A first-in-class dual-chelator theranostic agent designed for use with imaging-therapy radiometal pairs of different elements

James L. Wood,^{*a,b*} Saikat Ghosh,^{*b*} Zachary H. Houston,^{*b*} Nicholas L. Fletcher,^{*b*} James Humphries,^{*b*} Karine Mardon,^{*b*} Dewan T. Akhter,^{*b*} William Tieu,^{*c*} Alesia Ivashkevich,^{*d*} Michael P. Wheatcroft,^{*d*} Kristofer J. Thurecht,^{*b*} and Rachel Codd^{**a*}

^a The University of Sydney, School of Medical Sciences, New South Wales 2006, Australia

^b Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN)

and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia

^c Molecular Imaging and Therapy Research Unit (MITRU), South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia

^d Telix Pharmaceuticals Limited, North Melbourne, Victoria 3051, Australia

Corresponding Author: Email: rachel.codd@sydney.edu.au

	r				
		pg			
Table of contents	••••	S1			
General information	••••	S3			
Instrumentation	••••	S3			
Solid-phase extraction	••••	S3			
HPLC purification	••••	S3			
NMR spectroscopy	••••	S4			
Preparation of solutions for { ¹ H}- ¹³ C NMR spectroscopy	••••	S4			
LC-MS spectrometry	••••	S4			
Preparation of solutions for LC-MS spectrometry	••••	S 5			
Antibody conjugation and radiolabelling studies I	••••	S5			
Antibody conjugation and radiolabelling studies II	••••	S6			
Cell binding assays	••••	S7			
Serum stability	••••	S8			
Animal studies	••••	S8			
Animals					
Tumour initiation and growth					
PET/CT Imaging	••••	S8			
SPECT/CT Imaging	••••	S9			
Image Data Processing and Analysis	••••	S9			
Statistical Analysis	••••	S9			
Figure S1. ${}^{1}H$ - ${}^{13}C$ NMR (600 MHz, D ₂ O) spectrum of DFOB (1).	••••	S10			
Figure S2. ${}^{1}H$ - ${}^{13}C$ NMR (600 MHz, D ₂ O) spectrum from a Zr(IV):1 (1.8:1) solution.	••••	S10			
Figure S3. ${}^{1}H$ - ${}^{13}C$ NMR (600 MHz, D ₂ O) spectrum from a Lu(III):1 (1.3:1) solution.	••••	S11			
Figure S4. ¹ H-NMR (600 MHz, D ₂ O) spectrum from a 3a solution.	••••	S11			
Figure S5. COSY-NMR (600 MHz, D ₂ O) spectrum from a 3a solution.		S12			
Figure S6. HSQC-NMR (600 MHz, D ₂ O) spectrum from a 3a solution.	••••	S12			
Figure S7. HMBC-NMR (600 MHz, D ₂ O) spectrum from a 3a solution.		S13			
Figure S8. ${}^{1}H$ - ${}^{13}C$ NMR (600 MHz, D ₂ O) spectrum from a 3a solution.					
Figure S9. ${}^{1}H$ - ${}^{13}C$ NMR (600 MHz, D ₂ O) spectrum from a Zr(IV): 3a (0.8:1) solution.					
Figure S10. $\{^{1}H\}$ - ^{13}C NMR (600 MHz, D ₂ O) spectrum from a Lu(III): 3a (0.8:1) solution.		S14			
Figure S11. $\{^{1}H\}$ - ^{13}C NMR (600 MHz, DMSO- d_6) spectrum from a solution of 3 (D2).	••••	S15			
Figure S12. ¹ H-NMR (700 MHz, D ₂ O) spectrum from a 3b solution.	••••	S15			

Figure S13 $\{^{1}H\}$ - ^{13}C NMR (700 MHz D ₂ O) spectrum from a 3b solution		S16
Figure S14 HSOC NMR (700 MHz, D ₂ O) spectrum from a 3b solution	••••	S16
Figure S15, HMBC NMR (700 MHz, D ₂ O) spectrum from a 3b solution.	••••	S10 S17
Figure S15. HVDC IVMR (700 WHZ, D ₂ O) spectrum from a So solution.	••••	S17 S17
Figure S10. $\{11\}^2$ C NMR (600 MHz, D ₂ O) spectrum noni a 6a solution. Figure S17 Stacked (¹ H) ¹³ C NMR (600 MHz, D ₂ O) spectra of solutions of (a) 9a , or (b) $7r(W)$: 9a , or (c)	••••	S17 S19
Figure S17. Stacked $\{H\}^2$ C NNIK (000101HZ, D ₂ O) spectra of solutions of (a) oa, of (b) $\Sigma I(1V)$.oa, of (c) $I_{1V}(III)$. 9	••••	510
Eigune S18 Stacked (¹ H) ¹³ C NMP (600 MHz D.O) spectra from solutions of (a) $9a$ or (b) $3a$		S10
Figure S10. Stacked $\{H\}^2$ C NMR (000 MHZ, D ₂ O) spectra from solutions of (a) 6a, of (b) 5a.	••••	S10 S10
Figure S19. LC-IVIS traces of Sa ($W = C_{47}H_{86}N_{12}O_{16}$) shown as (a) total ion current (11C), or as extracted	••••	518
In chromatograms (EIC) set to report (b) $[M+\Pi]$ (10/5.1-10/0.1), (c) $[M+2\Pi]^{-}$ (558.5-559.5), of (u) $[M+2\Pi]^{3+}$		
$[M^{+}5\Pi]^{-} (556.7-559.7).$		610
Figure S20. (a) High resolution average mass spectrum ($R_t = 7.57$ -7.98 mm (refer panel (a) of Figure S10)) of 2 of (M = C, H, N, Q, r) and experimental (black) and calculated (error) instance nettoring for	••••	519
S19)) of Sa (M = C ₄₇ H ₈₆ N ₁₂ O ₁₆), and experimental (black) and calculated (gray) isotope patterns for $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $		
marked signals $(\mathbf{D}-\mathbf{g})$ consistent with adducts: $(\mathbf{D}) [\mathbf{M}+3\mathbf{H}]^{\circ}$, $(\mathbf{C}) [\mathbf{M}+2\mathbf{H}]^{\circ}$, $(\mathbf{d}) [\mathbf{M}-\mathbf{H}+\mathbf{F}\mathbf{e}]^{\circ}$ (0.55) and $[\mathbf{M}+2\mathbf{H}+2$		
$[M+2H+5H_2O]^{-1}(0.05)$, (e) $[M+H]^{-1}$, (f) $[M+Na]^{-1}$, or (g) $[M-2H+Fe]^{-1}(0.55)$ and $[M+H+5H_2O]^{-1}(0.05)$.		
The signals marked with an asterisk are consistent with MS2 fragments of 3a formed during spectral		
acquisition (as per scheme below).		610
Figure S21. LC-MS traces of 3 (M = $C_{58}H_{107}N_{13}O_{21}$) shown as (a) total ion current (11C), or as extracted	••••	519
10n chromatograms (EIC) set to report (b) $[M+2H]^{2+}$ (661.6-662.6), (c) $[M+3H]^{3+}$ (441.3-442.4), or (d)		
$[M+4H]^+ (331.1-332.1).$		G • 0
Figure S22. (a) Low resolution average mass spectrum ($R_t = 6.68-9.24$ min (refer panel (a) of Figure	••••	S20
S21)) of 3 (M = $C_{58}H_{107}N_{13}O_{21}$), and experimental (black) and calculated (gray) isotope patterns for marked		
signals (b – d) consistent with adducts: (b) $[M+4H]^{4+}$, (c) $[M+3H]^{3+}$, (d) $[M+2H]^{2+}$.		~ • •
Figure S23. LC-MS traces of 3b ($M = C_{66}H_{111}N_{15}O_{21}S_2$) shown as (a) total ion current (TIC), or as	••••	S20
extracted ion chromatograms (EIC) set to report (b) $[M+H]^+$ (1514.3-1515.3), (c) $[M+2H]^{2+}$ (757.3-758.3),		
or (d) $[M+3H]^{3+}$ (505-506).		
Figure S24. (a) High resolution average mass spectrum ($R_t = 9.86-11.93$ min (refer panel (a) of Figure	••••	S21
S23)) of 3 ($M = C_{66}H_{111}N_{15}O_{21}S_2$), and experimental (black) and calculated (gray) isotope patterns for		
marked signals (b – g) consistent with adducts: (b) $[M+3H]^{3+}$, (c) $[M+2H]^{2+}$, (d) $[M-H+Fe]^{2+}$, (e) $[M+H]^+$,		
(f) $[M+Na]^+$, or (g) $[M-2H+Fe]^+$. The signals marked with an asterisk are consistent with MS2 fragments		
of 3 formed during spectral acquisition (as per scheme below).		
Figure S25. Radio-iTLC (a-e) or radio-SEC-HPLC (f) traces from radiolabelling (a) D2-mAb with ⁸⁹ Zr,	••••	S21
(b) D2 -mAb with 177Lu, (c) 1-mAb with 89Zr, (d) 2-mAb with 177Lu, (e) 2-mAb with 89Zr; or (f) 2-mAb		
(red) or 1-mAb (black) with $177L_{\rm H}$. In these experiments, mAb = girentuximab.		
Figure S26 Representative MALDI TOF-MS of 1-mAb (a) 2-mAb (b) or D2 -mAb (c) after reaction at 37		S22
°C for 3 h	••••	522
Figure S27 Stability by radio-iTLC of $[^{89}7r]$ Zr- D2 (a-d) or $[^{89}7r]$ Zr- 1 (e-h) in human serum at day 0 2		\$22
	••••	522
Figure S28 Stability by radio-SEC-HPLC of $[^{89}$ 7r]7r-D2-mAb (a-d) or $[^{89}$ 7r]7r-1-mAb (e-b) in human		\$22
serum at day $0.2.4.7$	••••	522
Figure S20 Stability by radio iTLC of $[^{89}7r]$ 7r D2 (a, d) or $[^{89}7r]$ 7r 1 (a, b) in phosphate buffered saline		\$23
at day 0.2.4.7	••••	525
Eigune S20 Stability by radio SEC HDLC of $[^{89}7r]7r$ D2 mAb (a, d) or $[^{89}7r]7r$ 1 mAb (a, b) in		\$72
Figure 550. Stability by faulto-SEC-III EC of $\begin{bmatrix} 2I \end{bmatrix} 2I = D2 = III A b (a-a) of \begin{bmatrix} 2I \end{bmatrix} 2I = I = III A b (c-II) III = II = III A b (c-II) III = IIII = III = IIII = III = IIII = IIIII = IIII = IIIII = IIIII = IIII = IIIII = IIIIII$	••••	525
Table S1 C A B values for D2 mAb 1 mAb and 2 mAb conjugates		672
Table S1. C.A.K values for D_2 -inAb, 1-inAb and 2-inAb conjugates.	••••	523
Table S2. Raw values for % cell associated activity of all radiolabelled conjugates ($n = 5$).	••••	<u>823</u>
Table S5. Stability of ["Zr]Zr-D2-mAb or ["Zr]Zr-1-mAb in numan serum of PBS at day 0, 2, 4, 7.	••••	524
I able S4. Mouse identifiers and injected dose for <i>ex-vivo</i> biodistribution studies. Approximate mass	••••	524
dose calculated using activity measured from initial labelling reaction.		
Table S5. Mouse identifiers and injected dose for imaging studies. Approximate mass dose calculated	••••	S24
using activity measured from initial labelling reaction.		
Table S6. <i>In vivo</i> biodistribution ($n = 3$) of [⁸⁹ Zr]Zr-1-mAb and [⁸⁹ Zr]Zr-D2-mAb at 4 h, 24 h, 48 h, or 120		S25
h post-injection; or [89Zr]Zr-D2-mAb and [177Lu]Lu-D2-mAb at 48 h, or 120 h post-injection.		
Table S7. Ex vivo biodistribution ($n = 3$) of [⁸⁹ Zr]Zr-1-mAb and [⁸⁹ Zr]Zr-D2-mAb at (a) 48 h p.i. or (b)	••••	S25
120 h p.i., or (c) [⁸⁹ Zr]Zr- D2 -mAb and [¹⁷⁷ Lu]Lu- D2 -mAb (5) at 120 h p.i.		
Table S8. Mouse identifiers and dosing for efficacy study using [¹⁷⁷ Lu]Lu- D2 -mAb (n=4).	••••	S26
$[^{177}Lu]Lu-2-mAb$ (n=3) and a vehicle control (n=3). A target of 9 MBa was used for ^{177}Lu groups		
Approximate mass dose calculated using activity measured from initial labelling reaction		
Table SQ Statistical data from afficiency study using [¹⁷⁷ L µ]L µ D2 mAb [¹⁷⁷ L µ]L µ 2 mAb and		\$26
DDS vabiala control	••••	520
		640
Table S10. Radiolabelling parameters used in study components.	••••	S28

General information

All reactions were carried out under ambient conditions and were monitored by ESI or H-ESI II MS spectrometry (Agilent 1260, Agilent 1290 or Thermo Fisher Vanquish systems).

Instrumentation

Solid-phase extraction

Solid-phase extraction procedures were performed on a manual vacuum manifold, or semi-automatically on a Grace Reverleris X2 autoflash chromatography platform, or a Biotage Selekt autoflash chromatography platform. Manual extractions used Waters Sep-Pak Vac 20cc C18 cartridges (variable weight) and the following method: 100% acetonitrile (ACN) for 2 column volumes (CV), 100% H₂O for 2 CV, sample load, 100% H₂O for 2 CV, 20-80% ACN:H₂O in 5% steps of 2 CV each step, 95% ACN:H₂O for 2 CV. Grace Reverleris X2 procedures used Buchi FlashPure Select C18 cartridges (30 µm particle size, 4 g) at a flow rate of 10 mL min⁻¹ and the following method: 100% ACN for 4 min, 100% H₂O for 2.4 min, sample load, 100% H₂O for 2 min, 20-80% ACN:H₂O in 5% steps at 3 min each step, 95% ACN:H₂O for 3 min. Biotage Selekt procedures used Sfär C18 D-Duo cartridges (30 µm particle size, 6 g, 100 Å) and the following method: equilibration with 100% ACN, 100% ACN for 2 CV, equilibration with H₂O, sample load, 100% H₂O for 2 CV, 20-80% ACN:H₂O in 5% steps of 2 CV each step, 95% ACN:H₂O for 2 CV. Fractions were identified *via* UV absorbance (Grace Reverleris, Biotage Selekt) and the products were characterised using LC-MS (all methods).

HPLC purification

Preparative high-performance liquid chromatography (HPLC) was conducted on a Shimadzu LC-20 series LC system with two LC-20AP pumps, an SIL-10AP autosampler, an SPD-20A UV/Vis detector, and a FRC-10A fraction collector. The organic phase (B) consisted of ACN:formic acid (FA) or trifluoroacetic acid (TFA) (percentage varied per method, as below). The aqueous phase (A) consisted of H₂O:FA or TFA (percentage varied per method, as below). Data was acquired and processed using Shimadzu LabSolutions Software (version 5.98). Purification methods were optimised for each compound, as below.

Compound **3a**: Shimadzu Shimpack GIS column ($150 \times 20 \text{ mm i.d.}$, 20 mL min^{-1} , particle size 5 µm) with gradient of 2-15% solvent B over 10 min, 15-23% solvent B over 15 min, 2% solvent B for 5 min. TFA (0.05% was used in each phase).

Compound **3** (**D2**): Shimadzu Shimpack GIS column ($150 \times 20 \text{ mm i.d.}$, 20 mL min^{-1} , particle size 5 µm) with gradient of 5-35% solvent B over 25 min, 95% solvent B over 5 min, 5% solvent B for 5 min. FA (0.05% was used in each phase).

Compound **3b** (**D2**-Ph-NCS): Shimadzu Shimpack GIS column ($150 \times 10 \text{ mm i.d.}$, 5 mL min⁻¹, particle size 5 μ m) with gradient of 20-25% solvent B over 5 min, 25-45% solvent B over 35 min, 20% solvent B for 5 min. FA (0.05% was used in each phase).

Compound **8a**. Shimadzu Shimpack GIS column ($150 \times 20 \text{ mm i.d.}$, 20 mL min^{-1} , particle size 5 µm) with a gradient of 2-15% solvent B over 10 min, 15-23% solvent B over 15 min, 2% solvent B for 5 min. FA (0.1% was used in each phase).

NMR spectroscopy

NMR spectra were obtained on two instrument platforms. All spectra obtained in a 600 MHz field strength were acquired at 298 K using a Bruker AVIII 600MHz, narrow-bore, 3-channel NMR spectrometer equipped with a high-resolution cryogenic triple nucleus probehead (H/C/N) and a high-throughput autosampler with individual rack temperature control. All samples were prepared in D_2O or DMSO- d_6 . Spectral data were acquired using Bruker TopSpin (v.3.6.5) and processed using Bruker TopSpin (v.4.1.3) and Mestrelab MestReNova (v. 14.3.0-30573 or v. 14.1.0-24037). Denoising, automatic baselining and automatic phasing were applied to all spectra.

All spectra obtained in a 700 MHz field strength were acquired at 298K using a Bruker Avance 700 MHz, narrow-bore, 3-channel NMR spectrometer equipped with a high-resolution cryogenic triple nucleus probehead (H/C/N). All samples were prepared in D_2O . Spectral data were acquired using Bruker TopSpin (v. 3.6.5) and processed using MestReNova (v. 14.1.0-24037). Water suppression was applied to the ¹H spectrum. Automatic baselining and automatic phasing were applied to all spectra.

Preparation of solutions for {¹H}-¹³C NMR spectroscopy

Zr(IV)-DFOB. A solution of DFOB in D₂O (36.24 mM) was added in equal portion to a solution of ZrCl₄ (66.08 mM) in D₂O. The solution was mixed and sonicated for 2.5 h prior to NMR analysis.

Lu(III)-DFOB. A solution of DFOB in D₂O (43.09 mM) was added in equal portion to a solution of LuCl₃ (55.45 mM) in D₂O. The solution was mixed and sonicated for 2.5 h prior to NMR analysis.

Zr(IV)-3a or Lu(III)-3a. A solution of **3a** in D_2O (14.18 mM) was added in equal portion to a solution of D_2O , ZrCl₄ (14.19 mM) or LuCl₃ (14.18 mM). The resulting mixtures were briefly centrifuged, and the solutions were stirred at 400 rpm for 1 h at 37 °C prior to NMR analysis.

LC-MS spectrometry

Mass spectra were obtained using one of three instruments (Instrument A, B or C) with an Agilent C18 column reverse-phased prepacked column ($2.1 \times 150 \text{ mm i.d.}$, 0.3 mL min^{-1} , particle size $3.5 \mu \text{m}$) used for all experiments. **Instrument A:** reverse-phase liquid chromatography-mass spectrometry instrument consisting of an autoinjector ($100 \mu \text{L}$ loop), an Agilent 1260 Infinity degasser, a quaternary pump, a temperature-controlled column compartment and an Agilent 6120 series quadrupole electrospray ionization (ESI)-mass spectrometer. Conditions and methods: $5 \mu \text{L}$ injection volume, column oven = 28 °C, full MS scan 100-2000 *m/z*, capillary voltage = 3 kV, capillary temperature = 350 °C. The organic phase (B) consisted of ACN:FA 99.9:0.1, and the aqueous phase (A) consisted of H₂O:FA 99.9:0.1. The method used a gradient of 5–95% solvent B over 20 min,

95% solvent B for 5.1 min and 95% solvent A for 4.9 min with a flow rate of 0.3 mL min⁻¹. Spectral data were acquired and processed using Agilent OpenLAB Chromatography Data System ChemStation Edition (C.01.05 SP1 [61]). **Instrument B:** reverse-phase liquid chromatography-mass spectrometry instrument consisting of a 1290 series quaternary pump with inbuilt degasser, a 1200 series autosampler, a temperature-controlled column compartment, a diode array detector, and a 6460 series triple quadrupole electrospray ionisation (ESI)-mass spectrometer. Conditions and methods: The settings, composition of the organic and aqueous phase, and flow rate were as above. The method used a gradient of 5–95% solvent B over 20 min, 95% solvent B for 5 min and 95% solvent A for 5 min. Spectral data were acquired and processed using Agilent MassHunter Workstation Qualitative Analysis (10.0.10305.10). **Instrument C:** Thermo Fisher Vanquish Horizon UHPLC with a Thermo Fisher Q Exactive HF-X Hybrid Quadruple-Orbitrap Spectrometer. Conditions and methods: Column oven = 30 °C; full MS scan 133.4-2000 *m/z* with a resolution of 60000, MS-MS collision energies stepped from 20, 25 to 30 V, spray voltage = 4 kV, capillary temperature = 300 °C. The organic phase (B) consisted of ACN:H₂O:FA 80:19.9:0.1, and the aqueous phase (A) consisted of H₂O:FA 99.9:0.1. The method used a gradient of 5–95% solvent B for 5.1 min and 100% solvent A for 4.9 min with a flow rate of 0.2 mL min⁻¹. Spectral data were acquired and processed using Thermo Fisher Xcalibur (4.2.47).

Preparation of solutions for LC-MS spectrometry

Samples for the **3a** metal-binding experiments used solutions of Lu(III) or Ga(III) and **3a** prepared in 0.2 M NH₄CH₃CO₂ buffer (pH 5.5), and solutions of Zr(IV) and **3a** prepared in 0.1 M HEPES buffer (pH 7.4). An aliquot of a solution of **3a** (0.93 mM in HEPES buffer (0.1 M, pH 7.4) or in NH₄CH₃CO₂ buffer (0.2 M, pH 5.5)) was added to an equal aliquot of a solution of NH₄CH₃CO₂ buffer (0.2 M, pH 5.5), HEPES buffer (0.1 M, pH 7.4)), Lu(III) (0.74 mM in NH₄CH₃CO₂ buffer (0.2 M, pH 5.5)) or Ga(III) (0.74 mM in NH₄CH₃CO₂ buffer (0.2 M, pH 5.5)). All samples were incubated at 400 rpm, 37 °C for 1 h prior to subsampling for LCMC analysis.

Antibody conjugation and radiolabelling studies I

D2-mAb, and DFOB-mAb. A modified literature procedure (M. J. W. D. Vosjan, L. R. Perk, G. W. M. Visser, M. Budde, P. Jurek, G. E. Kiefer and G. A. M. S. van Dongen, *Nat. Protoc.*, 2010, **5**, 739–743) was used as follows. In this preliminary study, the mAb used was girentuximab. 6% v/v 1 M Na₂CO₃ was added to girentuximab (mAb) (4.8 mg mL⁻¹) in the supplied buffer. Compound **3b** (**D2**-Ph-NCS) or DFOB-Ph-NCS (1-Ph-NCS) in DMSO (20 μ L, 5 mM) was added and the reaction mixture was incubated at 37 °C at 550 rpm for 45 min. The reaction mixture was purified *via* Amicon spin filtration (10 kDa cutoff) and washed with Dulbecco's phosphate buffered saline (DPBS) buffer (pH 7.4). **DOTA-mAb (2-mAb).** A modified literature procedure (T. Basaco, S. Pektor, J. M. Bermudez, N. Meneses, M. Heller, J. A. Galván, K. F. Boligán, S. Schürch, S. von Gunten, A. Türler and M. Miederer, *Pharmaceuticals (Basel)*, 2018, **11**, 132) was used as follows. Girentuximab (mAb) (4.98 mg mL⁻¹, 500 μ L) was buffer exchanged with 4.0 v/v% of 0.1 M Na₂CO₃ in DPBS buffer (pH 8.5). DOTA-Bn-NCS (**2**-Bn-NCS) (1.25 mg) and 70 μ L of 0.1 M Na₂CO₃ were added to

the mAb to give a reaction solution of pH 8.5. The reaction solution was shaken on a thermomixer at 500 rpm for 50 min and purified *via* Amicon spin filtration (10 kDa MWCO) and washed with DPBS buffer (pH 7.4). **Radiolabelling with ⁸⁹Zr.** Zr-89 (20 μ L/9.5 MBq) was neutralised with 1 M Na₂CO₃ (18 μ L) and buffered with 0.5 M HEPES (200 μ L). **D2**-mAb, 1-mAb or 2-mAb was added and the solution was placed on a thermomixer at 550 rpm at ambient temperature. Radiochemical labelling efficiency was determined by iTLC. Detailed radiolabelling parameters can be found in Table S10.

Radiolabelling with ¹⁷⁷Lu. A fixed quantity of [¹⁷⁷Lu]LuCl₃ (5 μ L, 15 MBq) was added to an aliquot of 0.5 M NH₄OAc (100 μ L) and the solution was gently shaken. A corresponding quantity of **D2**-mAb, **1**-mAb or **2**-mAb was added and the solution was placed on a thermomixer at 550 rpm at ambient temperature. The aliquot was incubated with 1 mM EDTA (pH 6.0) for 5 min and the reaction was monitored by iTLC with 25 mM EDTA (pH 6.0) or SEC-HPLC. **Radio-SEC-HPLC and iTLC analysis.** Radio-SEC-HPLC analysis was performed using a LabLogic Flow-RAM attachment with 1" NaI detector. For iTLC analysis, all samples were treated prior with EDTA (1 mM for 5 min). An aliquot (1 μ L) of sample was spotted on an iTLC-SG plate and developed with 0.1 M citrate buffer (pH 5.5) eluent. iTLC plates were analysed using LabLogic Scan-RAM with a Plastic Scintillator PMT detector. Detailed radiolabelling parameters can be found in Table S10.

Antibody conjugation and radiolabelling studies II

3b (D2-Ph-NCS), or 1-Ph-NCS, or 2-Bn-NCS (~15-fold molar excess) dissolved in Milli-Q water (3b, 2) or DMSO (1) (~1 mg mL⁻¹) was added to HuJ591 in 0.1 M NaHCO₃, pH 9.25 (~5 mg mL⁻¹). The reaction mixture was allowed to react for 1 h at 37 °C while being gently agitated at 500 rpm. The resulting mixture was buffered exchanged into Milli-Q water using Amicon Spin Membranes (30 kDa MWCO, 0.5 mL). The resultant solution was buffer exchanged into 0.1 M NH4OAc, pH 5.5 for ¹⁷⁷Lu coordination, or 0.1 M HEPES, pH 7.4 for ⁸⁹Zr coordination using a desalting column (Cytiva PD-10 G-25 Sephadex resin). The purity of the resulting D2-mAb, 1-mAb or 2-mAb complexes was analysed using SEC-HPLC (UV detection at 280 nm) and the chelator-to-antibody ratio (C.A.R) was determined for each antibody by matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF/TOF, JOEL Spiral TOF). The average C.A.R was determined by comparing the difference in m/z values of the $[M+2H]^{2+}$ peak of the free mAb and ligand-mAb conjugate. The difference was divided by the molar mass of the ligand to give the average C.A.R. D2-mAb was found to produce conjugates with higher C.A.R values than 1-mAb or 2-mAb, however the distribution of C.A.R appeared broader. Radiolabelling with ¹⁷⁷Lu. ¹⁷⁷LuCl₃ (ANSTO) was dispensed via the addition of HCl (0.04 M, 200 µL) to the provided vial. The resultant solution was buffered with the addition of an equal volume of NH₄OAc (0.5 M, pH 5.5). For reaction, the desired conjugate was introduced to ¹⁷⁷Lu in a molar excess (see Table S10) and agitated at 500 rpm, 37°C for 1 h. Upon completion, the radiochemical purity was assessed by radio-iTLC and injected into mice if the radiochemical purity was ≥95%. The reaction solution was analysed via radio-SEC-HPLC to further assess radiochemical purity and possible antibody aggregation. For injection, 10× PBS was added (~10% total reaction volume) and then 1× PBS was added to make the final injection solution suitable for ~200 µL injections of the desired activity required. If conjugate clean-up was required, the

conjugate was buffer exchanged into 1× PBS using a desalting column (Cytiva PD-10 G-25 Sephadex resin) and used as was. **Radiolabelling with** ⁸⁹Zr. ⁸⁹Zr-oxalate (0.05 M oxalic acid, Austin Health) was adjusted to pH 12-13 with Na₂CO₃ (0.1 M, pH 11.5). The solution was further buffered with the addition of HEPES (0.5 M, pH 7) to bring the pH to 7-8. For reaction, the desired conjugate was introduced to ⁸⁹Zr in a molar excess (see Table S10) and agitated at 500 rpm, 37°C for 1 h. Upon completion, the radiochemical purity was assessed by radio-iTLC and injected into mice if the radiochemical purity was \geq 95%. 5 µl of reaction solution was mixed with 5 µl of 5 mM DTPA and analysed *via* radio-SEC-HPLC to further assess radiochemical purity and possible antibody aggregation. For injection, 10× PBS was added (~10% total reaction volume) and then 1× PBS was added to make the final injection solution suitable for ~200 µL injections of the desired activity required. **Radio-iTLC.** Samples radiolabelled with ⁸⁹Zr or ¹⁷⁷Lu were taken and mixed 1:1 with EDTA or DTPA (5 mM). Each TLC solution (with and without EDTA or DTPA) was spotted on TLC paper (Agilent iTLC-SG Glass microfiber chromatography paper impregnated with silica gel) and run in 1:1 ethanol:water. Plates were then imaged on an Eckert & Ziegler Mini-Scan and Flow-Count iTLC Reader.

Cell binding assays

Seeding and incubation. LNCaP cells were seeded at a density of 7.5×10^4 cells/well in a 24-well plate with a final number of approximately 2.5×10^5 cells per well. Radiolabelled mAbs ([⁸⁹Zr]Zr-**D2**-mAb (4), [¹⁷⁷Lu]Lu-**D2**-mAb (5), [⁸⁹Zr]Zr-1-mAb, or [¹⁷⁷Lu]Lu-2-mAb) were diluted in serum-free cell growth medium (0.02 μg, 0.56 MBq) and 100 µL of each solution was added to each well. The cells were incubated in triplicate for 1 h at 37 °C in a 5% CO₂ atmosphere in a humidified incubator. Determining the membrane-bound fraction. At each time point, internalisation was halted by removing the growth medium and washing the cells twice with ice-cold phosphate-buffered saline (PBS) (1×, pH 7.4, 200 µL). Receptor-bound radiolabelled mAb was then removed using ice-cold glycine buffer containing 4 M urea (0.2 M, pH 2.0, 200 µL) for 5 min. The buffer was collected from each well and the radioactivity was measured in a gamma counter to determine the membranebound fraction. The cells were then washed once with the same glycine buffer. Determining the internalised fraction. Cells were treated with sodium hydroxide (1 N, 200 µL) for 30 min to lyse the cells, internalised fractions collected, and the radioactivity measured of the subsequent fractions in a gamma-counter. Nonspecific binding. Cells were counted after the assay from 4 non-experimental wells and the cell numbers were averaged to obtain an estimate of the number of cells per well. Non-specific binding and internalisation were determined by co-incubating cells with non-radiolabelled (2 µg, 50 µL) and radio-labelled (0.02 µg, 50 µL) compound for each well, and repeating the above procedures for membrane-bound and internalised fractions.

Serum stability

Samples of [⁸⁹Zr]Zr-**D2**-mAb (4), [¹⁷⁷Lu]Lu-**D2**-mAb (5), [⁸⁹Zr]Zr-**1**-mAb, or [¹⁷⁷Lu]Lu-**2**-mAb were mixed with an equal volume of phosphate buffered saline (1× PBS), or human serum and incubated at 37 °C for 7 d. At day 0, 2, 4 and 7, the samples were analysed *via* radio-iTLC and radio-SEC-HPLC for mAb degradation. Radio-iTLC traces were challenged with equal volume of 5 mM EDTA to capture any free radioisotope.

Animal studies

Animals. Healthy male Balb/c nude mice (~20 g) from 8 weeks old were obtained from Ozgene. Mice were imported into the Centre for Advanced Imaging animal holding facility and monitored for 1 week to acclimatise to the environment prior to the injection of cells. All animals were provided with free access to food and water before and during the imaging experiments which were approved by the University of Queensland Animal Ethics Committee (AEC Approval # 2022/AE000135).

Tumour initiation and growth. 8-Week-old male Balb/c nude mice were injected (27G needle) subcutaneously with LNCaP (10×10^6) cells in 50 µL of 50:50 matrigel and PBS into the right flank of each mouse. There was no evidence of ulceration at the time of dosing. The animals were closely monitored and remained in good condition apart from the growth of tumours. The tumour growth was observed to be in-line with expected timelines and good tumours were ultimately observed in 100% of inoculated animals. [⁸⁹Zr]Zr-**D2**-mAb (**4**) or [⁸⁹Zr]Zr-**1**-mAb were injected *via* the tail vein (29G needle; ~1-4 MBq) and then mice were imaged using the Bruker Si78 PET/CT instrument at the various timepoints for ⁸⁹Zr and were sacrificed at 120 h p.i and their harvested organs counted *via* gamma counting. [¹⁷⁷Lu]Lu-**D2**-mAb (**5**) was injected *via* the tail vein (29G needle; ~1-4 MBq) and then mice were imaged using the Molecubes SPECT/CT instrument at the various timepoints for ¹⁷⁷Lu and were sacrificed at 120 h and their harvested organs counted *via* gamma counting. For 2-day *ex-vivo* biodistribution studies, [⁸⁹Zr]Zr-**D2**-mAb (**4**) or [⁸⁹Zr]Zr-**1**-mAb were injected *via* the tail vein (29G needle; ~1-4 MBq) and then the mice were sacrificed at 48 h p.i and their harvested organs counting.

Efficacy study. LNCaP tumour bearing male Balb/c nude mice (n=4 per ¹⁷⁷Lu-labelled cohort, n=5 per vehicle only cohort) were injected with [¹⁷⁷Lu]Lu-**D2**-mAb, [¹⁷⁷Lu]Lu-**2**-mAb or PBS. Mice were given a target of 9 MBq ¹⁷⁷Lu (29 G, tail vein injection in ~150 uL PBS) as per dosing information in Table S8. Activity in the syringe was measured using a dose calibrator (Capintec CRC-25). Mice were euthanised due to tumour size at day 40 (n=1), day 42 (n=1), day 52 (n=1) day 75 (n=1) and day 77 (n=1) in accordance with animal welfare guidelines described within the ethics approval (AEC Approval # 2022/AE000135). Mice with initial tumour weights deemed to be outliers were removed from data processing (n=1 for [¹⁷⁷Lu]Lu-**2**-mAb cohort, n=2 for vehicle only cohort). Percentage change in tumour volume and mouse weight were analysed over a period of day 1 to day 65 post-injection to reflect the time period prior to euthanasia of the vehicle only cohort.

PET/CT Imaging. A total of 6 (n=3 per group) LNCaP tumour bearing Balb/C nude mice were anaesthetised using an anaesthetic chamber (3% isoflurane in oxygen at a flow of 2L/min, IsoFlo, Abbott Laboratories), and injected intravenously with [⁸⁹Zr]Zr-D2-NCS-HuJ591/[⁸⁹Zr]Zr-DFO-NCS-HuJ591 (3.42-3.36 GBq/µmol) *via* the lateral tail vein. At defined timepoints post-administration of the compound, animals were placed in the Si78 PET/CT scanner (Bruker, Germany) for PET-CT evaluation of the tracer biodistribution. Mice were maintained under 1 to 2% isoflurane in air-oxygen mixture at a flow rate of 2 L/min for the duration of the imaging session and monitored *via* a respirator monitor (SA Instrument, USA). At each timepoint post-injection of the radiotracer, CT acquisitions were acquired and used to construct attenuation corrected images. Mice were scanned at 4-, 24-, 48- and 120-hours post-injection. The CT images were acquired through an X-ray source

with the voltage set to 60 kV and the current set to 600 µA with an isotropic resolution of 200 µm. The total CT scanning process took approximately 5 minutes. The CT images were reconstructed using a Feldkamp conebeam back-projection algorithm using Paravision 360 (version 3.4) (Bruker, Germany). For the PET data acquisition, the emission data were normalised and corrected for decay. The resulting sinograms were reconstructed with Paravision 360 (v3.4) using a 0.5mm 3D-maximum likelihood expectation-maximisation (MLEM) iterative image reconstruction algorithm. PET/CT image analysis was performed using PMOD version 4.4 (PMOD Technologies, Zurich, Switzerland).

SPECT/CT Imaging. In vivo micro SPECT/CT imaging was performed using an X-CUBE (CT) and y-CUBE (SPECT) from Molecubes (Gent, Belgium). Mice were anaesthetised using 2% isoflurane in a constant flow of oxygen at 1 L/min, after which the isoflurane concentration was reduced to 1% during imaging. Mice were injected intravenously with [177Lu]Lu-D2-NCS-HuJ591 (1.85 GBq/µmol) via the lateral tail vein. Vital signs (body temperature and respiration) of the mice were continuously monitored during both SPECT and CT scanning procedures. After completing a CT scan (200 µm isotropic spatial resolution), the animal bed was transferred to the γ -CUBE for static SPECT imaging (30-45 min), with energy peak for ¹⁷⁷Lu set at 208 keV and a window of $\pm 10\%$. In vivo SPECT/CT imaging was carried out at 48- and 120-hours post-injection. SPECT images were acquired using a high sensitivity collimator, data was reconstructed through a maximumlikelihood expectation-maximisation (MLEM) algorithm using 500 µm resolution and 50 iterations using Molecubes software. A q-factor was determined from a volume of interest (VOI) that was drawn around the calibration tube containing a known activity of ¹⁷⁷Lu and represents the ratio of counts/cc to activity/cc. This gfactor was saved and applied during image reconstruction prior to generating SUV decay-corrected images. Attenuation maps were created from CT images at 500 µm isotropic spatial resolution and applied to SPECT images during reconstruction. SPECT/CT image analysis was performed using PMOD version 4.4 (PMOD Technologies, Zurich, Switzerland).

Image data processing and analysis. Fusion of CT and PET images and definition of region of interest (ROIs) were performed using PMOD version 4.4 (Bruker, Germany). For each PET images, 3D region of interest (VOI) were drawn over organs of interest guided by the CT. Activity per voxel was converted to nCi/cc using a conversion factor obtained by scanning a cylindrical phantom filled with a known activity of ⁸⁹Zr to account for PET scanner efficiency. Activity concentrations were then expressed as percent of the decay-corrected injected activity per cm³ of tissue that can be approximated as percentage injected dose per gram of tissue (%ID/g). All data were decay corrected to the time of injection of the radiotracer. The mean value in each VOI was used to generate regional time activity curves (TACs). Individual TACs were normalised by the injected dose and results were expressed as %ID/g.

Statistics analysis. Statistical analysis was conducted within GraphPad Prism v.10.1.4 (324). Each analysis was conducted as an unpaired t test with Welch correction and assuming a Gaussian distribution. An Alpha value of 0.05 was set as the threshold for the P value with correction for multiple comparisons done using the Holm-Šídák method. *p \leq 0.05, **p \leq 0.01, ***p \leq 0.001.

Figure S1. ${}^{1}H{}^{-13}C$ NMR (600 MHz, D₂O) spectrum of DFOB (1). The signal at 38.4 ppm is due to a decoupler zero frequency spike.

Figure S2. ${}^{1}H$ - ${}^{13}C$ NMR (600 MHz, D₂O) spectrum from a Zr(IV):1 (1.8:1) solution.

Figure S3. {¹H}-¹³C NMR (600 MHz, D₂O) spectrum from a Lu(III):1 (1.3:1) solution. The signal at 38.4 ppm is due to a decoupler zero frequency spike.

f1 (ppm)

Figure S5. COSY-NMR (600 MHz, D₂O) spectrum from a 3a solution.

S12

Figure S8. ${}^{1}H$ - ${}^{13}C$ NMR (600 MHz, D₂O) spectrum from a 3a solution.

Figure S10. ${}^{1}H$ - ${}^{13}C$ NMR (600 MHz, D₂O) spectrum from a Lu(III):3a (0.8:1) solution.

Figure S14. HSQC NMR (700 MHz, D₂O) spectrum from a 3b solution.

(mdd)

¢

Figure S16. ${^{1}H}-{^{13}C}$ NMR (600 MHz, D₂O) spectrum from a 8a solution.

Figure S17. Stacked ${}^{1}H{}^{-13}C$ NMR (600MHz, D₂O) spectra of solutions of (**a**) 8**a**, or (**b**) Zr(IV):8**a**, or (**c**) Lu(III):8**a**. The inset and the region marked with a red box (**c**) show weak signals ascribable to the *endo-/exo*-methylene groups of the DOTA region, which are not evident in (**b**) (region marked with a blue box).

Figure S18. Stacked ${}^{1}H$ - ${}^{13}C$ NMR (600 MHz, D₂O) spectra from solutions of (a) 8a, or (b) 3a.

Figure S19. LC-MS traces of **3a** ($M = C_{47}H_{86}N_{12}O_{16}$) shown as (**a**) total ion current (TIC), or as extracted ion chromatograms (EIC) set to report (**b**) $[M+H]^+$ (1075.1-1076.1), (**c**) $[M+2H]^{2+}$ (538.3-539.3), or (**d**) $[M+3H]^{3+}$ (358.7-359.7).

Figure S20. (a) High resolution average mass spectrum ($R_t = 7.37-7.98$ min (refer panel (a) of Figure S19)) of **3a** (M = C₄₇H₈₆N₁₂O₁₆), and experimental (black) and calculated (gray) isotope patterns for marked signals (**b**–**g**) consistent with adducts: (b) [M+3H]³⁺, (c) [M+2H]²⁺, (d) [M-H+Fe]²⁺ (0.35) and [M+2H+3H₂O]²⁺ (0.65), (e) [M+H]⁺, (f) [M+Na]⁺, or (g) [M-2H+Fe]⁺ (0.35) and [M+H+3H₂O]⁺ (0.65). The signals marked with an asterisk are consistent with MS2 fragments of **3a** formed during spectral acquisition (as per scheme below)

Figure S21. LC-MS traces of **3** (M = C₅₈H₁₀₇N₁₃O₂₁) shown as (**a**) total ion current (TIC), or as extracted ion chromatograms (EIC) set to report (**b**) $[M+2H]^{2+}$ (661.6-662.6), (**c**) $[M+3H]^{3+}$ (441.3-442.4), or (**d**) $[M+4H]^{4+}$ (331.1-332.1).

Figure S22. (a) Low resolution average mass spectrum ($R_t = 6.68-9.24$ min (refer panel (a) of Figure S21)) of **3** (M = C₅₈H₁₀₇N₁₃O₂₁), and experimental (black) and calculated (gray) isotope patterns for marked signals (**b**–**d**) consistent with adducts: (**b**) [M+4H]⁴⁺, (**c**) [M+3H]³⁺, (**d**) [M+2H]²⁺.

Figure S23. LC-MS traces of **3b** (M = C₆₆H₁₁₁N₁₅O₂₁S₂) shown as (a) total ion current (TIC), or as extracted ion chromatograms (EIC) set to report (b) $[M+H]^+$ (1514.3-1515.3), (c) $[M+2H]^{2+}$ (757.3-758.3), or (d) $[M+3H]^{3+}$ (505-506).

Figure S24. (a) High resolution average mass spectrum ($R_t = 9.86-11.93$ min (refer panel (a) of **Figure S23**)) of **3** ($M = C_{66}H_{111}N_{15}O_{21}S_2$), and experimental (black) and calculated (gray) isotope patterns for marked signals (**b**–**g**) consistent with adducts: (b) $[M+3H]^{3+}$, (c) $[M+2H]^{2+}$, (d) $[M-H+Fe]^{2+}$, (e) $[M+H]^+$, (f) $[M+Na]^+$, or (g) $[M-2H+Fe]^+$. The signals marked with an asterisk are consistent with MS2 fragments of **3** formed during spectral acquisition (as per scheme below).

Figure S25. Radio-iTLC (a–e) or radio-SEC-HPLC (f) traces from radiolabelling (a) D2-mAb with ⁸⁹Zr, (b) D2-mAb with ¹⁷⁷Lu, (c) 1-mAb with ⁸⁹Zr, (d) 2-mAb with ¹⁷⁷Lu, (e) 2-mAb with ⁸⁹Zr; or (f) 2-mAb (red) or 1-mAb (black) with ¹⁷⁷Lu. In these experiments, mAb = girentuximab.

Figure S26. Representative MALDI TOF-MS of 1-mAb (a), 2-mAb (b) or D2-mAb (c) after reaction at 37 °C for 3 h.

Figure S27. Stability by radio-iTLC of [⁸⁹Zr]Zr-**D2** (a–d) or [⁸⁹Zr]Zr-**1** (e–h) in human serum at day 0, 2, 4, 7.

Figure S28. Stability by radio-SEC-HPLC of [⁸⁹Zr]Zr-**D2**-mAb (a–d) or [⁸⁹Zr]Zr-**1**-mAb (e–h) in human serum at day 0, 2, 4, 7.

Figure S29. Stability by radio-iTLC of [⁸⁹Zr]Zr-**D2** (a–d) or [⁸⁹Zr]Zr-**1** (e–h) in phosphate buffered saline at day 0, 2, 4, 7.

Figure S30. Stability by radio-SEC-HPLC of [⁸⁹Zr]Zr-**D2**-mAb (a–d) or [⁸⁹Zr]Zr-**1**-mAb (e–h) in phosphate buffered saline at day 0, 2, 4, 7.

Table S1. C.A.R values for D2-mAb, 1-mAb and 2	2-mAb conjugates.
--	-------------------

Conjugate	Study	C.A.R
	⁸⁹ Zr <i>in vitro</i> cell assay	~4
	¹⁷⁷ Lu <i>in vitro</i> cell assay	~4
	⁸⁹ Zr <i>ex vivo</i> biodistribution (48 h p.i)	~4
D2- mAb	⁸⁹ Zr <i>ex vivo</i> biodistribution (120 h p.i)/imaging	~4
	¹⁷⁷ Lu efficacy study	~4
	¹⁷⁷ Lu <i>ex vivo</i> biodistribution (120 h p.i)/imaging	~4
	⁸⁹ Zr stability study	~4
	⁸⁹ Zr <i>in vitro</i> cell assay	~1
1 m A b	⁸⁹ Zr <i>ex vivo</i> biodistribution (48 h p.i)	~2
I-IIIA0	⁸⁹ Zr <i>ex vivo</i> biodistribution (120 h p.i)/imaging	~2
	⁸⁹ Zr stability study	~0.5
2 m A h	¹⁷⁷ Lu <i>in vitro</i> cell assay	~2
2- mA0	¹⁷⁷ Lu efficacy study	~3

Table S2. Raw values for % cell associated activity of all radiolabelled conjugates (n = 3).

Conjugate	% Cell Associated Activity (n=3)
	67.0
[⁸⁹ Zr]Zr- D2 -mAb	87.5
	59.4
	71.5
[⁸⁹ Zr]Zr- 1 -mAb	74.7
	68.2
	50.5
[¹⁷⁷ Lu]Lu- D2 -mAb	47.6
	55.6
	60.6
[¹⁷⁷ Lu]Lu -2- mAb	54.7
	55.6

Table S5. Radiochemical purity of ["ZrjZr-D2-mAb of					Z	r]Zr-I-mAb i	n human s	serum or	PBS at 0,	2, 4, / d.
	[⁸⁹ Zr]Zr-D2-mAb [⁸⁹ Zr]Zr-1-mAb				[⁸⁹ Zr]Zr-D2-mAb		[⁸⁹ Zr]Zr-1-mAb			
Radio- iTLC	Human Serum	PBS	Human Serum	PBS		Radio-SEC- HPLC	Human Serum	PBS	Human Serum	PBS
Day 0	>99%	>99%	>99%	>99%		Day 0	86.7%	85.5%	82.5%	87.1%
Day 2	>99%	>99%	>99%	>99%		Day 2	86.4%	86.7%	83.2%	86.4%
Day 4	>99%	>99%	>99%	>99%		Day 4	83.6%	86.8%	73.0%	80.4%
Day 7	83.0%	93.6%	76.3%	~95.3%		Day 7	82.5%	80.6%*	61.3%	76.3%

£ [897.]7 A 1. 1 r897 17 . . .

*Sample displayed free ⁸⁹Zr signal and was incorporated into radiochemical purity calculation.

Table S4. Mouse identifiers and injected dose for ex-vivo biodistribution studies. Approximate mass dose calculated using activity measured from initial labelling reaction.

Compound	Mouse ID	Injected Actvity (MBq)	Molar Activity (GBq/µmol)	Approximate Mass Dose (µg)
	D2-Lu-1	4.25		346
[¹⁷⁷ Lu]Lu- D2 -mAb (5-day)	D2-Lu-2	4.35	1.85	354
	D2-Lu-3	3.45		280
	D2-Zr-M4	3.59		169
[⁸⁹ Zr]Zr- D2 -mAb (2-day)	D2-Zr-M5	3.50	3.19	165
	D2-Zr-M6	3.62		170
	D2-Zr-M1	3.12		137
[⁸⁹ Zr]Zr- D2 -mAb (5-day)	D2-Zr-M2	3.37	3.42	148
	D2-Zr-M3	3.29		145
	DFOB-Zr-M4	3.60		170
[⁸⁹ Zr]Zr-1-mAb (2-day)	DFOB-Zr-M5	3.46	3.20	164
	DFOB-Zr-M6	16 3.34		158
	DFOB-Zr-1	3.31		148
[⁸⁹ Zr]Zr- 1 -mAb (5-day)	DFOB-Zr-2	3.33	3.36	149
	DFOB-Zr-3	3.33		149

Table S5. Mouse identifiers and injected dose for imaging studies. Approximate mass dose calculated using activity measured from initial labelling reaction.

Compound	Mouse ID	Injected Actvity (MBq)	Molar Activity (GBq/µmol)	Approximate Mass Dose (µg)
	D2-Lu-1	4.25		346
[¹⁷⁷ Lu]Lu- D2 -mAb	D2-Lu-2	4.35	1.85	354
	D2-Lu-3	3.45		280
	D2-Zr-M1	3.12		137
[⁸⁹ Zr]Zr- D2 -mAb	D2-Zr-M2	3.37	3.42	148
	D2-Zr-M3	3.29		145
[⁸⁹ Zr]Zr-1-mAb	DFOB-Zr-1	3.31		148
	DFOB-Zr-2	3.33	3.36	149
	DFOB-Zr-3	3.33		149

Table S6. *In vivo* biodistribution (n = 3) of [⁸⁹Zr]Zr-1-mAb and [⁸⁹Zr]Zr-D2-mAb at 4 h, 24 h, 48 h, or 120 h post-injection; or [⁸⁹Zr]Zr-D2-mAb and [¹⁷⁷Lu]Lu-D2-mAb at 48 h, or 120 h post-injection.

	· -				, ,	1 5		
Compound	[89Zr]Zr-DFO-J591	[89Zr]Zr-DFO-J591	[89Zr]Zr-D2-J591	[89Zr]Zr-D2-J591	[89Zr]Zr-DFO-J591	[89Zr]Zr-DFO-J591	[89Zr]Zr-D2-J591	[89Zr]Zr-D2-J591
Time	4 h	4 h	4 h	4 h	24 h	24 h	24 h	24 h
	Mean (n = 3)	SD (n = 3)	Mean (n = 3)	SD (n = 3)	Mean (n = 3)	SD (n = 3)	Mean (n = 3)	SD (n = 3)
Tissue	% ID/g							
heart	9.9431	2.501	13.09803	1.76051	5.19537	1.15372	8.073	0.75545
lungs	6.28763	1.19827	9.04027	1.18647	3.96202	0.49427	5.43462	0.60796
liver	16.77167	3.21533	11.3284	1.09724	14.1874	3.15328	9.68223	0.94339
spleen	6.1779	1.02395	6.91277	1.91319	3.72833	1.0571	6.67273	1.76614
right kidney	6.04417	1.2085	8.02203	2.60669	5.35163	0.47621	9.5351	1.28661
left femur	1.13057	0.46645	1.26573	0.36468	1.27847	0.04586	2.07017	0.24163
bladder	1.59897	0.33031	1.9953	0.18727	1.64273	0.0827	2.15677	0.1926
tumour	3.11233	0.65511	5.69457	0.35899	6.25603	0.83919	15.01127	1.21726
Compound	[89Zr]Zr-DFO-J591	[89Zr]Zr-DFO-J591	[89Zr]Zr-D2-J591	[89Zr]Zr-D2-J591	[89Zr]Zr-DFO-J591	[89Zr]Zr-DFO-J591	[89Zr]Zr-D2-J591	[89Zr]Zr-D2-J591
Time	48 h	48 h	48 h	48 h	120 h	120 h	120 h	120 h
	Mean (n = 3)	SD (n = 3)	Mean (n = 3)	SD (n = 3)	Mean (n = 3)	SD (n = 3)	Mean (n = 3)	SD (n = 3)
Tissue	% ID/g							
heart	3.87943	1.15093	6.33507	1.10542	2.1903	0.81818	3.34987	0.39916
lungs	3.4262	0.6332	4.6758	0.20565	2.77203	0.62486	3.05422	0.33496
liver	13.81253	2.7144	9.28043	1.16693	14.55427	1.79731	9.55233	1.10727
spleen	5.39517	0.2598	4.74243	0.45733	3.91637	1.28553	4.25887	0.62301
right kidney	5.25977	1.10439	9.0316	1.37839	3.63003	0.66685	6.6245	0.51125
left femur	1.41543	0.4738	2.46427	0.76371	2.2354	0.45701	2.68573	0.27987
bladder	1.46303	0.07394	2.1567	0.10999	0.88883	0.22362	1.3686	0.09398
tumour	14.3233	3.09152	13.39693	1.04049	13.7782	2.45707	15.8161	2.78247
Compound	[89Zr]Zr-D2-J591	[89Zr]Zr-D2-J591	[177Lu]Lu-D2-J591	[177Lu]Lu-D2-J591	[89Zr]Zr-D2-J591	[89Zr]Zr-D2-J591	[177Lu]Lu-D2-J591	[177Lu]Lu-D2-J591
Time	48 h	48 h	48 h	48 h	120 h	120 h	120 h	120 h
	Mean (n = 3)	SD (n = 3)	Mean (n = 3)	SD (n = 3)	Mean (n = 3)	SD (n = 3)	Mean (n = 3)	SD (n = 3)
Tissue	% ID/g							
heart	6.33507	1.10542	7.15925	1.73307	3.34987	0.39916	4.35405	1.33874
lungs	4.6758	0.20565	4.77195	2.56519	3.05422	0.33496	2.98533	1.77625
liver	9.28043	1.16693	9.15356	1.26546	9.55233	1.10727	7.30492	0.81882
spleen	4.74243	0.45733	4.45933	0.56266	4.25887	0.62301	2.72759	0.77625
right kidney	9.0316	1.37839	6.78787	0.56134	6.6245	0.51125	5.56563	0.7345
left femur	2.46427	0.76371	4.2689	1.14306	2.68573	0.27987	3.24678	1.24232
bladder	2.1567	0.10999	3.42631	1.05568	1.3686	0.09398	2.75662	0.46175
tumour	13.39693	1.04049	6.85454	1.08654	15.8161	2.78247	11.39659	4.77625

Table S7. *Ex vivo* biodistribution (n = 3) of [⁸⁹Zr]Zr-1-mAb and [⁸⁹Zr]Zr-D2-mAb at (**a**) 48 h p.i. or (**b**) 120 h p.i., or (**c**) [⁸⁹Zr]Zr-D2-mAb and [¹⁷⁷Lu]Lu-D2-mAb (**5**) at 120 h p.i.

Compound	[89Zr]Zr-DFO-J591	[89Zr]Zr-DFO-J591	[89Zr]Zr-D2-J591	[89Zr]Zr-D2-J591	[89Zr]Zr-DFO-J591	[89Zr]Zr-DFO-J591	[89Zr]Zr-D2-J591	[89Zr]Zr-D2-J591
Time	2 d	2 d	2 d	2 d	5 d	5 d	5 d	5 d
	Mean (n = 3)	SD (n = 3)	Mean (n = 3)	SD (n = 3)	Mean (n = 3)	SD (n = 3)	Mean (n = 3)	SD (n = 3)
Tissue	% ID/g	% ID/g	% ID/g					
liver	15.14	3.01	5.52	0.53	11.34	1.42	7.38	0.63
spleen	3.49	0.37	2.59	0.52	7.87	5.69	7.34	1.84
kidneys	5.46	0.31	7.91	0.51	4.1	0.8	7.63	1.83
heart	1.45	0.26	1.51	0.38	1.15	0.29	1.35	0.17
lungs	1.64	0.19	1.65	0.4	1.48	0.24	2.18	0.23
blood	2.7	0.41	4.88	0.98	1.54	0.78	2.99	0.55
GI tract	0.71	0.1	0.63	0.12	0.51	0.13	0.57	0.06
tail	1.07	0.07	2.98	0.88	3.16	3.54	2.56	2.74
shoulder	0.51	0.15	0.87	0.25	0.56	0.19	1.01	0.4
knee	1.17	0.53	1.08	0.18	1.15	0.24	2.82	1.04
tumour	9.09	6.66	12.49	3.6	28.13	13.66	31.21	5.23
Compound	[89Zr]Zr-D2-J591	[89Zr]Zr-D2-J591	[177Lu]Lu-D2-J591	[177Lu]Lu-D2-J591				
Time	5 d	5 d	5 d	5 d				
	Mean (n = 3)	SD (n = 3)	Mean (n = 3)	SD (n = 3)				
Tissue	% ID/g	% ID/g	% ID/g	% ID/g				
liver	7.38	0.63	9.4	2.33				
spleen	7.34	1.84	5.96	1.49				
kidneys	7.63	1.83	7.6	1.46				
heart	1.35	0.17	2.26	0.55				
lungs	2.18	0.23	4.85	2.92				
blood	2.99	0.55	4.86	2.37				
GI tract	0.57	0.06	0.92	0.06				
tail	2.56	2.74	3.27	1.23				
shoulder	1.01	0.4	0.98	0.38				
knee	2.82	1.04	2	0.75				
tumour	31.21	5.23	46.87	14.63				

Table S8. Mouse identifiers and dosing for efficacy study using $[^{177}Lu]Lu$ -**D2**-mAb (n=4), $[^{177}Lu]Lu$ -**2**-mAb (n=3) and a vehicle control (n=3). A target of 9 MBq was used for ^{177}Lu groups. Approximate mass dose calculated using activity measured from initial labelling reaction.

Compound	Mouse ID	Injected Actvity (MBq)	Molar Activity (GBq/µmol)	Approximate Mass Dose (µg)
	D2-M1	9.11	1.63	840
[177] ull u D2 mAb	D2-M2	9.38	1.63	865
[¹¹¹ Lu]Lu- D2- mAb	D2-M3	9.33	1.63	860
	D2-M4	8.66	1.51	863
	DOTA-M1	9.94	1.60	929
[¹⁷⁷ Lu]Lu -2- mAb	DOTA-M3	8.71	1.61	814
	DOTA-M4	8.75	1.37	959
	PBS-M2	-		-
PBS	PBS-M3	-		-
	PBS-M4	-		-

Table S9 Statistical data from efficacy study using [¹⁷⁷Lu]Lu-**D2**-mAb, [¹⁷⁷Lu]Lu-**2**-mAb, and PBS vehicle control

[177Lu]Lu-D2-mAb Treatment Group

Therapeutic Efficacy [177Lu]Lu-D2-mAb (Tumour Vol., mm ³)			Therapeutic Efficacy [177Lu]Lu-D2-mAb (Mouse Weight, g)				
Days after	[177Lu]Lu-D2-	[177Lu]Lu-D2-	[177Lu]Lu-D2-	Days after	[177Lu]Lu-D2-	[177Lu]Lu-D2-	[177Lu]Lu-D2-
injection	mAb (n)	mAb (AV)	mAb (SD)	injection	mAb (n)	mAb (AV)	mAb (SD)
2	4	222.25	63.61	2	4	25.85	2.04
6	4	146.75	40.93	6	4	25.58	2.04
9	4	93.50	38.32	9	4	25.60	2.26
13	4	81.00	25.68	13	4	25.90	2.53
16	4	64.50	26.01	16	4	26.25	2.91
20	4	67.00	24.51	20	4	26.63	2.60
23	2	89.50	30.41	23	4	27.68	2.30
27	3	80.33	30.02	26	1	24.30	
30	3	52.33	27.79	27	3	28.87	1.81
33	1	44.00		29	1	24.20	
34	2	41.00	31.11	30	3	27.50	2.43
35	1	35.00		33	1	24.50	
37	2	29.50	33.23	34	3	27.63	2.57
40	3	50.67	35.92	35	1	24.10	
42	4	35.50	22.99	37	4	27.30	2.08
44	4	34.00	26.39	40	4	27.30	2.23
47	4	40.00	35.88	42	4	28.13	2.47
49	4	43.00	33.32	44	4	27.98	2.35
51	3	35.67	24.42	47	4	27.58	1.59
54	2	34.00	31.11	49	4	27.93	2.20
56	3	35.00	20.81	51	4	28.03	1.96
58	3	40.67	27.47	54	3	29.53	1.31
61	2	27.00	26.87	56	4	28.00	2.57
63	3	21.33	22.50	58	4	28.58	2.17
65	3	26.33	26.73	61	3	28.53	1.86
				63	4	27.55	1.55
				65	4	27.63	2.28

[177Lu]Lu-DOTA-mAb Treatment Group

Therapeutic Efficacy [177Lu]Lu-DOTA-mAb (Tumour Vol., mm ³)			Therapeutic Efficacy [177Lu]Lu-DOTA-mAb (Mouse Weight, g)				
Days after	[177Lu]Lu-	[177Lu]Lu-	[177Lu]Lu-	Days after	[177Lu]Lu-	[177Lu]Lu-	[177Lu]Lu-
injection	DOTA-mAb (n)	DOTA-mAb (AV)	DOTA-mAb (SD)	injection	DOTA-mAb (n)	DOTA-mAb (AV)	DOTA-mAb (SD)
1	2	143.00	79.20	1	2	25.05	3.61
2	1	119.00		2	1	24.10	
5	3	154.00	58.40	5	3	23.47	2.29
8	3	94.00	37.99	8	3	23.70	1.65
12	3	68.00	21.66	12	3	23.70	2.46
15	3	60.33	30.01	15	3	23.73	2.34
18	3	61.67	29.26	18	3	23.80	2.15
20	3	49.33	18.50	20	3	24.37	2.32
22	3	50.00	22.34	22	3	24.37	2.40
25	3	56.33	22.74	25	3	24.43	1.85
26	1	67.00		26	1	23.70	
27	2	45.50	38.89	27	2	25.15	3.18
29	3	40.33	17.67	29	3	24.77	2.20
32	2	29.00	11.31	32	2	25.85	2.76
33	1	80.00		33	1	24.30	
34	2	43.50	19.09	34	2	25.95	2.19
35	1	70.00		35	1	25.20	
36	2	36.50	7.78	36	2	26.25	2.19
37	1	53.00		37	1	25.00	
39	2	25.50	13.44	39	2	26.00	2.26
40	1	66.00		40	1	24.60	
41	2	34.50	16.26	41	2	26.65	2.62
42	1	59.00		42	1	24.20	
43	2	41.00	32.53	43	2	25.75	1.91
44	1	49.00		44	1	24.50	
46	1	64.00		46	2	24.15	4.60
47	1	48.00		47	1	24.80	
49	2	53.50	14.85	49	3	24.67	3.10
51	1	29.00		51	1	24.70	
53	1	64.00		53	2	26.50	1.41
55	1	32.00		55	2	26.55	1.77
56	1	14.00		56	1	25.60	
62	1	37.00		57	2	26.75	1.63
63	1	24.00		58	1	25.30	
64	1	40.00		60	2	26.65	1.63
65	1	22.00		62	2	26.20	1.41
				63	1	25.30	
				64	2	26.45	1.34
				65	1	25.60	

PBS Vehicle

Therapeutic Efficacy (PBS) (Tumour Vol., mm ³)				Therapeutic Efficacy (PBS) (Mouse Weight, g)			
Days after	PBS (n)	PBS (AV)	PBS (SD)	Days after	PBS (n)	PBS (AV)	PBS (SD)
injection				injection			
12	3	399.67	42.36	12	3	21.50	1.37
15	3	436.67	51.73	15	3	21.30	1.64
17	3	427.00	67.02	17	3	21.00	1.83
19	3	449.67	101.66	19	3	20.97	2.02
23	3	492.33	64.84	23	3	22.07	1.69
30	3	680.67	106.98	30	3	21.77	2.00
34	3	835.00	131.46	34	3	21.67	2.42
37	3	859.00	42.57	37	3	21.63	1.77
40	3	957.00	108.53	40	3	22.43	1.91
42	2	1047.00	267.29	42	2	22.95	0.07
43	1	1004.00		43	1	22.50	
50	1	1144.00		46	1	21.60	
52	1	1159.00		50	1	21.20	
				52	1	20.70	

 Table S10. Radiolabelling parameters used in study components.

Conjugate	Study	Concentration _{conj} (mg/mL)	Moles _{conj}	Molesisotope	Specific Activity _{10µL} (MBq)	Total Activity (MBq)	Total Reaction Volume (μL)
D2-mAb	⁸⁹ Zr in vitro cell assay	6.31	~1.67×10 ⁻⁹	~5.07×10 ⁻¹²	1.24	~7.5	99.8
	¹⁷⁷ Lu <i>in vitro</i> cell assay	3.12	4.72×10 ⁻⁹	9.38×10 ⁻¹²	44.25	7.80	228.6
	⁸⁹ Zr <i>ex vivo</i> biodistribution (48 h p.i)	6.31	6.09×10 ⁻⁹	1.22×10 ⁻¹¹	1.94	19.4	237.5
	⁸⁹ Zr <i>ex vivo</i> biodistribution (120 h p.i)/imaging	10.91	6.76×10 ⁻⁹	2.71×10 ⁻¹¹	5.34	23.1	130.5
	¹⁷⁷ Lu efficacy study (session 1)	9.21	2.69×10 ⁻⁸	5.37×10 ⁻¹¹	19.3	43.6	457.8
	¹⁷⁷ Lu efficacy study (session 2)	8.57	1.01×10 ⁻⁸	2.01×10 ⁻¹¹	10.6	15.2	190.1
	¹⁷⁷ Lu <i>ex vivo</i> biodistribution (120 h p.i)/imaging	8.57	1.07×10 ⁻⁸	2.68×10 ⁻¹¹	7.7	19.8	214.0
	⁸⁹ Zr stability study	6.31	6.09×10 ⁻⁹	1.22×10 ⁻¹¹	1.94	19.4	237.5
1-mAb	⁸⁹ Zr <i>in vitro</i> cell assay	9.61	~1.69×10 ⁻⁹	~5.07×10 ⁻¹²	1.24	~7.5	86.4
	⁸⁹ Zr <i>ex vivo</i> biodistribution (48 h p.i)	3.93	6.76×10 ⁻⁹	1.35×10 ⁻¹¹	1.48	~20	393.1
	⁸⁹ Zr <i>ex vivo</i> biodistribution (120 h p.i)/imaging	9.80	6.76×10 ⁻⁹	2.71×10 ⁻¹¹	5.34	22.7	141.0
	⁸⁹ Zr stability study	3.93	~6.76×10 ⁻⁹	~1.35×10 ⁻¹¹	1.48	~20	393.1
2-mAb	¹⁷⁷ Lu <i>in vitro</i> cell assay	7.89	5.36e ⁻⁹	1.07e ⁻¹¹	44.25	7.13	103.6
	¹⁷⁷ Lu efficacy study (session 1)	7.43	2.68×10 ⁻⁸	5.36×10 ⁻¹¹	25.3	43.0	556.8
	¹⁷⁷ Lu efficacy study (session 2)	7.89	1.01×10 ⁻⁸	2.01×10 ⁻¹¹	10.6	14.5	205.2