Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Theory-driven design of cadmium mineralizing layered double hydroxides for environmental remediation

Zixian Li,^a Nuo Xu,^a Jing Ren,^a Haigang Hao,^c Rui Gao,^c Xianggui Kong,^a Hong Yan,^a Xiao Hua,^d Yung-Kang Peng,^e Shulan Ma,^f Dermot O'Hare,^g Yufei Zhao*^{ab}

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China. Email: zhaoyufei@mail.buct.edu.cn (Y. Zhao)

^bQuzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, Zhejiang, P. R. China

°College of Chemistry and Chemical Engineering, Inner Mongolia University, 010021 Hohhot, Inner Mongolia, P. R. China

^dDepartment of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom

^eDepartment of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR 999077, P. R. China

^fBeijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China

^gChemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom

Computational Details

DFT calculation:

The density functional theory calculations were performed with Vienna ab initio simulation package (VASP) code.¹⁻³ The electron-ion interaction was described by the projector-argumented plane wave (PAW)^{4,5} approach associated with plane-wave basis sets. The Perdew-Burke-Ernzerhof (PBE)⁶ functional was used in form of the generalized gradient approximation (GGA). An energy cut-off of 400 eV was employed. In the calculations, the interfacial atoms were relaxed the total energy convergence below 1×10^{-5} eV, and the atomic forces were converged to 0.01 eV/Å in all structural optimizations. A $3 \times 3 \times 1$ Monkhorst-Pack k-point mesh was adopted to sample the Brillouin zone.^{7, 8}

The model of bulk Ca₂Al-Cl-LDH was built according to the experimental XRD measurement. Therefore, the model bulk Ca₂Al-LDH was constructed with the space group of P³m₁⁹, with the lattice parameters of a = b = 3.37 Å, c = 7.56 Å, $a = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$. The supercell of Ca₂Al-Cl-LDH was $9 \times 2 \times 1$ in the *a*-, *b*-, and *c*- directions. Six chlorine anions were put in the interlayer gallery of Ca₂Al-LDH to balance the charge. The exposed facets of LDH were normally the (003) and (110) facets. In the (003) facet, the Ca²⁺ cation was blocked by the hydroxyl group, thus the isomorphic substitution of Ca²⁺ by Cd²⁺ and Ni²⁺ was inhibited by the steric hindrance. Therefore, it was deduced that the cation exchange reaction occurred in the (110) facet of LDH. Then, the (110) facet of Ca₂Al-Cl-LDH was cleaved with a vacuum layer of 15 Å. The series of models for (CaCd)₂Al-LDH/(CaNi)₂Al-LDH were built in the similar way by substituting Ca²⁺ cation with Cd²⁺/Ni²⁺ cation.

The model of $Ca^{2+}(aq)$ was built by putting one Ca^{2+} cation in a solvent box containing 33 water molecules with a density of 1.0 g/cm². Two chlorine anions were also put in the solvent box to keep the model neutral.¹⁰ The model of $Cd^{2+}(aq)/Ni^{2+}(aq)$ was built in the similar way by replacing Ca^{2+} with Cd^{2+}/Ni^{2+} .

AIMD simulation:

All the AIMD simulations reported in this work were performed within the density functional theory (DFT) framework according to the generalized gradient approximation (GGA) using the Perdew–Burke–Ernzerhof (PBE) functional, which was implemented in the CP2K/Quickstep code.¹⁰ Core electrons were described by Goedecker–Teter–Hutter (GTH) pseudopotentials^{11, 12} and valence electrons were described by a mixed Gaussian and plane waves basis (GPW). The wave functions were expanded on a double- ζ valence polarized (DZVP) basis set¹³ along with an auxiliary plane-wave basis set at a cutoff energy of 400 Ry. The Brillouin zone was sampled by the gamma approximation. During AIMD, the nuclei were treated within the Born-Oppenheimer approximation with a time step of 1 fs for equilibrium simulation. The temperature was maintained at 298.15 K (25 °C) using a CSVR thermostat coupled to the system with a time constant of 300 fs in the Canonical ensemble (NVT)^{14, 15}. The convergence criterion for the self-consistent fields was set to 10⁻⁶ Hartree.

Ca₂Al-LDH with the metal ratio of 2:1 was constructed; The supercell consists of $2 \times 6 \times 1$ crystallographic unit cells. 4 chlorine anions and 50 H₂O molecules were put in the interlayer gallery to simulate solution environment with a density of 1.0 g/cm².

Coordination number calculation:

Coordination number (CN) was characterized as collective variables (CVs) to monitor the dissolution process. The CN(Ca–Ol) is the coordination number of the Ca ion with all oxygen ions from the LDH lattice, while CN(Ca–Ow) is the coordination number of the Ca ion with all oxygen from water molecules. The CN have the expression as follows as defined in the PLUMED code¹⁶:

$$CN(Ca \cdot Ol/w) = \sum_{j \in O_{L/S}} S_{ij}(r_{ij}) = \sum_{j \in O_{L/S}} \frac{1 - (\frac{r_{ij} - d_0}{r_0})^n}{(\frac{r_{ij} + d_0}{r_0})^m}$$
(1)

Here, we define d_0 is 2.42 Å¹⁷, which is the equilibrium bond length between the Ca²⁺ and O ions; r_0 is 0.4 Å, which is around half of the full width at half maximum of the radial distribution function of Ca–O and n and m are 6 and 12¹⁸, respectively.

Independent gradient model (IGM) analysis:

IGM analysis¹⁹ was performed on the wave function file generated by cp2k calculation using Multiwfn software²⁰ to explore the weak interaction in the system. The fundamentals for calculating the IGM with the Multiwfn program for weak interaction analysis is briefly discussed below.^{21, 22}

 δg can be divided into δg_{intra} for intra-fragment interactions and δg_{inter} for interfragment interactions:

$$g^{inter}(r) = \left| \sum_{A} \sum_{i \in A} \nabla \rho_i(\mathbf{r}) \right|$$
(2)

$$g^{IGM,inter}(r) = \left| \sum_{A} \operatorname{abs} \sum_{i \in A} \nabla \rho_{i}(\mathbf{r}) \right|$$
(3)

$$\delta g^{\text{inter}}(\mathbf{r}) = g^{\text{IGM,inter}}(\mathbf{r}) - g^{\text{inter}}(\mathbf{r})$$
 (4)

$$\delta g^{\text{intra}}(\mathbf{r}) = \delta g(\mathbf{r}) - \delta g^{\text{inter}}(\mathbf{r})$$
(5)

i is the atomic number, $\nabla \rho$ is the gradient vector, $abs(\nabla \rho)$ means to take the absolute value of each component of the $\nabla \rho$ vector inside, | | means to take the modulus of the vector. A is the number of the defined fragment.

Experimental Methods:

Synthesis of CaAl-LDH:

A 40.0 mL solution composed of 13 mmol CaCl₂ and 6.5 mmol AlCl₃·6H₂O was added drop by drop to a 10.0 mL solution. Simultaneously, NaOH solution (1 mol/L)

was added dropwise to maintain the system at a pH value of 12.3 under magnetic stirring at room temperature. The precipitations, denoted as CaAl-LDH, were collected by washing, centrifugation, and drying.

Synthesis of CaAl-x:

The calcined samples CaAl-*x* (*x* refers to the different calcination temperatures: 200, 300, 400, 450 and 500 °C) were obtained under an ambient atmosphere ranging from 200 to 500°C for 3 h (2°C min⁻¹), respectively.

Heavy metal adsorption studies:

The removal experiments were carried in 40 mL Cd²⁺ ions solutions with 1 g/L CaAl-LDH in round-bottom flask under magnetic stirring (400 rpm/min) at room temperature. The concentrations of Cd²⁺ ions were analyzed by inductively-coupled plasma optical-emission spectrometry (ICP-OES) and inductively-coupled plasmamass spectrometry (ICP-MS). The removal efficiency of Cd²⁺ ions (R %) was calculated by the following equation: $R = (C_0 - C_e) / C_0 \times 100\%$, where the C_0 and C_e was the initial and the equilibrium concentration of Cd²⁺ ions, respectively. The removal capacity of Cd²⁺ ions (q, mg/g) was calculated by the following equation: $q = (C_0 - C_e) \times V / m$, where V (L) and m (g) represent the volume of the suspension and the mass of LDHs, respectively^{23, 24}.

Characterisation:

X-ray diffraction (XRD) patterns were characterized by a Rigaku XRD-6000 diffractometer equipped with a Cu K α radiation ($\lambda = 1.5405$ Å). Scanning electron microscopy (SEM) images were obtained on the Zeiss Supra 55 SEM equipped with an EDX detector. X-ray absorption near edge structure (XANES) spectrum and extended X-ray absorption fine-structure (EXAFS) spectrum were collected at the 1W1B beamline of Beijing Synchrotron Radiation Facility. The measurements were carried out in a transmission mode at room temperature. EXAFS shell fitting was carried out with Artemis Software.

Figure S1. Theoretical models of (a) Ca-5-LDH; (b) Ca-6-LDH; (c) Ca-7_{CI}-LDH; (d) Ca-7_{OH}-LDH; (e) Ca-7_{H2O}-LDH from top and side view, respectively.

Figure S2. The optimized Ca- 7_x -LDH structure shows that the Ca atom is surrounded by six hydroxyl groups, and the *x* atom represents the seventh coordination group, Cl⁻, OH⁻ and H₂O.

Table S1. Bond length (Å) of Ca^{2+} and the surrounding ligands in $Ca-7_x$ -LDH structures. *x* represents the seventh ligand.

	Ca-OH ₁	Ca-OH ₂	Ca-OH ₃	Ca-OH ₄	Ca-OH ₅	Ca-OH ₆	Ca-x
x = C1	2.379	2.494	2.462	2.331	2.352	2.434	3.192
x = OH	2.383	2.536	2.529	2.333	2.350	2.484	2.524
$x = H_2O$	2.378	2.537	2.496	2.345	2.363	2.480	2.492

Figure S3. (a) Energy and (b) temperature changes for the 3000 fs AIMD process of Ca-6-LDH structure.

Figure S4. Relationship between the Gibbs free energy and the ratio of $[Ni^{2+}]$ to $[Ni^{2+} + Ca^{2+}]$ in the isomorphic substitution process.

Figure S5. The IGM analysis of weak interactions for (a) Ca-5-LDH; (b) Ca-6-LDH; (c) Ca-7_{OH}-LDH and (d) Ca-7_{H2O}-LDH.

	Ca-5-LDH	Ca-6-LDH	Ca-7 _{OH} -LDH	Ca-7 _{H2O} -LDH
Density of all electrons	1.889	2.141	2.207	2.224
Potential energy density V(r) -1.996	-2.167	-2.193	-2.213
δg	4.156	4.74	4.843	4.894

Table S2. Quantitative weak analysis of the Ca²⁺ and surrounding coordination groups

Figure S6. δg of Ca-5-LDH, Ca-6-LDH, Ca-7_{OH}-LDH and Ca-7_{H2O}-LDH.

Figure S7. (a) Energy and (b) temperature changes for the AIMD process of Ca-5-LDH structure.

From the changes in system energy and temperature during the simulation process, it can be seen that the dynamic simulation has reached an equilibrium state.

Figure S8. The O atoms in the AIMD system were divided into two types, which are (a) LDH laminate O atoms (named Ol) and (b) solvent environment O atoms (named Ow).

Figure S9. Structures during the AIMD process of Ca-5-LDH at (a) 0 ps, (b)10 ps and (c) 20 ps.

Figure S10. (a) Structures of CaAlCd1-5-LDH in the AIMD simulation; (b) Evolution of coordination number values; (c) Coordination distribution around Ca1 ion, the redder the color, the higher the probability; (d) Coordination distribution around Ca2 ion; (e) Coordination distribution around Al ion.

The CaAlCd1-5-LDH structure was constructed to simulate the initial stage of the mineralization process. Similar to the Ca-5-LDH structure, Figure S10b shows that Ca1-O and Ca2-O exhibit a hexacoordination structure, yet the Al iron around the defect site always keeps pentacoordination with the surrounding O atoms. The distribution of the two kinds of O surrounding Ca1, Ca2 and Al ions is shown in Figure S10c-e. The Ca²⁺ ions have five coordinations with Ol and one coordination with Ow, Al³⁺ forms five coordinations with Ol and basically no coordination with Ow. The results indicate that during the process of mineralizing, Ca²⁺ ions form additional coordination with the O atom in the solution while maintaining pentacoordination with the hydroxyl groups on the laminates.

Figure S11. (a) Structures of CaAlCd2-5-LDH in the AIMD simulation; (b) Evolution of coordination number values; (c) Coordination distribution around Ca1 ion, the redder the color, the higher the probability; (d) Coordination distribution around Ca2 ion; (e) Coordination distribution around Al ion.

The CaAlCd2-5-LDH structure was constructed to simulate the initial stage of the mineralization process. Figure S11c-e shows the Ca^{2+} ions have five coordinations with Ol and one coordination with Ow; Al³⁺ forms five coordinations with Ol and basically no coordination with Ow.

Figure S12. (a) Structures of CaAlCd3-5-LDH in the AIMD simulation; (b) Evolution of coordination number values; (c) Coordination distribution around Cd1 ion, the redder the color, the higher the probability; (d) Coordination distribution around Ca2 ion; (e) Coordination distribution around Al ion.

The CaAlCd3-5-LDH structure was constructed to simulate the initial stage of the mineralization process. Figure S12c-e shows the Ca^{2+} and Cd^{2+} ions have five coordinations with Ol and one coordination with Ow; Al³⁺ forms five coordinations with Ol and basically no coordination with Ow.

Figure S13. Dissolution energy of Ca^{2+} in different models. The inset shows the structures of Ca-5-LDH and Ca-5-LDH-H₂O.

Figure S14. XRD patterns of CaAl-LDH and the obtained MMO structure obtained at calcination temperatures from 200 to 500 °C, respectively.

Figure S15. SEM images of (a) CaAl-LDH, (b) CaAl-450 and (c) CaAl-450-r.

Figure S16. k-space EXAFS oscillation functions k^3 of Ca for Ca(OH)₂, CaAl-LDH and CaAl-450-r, respectively.

Sample	$N^{[a]}$	<i>R</i> [Å] ^[b]	$\sigma^2 [10^{-3} \text{\AA}^2]^{[c]}$	R-factor [10 ⁻²]
Ca(OH) ₂	6.0	2.34	5.8	0.7
CaAl-LDH	7.2	2.39	9.0	1.6
CaAl-400-r	4.9	2.37	6.0	6.4

Table S3. Local structure parameters of Ca-O shell estimated by EXAFS analysis.

[a]N= coordination number; [b]R= distance between absorber and backscatter atoms; [c] σ^2 = Debye-Waller factor.

Figure S17. EPR spectra of CaAl-450-r.

Figure S18. XRD patterns of CaAl-LDH-Cd and the CaAl-450-r-Cd products formed by Cd²⁺ adsorption.

Figure S19. SEM images of (a) CaAl-LDH-Cd and (b) CaAl-450-r-Cd.

Figure S20. N₂ BET adsorption–desorption isotherms of CaAl-LDH and CaAl-450-r, respectively.

Ca-5-LDH

1.0

1.0						
	7.8200001717			0.0000000000	0.0000000000	
	0.000	00000	000		11.7086639404	0.0000000000
	0.000	00000	000		0.0000000000	28.5200004578
Н	0	Al	Cl	Ca		
34	34	6	6	12		
Direct						
0.	936652	2005		0.5	26503980	0.151695997
0.	948325	992		0.7	69650996	0.334080994
0.	967899	978		0.9	99534011	0.500207007
0.	923931	003		0.4	34184998	0.008928000
0.	949109	972		0.7	03656018	0.200315997
0.	945554	972		0.9	57737982	0.378053010
0.	429464	996		0.8	92288029	0.334724993
0.	416907	'996		0.1	68819994	0.498952001
0.	420520	0008		0.3	95918995	0.069600001
0.	433521	003		0.6	42028987	0.241815001
0.	431805	998		0.8	92108023	0.421826988
0.	919867	992		0.9	41461027	0.010630000
0.	946048	3021		0.2	07972005	0.200624004
0.	943485	975		0.4	48125005	0.378015995
0.	951281	011		0.2	76944011	0.071149997
0.	952742	2994		0.5	16542017	0.245872006
0.	948940	992		0.7	74159014	0.422268987
0.	454160	988		0.2	18594998	0.007973000
0.	430487	'990		0.4	67732996	0.201703995
0.	434291	989		0.7	07817972	0.379294008
0.	432231	992		0.1	43246993	0.153851002
0.	428039	998		0.3	91411006	0.333826989
0.	416548	3014		0.6	67356014	0.501664996
0.	955740	988		0.7	76184022	0.070372000
0.	946358	3025		0.0	22174999	0.243989006
0.	946142	.972		0.2	75236011	0.419537008
0.	944792	.986		0.0	21116000	0.153136000
0.	966513	991		0.4	96959001	0.499293000
0.	419687	'986		0.8	88486028	0.072001003
0.	429720	998		0.1	45247996	0.242982998
0.	425785	989		0.3	92538995	0.424392015
0.	455971	986		0.7	20911980	0.009603000
0.	430537	'999		0.9	60245013	0.200665995
0.	433486	5015		0.2	07911998	0.377370000
0.	811757	'028		0.5	17988026	0.147850007

0.825021982	0.761592984	0.328492999
0.844866991	0.991941988	0.497442991
0.800246000	0.446823001	0.012740000
0.824827015	0.719779015	0.201405004
0.821882010	0.971698999	0.376464993
0.552353978	0.901337981	0.328525990
0.540799022	0.172643006	0.497884005
0.546420991	0.407844007	0.074630000
0.556690991	0.653913021	0.247861996
0.554651022	0.903901994	0.427810013
0.797164977	0.952678025	0.016154001
0.822207987	0.223083004	0.200700000
0.820967972	0.466776997	0.375923991
0.826655984	0.259611994	0.076385997
0.827659011	0.507384002	0.251087010
0.826104999	0.762045979	0.428171009
0.575541019	0.209455997	0.015363000
0.553218007	0.447234988	0.201294005
0.557727993	0.692896008	0.377644002
0.555721998	0.151500002	0.148068994
0.551935971	0.402227998	0.329154015
0.539364994	0.675675988	0.498488992
0.830722988	0.759177983	0.076084003
0.822670996	0.011783000	0.248749003
0.823718011	0.261776000	0.426398993
0.820941985	0.013445000	0.147938997
0.842989981	0.490750015	0.497658998
0.544564009	0.904947996	0.077051997
0.553413987	0.153842002	0.248664007
0.549934030	0.405176997	0.430115014
0.579482019	0.712599993	0.014380000
0.553979993	0.943603992	0.201013997
0.558091998	0.193891004	0.376619011
0.686097980	0.330211014	0.035542998
0.700724006	0.577858984	0.203511000
0.690316975	0.832145989	0.378271997
0.686273992	0.832490027	0.036894001
0.689037979	0.083102003	0.199028999
0.677278996	0.336382002	0.381316006
0.179787993	0.574644029	0.208408996
0.179110005	0.343311012	0.043439001
0.190459996	0.832301974	0.382463008
0.197580993	0.335117996	0.389375001

0.189710006	0.083939999	0.200193003
0.184997007	0.833727002	0.042918000
0.700964987	0.580271006	0.069871001
0.688687980	0.832762003	0.260800987
0.692336023	0.082309000	0.439319015
0.681544006	0.333802998	0.144611999
0.689191997	0.582391977	0.319745988
0.690105975	0.834555984	0.493768007
0.687409997	0.081900001	0.075770997
0.686042011	0.331050009	0.260890990
0.689696014	0.583626986	0.440596998
0.691390991	0.832876027	0.145239994
0.684861004	0.079986997	0.318551004
0.693223000	0.331182986	0.494475007

Ca-6-LDH

1.0

	7.820	00017	17		0.0000000000	0.0000000000
	-0.000	00155	91		11.7086601257	0.0000000000
	0.000	00000	00		-0.0000037977	28.5200004578
Н	0	Al	Cl	Ca		
36	36	6	6	12		
Direct						
0	.943504	.930		0.5	520259380	0.153142899
0	.948552	728		0.7	69958794	0.334239990
0	.964874	804		0.9	98233914	0.499442786
0	.919300	616		0.4	41641301	0.009999700
0	.948260	427		0.7	02563524	0.200356394
0	.945316	672		0.9	55669224	0.377930313
0	.432599	813		0.6	543543184	0.153124705
0	.429945	886		0.8	92755628	0.334159195
0	.417144	686		0.1	67254895	0.499917597
0	.419384	807		0.3	92529488	0.071019299
0	.430757	701		0.6	544827783	0.242840797
0	.430273	503		0.8	390443206	0.420962214
0	.920445	919		0.9	40961480	0.008949000
0	.948370	278		0.2	205388099	0.200311705
0	.945595	384		0.4	54995990	0.377941906
0	.952374	101		0.2	278060794	0.071171798
0	.945959	210		0.5	19775808	0.242658496
0	.949043	572		0.7	73905098	0.420883596
0	.457388	401		0.2	20785305	0.007028100
0	.427897	811		0.4	61421192	0.200643197

0.433224410	0.708988070	0.378289312
0.432708204	0.144778103	0.153794095
0.429817408	0.392431110	0.334407598
0.417175710	0.666594803	0.500038087
0.954900622	0.773843288	0.071212299
0.946925879	0.022573501	0.242989704
0.949603677	0.272481412	0.420603991
0.944478393	0.022695299	0.153169304
0.948297501	0.269256800	0.334093392
0.965300679	0.498591304	0.499710113
0.422182500	0.888317406	0.071412101
0.430820495	0.146287307	0.242529601
0.431117088	0.389346987	0.421302110
0.456177890	0.722025990	0.009195900
0.429757893	0.962392092	0.200694606
0.433030397	0.208690003	0.378367096
0.819837272	0.513418078	0.147498697
0.825604379	0.761420786	0.327978492
0.841603518	0.991401911	0.497211307
0.795974791	0.452039301	0.014859200
0.825174689	0.720692873	0.200644299
0.821986794	0.971240282	0.376229703
0.556192577	0.651220500	0.147499993
0.552832127	0.901981592	0.327941000
0.540515304	0.173289299	0.497678787
0.544628680	0.405750602	0.076274298
0.554314494	0.654480815	0.248133302
0.552982628	0.902836323	0.427258104
0.798578799	0.951587498	0.015328200
0.824735522	0.222000495	0.200612202
0.822394609	0.470910490	0.376228690
0.828434825	0.259278595	0.076021701
0.822376728	0.510640800	0.248088807
0.826336682	0.761533201	0.427208811
0.577859282	0.211991906	0.015133500
0.551176190	0.443983793	0.200835705
0.556468427	0.692877710	0.376549810
0.556208074	0.151311606	0.147579506
0.552596211	0.402122796	0.328182608
0.540440321	0.673113585	0.497622401
0.830055773	0.758734703	0.076386303
0.823569179	0.011436800	0.248041198
0.826798797	0.261006594	0.427141309

0.821005523	0.014170700	0.147554293
0.825241625	0.261256009	0.327919900
0.842154920	0.491467893	0.497165799
0.546654880	0.905478001	0.076298498
0.554439723	0.154593095	0.248151496
0.553749681	0.402460307	0.427420110
0.578604281	0.712297082	0.015162300
0.552742600	0.944450319	0.200872004
0.556336701	0.192689896	0.376571894
0.686104000	0.332663894	0.036431801
0.688011408	0.582338214	0.198794305
0.689459503	0.832009673	0.377292901
0.688510418	0.831789792	0.036660701
0.689009488	0.083183400	0.198852107
0.689643025	0.331707299	0.377330810
0.187750503	0.582025170	0.200164497
0.179069102	0.347453386	0.043560900
0.189612001	0.831287503	0.381670505
0.190046206	0.328646898	0.381982088
0.189246103	0.089081600	0.199558794
0.190075502	0.828411877	0.043700401
0.688499510	0.582043707	0.075526901
0.690230310	0.832406580	0.260398895
0.689694583	0.082172699	0.438204199
0.686760128	0.332706392	0.145290494
0.688169420	0.582071185	0.318099409
0.690333724	0.832503498	0.492292315
0.688446581	0.082232498	0.075935103
0.688826501	0.332469612	0.260449111
0.690079391	0.582126021	0.438225001
0.688732505	0.832354426	0.145428196
0.687563181	0.082163103	0.318080395
0.692032218	0.332089812	0.492325097
Ca-7 _{Cl} -LDH		
1.0		
7.8200001717	0.0000000000	0.0000000000
-0.0000031182	11.7086601257	0.0000000000
-0.0000037977	-0.0000075953	28.5200004578
H O Al Cl	Ca	
36 36 6 7	12	
Direct		
0.938610077	0.524301827	0.153294995

0.946210504	0.768440306	0.333628714
0.963781416	0.000765700	0.499815494
0.920378089	0.441453815	0.009658300
0.943405092	0.695040107	0.203182295
0.945434809	0.953455806	0.379058987
0.431559712	0.652830124	0.150804102
0.429854095	0.894575000	0.335000813
0.419540614	0.169081897	0.501412988
0.420338809	0.389252692	0.070960499
0.421531111	0.643479824	0.242705896
0.429680288	0.889386177	0.421612203
0.918169677	0.946941197	0.008579500
0.923938394	0.221819699	0.210804403
0.940134287	0.454984814	0.379792213
0.952980220	0.274469197	0.070763998
0.920676112	0.494602799	0.243206903
0.947899401	0.772012830	0.421240389
0.456160486	0.222175196	0.007587300
0.410843492	0.463750690	0.193515599
0.432255685	0.707721293	0.378609896
0.429023504	0.150047898	0.153553307
0.412142485	0.404612601	0.340826392
0.420100212	0.661587179	0.504217386
0.959856689	0.774245679	0.069056503
0.944135785	0.017882200	0.242749304
0.946556926	0.272582293	0.418502808
0.941750526	0.032322299	0.151666805
0.922597229	0.285639703	0.321857601
0.966656804	0.501491308	0.500514388
0.425528795	0.886141598	0.072348803
0.421315700	0.127807394	0.246536896
0.430792391	0.390094787	0.425352186
0.457760394	0.723698020	0.008146600
0.431645989	0.950703025	0.197217196
0.427838594	0.207064003	0.378230602
0.815660715	0.515030324	0.147133306
0.823119819	0.760145128	0.327756286
0.840944290	0.992296576	0.496935189
0.797639072	0.451612085	0.015157100
0.821104884	0.716529429	0.202504307
0.822366774	0.969591916	0.376662999
0.555847883	0.656296194	0.146278694
0.552598000	0.902178526	0.328340292

0.542931199	0.172549605	0.498495013
0.545087576	0.405185997	0.075950503
0.545174181	0.652294397	0.247893497
0.552414894	0.901856601	0.427567601
0.796162009	0.954407573	0.015359100
0.801188111	0.224413797	0.204465300
0.817156911	0.470851004	0.376600593
0.828279793	0.258218110	0.076367803
0.796802282	0.499630004	0.247437105
0.825186491	0.760251999	0.427433014
0.577546895	0.212238699	0.014761900
0.533841014	0.446794599	0.195568293
0.555499494	0.692392170	0.376767099
0.552767515	0.151497394	0.148215801
0.533602417	0.409575611	0.332103193
0.540808201	0.674676895	0.498790205
0.835118592	0.757811010	0.074706502
0.821304321	0.007196700	0.247510403
0.824196517	0.258328289	0.424864292
0.819442987	0.018131699	0.147448793
0.800590873	0.268635511	0.323940814
0.844322205	0.490442395	0.497465700
0.550356388	0.903333008	0.077249102
0.544924617	0.137048900	0.250255287
0.554810703	0.400854409	0.430094600
0.579854906	0.713572204	0.014323700
0.554889977	0.938367784	0.198573604
0.551100314	0.192838699	0.376091987
0.686945021	0.332067788	0.036458299
0.677354991	0.580859482	0.198211595
0.688481510	0.830785811	0.377572596
0.690648973	0.832398772	0.036177501
0.683217525	0.081230797	0.199479297
0.681454778	0.333407789	0.377414703
0.209796801	0.300114393	0.254770190
0.179120094	0.591612577	0.198762596
0.184066504	0.333469599	0.043385100
0.188154399	0.833482921	0.380777091
0.186472505	0.345111996	0.390047699
0.183005899	0.101110898	0.200731203
0.191159800	0.835926175	0.044949502
0.686079621	0.582469523	0.074763298
0.682107627	0.829298079	0.260716796

0.	686124	086		0.081408098	0.438229889
0.691543102				0.333750904	0.145449102
0.	686957	598		0.579791784	0.318333298
0.691073596				0.832687080	0.492782801
0.681186199				0.082926102	0.075469702
0.	614865	303		0.330927104	0.260390401
0.	687147	915		0.581172824	0.439451009
0.	705708	802		0.830447614	0.144757599
0.	694284	678		0.081869103	0.318620503
0.	701792	2598		0.328306496	0.492589593
Ca-7 _{H2O}	-LDH				
1.0	7 820	00017	717	0.000000000	0 000000000
	-0.000	00311	82	11 7086601257	0.0000000000
	-0.000	00379	77	-0.0000037977	28 5200004578
Н	0.000	A1	C1	Са	20.0200001070
38	37	6	6	12	
Direct			-		
0.	938167	989		0.526262999	0.153220996
0.	946169	972		0.771997988	0.333389997
0.	963334	978		0.998956025	0.499020010
0.	918923	020		0.442140996	0.009383000
0.	942698	3002		0.696134984	0.202885002
0.	944196	5999		0.954590976	0.378381014
0.	431295	5007		0.654464006	0.151026994
0.	427323	997		0.893975973	0.335420996
0.	419220	0001		0.165875003	0.502696991
0.	419916	5987		0.389272004	0.071102999
0.	420320	0004		0.643978000	0.242723003
0.	428793	013		0.888957024	0.421362013
0.	916667	'998		0.948119998	0.008182000
0.	922150	016		0.212687999	0.207819000
0.	941533	983		0.455538005	0.379446000
0.	952422	2023		0.274103999	0.071117997
0.	920323	014		0.496594012	0.242311001
0.948234975				0.773191988	0.420911014
0.	456746	5012		0.222194999	0.007753000
0.410292000				0.467770994	0.193054006
0.	432628	8006		0.708468020	0.378219992
0.	423963	010		0.148999006	0.153026000
0.	417080	998		0.411518008	0.342516005
0.	421990	0007		0.663155019	0.505195022

0.960547984	0.773562014	0.069040999
0.939382017	0.017849000	0.241999000
0.945882976	0.269443989	0.417317986
0.939321995	0.033893000	0.153331995
0.921483994	0.284702986	0.325168997
0.966345012	0.505548000	0.502151012
0.426173002	0.885451019	0.072727002
0.416200995	0.124164999	0.244720995
0.430651009	0.388327003	0.426297009
0.459138006	0.723675013	0.008028000
0.427089006	0.950119019	0.195976004
0.426384985	0.206863001	0.377593011
0.235567003	0.324315995	0.295118988
0.230088994	0.267628014	0.244682997
0.815164983	0.515303016	0.147244006
0.823103011	0.762166023	0.327690989
0.839743018	0.994075000	0.497267008
0.796609998	0.451950014	0.015462000
0.820029020	0.717001975	0.203024998
0.820950985	0.970995009	0.376509994
0.555803001	0.657796979	0.146380007
0.550036013	0.902417004	0.328615010
0.541297972	0.174098000	0.498066992
0.544372976	0.405203015	0.076358996
0.543909013	0.651867986	0.248101994
0.551401973	0.902099013	0.427623004
0.795136988	0.954985023	0.015629999
0.798269987	0.223740995	0.204760000
0.818520010	0.471500993	0.377766997
0.827890992	0.258653998	0.076862000
0.796809018	0.500181973	0.247390002
0.825523019	0.761151016	0.427406013
0.578029990	0.212316006	0.015062000
0.532325983	0.448211998	0.195078999
0.555975020	0.692565978	0.376922011
0.547867000	0.151813999	0.147922993
0.538174987	0.413776010	0.333467007
0.542967975	0.674395978	0.499579996
0.835960984	0.758009017	0.074956000
0.816582978	0.006802000	0.247397006
0.824508011	0.259054005	0.425024986
0.817420006	0.019359000	0.147772998
0.798904002	0.268833011	0.324378014

0.846625984	0.488972008	0.496809006
0.550638974	0.902889013	0.077579997
0.538779974	0.137584001	0.249752000
0.553357005	0.400810003	0.430687994
0.581071973	0.713482976	0.014459000
0.550424993	0.938641012	0.198137999
0.550103009	0.193804994	0.376540005
0.287178993	0.327125013	0.263498008
0.686951995	0.332215995	0.036787000
0.676778972	0.581974030	0.198043004
0.687933028	0.831514001	0.377478004
0.690810978	0.832502007	0.036476001
0.678050995	0.080999002	0.199267998
0.681532979	0.334208995	0.377620012
0.178672001	0.595080972	0.193856999
0.184508994	0.332345009	0.042146001
0.187801003	0.833301008	0.381677985
0.178790003	0.331597000	0.373414010
0.172382995	0.107257001	0.202500999
0.192913994	0.833688021	0.043116000
0.685209990	0.582868993	0.075346999
0.677928984	0.829986989	0.260443002
0.684629977	0.081295997	0.438089997
0.689734995	0.333770007	0.145884007
0.691213012	0.581596017	0.318190008
0.691056013	0.833468974	0.492599010
0.680094004	0.083113998	0.076041996
0.605571985	0.332612008	0.260625005
0.687623024	0.582295001	0.439740986
0.707006991	0.831318974	0.145153001
0.690280020	0.082079999	0.317948997
0.703473985	0.327805996	0.493153989
Ca-7 _{OH} -LDH		
1.0		
7.8200001717	0.0000000000	0.0000000000
-0.0000031182	11.7086601257	0.0000000000
-0.0000037977	-0.0000037977	28.5200004578
H O Al Cl	Ca	
37 37 6 6	12	
Direct	0.500500500	0.150005
0.93850/497	0.522522509	0.153326005
0.946311295	0./68246/10	0.333917/07

0.963250816	0.000645500	0.499616504
0.920218110	0.441450894	0.009757800
0.943055987	0.694079578	0.202998102
0.945879400	0.952571809	0.378889114
0.430591196	0.651376903	0.150192007
0.429369688	0.894002080	0.335279107
0.420043409	0.168361902	0.500999629
0.419792712	0.389691114	0.070968397
0.420972914	0.642760813	0.243136793
0.429471791	0.889636278	0.421221107
0.918959796	0.945805907	0.008624000
0.922849715	0.216346696	0.209877402
0.939629078	0.453883201	0.379239798
0.952932477	0.275465608	0.071125202
0.918516099	0.497727603	0.243490905
0.948297679	0.772916317	0.421160489
0.457641900	0.221369505	0.007196800
0.412212014	0.467553914	0.192058697
0.432051390	0.708129823	0.378680706
0.428239793	0.150423706	0.153780594
0.410064787	0.404920995	0.341875702
0.419599295	0.662922978	0.502786815
0.959123611	0.774585426	0.069234602
0.945190012	0.019925799	0.243406907
0.946202576	0.273286194	0.418282807
0.941631377	0.031169901	0.151538596
0.919891477	0.286074787	0.322421700
0.966545403	0.501613081	0.500610709
0.424655706	0.886943221	0.071853600
0.420568109	0.129622906	0.246242002
0.429729015	0.390343904	0.425091803
0.457400292	0.723272204	0.008300900
0.430880994	0.951264799	0.198548600
0.426447690	0.206827804	0.378669709
0.215403304	0.348714113	0.231558606
0.815411508	0.515383720	0.146740705
0.823335707	0.759669304	0.327748209
0.840218008	0.992643416	0.497169286
0.797353387	0.451660603	0.015143400
0.821672201	0.716287076	0.202181205
0.822830975	0.969233811	0.376571387
0.554631889	0.656537712	0.146171898
0.552087605	0.901525617	0.328366607

0.543500006	0.172233298	0.498429507
0.544650614	0.405301809	0.076044597
0.544402480	0.653612375	0.247347295
0.552174389	0.902050018	0.427474409
0.796895504	0.954014897	0.015283900
0.799553096	0.223985493	0.204578295
0.816691816	0.470551610	0.376360297
0.828277886	0.258614808	0.076590799
0.794217825	0.499926388	0.247533202
0.825635672	0.760545373	0.427462190
0.578545213	0.211993605	0.014927700
0.534461379	0.448241502	0.194673106
0.555263102	0.692245603	0.376891404
0.551981091	0.150552496	0.148163900
0.530886412	0.409766495	0.332347810
0.541483223	0.674063027	0.498768896
0.834303498	0.758076429	0.074885502
0.822576225	0.006771900	0.247315705
0.823704898	0.258599788	0.424619406
0.819284081	0.017466400	0.147577703
0.798029900	0.268598408	0.323677301
0.844227493	0.490676999	0.497483402
0.549551785	0.903814375	0.076824702
0.544736385	0.133514896	0.250731796
0.553713977	0.401325196	0.430027902
0.579590201	0.713291705	0.014434500
0.553865612	0.938086808	0.198629498
0.549726009	0.192716405	0.376354903
0.282404393	0.300307214	0.252957106
0.687085271	0.332165509	0.036595698
0.677742600	0.580692828	0.198090896
0.688545585	0.830650926	0.377567708
0.689990222	0.832486689	0.036143899
0.682198405	0.080941297	0.199729204
0.680027723	0.333310902	0.377236307
0.172253594	0.567113876	0.200948194
0.182784796	0.336227089	0.043883700
0.188377097	0.833037615	0.381150186
0.184984893	0.344170004	0.390012801
0.182990998	0.128962800	0.203785300
0.190303698	0.835520327	0.045006499
0.686936796	0.582260072	0.074600004
0.683405697	0.829726398	0.260987699

0.686834216	0.081442401	0.437968612
0.690932989	0.333356798	0.145606399
0.684972227	0.579124987	0.318297714
0.690466881	0.832843482	0.492579997
0.682043612	0.082897402	0.075478099
0.601153493	0.329382509	0.260025114
0.688155293	0.581207395	0.439124286
0.702443004	0.830601692	0.144643903
0.692842185	0.081850499	0.318791211
0.701189399	0.328584611	0.492213100

Reference

1. G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, *Phys. Rev. B*, 1993, 47, 558-561.

2. G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal--amorphoussemiconductor transition in germanium, *Phys. Rev. B*, 1994, **49**, 14251-14269.

3. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, *Phys. Rev. B*, 1996, **54**, 11169-11186.

4. P. E. Blöchl, Projector augmented-wave method, *Phys. Rev. B*, 1994, **50**, 17953-17979.

5. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, *Phys. Rev. B*, 1999, **59**, 1758-1775.

6. J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.

7. H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, *Phys. Rev. B*, 1976, **13**, 5188-5192.

8. D. J. Chadi, Special points for Brillouin-zone integrations, *Phys. Rev. B*, 1977, 16, 1746-1747.

9. H. Yan, X.-J. Zhao, Y.-Q. Zhu, M. Wei, D. G. Evans and X. Duan, in *The Periodic Table II: Catalytic, Materials, Biological and Medical Applications*, ed. D. M. P. Mingos, Springer International Publishing, Cham, 2019, DOI: 10.1007/430_2019_47, pp. 89-120.

10. X. Kong, R. Ge, T. Liu, S. Xu, P. Hao, X. Zhao, Z. Li, X. Lei and H. Duan, Super-stable mineralization of cadmium by calcium-aluminum layered double hydroxide and its large-scale application in agriculture soil remediation, *Chem. Eng. J.*, 2021, **407**.

11. C. Hartwigsen, S. Goedecker and J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, *Phys. Rev. B*, 1998, **58**, 3641-3662.

12. S. Goedecker, M. Teter and J. Hutter, Separable dual-space Gaussian pseudopotentials, *Phys. Rev. B*, 1996, **54**, 1703-1710.

13. J. VandeVondele and J. Hutter, Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases, *J. Chem. Phys.*, 2007, **127**, 114105.

14. G. J. Martyna, M. L. Klein and M. Tuckerman, Nosé–Hoover chains: The canonical ensemble via continuous dynamics, *J. Chem. Phys.*, 1992, **97**, 2635-2643.

15. W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, *Phys. Rev. A*, 1985, **31**, 1695-1697.

16. M. Brehm, M. Thomas, S. Gehrke and B. Kirchner, TRAVIS—A free analyzer for trajectories from molecular simulation, *The Journal of Chemical Physics*, 2020, **152**.

17. F. Jalilehvand, D. Spångberg, P. Lindqvist-Reis, K. Hermansson, I. Persson and M. Sandström, Hydration of the Calcium Ion. An EXAFS, Large-Angle X-ray Scattering, and Molecular Dynamics Simulation Study, *J. Am. Chem. Soc.*, 2001, **123**, 431-441.

18. Y. Li, H. Pan, Q. Liu, X. Ming and Z. Li, Ab initio mechanism revealing for tricalcium silicate dissolution, *Nat. Commun.*, 2022, **13**, 1253.

19. C. Lefebvre, G. Rubez, H. Khartabil, J.-C. Boisson, J. Contreras-García and E. Hénon, Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density, *Phys. Chem. Chem. Phys.*, 2017, **19**, 17928-17936.

20. T. Lu and F. Chen, Multiwfn: A multifunctional wavefunction analyzer, *J. Comput. Chem.*, 2012, **33**, 580-592.

21. T. Lu and Q. Chen, Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems, *J. Comput. Chem.*, 2022, **43**, 539-555.

22. T. Lu and Q. Chen, in *Reference Module in Chemistry, Molecular Sciences and Chemical Engineering*, Elsevier, 2023, DOI: <u>https://doi.org/10.1016/B978-0-12-821978-2.00076-3</u>.

23. W. Xiong, J. Wang, X. Kong, G. I. N. Waterhouse, H. Liu, Y. Wang, S. Liu, Y. Wang, S. Li, Y. Zhao and H. Duan, Efficient and Superstable Mineralization of Toxic Cd2+ Ions through Defect Engineering in Layered Double Hydroxide Nanosheets, *J. Phys. Chem. C*, 2023, **127**, 8759-8769.

24. W. Xiong, M. Yang, J. Wang, H. Wang, P. Zhao, Z. Li, B. Liu, X. Kong, H. Duan and Y. Zhao, Removal, recycle and reutilization of multiple heavy metal ions from electroplating wastewater using super-stable mineralizer Ca-based layered double hydroxides, *Chem. Eng. Sci.*, 2023, **279**.