * \rightarrow OH^{*} + H^{*} + e^{-} \qquad (1)$$

$$OH^{*} \rightarrow O^{*} + H^{+} + e^{-} \qquad (2)$$

$$H_{2}O + O^{*} \rightarrow OOH^{*} + H^{+} + e^{-} \qquad (3)$$

$$OOH^{*} \rightarrow O_{2} + * + H^{+} + e^{-} \qquad (4)$$

where * means an active site on the catalyst surface, and OH*, O* or OOH* represent three different intermediates.

In accordance with the structural model of composite system, the computational hydrogen electrode (CHE) model proposed by Nørskov *et al.* is utilized to assess the reaction Gibbs free energy change (Δ G) [8,9], and the Δ G value for each step of OER is defined as:

$$\Delta G = \Delta E + \Delta E_{\text{ZPE}} - T\Delta S + \Delta G_{\text{U}} + \Delta G_{\text{pH}}$$

where ΔE , ΔE_{ZPE} and ΔS signify the change of total energy, the change of zero-point energy and entropy prior and subsequent to the reaction, respectively, and *T* signifies the reaction temperature. The influence of the applied external electrode potential (U) is $\Delta G_{\rm U}$ =-ne*U*, where n signifies the number of electrons transferred during the reaction. $\Delta G_{\rm PH}$ =-k_BTln10×pH contributes a correction for free energy reliant on the concentration of H⁺ ions, wherein k_B denotes the Boltzmann constant, and pH is considered as zero for an acidic medium. Regarding the steps involving proton-electron pair transfer, the free energy $G({\rm H^++e^-})$ is approximately equal to $1/2G({\rm H_2})$. The Gibbs free energy value for oxygen is attained from the equation $G_{\rm O2} = 2G_{\rm H2O} - 2G_{\rm H2} + 4.92$ eV [10]. The overpotential (η) value of OER can be estimated by using the following formula:

$$\eta = \max \{\Delta G_{a}, \Delta G_{b}, \Delta G_{c}, \Delta G_{d}\}/e - 1.23 \text{ V}$$

As is well establised, η is frequently employed to assess the catalytic activity of oxygen evolution catalysts. The smaller η , the higher the OER catalytic activity. In the case where pH = 0, based on the Nernst equation, the equilibrium electrode potential is 1.23 V.

Figure S1. (a) SEM image and (b) diameter distribution of precursor nanofibers.

Figure S2. (a, c) SEM and (b, d) TEM images of (a, b) $CoMoO_4$ NFs and (c, d) $CoMoO_4$ -PPy NFs. Insets of (a, c): Diameter distributions of $CoMoO_4$ NFs and $CoMoO_4$ -PPy NFs.

Figure S3. (a, c) SEM and (b, d) TEM images of (a, b) CoMoO₄-50PPy NFs and (c, d) CoMoO₄-90PPy NFs. Insets of (a, c): Diameter distributions of CoMoO₄-50PPy NFs and CoMoO₄-90PPy NFs.

Figure S4. (a-d) TEM images to show the thickness of carbon layer of Co_6Mo_6C -Ir-2 NFs for different preparation batches.

Figure S5. (a-c) The enlarge TEM images of Co₆Mo₆C-Ir-2 NFs.

Figure S6. SEM images of (a) Co_6Mo_6C -Ir-1 NFs and (b) Co_6Mo_6C -Ir-3 NFs.

Figure S7. EDX spectrum of Co₆Mo₆C-Ir-2 NFs.

Figure S8. (a) STEM image, (b) enlarged STEM image and (c) HADDF/STEM line scans of Co_6Mo_6C -Ir-2 NFs.

Figure S9. XRD patterns of CoMoO₄-50PPy-800 NFs, Co₆Mo₆C NFs and CoMoO₄-90PPy-800 NFs.

Note: The CoMoO₄-50PPy-800 NFs show the diffraction peaks that correspond to $Co_2Mo_3O_8$ (JCPDS No. 71-1423) and Co (JCPDS No. 15-0806), while the diffraction peaks of CoMoO₄-90PPy-800 NFs are ascribed to Co_6Mo_6C (JCPDS No. 80-0338) and Mo_2C (JCPDS No. 15-0457).

Figure S10. XRD patterns of Co_6Mo_6C -Ir-1 NFs, Co_6Mo_6C -Ir-2 NFs and Co_6Mo_6C -Ir-3 NFs.

Figure S11. The XPS survey spectrum of Co₆Mo₆C-Ir-2 NFs.

Figure S12. Typical high-resolution C 1s XPS spectra of Co₆Mo₆C NFs and Co₆Mo₆C-Ir-2 NFs.

Figure S13. (a, c) LSV curves and (b, d) Nyquist plots of Co₆Mo₆C NFs and other catalysts for OER and HER.

Figure S14. (a, b) The LSV curves of varied catalysts with and without iR compensation for OER.

Figure S15. (a, c) LSV curves and (b, d) Nyquist plots of Co_6Mo_6C -Ir-2 NFs and other catalysts for OER and HER.

Figure S16. The evaluation of the OER overpotentials of Co_6Mo_6C -Ir NFs at 10, 100, 500 and 1000 mA cm⁻². Error bars represent the standard deviations of three independent measurements under the same conditions.

Figure S17. Nyquist plots of Co_6Mo_6C -Ir-2 NFs and other catalysts that performed at 0.68 V vs. Hg/HgO electrode.

Figure S18. The CV curves of (a) Co_6Mo_6C -Ir-1 NFs, (b) Co_6Mo_6C -Ir-2 NFs, (c) Co_6Mo_6C -Ir-3 NFs and (d) Co_6Mo_6C NFs with different scan rates from 10 to 100 mV s⁻¹.

Figure S19. C_{dl} values obtained from the linear fitting of capacitance currents and scan rates.

Figure S20. (a) OER polarization curves normalized to ECSA in 1 M KOH. (b) The corresponding specific activities at the current density of 2.25 mA cm⁻²_{ECSA}.

Figure S21. The LSV curves of Co_6Mo_6C -Ir-2 NFs for OER before and after 2000 CVs.

Figure S22. The degradation rates of catalysts for OER stability test.

Figure S23. The SEM image of Co_6Mo_6C -Ir-2 NFs after OER stability test.

Figure S24. The XRD patterns of Co₆Mo₆C-Ir-2 NFs after OER stability test.

Figure S25. The Raman spectra of Co₆Mo₆C-Ir NFs before and after OER stability test.

Figure S26. Typical high-resolution (a) Co 2p, (b) Mo 3d, (c) Ir 4f and (d) N 1s XPS spectra of Co₆Mo₆C-Ir-2 NFs before and after OER stability test.

Figure S27. Typical high-resolution C 1s XPS spectra of Co_6Mo_6C -Ir-2 NFs before and after OER stability test.

Figure S28. (a, b) The LSV curves of varied catalysts with and without iR compensation for HER.

Figure S29. The evaluation of the HER overpotentials of Co_6Mo_6C -Ir NFs at 10, 100, 500 and 1000 mA cm⁻². Error bars represent the standard deviations of three independent measurements under the same conditions.

Figure S30. Nyquist plots of Co_6Mo_6C -Ir-2 NFs and other catalysts that performed at -1.2 V *vs.* Hg/HgO electrode.

Figure S31. (a) HER polarization curves normalized to ECSA in 1 M KOH. (b) The corresponding specific activities at the current density of 0.5 mA cm⁻²_{ECSA}.

Figure S32. The LSV curves of Co_6Mo_6C -Ir-2 NFs for HER before and after 2000 CVs.

Figure S33. The degradation rates of catalysts for HER stability test.

Figure S34. The SEM image of Co_6Mo_6C -Ir-2 NFs after HER stability test.

Figure S35. XRD patterns of Co₆Mo₆C-Ir-2 NFs after HER stability test.

Figure S36. The Raman spectra of Co₆Mo₆C-Ir NFs before and after HER stability test.

Figure S37. Typical high-resolution (a) Co 2p, (b) Mo 3d, (c) Ir 4f and (d) N 1s XPS spectra of Co₆Mo₆C-Ir-2 NFs before and after HER stability test.

Figure S38. Typical high-resolution N 1s XPS spectra of Co_6Mo_6C -Ir-2 NFs before and after HER stability test.

Figure S39. (a) The crystal structure of Co_6Mo_6C and (b, c) side view of possible exposed Co- or MoC-terminations for the low-index (100) facet, as well as the corresponding surface energies.

Figure S40. The charge density difference ($\Delta\rho$) of Co₆Mo₆C-NF without Ir, in which the red and blue colors represent gaining and losing electrons, respectively, and the relevant electron transfer processes are also displayed.

Figure S41. Free-energy diagrams for OER at the (a) T_{Ir1} , (b) T_{Ir2} , (c) T_{Ir3} and (d) T_{Ir4} sites.

Figure S42. The photographs of H_2 and O_2 production of Co_6Mo_6C -Ir-2 NFs $||Co_6Mo_6C$ -Ir-2 NFs electrolyzer.

Figure S43. The photographs of H_2 and O_2 production of $Pt/C ||IrO_2$ NFs electrolyzer.

Figure S44. The comparison of theoretically calculated and experimentally measured evolved H_2 and O_2 gas for Co_6Mo_6C -Ir-2 NFs $||Co_6Mo_6C$ -Ir-2 NFs electrolyzer.

Figure S45. The comparison of theoretically calculated and experimentally measured evolved H_2 and O_2 gas for Pt/C||IrO₂ electrolyzer.

Figure S46. The degradation rates of electrolyzers for OWS stability test.

Figure S47. The polarization curves of Co_6Mo_6C -Ir-2 NFs in 1 M KOH, 30 wt% KOH (60 °C) and 30 wt% KOH (80 °C) for overall water splitting without iR compensation.

Figure S48. The CV curve for the calibration of the Hg/HgO reference electrode at the scan rate of 1 mV s⁻¹ in H₂-saturated 1 M KOH solution.

Note: The calibration process of the Hg/HgO reference electrode: The H₂ was introduced into 1 M KOH electrolyte until it saturated. Then, two polished Pt plate electrodes and Hg/HgO electrode served as the working electrode, the counter electrode and the pre-calibrated reference electrode, respectively. Cyclic voltammetry (CV) at the scan rate of 1 mV s⁻¹ was conducted to calibrate the reference potential of the Hg/HgO electrode in the high-purity H₂-saturated 1 M KOH electrolyte. According to the result of CV test, the thermodynamic potential (-0.917 V) was calculated. Hence, the Nernst equation in this work can be modified as follow: $E_{RHE} = E_{Hg/HgO} + 0.917$ V.

Catalysts	Co (wt %)	Mo (wt %)	Ir (wt %)
CoMoO ₄ NFs	26.7	44.0	N/A
CoMoO ₄ -PPy NFs	13.3	25.8	N/A
Co ₆ Mo ₆ C NFs	33.8	64.4	N/A
Co ₆ Mo ₆ C-Ir-1 NFs	34.2	59.5	4.6
Co ₆ Mo ₆ C-Ir-2 NFs	33.7	58.7	5.9
Co ₆ Mo ₆ C-Ir-3 NFs	31.2	59.6	7.6

 Table S1. The ICP results of prepared catalysts.

Table S2. Comparison of the OER activity of the Co_6Mo_6C -Ir-2 NFs catalyst with other reported non-noble catalysts in 1 M KOH solution.

Catalysts	J	η	Tafel slope	Reference
	(mA cm ⁻²)	$(\mathbf{m}\mathbf{v})$	(mv dec ⁻¹)	
Co ₆ Mo ₆ C-1r-2 NFs	10	209	46.8	This work
	100	257		
	500	297		
	1000	316		
Co ₁ Mn ₁ CH	100	387	N/A	J. Am. Chem. Soc.
	1000	46		2017, 139, 8320-8328.
Co ₂ FeO ₄	10	359	60	Nat. Commun.
				2022, 13, 179.
CoFeZr oxides/NFs	20	264	54.2	Adv. Mater.
				2019, 31, 1901439.
Ru-a-CoNi	100	285	66	Angew. ChemInt. Edit.
				2022, 61, e202209075.
Fe-Mo-S/Ni ₃ S ₂ @NF	100	300	98	Chem. Eng. J.
	500	367		2021, 404, 126483.
(NiCo)S1.33	10	302	N/A	Nat. Commun.
				2023, 14, 1949.
$R_{\rm H}\Omega_2/C_0\Omega_2$	10	240	70	Nat Commun
	10	210	10	2022 13 5448
CoO/hi-Mn ₂ O4	10	378	61	Angew Chem Int Edit
C00/m-111304	10	570	01	2017 56 8530-8543
CoIr	10	235	70.2	2017, 50, 6557-6545.
Con	10	235	70.2	2018 20 1707522
P Ino @DC	10	249	52 0	2018, 50, 1707522.
r-irO _x @DG	10	240	32.8	
	10	207	52.5	2021, 17, 2100121.
S/N-CNIF@Fe _x Co _y NI _{1-x-y} -NIOF	10	296	53.5	Adv. Mater.
	500	205	02	2023, 10.1002/adma.20220/888.
NIC0 ₂ S ₄ @Mo-CoFe LDH/NF	500	295	83	Appl. Catal. B-Environ.
	1000	332	10.1	2022, 319, 121917.
Ru–Co/ELCO	10	247	49.1	Angew. ChemInt. Edit.
	-00			2022, 61, e202205946.
CeO ₂ -NiCoP _x /NCF	500	455	72	Appl. Catal. B-Environ.
				2022, 316, 121678.
N-Co ₆ Mo ₆ C NRs	10	310	59	J. Electroanal. Chem.
				2020, 871, 114271.
NiMoO _x /NiMoS	1000	334	34	Nat. Commun.
				2020, 11, 5462.
Ru-CoO _x /NF	1000	370	134	Small
				2021, 17, 2102777.

Catalysts	C _{dl} (mF cm ⁻²)	ECSA (cm ²)	RF
Co ₆ Mo ₆ C-Ir-1 NFs	9.3	20.93	232.5
Co ₆ Mo ₆ C-Ir-2 NFs	19.9	44.78	497.5
Co ₆ Mo ₆ C-Ir-3 NFs	8.3	18.68	207.5
Co ₆ Mo ₆ C NFs	1.1	2.48	27.5

Table S3. Comparisons of the C_{dl} , ECSA and RF values of Co_6Mo_6C -Ir-2 NFs with other catalysts.

Table S4. Comparison of the HER activity of the Co_6Mo_6C -Ir-2 NFs catalyst with other reported non-noble catalysts in 1 M KOH solution.

Catalysts	J	η	Tafel slope	Reference
	(mA cm ⁻²)	(mV)	(mV dec ⁻¹)	
Co ₆ Mo ₆ C-Ir-2 NFs	10	76	96.1	This work
	100	177		
	500	284		
	1000	348		
CoSn ₂ /NF	10	103	N/A	Angew. ChemInt. Edit. 2018, 57, 15237-15242.
Ni-Mo _x C/NC	10	162	104.8	ACS Appl. Mater. Interfaces 2018, 10, 35025-35038
Mo ₂ C-CoO@N-CNFs	10	115	76	Chem. Eng. J. 2023, 451, 139025.
FD-MoS ₂ -3	10	174	89	Nat. Commun. 2022, 13, 2193.
CoFeZr oxides/NFs	10	104	119.3	Adv. Mater. 2019, 31, 1901439.
HC-MoS ₂ /Mo ₂ C	1000	442	58	Nat. Commun. 2020, 11, 3724.
A-NiCo LDH/NF	100	151	57	Appl. Catal. B-Environ.
	1000	381		2020, 261, 118240
S-Co _{0.85} Se-1	10	108	59	Angew. ChemInt. Edit. 2021, 60, 12360-12365.
NC/Ni ₃ Mo ₃ N/NF	1000	710*	42	Appl. Catal. B-Environ. 2020, 272, 118956.
Fe-Mo-S/Ni ₃ S ₂ @NF	100	266	123	Chem. Eng. J.
	500	384		2021, 404, 126483.
N-MoO ₂ /Ni ₃ S ₂ NF	1000	517	76	ACS Appl. Mater. Interfaces 2019, 11, 27743-27750.
S-Co _{0.85} Se-1	10	108	59	Angew. ChemInt. Edit. 2021, 60, 12360-12365.
IrFe/NC	1000	850	30	Appl. Catal. B-Environ. 2019, 258, 117965.
N-Co ₆ Mo ₆ C NRs	10	161	62	J. Electroanal. Chem. 2020, 871, 114271.
IrCu NWs	10	86	60	Chem. Eng. J.
	100	180^{*}		2021, 416, 129128.
Co-Mo ₂ C	10	92	89	Appl. Catal. B-Environ. 2021, 284, 119738.

* represents that the displayed value is estimated through the given figure from the literature.

Table S5. The structure parameters for the calculation model of composite Co₆Mo₆C-Ir system.

Lattice parameters b alpha c beta gamma a 21.44510 10.15250 30.00000 90.0000 90.0000 90.0000 Structure parameters y Atom х z 1 Co 0.41773 0.83566 0.55557 2 Co 0.16732 0.49577 0.16586 3 Co 0.0421 0.91579 0.46409 0.40133 4 Co 0.20869 0.41738 0.46409 5 Co 0.4579 0.08421 0.49434 6 Co 0.08254 0.33659 7 Co 0.16864 0.33494 0.55877 0.41677 0.66476 0.49457 8 Co

9	Со	0.29211	0.41579	0.46409
10	Со	0.45869	0.91738	0.40133
11	Со	0.2079	0.58421	0.46409
12	Со	0.33356	0.83365	0.49644
13	Со	0.07656	0.18159	0.55796
14	Со	0.29131	0.58262	0.40133
15	Со	0.04131	0.08262	0.40133
16	Со	0.33897	0.66461	0.55702
17	Со	0.31291	0.62581	0.47914
18	Со	0.04988	0.42006	0.565
19	Со	0.19803	0.09785	0.56725
20	Со	0.0629	0.12581	0.47914
21	Со	0.29644	0.90852	0.5708
22	Со	0.45116	0.59538	0.56642

23	Co	0.1871	0.37419	0.47914
24	Co	0.4371	0.87419	0.47914
25	Со	0.92297	0.81565	0.55981
26	Co	0.66717	0.16283	0.49386
27	Co	0.54211	0.91579	0.46409
28	Co	0.70869	0.41738	0.40133
29	Co	0.9579	0.08421	0.46409
30	Co	0.58366	0.33401	0.49473
31	Co	0.66164	0.33087	0.5562
32	Со	0.91639	0.66335	0.49478
33	Со	0.79211	0.41579	0.46409
34	Со	0.95869	0.91738	0.40133
35	Со	0.7079	0.58421	0.46409
36	Со	0.83513	0.82948	0.49764
37	Со	0.58208	0.16371	0.5558
38	Со	0.79131	0.58262	0.40133
39	Со	0.54131	0.08262	0.40133
40	Со	0.83341	0.65629	0.56493
41	Co	0.81291	0.62581	0.47914
42	Со	0.55179	0.40804	0.56613
43	Co	0.70212	0.09765	0.56682
44	Co	0.56291	0.12581	0.47914
45	Со	0.80796	0.88544	0.57161
46	Со	0.94592	0.58101	0.56548
47	Со	0.6871	0.37419	0.47914
48	Со	0.9371	0.87419	0.47914
49	Мо	0.252	0.50298	0.53983
50	Мо	0.9987	0.50084	0.50104
51	Мо	0.39945	0.49911	0.43285

52	Мо	0.35056	0.00089	0.43285
53	Мо	0.24956	0.79889	0.43285
54	Мо	0.49956	0.29889	0.43285
55	Мо	0.22462	0.75427	0.52261
56	Мо	0.47392	0.25052	0.52203
57	Мо	0.375	0.25	0.45074
58	Мо	0.375	0.75	0.41388
59	Мо	0.12665	0.55129	0.52238
60	Мо	0.37621	0.4497	0.52268
61	Мо	0.125	0.75	0.45074
62	Мо	0.27488	0.24929	0.52332
63	Мо	0.12456	0.95281	0.52195
64	Мо	0.14945	0.99911	0.43285
65	Мо	0.25021	0.00162	0.50236
66	Мо	0.00044	0.70111	0.43285
67	Мо	0.99778	0.00199	0.5391
68	Мо	0.10055	0.50089	0.43285
69	Мо	0.125	0.25	0.41388
70	Мо	0.37314	0.04974	0.52199
71	Мо	0.02717	0.74555	0.52265
72	Мо	0.25045	0.20111	0.43285
73	Мо	0.75201	0.49708	0.55009
74	Мо	0.49954	0.49725	0.50141
75	Мо	0.89945	0.49911	0.43285
76	Мо	0.85056	0.00089	0.43285
77	Мо	0.74956	0.79889	0.43285
78	Мо	0.99956	0.29889	0.43285
79	Мо	0.72623	0.74513	0.5265
80	Мо	0.97202	0.25408	0.52329

81	Мо	0.875	0.25	0.45074
82	Мо	0.875	0.75	0.41388
83	Мо	0.62635	0.54832	0.52255
84	Мо	0.87024	0.44811	0.52386
85	Мо	0.625	0.75	0.45074
86	Мо	0.77394	0.24679	0.52157
87	Мо	0.62636	0.94798	0.52259
88	Мо	0.64945	0.99015	0.50312
90	Мо	0.50045	0.70111	0.43285
91	Мо	0.5001	0.99914	0.53927
92	Мо	0.60056	0.50089	0.43285
93	Мо	0.625	0.25	0.41388
94	Мо	0.87356	0.04601	0.52286
95	Мо	0.52662	0.74616	0.52084
96	Мо	0.75045	0.20111	0.43285
97	С	0.25	0	0.43163
98	С	0	0.5	0.43163
99	С	0.12615	0.75231	0.52635
100	С	0.37445	0.24957	0.5252
101	С	0.75	0	0.43163
102	С	0.5	0.5	0.43163
103	С	0.62644	0.74817	0.52584
104	С	0.87289	0.24735	0.52369
105	С	0.06844	0.99859	0.6263
106	С	0.1677	0.1226	0.63153
107	С	0.03488	0.1245	0.6192
108	С	0.13467	0.99767	0.63192
109	С	0.26709	0.99838	0.63134
110	С	0.36645	0.12639	0.62674

111	С	0.2344	0.12457	0.63093
112	С	0.33368	0.00025	0.6279
113	С	0.46553	0.00248	0.62005
114	С	0.56399	0.13023	0.62077
115	С	0.43233	0.12814	0.62368
116	С	0.53162	0.00274	0.61945
117	С	0.66349	0.00536	0.62433
118	С	0.76414	0.13209	0.62215
119	С	0.6306	0.13128	0.62173
120	С	0.72995	0.00947	0.62565
121	С	0.8637	0.00673	0.61966
122	С	0.96583	0.12819	0.61849
123	С	0.83197	0.13193	0.61878
124	С	0.93326	0.00462	0.61742
125	С	0.0679	0.24879	0.62431
126	С	0.16752	0.37455	0.62669
127	С	0.03521	0.37465	0.629
128	С	0.13515	0.2483	0.62617
129	С	0.26754	0.24903	0.62822
130	С	0.36584	0.37483	0.6279
131	С	0.23411	0.3737	0.62483
132	С	0.33327	0.2497	0.62808
133	С	0.4645	0.25324	0.62649
134	С	0.56505	0.3801	0.63045
135	С	0.43166	0.37555	0.62945
136	С	0.53162	0.25588	0.62479
137	С	0.66462	0.25893	0.62252
138	С	0.76532	0.377	0.61954
139	С	0.63189	0.38514	0.62313

140	С	0.73121	0.25395	0.62008
141	С	0.86452	0.25217	0.62149
142	С	0.96915	0.37606	0.62502
143	С	0.93295	0.25503	0.62059
144	С	0.06904	0.50063	0.62948
145	С	0.16713	0.62488	0.63201
146	С	0.03779	0.62707	0.62887
147	С	0.13518	0.50073	0.63011
148	С	0.2661	0.49944	0.62539
149	С	0.36531	0.6238	0.62568
150	С	0.23307	0.62434	0.63012
151	С	0.33261	0.49855	0.62582
152	С	0.46528	0.50181	0.62936
153	С	0.56732	0.63	0.62957
154	С	0.43268	0.62584	0.63032
155	С	0.53295	0.50412	0.62893
156	С	0.63252	0.63056	0.63043
157	С	0.73094	0.50193	0.62679
158	С	0.97246	0.6261	0.62578
159	С	0.83217	0.63358	0.62629
160	С	0.06888	0.75162	0.6288
161	С	0.16714	0.87304	0.63444
162	С	0.03653	0.87671	0.62336
163	С	0.1348	0.75027	0.6328
164	С	0.26569	0.74826	0.63139
165	С	0.36597	0.87474	0.62426
166	С	0.23375	0.87263	0.63392
167	С	0.33221	0.74807	0.62578
168	С	0.46635	0.74967	0.62475

169	С	0.56499	0.87676	0.62217
170	С	0.43304	0.87503	0.62074
171	С	0.53336	0.75242	0.62597
172	С	0.762	0.88701	0.63245
173	С	0.63049	0.87933	0.62351
174	С	0.7253	0.76929	0.64435
175	С	0.96896	0.8781	0.61779
176	С	0.82951	0.89585	0.63828
177	С	0.93852	0.75363	0.62698
178	Ν	0.83008	0.36388	0.62967
179	Ν	0.66447	0.50713	0.63128
180	Ν	0.93999	0.50139	0.62525
181	Ν	0.66376	0.75813	0.62986
182	Ir	0.8686	0.49695	0.66925
183	Ir	0.76571	0.62569	0.6726
184	Ir	0.87125	0.75492	0.67106
185	Ir	0.84185	0.60998	0.73833

Table S6. Comparison of the OWS activity of the Co_6Mo_6C -Ir-2 NFs catalyst withother reported non-noble catalysts in 1 M KOH solution.

Catalysts	J (mA cm ⁻	Voltage	Reference
	2) 10	(V)	
Co ₆ Mo ₆ C-Ir-2 NFs	10	1.50	this work
	100	1.73	
	1000	2.79	
Ir ₁ @Co/NC	10	1.603	Angew. ChemInt. Edit. 2019, 58, 11868-11873.
Mo ₂ C-CoO@N-CNFs	10	1.56	Chem. Eng. J. 2023, 451, 139025.
MoP-Mo ₂ C/NPC	10	1.55	Chem. Eng. J.
	100	1.22	2022 431 133719
CoMnO _x @CN	100	1.8	J. Am. Chem. Soc.
			2015, 137, 14305-14312.
NiS ₂ /CoS ₂	10	1.78	Adv. Mater. 2017, 29, 1704681.
CoFeZr oxides/NFs	10	1.63	Adv. Mater. 2019, 31, 1901439.
Ir-NR/C	10	1.57	Appl. Catal. B-Environ. 2020, 279, 119394.
N-Co ₆ Mo ₆ C NRs	10	1.58	J. Electroanal. Chem. 2020, 871, 114271.
IrW/C	10	1.55	ACS Central Sci. 2018, 4, 124-1252.
EG/Co _{0.85} Se/NiFe-LDH	10	1.67	Energy Environ. Sci. 2016, 9, 478-483.
NiCo ₂ O ₄ microcuboids	10	1.65	Angew. ChemInt. Edit. 2016, 55, 6290-6294.
IrCu NWs	10	1.59	Chem. Eng. J. 2021, 416, 129128.
Co-Mo ₂ C	10	1.68	Appl. Catal. B-Environ.
	100	1.95*	2021, 284, 119738.
Ir ₁₆ -PdCu/C	10	1.63	Nano Lett. 2021, 21, 5774-5781.
C04S3/M02C-NSC	10	1.62	Appl. Catal. B-Environ. 2020, 260, 118197.
RhCu NTs	10	1.59	Adv. Energy Mater. 2020, 10, 1903038.
CoSn ₂ /NF	10	1.55	Angew. ChemInt. Edit. 2018, 57, 15237-15242.

* represents that the displayed value is estimated through the given figure from the literature.

References

- [1] G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558.
- [2] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- [3] X. Wu, M. C. Vargas, S. Nayak, V. Lotrich and G. Scoles, *J. Chem. Phys.*, 2001, 115, 8748.
- [4] S. Grimme, J. Comput. Chem., 2006, 27, 1787.
- [5] P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953.
- [6] S. Haider, A. Roldan and N. H. de Leeuw, J. Phys. Chem. C, 2014, 118, 1958.
- [7] J. K. Norskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov
- and J. K. Norskov, J. Electrochem. Soc., 2005, 152, J23.
- [8] J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jonsson, *J. Phys. Chem. B*, 2004, **108**, 17886.
- [9] J. Rossmeisl, A. Logadottir and J. K. Norskov, Chem. Phys., 2005, 319, 178.
- [10] A. Valdes, Z. W. Qu, G. J. Kroes, J. Rossmeisl and J. K. Norskov, J. Phys. Chem. C, 2008, 112, 9872.