# A versatile fluorinated azamacrocyclic chelator enabling <sup>18</sup>F PET or <sup>19</sup>F MRI : a first step towards new multimodal and smart contrast agents.

Charline Sire,<sup>a</sup> Vincent Meneyrol,<sup>b</sup> Nathalie Saffon-Merceron,<sup>c</sup> Enzo Terreno,<sup>d</sup> Francesca Garello,<sup>d</sup> Lorenzo Tei,<sup>e</sup> Emmanuelle Jestin,<sup>b</sup> Raphaël Tripier<sup>a</sup> and Thibault Troadec<sup>\*a</sup>

<sup>a.</sup> Univ. Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, 29200 Brest, France.

<sup>b.</sup> Cyclotron Réunion Océan Indien CYROI, 2 rue Maxime Rivière 97490 Sainte-Clotilde, France.

<sup>c</sup> Institut de Chimie de Toulouse (UAR 2599), 118 route de Narbonne, 31062 Toulouse Cedex 9, France.

<sup>d.</sup> Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44/bis, 10126 Turin (Italy).

e. Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121 Alessandria, Italy.

Corresponding author e-mail: Thibault.troadec@univ-brest.fr

## **Electronic Supporting Information**

| General considerations                                                                                                                  | 2        |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------|
| Synthesis and characterization of $H_2Do2py2BF_3$ :                                                                                     | 3        |
| Figure S1 - <sup>1</sup> H NMR (400.16 MHz) of Do2py2BPin intermediate                                                                  | 3        |
| Figure S2 - <sup>1</sup> H NMR (400.16 MHz) of H <sub>2</sub> Do2py2BF <sub>3</sub>                                                     | 5        |
| Figure S3 - <sup>19</sup> F NMR (376.53 MHz) of $H_2Do2py2BF_3$                                                                         | 6        |
| Figure S4 - $^{11}$ B NMR (128.39 MHz) of H <sub>2</sub> Do2py2BF <sub>3</sub>                                                          | 7        |
| Figure S5 – $^{13}$ C (JMod) NMR (125.79 MHz) of H <sub>2</sub> Do2py2BF <sub>3</sub> at pH 4 (D <sub>2</sub> O/CD <sub>3</sub> CN 1:1) | 7        |
| Figure S6 - <sup>11</sup> B- <sup>1</sup> H HMBC NMR of H <sub>2</sub> Do2py2BF <sub>3</sub>                                            | 8        |
| Figure S7 - COSY NMR of $H_2Do2py2BF_3$                                                                                                 | 8        |
| Figure S8 – $^{13}$ C- $^{1}$ H HSQC NMR of H <sub>2</sub> Do2py2BF <sub>3</sub>                                                        | 9        |
| Figure S9 - ESI-HRMS (Positive ions) of $H_2Do2py2BF_3$                                                                                 | 10       |
| Figure S10 - ESI-HRMS (Negative ions) of H <sub>2</sub> Do2py2BF <sub>3</sub>                                                           | 11       |
| Synthesis and characterization of $Zn(Do2py2BF_3)$                                                                                      | 12       |
| Figure S11 - <sup>1</sup> H NMR (400.16 MHz, D <sub>2</sub> O/CD <sub>3</sub> CN 1 :1) of Zn(Do2py2BF <sub>3</sub> ) at 298K and 333K   | 13       |
| Figure S12 - <sup>19</sup> F NMR (376.53 MHz, D <sub>2</sub> O/CD <sub>3</sub> CN 1 :1) of Zn(Do2py2BF <sub>3</sub> ) at 298K           | 14       |
| Figure S13 – X-Ray diffraction structure of $Zn(Do2py2BF_3)$ with calculated N1-N2-N3-N4 centro and Zn-N distances                      | id<br>15 |
| Figure S14 - ESI-HRMS (Positive ions) of Zn(Do2py2BF <sub>3</sub> )                                                                     | 16       |
| X-Ray diffraction data:                                                                                                                 | 17       |
| H <sub>2</sub> Do2py2BF <sub>3</sub> (pH 4)                                                                                             | 17       |
| Table S1 - Crystal data and structure refinement for $H_2Do2py2BF_3$ (pH 4)                                                             | 18       |
| H <sub>4</sub> Do2py2BF <sub>3</sub> <sup>2+</sup> (pH 1)                                                                               | 19       |
| Table S2 - Crystal data and structure refinement for H <sub>4</sub> Do2py2BF <sub>3</sub> <sup>2+</sup> (pH 1)                          | 20       |

E-mail: Thibault.troadec@univ-brest.fr

| Zn(Do2py2BF <sub>3</sub> ) complex                                            | 21 |
|-------------------------------------------------------------------------------|----|
| Table S3 - Crystal data and structure refinement for $Zn(Do2py2BF_3)$         | 22 |
| NMR monitoring of Do2py2BF $_3$ and Zn(Do2py2BF $_3$ ) pH-dependant stability | 23 |
| Figure S15: $H_2$ Do2py2BF <sub>3</sub> ligand (pH 2, 25°C)                   | 23 |
| Figure S16: $H_2Do2py2BF_3$ ligand (pH 7.3)                                   | 24 |
| Figure S17: $H_2Do2py2BF_3$ ligand (pH 9.7)                                   | 24 |
| Figure S18: Zn(Do2py2BF <sub>3</sub> ) complex (pH 2)                         | 25 |
| Figure S19: Zn(Do2py2BF <sub>3</sub> ) complex (pH 7.3)                       | 26 |
| Figure S20: Zn(Do2py2BF <sub>3</sub> ) complex (pH 9.7)                       | 27 |
| <sup>18</sup> F-Radiolabeling                                                 | 28 |
| Figure S21: Scheme of TRACERLab FX FN module                                  | 29 |
| Figure S22: HPLC analysis of $H_2Do2Py2BF_3$ radiolabeling.                   | 30 |
| Figure S23: HPLC analysis of $Zn(Do2Py2BF_3)$ radiolabeling.                  | 32 |
| <sup>19</sup> F-Magnetic Resonance                                            | 34 |
| Figure S24: <sup>19</sup> F Signal Intensity values at 7T                     | 34 |
| References                                                                    | 34 |

## **General considerations**

Reagents were purchased from Sigma-Aldrich, TCI Chemicals, Acros Organics. Dipyridylcyclen (Do2py) was prepared according to previously described procedure.<sup>[1]</sup> NMR data were recorded at the "Service commun de RMN-RPE" at the Université de Bretagne Occidentale (UBO). <sup>1</sup>H, <sup>13</sup>C and 2D NMR spectra were recorded on Bruker Avance III HD 500 (500.13 MHz for <sup>1</sup>H, 125.79 MHz for <sup>13</sup>C, 470.59 MHz for <sup>19</sup>F and 202.46 for <sup>11</sup>B), Bruker Avance 400 or 400 Neo (400.13 MHz for <sup>1</sup>H, 100.61 MHz for <sup>13</sup>C, 376.50 MHz for <sup>19</sup>F and 161.98 for <sup>11</sup>B) or Bruker AMX-3 300 (300.13 MHz for <sup>1</sup>H, 75.47 MHz for <sup>13</sup>C and 282.40 MHz for <sup>19</sup>F) spectrometers. All <sup>13</sup>C, <sup>11</sup>B and <sup>19</sup>F spectra are proton-decoupled unless otherwise stated. Signal multiplicity are reported as follows: d = doublet, dd = doublet of doublet, t = triplet, q = quadruplet, br = broad.

High-resolution mass spectra (HRMS) were performed on a Bruker maXis mass spectrometer by the SALSA platform from ICOA laboratory (Orléans, France). Elemental analysis was conducted at CRMPO platform (ISCR, Rennes) with reported average values of 2 experiments.

Crystallographic data collection was performed at low temperature (193 K) at the Service RX of the Institut de Chimie de Toulouse, Université Paul Sabatier, on a Bruker-AXS D8-Venture diffractometer using MoK $\alpha$  radiation ( $\lambda = 0.71073$  Å) for H<sub>2</sub>**Do2py2BF3** and **Zn(Do2py2BF3)** or CuK $\alpha$  radiation ( $\lambda = 1.54178$  Å) for H<sub>4</sub>**Do2py2BF3**<sup>2+</sup>. Phi- and omega-scans were used. The data were integrated with SAINT (Program for data reduction, Bruker-AXS) and an empirical absorption correction with SADABS was applied (Program for data correction, Bruker-AXS). The structures were solved using an intrinsic phasing method (SheIXT)55 and refined using a least-squares method on F2.56 All non-H atoms were refined with anisotropic displacement parameters. Hydrogen atoms were refined isotropically at calculed positions using a riding model except H atoms on nitrogen and water molecules (located by difference

Fourier maps). Some parts of the  $H_2$ **Do2py2BF3** ligand and a water molecule of the **Zn(Do2py2BF3)** complex were found to be disordered. Several restraints (SAME, SIMU, DELU) were applied to refine some moieties of the molecules and to avoid the collapse of the structures during the least-squares refinement by the large anisotropic displacement parameters.

CCDC 2314190 ( $H_2$ **Do2py2BF<sub>3</sub> ligand**), 2314191 ( $H_4$ **Do2py2BF<sub>3</sub><sup>2+</sup> ligand**) and 2314192 (**Zn(Do2py2BF<sub>3</sub>)**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>https://www.ccdc.cam.ac.uk/structures/</u>.

## Synthesis and characterization of H<sub>2</sub>Do2py2BF<sub>3</sub>:



Warning: potassium bifluoride (KHF<sub>2</sub>) is abrasive for glassware.

Under argon, Do2py (0.500 g, 1.40 mmol) was placed in dry degassed acetonitrile (30 mL) with potassium carbonate (1.0 g, 5 equiv.) and a solution of iodomethylpinacolborane (0.788 g, 3.08 mmol, 2.2 equiv.) in dry acetonitrile (20 mL) was added dropwise. The mixture was stirred at RT for 3 days, then filtered to remove excess potassium carbonate and the volatiles were removed under vaccum to obtain crude **Do2py2BPin**.

**Do2py2BPin** : <sup>1</sup>H NMR (CD<sub>3</sub>CN, 400.13 MHz, 298 K, TMS)  $\delta$  (ppm) 8.63 (d, 2H, J<sub>H-H</sub> = 4.8 Hz CH<sub>Ar</sub>), 7.79 (dt, 2H, J<sub>H-H</sub> = 7.7 and 1.9 Hz, CH<sub>Ar</sub>), 7.34 (brt, 4H, J<sub>H-H</sub> = 7.7 Hz, CH<sub>Ar</sub>), 4.22 (brs, <4H, CH<sub>2</sub>Py), 3.40-2.45 (br, <16H, CH<sub>2</sub><sup>cyclen</sup>), 1.45-1.05 (br, 28H, 2 x CH<sub>2</sub>BPin + 8 x CH<sub>3</sub><sup>Pin</sup>)



Crude **Do2py2BPin** was redissolved in methanol (16 mL) and potassium bifluoride (1.1 g, 14 mmol, 10 equiv.) in water (4 mL) was added. The mixture was stirred at RT for 16h, then volatiles were removed under vaccum. The product was extract with acetonitrile (2 x 10 mL), dried under vacuum, then washed with sodium thiosulfate aqueous solution (2M) (2 x 5 mL) to provide  $H_2Do2py2BF_3$  as a white powder (444 mg, 0.86 mmol, yield = 61%).

#### H<sub>2</sub>Do2py2BF<sub>3</sub> (*pH 4*):

 $\frac{{}^{1}H \ \text{NMR}}{} (D_2 O/C D_3 C N \ 1:1, \ 400.13 \ \text{MHz}, \ 298 \ \text{K}, \ \text{TMS}) \ \delta \ (\text{ppm}): \ 8.53 \ (\text{d}, \ 2\text{H}, \ \text{J}_{\text{H-H}} = \ 4.9 \ \text{Hz} \\ \text{CH}_{\text{Ar}}), \ 7.78 \ (\text{dt}, \ 2\text{H}, \ \text{J}_{\text{H-H}} = \ 7.7 \ \text{and} \ 1.8 \ \text{Hz}, \ \text{CH}_{\text{Ar}}), \ 7.48 \ (\text{d}, \ 2\text{H}, \ \text{J}_{\text{H-H}} = \ 7.7 \ \text{Hz}, \ \text{CH}_{\text{Ar}}), \ 7.33 \ (\text{dd}, \ 2\text{H}, \ \text{J}_{\text{H-H}} = \ 7.7 \ \text{and} \ 4.9 \ \text{Hz}, \ \text{CH}_{\text{Ar}}), \ 3.92 \ (\text{s}, \ 4\text{H}, \ \text{CH}_2 \text{Py}), \ 3.28 \ (\text{m}, \ 8\text{H}, \ \text{CH}_2^{\text{cyclen}}), \ 2.91 \ (\text{m}, \ 8\text{H}, \ \text{CH}_2^{\text{cyclen}}), \ 1.80 \ (\text{q}, \ 4\text{H}, \ ^3\text{J}_{\text{H-F}} = \ 5.2 \ \text{Hz}, \ \text{CH}_2 \text{BF}_3).$ 

<sup>19</sup>F NMR (D<sub>2</sub>O/CD<sub>3</sub>CN 1:1, 376.50 MHz, 298 K, CFCl<sub>3</sub>) δ (ppm): -135.6 (s).

<u><sup>11</sup>B NMR</u> (D<sub>2</sub>O/CD<sub>3</sub>CN 1:1, 161.98 MHz, 298 K, BF3·Et2O) δ (ppm): 2.4 (s).

 $\frac{{}^{13}\text{C Jmod NMR}}{(\text{CH}_2\text{O}/\text{CD}_3\text{CN 1:1, 125.79 MHz, 298 K, TMS) } \delta \text{ (ppm): 156.8 (C^{Ar}), 149.2 (CH^{Ar}), 136.7 (CH^{Ar}), 123.1 (CH^{Ar}), 122.2 (CH^{Ar}), 57.2 (CH_2\text{Py}), 51.7 (CH_2^{\text{cyclen}}), 48.4 (CH_2^{\text{cyclen}}), 47.8 (CH_2\text{BF}_3).}$ 

<u>ESI-HR-MS (positive ions,  $M = H_2 Do2py2BF_3$ )</u>:

m/z calcd. for [C22H35B2F6N6]<sup>+</sup>: 519.3008, found [M+H]<sup>+</sup> : 519.3012.

m/z calcd. for [C22H36B2F6N6]<sup>2+</sup>: 260.1540, found [M+2H]<sup>2+</sup>: 260.1542.

additional fragmentations found:  $[MH_2-HF]^{2+}$ : m/z 250.1510,  $[MH_2-2HF]^{2+}$ : m/z 240.1479.

#### <u>ESI-HR-MS (negative ions, $M = H_2 Do2py2BF_3$ )</u>:

m/z calcd. for [C22H33B2F6N6]<sup>-</sup>: 517.2862, found [M-H]<sup>-</sup> : 517.2864.

m/z calcd. for [C22H32B2F6N6Na]<sup>-</sup>: 539.2682, found [M-2H+Na]<sup>-</sup>: 539.2684.

m/z calcd. for [C22H34B2F6N6I]<sup>-</sup>: 645.1985, found [M+I]<sup>-</sup>: 685.1986.

Elemental analysis:

calcd (%) for C22H34B2F6N6: C 51.00, H 6.61, N 16.22; found: C 50.67, H 6.59, N 16.22

H<sub>2</sub>Do2py2BF<sub>3</sub> (pH 1):

 $\frac{^{1}H \ NMR}{^{2}} (D_{2}O, \ 400.13 \ MHz, \ 298 \ K, \ TMS) \ \delta \ (ppm): \ 8.83 \ (d, \ 2H, \ J_{H-H} = 6.1 \ Hz \ CH_{Ar}), \ 8.63 \ (m, \ 2H, \ CH_{Ar}), \ 8.27-8.14 \ (m, \ 2H, \ CH_{Ar}), \ 8.05 \ (m, \ 2H, \ CH_{Ar}), \ 4.18 \ (m, \ 4H, \ CH_{2}Py), \ 3.53 \ (br, \ 8H, \ CH_{2^{cyclen}}), \ 3.09 \ (br, \ 4H, \ CH_{2^{cyclen}}), \ 2.93 \ (br, \ 4H, \ CH_{2^{cyclen}}), \ 2.30-1.90 \ (brm, \ 4H, \ CH_{2}BF_{3}).$   $\frac{^{19}F \ NMR}{^{1}} (D_{2}O/CD_{3}CN \ 1:1, \ 376.50 \ MHz, \ 298 \ K, \ CFCl_{3}) \ \delta \ (ppm): \ -136/-139 \ ppm \ (m).$   $\frac{^{11}B \ NMR}{^{1}} (D_{2}O/CD_{3}CN \ 1:1, \ 161.98 \ MHz, \ 298 \ K, \ BF3 \cdot Et2O) \ \delta \ (ppm): \ 2.1 \ (s).$ 

#### Figure S2 - <sup>1</sup>H NMR (400.16 MHz) of H<sub>2</sub>Do2py2BF<sub>3</sub>



#### Figure S3 - <sup>19</sup>F NMR (376.53 MHz) of H<sub>2</sub>Do2py2BF<sub>3</sub>



-131.5 -133.0 -134.5 -136.0 -137.5 -139.0 -140.5 -142.0

00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20

#### Figure S4 - <sup>11</sup>B NMR (128.39 MHz) of H<sub>2</sub>Do2py2BF<sub>3</sub>









Figure S7 - COSY NMR of H<sub>2</sub>Do2py2BF<sub>3</sub>



## Figure S8 – <sup>13</sup>C-<sup>1</sup>H HSQC NMR of H<sub>2</sub>Do2py2BF<sub>3</sub>



0

Fédération de Recherche Physique et Chimie du Vivant (FR2708 : CBM/ICOA) HRAM Plate-forme de Spectrométrie de Masse Haute Résolution





Institut de Chimie Organique et Analytique cyril.colas@univ-orle: UMR 7311 - Université d'Orléans - CNRS +33 (0)2 38 49 46 61 BP 6759 - rue de Chartres - F-45067 ORLEANS Cedex 2

Page 1 of 2

Fédération de Recherche Physique et Chimie du Vivant (FR2708 : CBM/ICOA) HRAM Plate-forme de Spectrométrie de Masse Haute Résolution

Acquisition Date

Instrument / Ser#

01/04/2019 20:53:55

maXis 255552.00086

#### Analysis Info

Sample Name Do2py2BF3 Analysis Name X049087CYC.

| Analysis Name  | X049087CYC.d |                       |           | Method                | negatif-6.m |
|----------------|--------------|-----------------------|-----------|-----------------------|-------------|
| Acquisition Pa | rameter      | A4073                 | 100000000 | Shirl Shirl Constants |             |
| Source Type    | ESI          | Ion Polarity          | Negative  | Set Nebulizer         | 0.6 Bar     |
| Scan Begin     | 50 m/z       | Set Capillary         | 4000 V    | Set Dry Heater        | 200 °C      |
| Scan End       | 3000 m/z     | Set Collision Cell RF | 500.0 Vpp | Set Dry Gas           | 7.0 Vmin    |





## Synthesis and characterization of Zn(Do2py2BF<sub>3</sub>)



Warning: perchlorate salts can be explosive, and were therefore used in small quantities (< 100 mg) under their hydrated form.

 $H_2Do2py2BF_3$  (0.091 g, 0.176 mmol) was placed in dry acetonitrile (7 mL) with potassium carbonate (0.122 g, 5 equiv.) and zinc(II) perchlorate hexahydrate (0.0655 g, 0.176 mmol). The mixture was stirred at 60°C for 2 hours, then filtered to remove excess potassium carbonate. 3 mL of water were added to the supernatant and the solution was slowly evaporated to afford colorless crystals of the title compound (0.077 g, 0.132 mmol, yield = 75%).

#### Zn(Do2py2BF<sub>3</sub>):

*Nb* : <sup>1</sup>*H NMR presents broad signals at Room Temperature, therefore spectrum integration was performed at* 333*K*. <sup>11</sup>*B and* <sup>13</sup>*C remain broad even at* 333*K and did not lead to satisfactory spectra*.

 $\frac{{}^{1}H \ NMR}{(H_{2}O/CD_{3}CN \ 1:1, \ 500.13 \ MHz, \ 298 \ K, \ TMS) \ \delta \ (ppm): \ 8.42 \ (d, \ 2H, \ J_{H-H} = 5.1 \ Hz}{(CH_{Ar}), \ 7.98 \ (dt, \ 2H, \ J_{H-H} = 7.6 \ and \ 1.5 \ Hz, \ CH_{Ar}), \ 7.50 \ (d, \ 2H, \ J_{H-H} = 7.6 \ Hz, \ CH_{Ar}), \ 7.33 \ (dd, \ 2H, \ J_{H-H} = 7.6 \ and \ 5.1 \ Hz, \ CH_{Ar}), \ 4.20 \ (br, \ 4H, \ CH_{2}Py), \ 3.15-2.60 \ (m, \ 16H, \ CH_{2}^{cyclen}), \ 1.13 \ (br, \ 4H, \ ^{3}J_{H-F} = 5.2 \ Hz, \ CH_{2}BF_{3}).$ 

<u><sup>19</sup>F NMR</u> (D<sub>2</sub>O/CD<sub>3</sub>CN 1:1, 470.59 MHz, 298 K, CFCl<sub>3</sub>) δ (ppm): -137.4 (s). ESI-HR-MS (positive ions,  $M = Zn(Do2py2BF_3)$ ):

m/z calcd. for [C22H33B2F5N6Zn]<sup>+</sup>: 561.2080, found [M-F]<sup>+</sup> : 561.2082.

m/z calcd. for [C22H33B2F6N6Zn]\*: 581.2142, found [M+H]\* : 581.2144.

m/z calcd. for [C22H32B2F6N6NaZn]<sup>+</sup>: 603.1962, found [M+Na]<sup>+</sup> : 603.1963.

m/z calcd. for [C22H32B2F6KN6Zn]<sup>+</sup>: 619.1701, found [M+K]<sup>+</sup> : 619.1708.

additional fragmentations found: [MH<sub>2</sub>-HF]<sup>2+</sup>: m/z 250.1510, [MH<sub>2</sub>-2HF]<sup>2+</sup>: m/z 240.1479. *Elemental analysis:* 

calcd (%) for C22H32B2F6N6Zn: C 45.44, H 5.55, N 14.45; found: C 45.27, H 5.49, N 15.38



## Figure S11 - <sup>1</sup>H NMR (400.16 MHz, D<sub>2</sub>O/CD<sub>3</sub>CN 1 :1) of Zn(Do2py2BF<sub>3</sub>) at 298K and 333K

## Figure S12 - <sup>19</sup>F NMR (376.53 MHz, D<sub>2</sub>O/CD<sub>3</sub>CN 1 :1) of Zn(Do2py2BF<sub>3</sub>) at 298K

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -19(

40

| c | 1 | Λ  |
|---|---|----|
| J | 4 | .4 |

<u>Figure S13 – X-Ray diffraction structure of  $Zn(Do2py2BF_3)$  with calculated N1-N2-N3-N4 centroid and Zn-N distances</u>



|           | Zn(Do2py2BF3) | Zn(Do2py)2+<br>(ref 2) |
|-----------|---------------|------------------------|
| Zn-N1     | 2.221         | 2.141                  |
| Zn-N2     | 2.322         | 2.293                  |
| Zn-N3     | 2.244         | 2.172                  |
| Zn-N4     | 2.331         | 2.298                  |
| Zn-N5(py) | 2.182         | 2.186                  |
| Zn-N6(py) | 2.17          | 2.165                  |

Bond distances (Å). Values for Zn(Do2py)<sup>2+</sup> from Bernier et. al <sup>[2]</sup>



#### Analysis Info

Source Type

Scan Begin Scan End

Do2py2BF3-Zn X049088CYC.d Sample Name Analysis Name

Acquisition Parameter

#### Acquisition Date 01/04/2019 14:09:57 Instrument / Ser# maXis 255552.00086 Method

| a             | positir-6.m |  |
|---------------|-------------|--|
| 200000        | 0.000       |  |
| Sat Mabulizar | 0 C Par     |  |

| ESI Ion Polarity Positive                 | Set Nebulizer  | 0.6 Bar  |
|-------------------------------------------|----------------|----------|
| 50 m/z Set Capillary 4500 V               | Set Dry Heater | 200 °C   |
| 2500 m/z Set Collision Cell RF 1800.0 Vpp | Set Dry Gas    | 7.0 Vmin |



| Weds. HVZ | ~  |   | IOIT FOITIGIA    | 071 10 1557 | en [bbiii] | moigina | 100  | e Com |
|-----------|----|---|------------------|-------------|------------|---------|------|-------|
| 1.104/3/  | 2+ | 1 | C22H32B2F4N6Zn   | 2/1.10455/  | 1.0        | 43.6    | 10.0 | even  |
| 61.208285 | 1+ | 1 | C22H32B2F5N6Zn   | 561.208066  | 1.2        | 51.5    | 9.0  | even  |
| 81.214445 | 1+ | 1 | C22H33B2F6N6Zn   | 581.214294  | 1.3        | 16.6    | 8.0  | even  |
| 03.196279 | 1+ | 1 | C22H32B2F6N6NaZn | 603.196238  | 1.4        | 28.2    | 8.0  | even  |
| 19.170832 | 1+ | 1 | C22H32B2F6KN6Zn  | 619.170175  | 0.4        | 58.3    | 8.0  | even  |

| Institut de Chimie Organique et Analytique          | cyril.colas@univ-orleans.fr | printed: | 12/04/2019 12:56:09 |
|-----------------------------------------------------|-----------------------------|----------|---------------------|
| UMR 7311 - Université d'Orléans - CNRS              | +33 (0)2 38 49 46 61        |          | Page 1 of 1         |
| BP 6759 - rue de Chartres - F-45067 ORLEANS Cedex 2 |                             |          |                     |

## X-Ray diffraction data:

<u>H<sub>2</sub>Do2py2BF<sub>3</sub> (pH 4)</u>



## Table S1 - Crystal data and structure refinement for $H_2Do2py2BF_3$ (pH 4)

| Identification code                      | H <sub>2</sub> Do2py2BF3                    |                         |
|------------------------------------------|---------------------------------------------|-------------------------|
| Empirical formula                        | C22 H34 B2 F6 N6                            |                         |
| Formula weight                           | 518.17                                      |                         |
| Temperature                              | 193(2) K                                    |                         |
| Wavelength                               | 0.71073 Å                                   |                         |
| Crystal system                           | Monoclinic                                  |                         |
| Space group                              | $P 2_{l}/c$                                 |                         |
| Unit cell dimensions                     | a = 11.5578(8) Å                            | <i>α</i> = 90°.         |
|                                          | b = 15.0808(10) Å                           | β= 109.789(2)°.         |
|                                          | c = 15.1865(8) Å                            | $\gamma = 90^{\circ}$ . |
| Volume                                   | 2490.7(3) Å <sup>3</sup>                    |                         |
| Z                                        | 4                                           |                         |
| Density (calculated)                     | 1.382 Mg/m <sup>3</sup>                     |                         |
| Absorption coefficient                   | 0.115 mm <sup>-1</sup>                      |                         |
| F(000)                                   | 1088                                        |                         |
| Crystal size                             | 0.700 x 0.200 x 0.160 mm <sup>3</sup>       |                         |
| Theta range for data collection          | 3.029 to 28.754°.                           |                         |
| Index ranges                             | -15<=h<=15, -20<=k<=20, -20                 | <=l<=17                 |
| Reflections collected                    | 108499                                      |                         |
| Independent reflections                  | 6459 [R(int) = 0.0492]                      |                         |
| Completeness to theta = $25.242^{\circ}$ | 99.8 %                                      |                         |
| Absorption correction                    | Semi-empirical from equivalen               | ts                      |
| Max. and min. transmission               | 0.7458 and 0.6753                           |                         |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |                         |
| Data / restraints / parameters           | 6459 / 126 / 387                            |                         |
| Goodness-of-fit on F <sup>2</sup>        | 1.011                                       |                         |
| Final R indices [I>2sigma(I)]            | R1 = 0.0511, wR2 = 0.1152                   |                         |
| R indices (all data)                     | R1 = 0.0752, wR2 = 0.1321                   |                         |
| Extinction coefficient                   | n/a                                         |                         |
| Largest diff. peak and hole              | 0.399 and -0.333 e.Å <sup>-3</sup>          |                         |

<u>H<sub>4</sub>Do2py2BF<sub>3</sub><sup>2+</sup>(pH 1)</u>



## cationic part of the structure



asymmetric unit

## Table S2 - Crystal data and structure refinement for $H_4Do2py2BF_3^{2+}$ (pH 1)

| Identification code                      | ification code $H_4Do2py2BF_3^{2+}$         |                               |  |
|------------------------------------------|---------------------------------------------|-------------------------------|--|
| Empirical formula                        | C22 H36 B2 F6 N6, I6                        |                               |  |
| Formula weight                           | nula weight 1281.59                         |                               |  |
| Temperature                              | 193(2) K                                    |                               |  |
| Wavelength                               | 1.54178 Å                                   |                               |  |
| Crystal system                           | Triclinic                                   |                               |  |
| Space group                              | P Ī                                         |                               |  |
| Unit cell dimensions                     | a = 12.8808(5) Å                            | α= 75.784(3)°.                |  |
|                                          | b = 12.9692(5) Å                            | $\beta = 67.305(3)^{\circ}.$  |  |
|                                          | c = 13.6306(5)  Å                           | $\gamma = 60.961(3)^{\circ}.$ |  |
| Volume                                   | 1831.86(13) Å <sup>3</sup>                  |                               |  |
| Z                                        | 2                                           |                               |  |
| Density (calculated)                     | 2.323 Mg/m <sup>3</sup>                     |                               |  |
| Absorption coefficient                   | 40.430 mm <sup>-1</sup>                     |                               |  |
| F(000)                                   | 1184                                        |                               |  |
| Crystal size                             | 0.060 x 0.050 x 0.020 mm <sup>3</sup>       |                               |  |
| Theta range for data collection          | 3.524 to 66.770°.                           |                               |  |
| Index ranges                             | -15<=h<=15, -15<=k<=15, -10<=l<=16          |                               |  |
| Reflections collected                    | 6486                                        |                               |  |
| Independent reflections                  | 6486 [R(int) = ?]                           |                               |  |
| Completeness to theta = $66.770^{\circ}$ | 99.6 %                                      |                               |  |
| Absorption correction                    | Semi-empirical from equivalen               | ts                            |  |
| Max. and min. transmission               | 0.7528 and 0.3939                           |                               |  |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |                               |  |
| Data / restraints / parameters           | 6486 / 1 / 392                              |                               |  |
| Goodness-of-fit on F <sup>2</sup>        | 1.002                                       |                               |  |
| Final R indices [I>2sigma(I)]            | R1 = 0.0541, wR2 = 0.1187                   |                               |  |
| R indices (all data)                     | R1 = 0.0984, wR2 = 0.1381                   |                               |  |
| Extinction coefficient                   | n/a                                         |                               |  |
| Largest diff. peak and hole              | 1.491 and -1.315 e.Å <sup>-3</sup>          |                               |  |

<u>Zn(Do2py2BF<sub>3</sub>)\_c</u>





## Table S3 - Crystal data and structure refinement for Zn(Do2py2BF<sub>3</sub>)

| Identification code                      | Zn(Do2py2BF3)                               |                         |  |
|------------------------------------------|---------------------------------------------|-------------------------|--|
| Empirical formula                        | C22 H32 B2 F6 N6 Zn, 2 H2 O,                |                         |  |
| Formula weight                           | 617.56                                      |                         |  |
| Temperature                              | 193(2) K                                    |                         |  |
| Wavelength                               | 0.71073 Å                                   |                         |  |
| Crystal system                           | Orthorhombic                                |                         |  |
| Space group                              | $P ca2_1$                                   |                         |  |
| Unit cell dimensions                     | a = 17.1147(8) Å                            | α= 90°.                 |  |
|                                          | b = 9.0627(5) Å                             | β= 90°.                 |  |
|                                          | c = 16.9949(8) Å                            | $\gamma = 90^{\circ}$ . |  |
| Volume                                   | 2636.0(2) Å <sup>3</sup>                    |                         |  |
| Z                                        | 4                                           |                         |  |
| Density (calculated)                     | 1.556 Mg/m <sup>3</sup>                     |                         |  |
| Absorption coefficient                   | 1.008 mm <sup>-1</sup>                      |                         |  |
| F(000)                                   | 1280                                        |                         |  |
| Crystal size                             | 0.250 x 0.200 x 0.050 mm <sup>3</sup>       |                         |  |
| Theta range for data collection          | 3.274 to 28.310°.                           |                         |  |
| Index ranges                             | -22<=h<=22, -12<=k<=12, -19                 | <=l<=22                 |  |
| Reflections collected                    | 64889                                       |                         |  |
| Independent reflections                  | 6090 [R(int) = 0.0376]                      |                         |  |
| Completeness to theta = $25.242^{\circ}$ | 99.8 %                                      |                         |  |
| Absorption correction                    | Semi-empirical from equivalent              | ts                      |  |
| Max. and min. transmission               | 0.7457 and 0.6317                           |                         |  |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |                         |  |
| Data / restraints / parameters           | 6090 / 7 / 376                              |                         |  |
| Goodness-of-fit on F <sup>2</sup>        | 1.047                                       |                         |  |
| Final R indices [I>2sigma(I)]            | R1 = 0.0239, wR2 = 0.0499                   |                         |  |
| R indices (all data)                     | R1 = 0.0303, wR2 = 0.0521                   |                         |  |
| Absolute structure parameter             | 0.006(3)                                    |                         |  |
| Extinction coefficient                   | n/a                                         |                         |  |
| Largest diff. peak and hole              | 0.224 and -0.319 e.Å <sup>-3</sup>          |                         |  |

## <u>NMR monitoring of Do2py2BF<sub>3</sub> and Zn(Do2py2BF<sub>3</sub>) pH-dependant</u> <u>stability</u>

3 pH conditions were used to assess stability of **Do2py2BF**<sub>3</sub> ligand and **Zn(Do2py2BF**<sub>3</sub>), at concentrations of ca. 3.10<sup>-2</sup> M in aqueous buffered solution with addition of DMSO to ensure full solubility of studied molecules as well as eventual degradation products. Monitoring was carried out by <sup>19</sup>F NMR with a minimum of 6 timepoints between. Trifluoroacetic acid (TFA) in solution in water was added in NMR tubes in a sealed capillary tube as an internal reference.

- Acidic pH (2 ± 0.2): HCl in H<sub>2</sub>O (0.5 mL) + DMSO (0.4 mL).
- Neutral pH (7.3 ± 0.2): Acetate buffer (0.5 mL) + DMSO (0.4 mL).
- Basic pH (9.7 ± 0.2): Ammonia buffer (0.5 mL) + DMSO (0.4 mL).

#### Figure S15: H<sub>2</sub>Do2py2BF<sub>3</sub> ligand (pH 2, 25°C)

Nb: at acidic pH, ligand is under the form  $H_4Do2py2BF_3^{2+}$ , with three broad <sup>19</sup>F signals (vide supra). Signals are slightly shifted owing to the different solvent system ( $D_2O/DMSO$  vs.  $D_2O$  only) but confirms the multiplicity and shape of the signals corresponding to the intact ligand from control spectrum.



## Figure S16: H<sub>2</sub>Do2py2BF<sub>3</sub> ligand (pH 7.3)

|   |                                                                                        | TFA referen | ce                                          |                                          |           |          |                                                                                                                 |          |
|---|----------------------------------------------------------------------------------------|-------------|---------------------------------------------|------------------------------------------|-----------|----------|-----------------------------------------------------------------------------------------------------------------|----------|
|   | t = 0 : H <sub>2</sub> <b>Do2py2BF<sub>3</sub></b> at pH 7.3<br>(acetate buffer /DMSO) |             |                                             |                                          | l         |          |                                                                                                                 |          |
|   | t = 2 h                                                                                |             |                                             |                                          |           |          | 16-14-16-16-16-16-16-16-16-16-16-16-16-16-16-                                                                   |          |
|   | t = 4 h                                                                                |             |                                             |                                          |           |          | an a                                                                        |          |
|   | t = 5 h                                                                                |             | and an an address of the standard           |                                          | l         |          | 999-999-9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                                                                         |          |
| t | t = 10 h                                                                               |             | u nyana manaka kata yana anga kataba        |                                          |           |          | ne jih gerano manang na gang na pang na |          |
|   | t = 14 h                                                                               |             | 2019-00-00-00-00-00-00-00-00-00-00-00-00-00 |                                          |           |          | ~~~                                                                                                             |          |
|   | t = 18 h                                                                               |             |                                             |                                          | l         | ~~~~     |                                                                                                                 |          |
|   | t = 3 days                                                                             |             |                                             | 1444-14-14-14-14-14-14-14-14-14-14-14-14 |           |          |                                                                                                                 |          |
| • | 0 -10 -20 -30 -40 -50 -60 -70                                                          | -80 -90     | -100 -110                                   | -120 -130                                | -140 -150 | -160 -17 | 0 -180                                                                                                          | -190 -21 |

## Figure S17: H<sub>2</sub>Do2py2BF<sub>3</sub>ligand (pH 9.7)

|     |                                                                                        | TFA reference |  |
|-----|----------------------------------------------------------------------------------------|---------------|--|
| t   | t = 0 : H <sub>2</sub> <b>Do2py2BF</b> <sub>3</sub> at pH 9.7<br>(ammonia buffer/DMSO) |               |  |
|     | t = 2 h                                                                                |               |  |
|     |                                                                                        |               |  |
|     | t = 4 h                                                                                |               |  |
|     |                                                                                        |               |  |
|     | t = 6 h                                                                                |               |  |
|     | t = 14 h                                                                               |               |  |
|     |                                                                                        |               |  |
|     | t = 18 h                                                                               |               |  |
|     | t = 3 days                                                                             |               |  |
| ↓ I |                                                                                        | -             |  |

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2

#### Figure S18: Zn(Do2py2BF<sub>3</sub>) complex (pH 2)



Data from integration of <sup>19</sup>F spectrum with TFA (capillary) as reference

Nb : t=0 corresponds to the first <sup>19</sup>F NMR measurement which is <5 minutes when taking into account the time required for spectrometer setting + acquisition time.  $t_{1/2}$  can therefore only be estimated as < 5 minutes.

#### Figure S19: Zn(Do2py2BF<sub>3</sub>) complex (pH 7.3)



Solvolysis of Zn complex at pH 7,3



Data from integration of <sup>19</sup>F spectrum with TFA (capillary) as reference

| t(hours) | complex/(total 19F) ratio |
|----------|---------------------------|
| 0        | 92                        |
| 3,5      | 90                        |
| 6        | 91                        |
| 22       | 89                        |
| 48       | 88                        |
| 144      | 82                        |
| 312      | 77                        |

#### Figure S20: Zn(Do2py2BF<sub>3</sub>) complex (pH 9.7)



Data from integration of <sup>19</sup>F spectrum with TFA (capillary) as reference

## <sup>18</sup>F-Radiolabeling

All solvents and reagents were purchased from commercial suppliers, namely Sigma Aldrich or VWR, and were used as received without further purification. Sep-Pak® Accell Plus QMA Plus Light Cartridges were purchased from Waters Corporation and were pre-conditioned with 2 ml of TBABr (10 mg/mL in  $H_2O$ ) and rinsed with 18 mL of water.

[<sup>18</sup>F] fluoride was produced by CYROI via the <sup>18</sup>O(p,n)<sup>18</sup>F nuclear reaction with a GE cyclotron (PETtrace 800, 16.5 MeV). The bombardment of <sup>18</sup>O-enriched water with protons at 80 µA during 15 min provided about 30 GBq of [<sup>18</sup>F]-fluoride in <sup>18</sup>O-enriched water (4 mL), then the activity was directly transferred under helium pressure to the radiosynthesis automate. A remote controlled GE TracerLab FX FN module was used for the automated radiolabeling experiments. Helium was used as a pressurizing gas during sample transfers.

For the RadioChemical Yields (RCY) measurements, the HPLC analysis were performed on a UPLC Ultimate 3000 system (Thermo fisher Scientific) equipped with a UV spectrophotometer and a Berthold Flowstar LB 514 radioactivity detector, column: Gemini C18, 250 × 4.6 mm, 5µm (Phenomenex), Elution condition : NH<sub>4</sub>OAc 0.1M (pH 10) (A) /MeCN (B) from 0 to 1 min 90/10 (A/B); a gradient from 1 min to 21 min to reach 20/80 (A/B) until 25 min, then to 26 min 90/10 (A/B); flow rate: 1 mL/min; room temperature, UV detection  $\lambda$ =258 nm.

#### Automated radiosynthesis

After the end of bombardment (EOB), the [<sup>18</sup>F] fluoride (30 GBq) was delivered to the automate and trapped on a pre-conditioned Sep-Pak Accell Plus QMA Plus Light Cartridge to remove <sup>18</sup>O-enriched water and others impurities. The whole activity was released from the cartridge into the reaction vessel by the aqueous solution of TBABr (16 mg in 0.5 mL) in vial 1 to form [<sup>18</sup>F]tetrabutylammonium fluoride ([<sup>18</sup>F]TBAF). 1 mL of acetonitrile from vial 2 was poured into the reaction vessel to provide anhydrous [<sup>18</sup>F]TBAF thanks to an azeotropic distillation under vacuum and helium flow by heating at 100°C. A solution containing the 1 mg of ligand H<sub>2</sub>Do<sub>2</sub>py<sub>2</sub>BF<sub>3</sub> in 1 ml acetonitrile or Zn(Do<sub>2</sub>py<sub>2</sub>BF<sub>3</sub>) in 1mL DMSO was poured into the reactor by applying helium pressure on vial 3. The mixture was stirred for 30 min at 80°C. The resulting solution was sucked into a vial. A sample was taken for analysis. The HPLC vial was measured into a shielded glove box with dose calibrator Scintidose (Lemer Pax) before and after the HPLC injection (10µL).

V1: 16 mg of TBABr in 0.5 mL water. V2: 1 mL of acetonitrile. V3: 1 mg of ligand in 1 mL of acetonitrile or DMSO



Elution condition: NH4OAc 0.1M (pH 10) (A) /MeCN (B) from 0 to 1 min 90/10 (A/B); a gradient from 1 min to 21 min to reach 20/80 (A/B) until 25 min, then to 26 min 90/10 (A/B); flow rate: 1 mL/min; room temperature, UV detection  $\lambda$ =258 nm and radioactivity detector (Berthold Flowstar LB 514).



[1]  $H_2Do2Py2BF_3 0.5 mg/mL$  in ACN (UV 258 nm).



[2] Radio spectrum of [18F]  $H_2$ Do2Py2BF<sub>3</sub> in ACN.





Elution condition: NH4OAc 0.1M (pH 10) (A) /MeCN (B) from 0 to 1 min 90/10 (A/B); a gradient from 1 min to 21 min to reach 20/80 (A/B) until 25 min, then to 26 min 90/10 (A/B); flow rate: 1 mL/min; room temperature, UV detection  $\lambda$ =258 nm and radioactivity detector (Berthold Flowstar LB 514).



[1] Zn-Do<sub>2</sub>Py<sub>2</sub>BF<sub>3</sub> 0.5 mg/mL in DMSO (UV 258 nm);





S34

## <sup>19</sup>F-Magnetic Resonance

 $Zn(Do2py2BF_3)$  was dissolved in  $CH_3CN:H_2O$  (1:1) at a concentration of 18.5 mg/mL (31.8 mM, 190.8 mM in 19F).

1H MRI: Rare sequence, Repetition Time (TR) = 4145 ms, Echo Time (TE) = 7.67 ms, Rare Factor (RF) = 32, Number of Averages (NAV) = 4, Field of View (FOV) = 35 x 35 mm, Matrix = 256 x 256, Slice Thickness = 2 mm, Acquisition Time = 2 min 12 s.

19F MRI: Rare sequence, TR = 2000 ms, TE = 38.1 ms, RF = 24, FOV = 35 x 35 mm, Matrix = 32 x 32, Slice Thickness = 2 mm, NAV = 300, 1350 or 1800 corresponding to an Acquisition Time of = 10, 45 or 60 min respectively, o1p = -134.5 ppm, Spectral width = 20000 Hz. The acquired image was then reconstructed with a 256 x 256 matrix (bicubic interpolation) in order to superimpose it to the 1H MR image. Image analysis was carried out with ImageJ: selected Regions of Interest (ROIs) were drawn on the different samples of the phantom and the mean signal intensity in each sample was measured. Then the SI was plotted against the 19F concentration values.

Figure S24: <sup>19</sup>F Signal Intensity values at 7T

Signal intensity determined by <sup>19</sup>F MRI reported against <sup>19</sup>F mM concentration (N AV 1800, Acq Time 60 min, Slice Thickness 2 mm, Matrix 32x32).



#### **References**

[1] J.-F. Morfin, R. Tripier, M. L. Baccon, H. Handel, Polyhedron 2009, 28, 3691–3698.

[2] N. Bernier, J. Costa, R. Delgado, V. Félix, G. Royal, R. Tripier, Dalton Trans. 2011, 40, 4514–4526.