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1. Spin-orbit and crystal field effects acting on 4f orbitals  

  

 First, to simplify the calculation, we model Yb(III) as a one-hole ([Xe]4f13) system, i.e., 

we ignore as many electron-electron interactions as possible to start by constructing 14 degenerate 

hydrogen-like |𝑚𝑙 𝑚𝑠⟩ basis with 𝑚𝑙 = −3,−2, …, 1, 2, 3, and 𝑚𝑠 = ±1/2.1,2 The components 

of the total Hamiltonian operator are 𝐻̂ = 𝐻̂0 + 𝐻̂𝑆𝑂 + 𝐻̂𝐶𝐹, where 𝐻̂0 is the generic hydrogen-

atom Hamiltonian with kinetic and electron-nuclear potential, 𝐻̂𝑆𝑂 is the spin-orbit interaction, and 

𝐻̂𝐶𝐹 accounts for the crystal field perturbation. For the spin-orbit term, 

 
𝐻̂𝑆𝑂 ≈ 𝜉Yb

4𝑓
 𝑙 ⋅ 𝑠̂, (eq. S1) 

where 𝜉Yb
4𝑓

 is one-electron spin-orbit coupling parameter (~ 2,870 cm-1) for Yb(III), 𝑙 ⋅ 𝑠̂ is the dot 

product of the orbital and spin angular momentum operators. The matrix elements, 

⟨𝑚𝑙 𝑚𝑠| 𝑙 ⋅ 𝑠̂|𝑚𝑙
′ 𝑚𝑠

′ ⟩  for 4f systems can therefore be obtained from the hydrogen-like angular 

functions. Without crystal field splitting (𝐻̂𝐶𝐹 = 0), we can diagonalize this matrix and obtain the 

angular-momentum-coupled |𝑗 𝑚𝑗⟩ representations, which have 8 degenerate ground states with 

𝑗 =
7

2
 and with a −

3

2
𝜉Yb

4𝑓
 energy shift, and 6 excited states with 𝑗 =

5

2
 with a +2𝜉Yb

4𝑓
 energy shift, 

these states are often labeled according to their term symbols 2F7/2 and 2F5/2.
1  

Here the |𝑚𝑙 𝑚𝑠⟩ functions are ordered as |+3 +
1

2
⟩, |+2 +

1

2
⟩, |+1 +

1

2
⟩, |0 +

1

2
⟩, |−1 +

1

2
⟩, 

|−2 +
1

2
⟩, |−3 +

1

2
⟩, |+3 −

1

2
⟩, |+2 −

1

2
⟩, |+1 −

1

2
⟩, |0 −

1

2
⟩, |−1 −

1

2
⟩, |−2 −

1

2
⟩, |−3 −

1

2
⟩.  

 

 The crystal field Hamiltonian (𝐻̂𝐶𝐹) can be obtained by applying the following operator to 

the |𝑚𝑙⟩ basis states (with no spin) for all 7 4f orbitals:3–5  

 

𝐻̂𝐶𝐹 = ∑ ∑𝐵𝑞
𝑘𝐶𝑞

𝑘

+𝑘

−𝑘

𝑘max 

𝑘=1

, 

 

(eq. S2) 

 

|𝒋 𝒎𝒋⟩ |𝒎𝒍 𝒎𝒔⟩ Energies 

|
𝟓

𝟐
±

𝟏

𝟐
⟩ ∓√4/7 |±1 ∓

1

2
⟩ ± √3/7 |0 ±

1

2
⟩ 

 

 

+2𝜉𝑌𝑏
4𝑓

 |
𝟓

𝟐
±

𝟑

𝟐
⟩ ∓√5/7 |±2 ∓

1

2
⟩ ± √2/7 |±1 ±

1

2
⟩ 

|
𝟓

𝟐
±

𝟓

𝟐
⟩ ∓√6/7 |±3 ∓

1

2
⟩ ± √1/7 |±2 ±

1

2
⟩ 

   

|
𝟕

𝟐
±

𝟏

𝟐
⟩ √3/7 |±1 ∓

1

2
⟩ + √4/7 |0 ±

1

2
⟩ 

 

 

 

−
3

2
𝜉𝑌𝑏

4𝑓
 

|
𝟕

𝟐
±

𝟑

𝟐
⟩ √2/7 |±2 ∓

1

2
⟩ + √5/7 |±1 ±

1

2
⟩ 

|
𝟕

𝟐
±

𝟓

𝟐
⟩ √1/7 |±3 ∓

1

2
⟩ + √6/7 |±2 ±

1

2
⟩ 

|
𝟕

𝟐
±

𝟕

𝟐
⟩ |±3 ±

1

2
⟩ 

 

Table S1. Eigenfunctions with eigenvalues of Yb(III) free ion, with angular momenta-coupled and 
uncoupled basis. 
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where 𝐶𝑞
𝑘  is the associated Racah tensor, 𝐵𝑞

𝑘  is the crystal field parameter, 𝑘  and 𝑞  are Racah 

tensor indices, 𝑘max  = 6 for the f-subshell. The crystal field parameter, 𝐵𝑞
𝑘 ≈ 𝐴𝑞

𝑘〈𝑟𝑘〉, where 〈𝑟𝑘〉 

denotes the 𝑘th  moment integral of the radial function and 𝐴𝑞
𝑘  are the geometric coordination 

factors, which can be derived from a point-charge model:  

 

𝐴𝑞
𝑘 =

𝑒2

4𝜋𝜀0
∑

(−1)𝑞𝑄𝑖𝐶−𝑞
𝑘 (𝜃𝑖, 𝜙𝑖)

𝑅𝑖
𝑘+1

𝑁

𝑖=1

, 

 

(eq. S3) 

𝑒2 4𝜋𝜀0⁄  is the typical Coulomb term, 𝑄𝑖 is the charge of the Yb center of the 𝑖𝑡ℎ ligand, (𝜃𝑖 , 𝜙𝑖) 

are the polar angles of the 𝑖th point charge that corresponds to the Yb-coordinating atom of the 

ligand, 𝑅𝑖 is the radial distance from the 𝑖th ligand to the central (Yb) atom, and 𝑁 is the total 

number of ligands.4,6 Thus, the crystal field perturbation is approximated from the electric field 

generated by the local charges associated with each ligand group. To perform the initial charge 

assignment to these dative-bonded atoms, according to -1/4 of the complete Pauling’s 

electronegativity, for example, F is assigned a value of -1e, and O is assigned as -0.875e, then 

normalize them to make sure the sum is -3. If there are more than 6 coordination sites, some of 

them can be grouped according to the ligand positions, and an effective charge is estimated. If 

there are fewer than 6 coordination sites, assign 0 as a placeholder. Next, perform the initial rigid 

rotational scanning to find the position with the smallest energy deviation (Section 4, SI) and then 

perform random sampling on the charge at the best position obtained by the rotation, allowing ones 

with the initial value (-1/4 of the Pauling’s complete electronegativity) less than or equal to -0.625e 

(carbon standard) to continue to become smaller until it tends to -1e, and other ones with the value 

greater than -0.625e continue to increase until it tends to 0, the best energy deviation from the 

experimental data is screened to determine the charge distribution. 

 It is worth mentioning that this step can be replaced by a much higher-level computation, 

such as CASSCF (complete active space self-consistent field) with the LoProp method to define 

the point charges. With the local-charge treatment, the calculated crystal field parameters are 

tabulated in Table S2 – S5 for different structures. 

 As Yb(III) has a relatively large spin-orbit coupling further modified by crystal field 

splitting, in order to determine the energies, wave functions, and oscillator strengths of these 

transitions, it is necessary to evaluate the total perturbation Hamiltonian in one step. This approach 

differs from the application of crystal field splitting followed by perturbation of spin-orbit coupling, 

as typically done for transition metal complexes.7 The total perturbation Hamiltonian is therefore 

(𝐻̂𝑆𝑂 + 𝐻̂𝐶𝐹), this can be constructed by a simple matrix addition of the spin-orbit Hamiltonian 

matrix and the augmented crystal field Hamiltonian matrix. To augment the matrix, one can 

diagonally input 2 identical 7 × 7 spin-free crystal field matrices, the total Hamiltonian is then:8,9 

 

 

 

𝐻𝑆𝑂𝐶𝐹 = 𝜉Yb
4𝑓

[
⋱ ⋮ ⋯
⋯ ⟨𝑖| 𝑙 ⋅ 𝑠̂|𝑗⟩ ⋯

⋯ ⋮ ⋱

] + [
[𝐻𝐶𝐹

spin−free
] 0

0 [𝐻𝐶𝐹
spin−free

]
]. 

 

 

(eq. S4) 

 

In general, the diagonalization of this perturbation Hamiltonian results in 4 pairs of closely spaced 

electron configurations near the ground state and 3 pairs on the excited state, depending on the 

crystal field anisotropy.  
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k q Re[𝟒𝒇 𝑩𝒒
𝒌] (cm-1) Im[4f 𝑩𝒒

𝒌] (cm-1) Re[𝟓𝒅 𝑩𝒒
𝒌] (cm-1) Im[𝟓𝒅 𝑩𝒒

𝒌] (cm-1)  
1 0 -66.5081 0.0000 11.9432 0.0000 

1 1 796.0440 1010.6760 -142.9500 -181.4927 
2 0 -40.1381 0.0000 7.5777 0.0000 

2 1 -499.1851 435.6369 94.2414 -82.2441 

2 2 202.0431 -941.8736 -38.1438 177.8168 
3 0 42.4566 0.0000 -3.3800 0.0000 

3 1 -199.5593 -269.8056 15.8870 21.4793 

3 2 -165.4582 -69.6043 13.1722 5.5412 
3 3 -197.5260 82.1040 15.7251 -6.5363 

4 0 0.3960 0.0000 0.0842 0.0000 
4 1 -19.4251 13.2985 -4.1328 2.8293 

4 2 -4.5461 20.0596 -0.9672 4.2678 

4 3 -15.9277 -26.4550 -3.3887 -5.6284 
4 4 35.4802 16.3659 7.5485 3.4819 

5 0 -1.1265 0.0000   
5 1 4.0711 3.9051   
5 2 -8.0592 -1.0296   
5 3 3.1929 -2.1116   
5 4 1.6007 -1.2151   
5 5 -1.8324 -9.8326   
6 0 2.6510 0.0000   
6 1 0.8258 0.0607   
6 2 0.7256 -1.9376   
6 3 -0.2403 -1.6914   
6 4 -2.2053 -1.3541   
6 5 -0.4861 -0.2568   
6 6 -1.2921 1.4645   

Table S2. Real and imaginary part of the crystal filed parameters for 4𝑓 and 5𝑑 orbitals in YbCp3.  

 
 
 k q Re[𝟒𝒇 𝑩𝒒

𝒌] (cm-1) Im[4f 𝑩𝒒
𝒌] (cm-1) Re[𝟓𝒅 𝑩𝒒

𝒌] (cm-1) Im[𝟓𝒅 𝑩𝒒
𝒌] (cm-1)  

1 0 6644.7499 0.0000 -1193.2344 0.0000 

1 1 -5231.5719 1324.3382 939.4622 -237.8187 

2 0 277.5078 0.0000 -52.3908 0.0000 
2 1 -605.2604 420.0377 114.2674 -79.2991 

2 2 485.2322 -168.7346 -91.6072 31.8555 

3 0 -89.8452 0.0000 7.1526 0.0000 
3 1 47.0696 52.3076 -3.7472 -4.1642 

3 2 -365.1364 379.3659 29.0686 -30.2015 

3 3 48.5752 175.4990 -3.8671 -13.9715 
4 0 70.9590 0.0000 15.0968 0.0000 

4 1 17.1031 -44.1930 3.6387 -9.4022 
4 2 45.3621 -38.1363 9.6510 -8.1137 

4 3 -23.2486 31.5376 -4.9462 6.7098 

4 4 6.7770 65.7480 1.4418 13.9882 
5 0 -10.0671 0.0000   
5 1 5.8665 2.3041   
5 2 2.3977 -4.0421   
5 3 0.2175 2.7266   
5 4 4.7702 -7.3096   
5 5 1.3344 5.1182   
6 0 -3.1248 0.0000   
6 1 -0.5740 0.9056   
6 2 -0.9065 0.4767   
6 3 1.3625 -0.5125   
6 4 -0.1038 5.1016   
6 5 3.0940 0.8922   
6 6 0.5471 -0.7597   

Table S3. Real and imaginary part of the crystal filed parameters for 4𝑓 and 5𝑑 orbitals in K3[Yb(BINOL)3].  
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k q Re[𝟒𝒇 𝑩𝒒
𝒌] (cm-1) Im[4f 𝑩𝒒

𝒌] (cm-1) Re[𝟓𝒅 𝑩𝒒
𝒌] (cm-1) Im[𝟓𝒅 𝑩𝒒

𝒌] (cm-1)  
1 0 -4177.1706 0.0000 750.1176 0.0000 

1 1 -3928.0095 -4952.0527 705.3743 889.2674 
2 0 -206.2645 0.0000 38.9408 0.0000 

2 1 513.1783 497.2677 -96.8832 -93.8794 

2 2 -133.3239 464.4334 25.1703 -87.6806 
3 0 -497.2691 0.0000 39.5878 0.0000 

3 1 257.7402 0.1434 -20.5188 -0.0114 

3 2 -121.2209 -26.6320 9.6504 2.1202 
3 3 -224.9064 229.5616 17.9049 -18.2755 

4 0 -95.2630 0.0000 -20.2676 0.0000 
4 1 26.1608 -42.2139 5.5658 -8.9812 

4 2 17.5688 -3.8112 3.7378 -0.8108 

4 3 19.2769 -38.1360 4.1012 -8.1136 
4 4 -69.6630 9.0460 -14.8211 1.9246 

5 0 -3.3208 0.0000   
5 1 3.3439 0.7560   
5 2 1.1895 3.8918   
5 3 6.4234 -2.5523   
5 4 10.1574 1.9756   
5 5 -3.8118 0.0692   
6 0 -2.6971 0.0000   
6 1 3.4304 0.2639   
6 2 -3.2092 0.7866   
6 3 -1.0479 1.7133   
6 4 1.0730 -0.9961   
6 5 -0.4818 1.4419   
6 6 -0.2645 2.6437   

Table S4. Real and imaginary part of the crystal filed parameters for 4𝑓 and 5𝑑 orbitals in Yb(trensal).  

 
 

k q Re[𝟒𝒇 𝑩𝒒
𝒌] (cm-1) Im[4f 𝑩𝒒

𝒌] (cm-1) Re[𝟓𝒅 𝑩𝒒
𝒌] (cm-1) Im[𝟓𝒅 𝑩𝒒

𝒌] (cm-1)  
1 0 2901.5040 0.0000 -521.0391 0.0000 

1 1 -1942.3946 -516.8870 348.8065 92.8202 

2 0 1881.9687 0.0000 -355.2978 0.0000 

2 1 -482.1067 -382.5983 91.0172 72.2309 

2 2 -177.8356 40.6583 33.5737 -7.6759 
3 0 -102.2841 0.0000 8.1429 0.0000 

3 1 148.9407 16.4918 -11.8572 -1.3129 

3 2 111.3184 43.3571 -8.8621 -3.4517 
3 3 104.0362 -20.1471 -8.2824 1.6039 

4 0 -41.4641 0.0000 -8.8217 0.0000 

4 1 15.3120 21.1899 3.2577 4.5082 
4 2 -12.3705 -9.4796 -2.6319 -2.0168 

4 3 -31.9933 -15.4721 -6.8067 -3.2917 

4 4 -0.0467 -89.1075 -0.0099 -18.9580 
5 0 2.8006 0.0000   
5 1 -9.8100 -1.7266   
5 2 -3.4334 -0.8046   
5 3 0.9374 5.9362   
5 4 1.9284 5.3598   
5 5 5.0865 -7.9369   
6 0 1.1586 0.0000   
6 1 0.1125 -0.9673   
6 2 1.1600 0.7257   
6 3 1.3363 0.2210   
6 4 -0.9941 1.7658   
6 5 0.2294 -1.2749   
6 6 -0.1724 -0.8617   

Table S5. Real and imaginary part of the crystal filed parameters for 4𝑓  and 5𝑑  orbitals in 
(thiolfan)YbCl(THF). 
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2. Magnetic dipole (M1) transition oscillator strength 

 

 If we only consider 4f orbitals, f-f transitions have no change in orbital angular momentum 

quantum number (Δ𝑙 = 0).  This implies that transitions between different electron configurations 

are electric dipole (E1) forbidden. The first order transition that is allowed is via magnetic dipole 

transition (M1). We will compute the magnetic dipole oscillator strength M1 with the magnetic 

dipole moment operator, 𝑀̂:10 

 
𝑀1𝑓←𝑖 =

2𝑚𝑒(𝐸𝑓 − 𝐸𝑖)

3ℏ2𝑒2𝑐2

𝑛𝑟

𝑔1
|⟨𝑓|𝑴̂|𝑖⟩|

2
. 

 

(eq. S5) 

 

where 𝑖 indicates the initial state, 𝑓 indicates the final state, 𝑒 is the elementary charge, 𝑚𝑒 is the 

electron rest mass, 𝑐 denotes the speed of light in vacuum, 𝑛𝑟 is the index of refraction of the 

sample, and where 𝑔1 is the degeneracy of the initial lower states.11 Further, 

  
𝑀1𝑓←𝑖 =

2𝑚𝑒(𝐸𝑓 − 𝐸𝑖)

3ℏ2𝑒2𝑐2

𝑛𝑟

𝑔1
|⟨𝑓|𝑀̂𝑥𝒊 + 𝑀̂𝑦𝒋 + 𝑀̂𝑧𝒌|𝑖⟩|

2
, 

 

(eq. S6) 

where 

 𝑀̂𝑧 = −
𝜇𝐵

ℏ
∑(𝑙𝑧 + 2𝑠̂𝑧)𝑖

𝑖

, (eq. S7) 

 𝑀̂𝑥 = −
𝜇𝐵

ℏ
∑(𝑙𝑥 + 2𝑠̂𝑥)𝑖

𝑖

, (eq. S8) 

 𝑀̂𝑦 = −
𝜇𝐵

ℏ
∑(𝑙𝑦 + 2𝑠̂𝑦)

𝑖
𝑖

. (eq. S9) 

Since 

 
𝑙𝑥 =

1

2
(𝑙+ + 𝑙−), 

(eq. S10) 

 
𝑙𝑦 =

1

2𝑖
(𝑙+ − 𝑙−), 

(eq. S11) 

 
𝑠̂𝑥 =

1

2
(𝑠̂+ + 𝑠̂−), 

(eq. S12) 

 
𝑠̂𝑦 =

1

2𝑖
(𝑠̂+ − 𝑠̂−), 

(eq. S13) 

operators  𝑀̂𝑥 and 𝑀̂𝑦 are therefore12 

 𝑀̂𝑥 = −
𝜇𝐵

2ℏ
∑(𝑙+ + 𝑙− + 2𝑆̂+ + 2𝑆̂−)

𝑖
𝑖

, (eq. S14) 

 𝑀̂𝑦 = −
𝜇𝐵

2𝑖ℏ
∑(𝑙+ − 𝑙− + 2𝑆̂+ − 2𝑆̂−)

𝑖
𝑖

. (eq. S15) 
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3. Judd-Ofelt treatment of 5d mixing and electric dipole (E1) transition  

  

 In the 1950s, it was recognized that the M1 oscillator strength was not enough to account 

for the apparent absorption of rare earths in crystals.13 To explain these results, it was suggested 

that the transition must have an E1 character, which implies mixing of orbitals of different parity. 

This was formalized as the Judd-Ofelt theory, where nearby unoccupied orbitals (e.g., 5d states) 

mix with the 4f active space, enabled by an anisotropic crystal field perturbation.14–17  

 After the SOCF calculation using the 4f-only framework, a total number of 14 different 

SOCF states are obtained (denoted as |𝜓4𝑓
𝑆𝑂𝐶𝐹⟩) with associated energy 𝐸4𝑓

𝑆𝑂𝐶𝐹, where each state is 

just the linear combinations of the 14 distinct 4f states in the |𝑚𝑙 𝑚𝑠⟩ basis. The 5d states, which 

carry even parity, are represented as |𝜓5𝑑⟩. Since the 5d (𝑙 = 2) spin-orbit coupling is assumed 

much smaller than the 4f (𝑙 = 3) states, it is neglected for simplicity. The overall normalized 5d-

admixed states, |𝜂𝑖⟩ with its complex conjugate ⟨𝜂𝑖| are18–21 

 

 

|𝜂𝑖⟩ = 𝑁𝑖 (|𝜓4𝑓,𝑖
𝑆𝑂𝐶𝐹⟩ + ∑

⟨𝜓4𝑓,𝑖
𝑆𝑂𝐶𝐹|𝐻̂𝐿𝐹|𝜓5𝑑,𝑗⟩

𝐸4𝑓
𝑆𝑂𝐶𝐹 − 𝐸5𝑑

|𝜓5𝑑,𝑗⟩

10

𝑗=1

), 

 

(eq. S16) 

 

⟨𝜂𝑖| = 𝑁𝑖′ (⟨𝜓4𝑓,𝑖
𝑆𝑂𝐶𝐹| + ∑

⟨𝜓4𝑓,𝑖
𝑆𝑂𝐶𝐹|𝐻̂𝐿𝐹|𝜓5𝑑,𝑗⟩

𝐸5𝑑 − 𝐸4𝑓
𝑆𝑂𝐶𝐹 ⟨𝜓5𝑑,𝑗|

10

𝑗=1

). 

 

(eq. S17) 

 

The energy denominator in the conventional Judd-Ofelt theory is typically determined by fitting 

the relative intensity of electronic transitions between different spin-orbit states in the absorption 

spectra of lanthanides. However, Yb(III) has only one spin-orbit transition, leading to an under-

prescribed fit. For a reasonable approximation of the energy denominator, we subtract the energy 

of the 5d orbitals from the eigen energies associated with the parity-unmixed states through the 4f-

only SOCF calculation. After the parity mixing, the electric dipole (E1) transitions are now allowed, 

and the E1 oscillator strength is calculated with the electric dipole operator, 𝝁̂, as follows:10 

 

 

 𝐸1𝑓←𝑖 =
2𝑚𝑒(𝐸𝑓 − 𝐸𝑖)

3ℏ2𝑒2

𝑛𝑟

𝑔1

|⟨𝑓|𝝁̂|𝑖⟩|2. 
 

(eq. 18) 

Where 𝑖 and 𝑓 denote the final and initial states.  

  

 Since obtaining the precise energy of the 5d states is challenging, we conduct a scan across 

different 5d energy values until the magnitude of absolute oscillator strengths closely matches the 

experimentally observed values. First of all, compared to the energy of 4f (no spin-orbit, no crystal 

field), 5d should not exceed the 5d energy of hydrogen-like atoms (~ 9 eV higher than 4f), nor 

should it be lower than the gas-phase spin-orbit excited 4f band (~ 0.72 eV above 4f). The overall 

dipole-approximated oscillator strength of M1+E1 can be calculated based on point charges, and 

sample through different 5d/4f gaps within the range to find one that provides the oscillator 

strength closest to 10−6.22,23 
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Also, with the treatment of Judd-Ofelt theory, the percent of 5d mixing for each SOCF 

state can be obtained as 

 

5𝑑%𝑖 = 100% × 𝑁𝑖
2 ∑|

⟨𝜓5𝑑,𝑗|𝐻̂𝐿𝐹|𝜓4𝑓,𝑖
𝑆𝑂𝐶𝐹⟩

𝐸4𝑓
𝑆𝑂𝐶𝐹 − 𝐸5𝑑

|

210

𝑗=1

. 
 

(eq. S19) 

 

4. 3-Stage fitting mechanism (rigid-bond rotation and charge samplings) 

 
 The fitting is accomplished by multiple single-pint SOCF calculations, where the 3-stage 

fitting mechanism is applied, as illustrated in Figure S2. Based on the initial charge orientation 

from the inner-coordination-sphere atomic positions, with the initial assigned charges based on 

electronegativity, the first stage is a crude rigid-bond rotation, where about only 72 points are 

scanned with multiple drop-down latitudes and the azimuthal longitudes covering the whole sphere 

as shown in Figure S2. Next, a random charge sampling with 200 points is applied to the best fit 

from the crude scan, which allows ones with the initial value (-1/4 of the Pauling’s complete 

electronegativity) less than or equal to -0.625 (carbon standard) to continue to become smaller 

until it tends to -1, and other ones with the value greater than -0.625 continue to increase until it 

tends to 0,  where they are both set to space 10° (fine  to 360° (initial scan). First, the rotational 

operation is controlled by the rotation matrix along 𝑧 axis, or the 𝜙 rotation, azimuthal longitudes, 

 

 
𝑅𝑧(𝜙) = [

cos𝜙 −sin𝜙 0
sin𝜙 cos𝜙 0

0 0 1

]. 
 

(eq. S20) 

 

Then, for each longitude, the drop-down rotations are performed for the latitude scan, this rotation 

is controlled by the rotation matrix along 𝑥 axis, 

 

 
𝑅𝑥(𝜃) = [

1 0 0
0 cos𝜃 −sin𝜃
0 sin𝜃 cos𝜃

]. 
 

(eq. S21) 

  

 

Figure S1. Illustration of the dipole approximated oscillator strength (E1+M1) and the total percent of 5d 

mixing (into the 4f manifold) vs. the 5d/4f gap, the desired 10−6 oscillator strength occurs around the 1 eV 
5d/4f energy gap.  
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In the initial scan, only four transition energies are considering, where in the fine rotation, all fitting 

parameters are considered, i.e., the transition oscillator strengths are included. The percent error is 

used as the optimization parameter for the fitting, where 

 

 
 error % ≡

1

𝑛
∑

|calculated𝑛 − experimental𝑛|

experimental𝑛
𝑛

× 100. 
 

(eq. S22) 

 

 To understand how sensitive the percent errors respond to the change of 𝜙  and 𝜃  (in 

degree), the Hessians are calculated for four Yb(III) complexes studied, they are denoted as 𝐷𝜙𝜙, 

𝐷𝜙𝜃, and 𝐷𝜃𝜃, assuming 𝐷𝜙𝜃 = 𝐷𝜃𝜙, where 

 

 

 Hessian(𝐷) =

[
 
 
 
 

∂2

𝜕𝜙2

∂2

𝜕𝜙𝜕𝜙

∂2

𝜕𝜃𝜕𝜙

∂2

𝜕𝜃2 ]
 
 
 
 

(error %). 

 

 

(eq. S23) 

 

 

  

  
 

Figure S2. Schematic illustration of the 3-stage fitting mechanism. The crude scan takes the initial charges 
(as described in section 1) and rotates along z-axis first and then x-axis, using only ~ 72 points to find the 
optimal position of charges fitting to the transition energies. The second step is to randomly sample effective 
charge values with confinements to get the optimal fitting to the transition energies and oscillator strengths. 
Finally, a fine rotational scan is performed with  > 256 points to find the optimal position to best fit the 
transition energies and oscillator strengths.   
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 Crude Scan Error Charge Sample Fine Scan E1+M1 Fine Scan Error 

Y
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3
 

  
  

Best Fit: Δ𝜙 = 30° and then Δ𝜃 = 60° . 

K
3
[Y

b
(B
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O

L
) 3

] 

  
  

Best Fit: Δ𝜙 = 150° and then Δ𝜃 = 210° . 

Y
b

(t
re

n
sa

l)
 

    

Best Fit: Δ𝜙 = 180° and then Δ𝜃 = 90° . 

(t
h

io
lf

a
n

)Y
b

C
l(

T
H

F
) 

    

Best Fit: Δ𝜙 = 80° and then Δ𝜃 = 170° . 

 

Table S6. Results of the 3-stage fitting mechanism for four complexes discussed in this work. 
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Charge # 𝒙 (Å) 𝒚 (Å) 𝒛 (Å) Local Charge (e) 

1   0.0000  0.0000  0.0000 +3.0000 

2   1.4149  0.1913 -0.1235 -0.8989 

3 -0.1316 -1.3388  -0.4939 -0.8989 

4 -0.2947 -0.0916      1.3994 -0.8989 

5 -2.3763  0.2379 -0.4983 -0.1011 

6 -0.2621    2.4253     0.0348 -0.1011 

7 -0.0552   0.5850 -2.3678 -0.1011 

 

Table S9. Final optimal effective charges and their Cartesian coordinates for Yb(trensal) obtained from the 
3-stage fitting mechanism. 

Charge # 𝒙 (Å) 𝒚 (Å) 𝒛 (Å) Local Charge (e) 

1  0.0000  0.0000  0.0000 +3.0000 

2 -0.8985  1.1406  0.0529 -0.9004 

3  1.0220 -0.2880  1.2321 -0.9004 

4 -0.0161 -0.9889 -1.2913 -0.9004 

5 -1.4678 -1.1997  0.9369  0.0000 

6 -1.4678 -1.1997  0.9369 -0.1494 

7  1.4677  1.1997 -0.9369 -0.1494 

 

Table S7. Final optimal effective charges and their Cartesian coordinates for YbCp3 obtained from the 3-
stage fitting mechanism. 

Charge # 𝒙 (Å) 𝒚 (Å) 𝒛 (Å) Local Charge (e) 

1  0.0000  0.0000  0.0000 +3.0000 

2  1.1655      0.6107      0.5738 -0.9226 

3 -0.3721      1.0132 -1.0087 -0.9226 

4   0.4300   -1.0947 -0.7343 -0.9226 

5  -2.2593 -0.7582   -0.1687 -0.0774 

6  -0.2059 -1.3285      1.9842 -0.0774 

7  -1.2789    1.5154      1.5763 -0.0774 

 

Table S8. Final optimal effective charges and their Cartesian coordinates for K3[Yb(BINOL)3] obtained from 
the 3-stage fitting mechanism. 

Charge # 𝒙 (Å) 𝒚 (Å) 𝒛 (Å) Local Charge (e) CAS Charge (e) 

1  0.0000  0.0000  0.0000 +3.0000 +3.0000 

2  1.4348  0.8262  0.9240 -0.7046 -0.6152 

3  1.0895 -1.8056 -0.2398 -0.6886 -0.6510 

4 -1.3784  1.4259  0.1222 -0.7600 -0.7496 

5 -1.5085 -1.2469 -0.1051 -0.7321 -0.7520 

6  1.4969  0.8908 -2.4338 -0.0421 -0.1122 

7  0.5410 -0.7578  2.4844 -0.0726 -0.1193 

 

Table S10. Final optimal effective charges and their Cartesian coordinates for (thiolfan)YbCl(THF) obtained 
from the 3-stage fitting mechanism. The last column shows the local charge information (CAS Charge) 
approximated from the LoProp charge calculation based on SOC-CASSCF/RASSI theory. 
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5. Full spectral calculation table 

 

 
Figure S3. Histograms of deviation Hessian matrix elements for YbCp3. Gaussian full width at half 

maximum: 𝐹𝑊𝐻𝑀(𝐷𝜙𝜙) = 3.3814, 𝐹𝑊𝐻𝑀(𝐷𝜙𝜃) = 3.3375, and 𝐹𝑊𝐻𝑀(𝐷𝜃𝜃) = 5.4278. 

 
Figure S4. Histograms of deviation Hessian matrix elements for K3[Yb(BINOL)3]. Gaussian full width at half 

maximum: 𝐹𝑊𝐻𝑀(𝐷𝜙𝜙) = 0.078622, 𝐹𝑊𝐻𝑀(𝐷𝜙𝜃) = 0.075883, and 𝐹𝑊𝐻𝑀(𝐷𝜃𝜃) = 0.17851. 

 
Figure S5. Histograms of deviation Hessian matrix elements for Yb(trensal). Gaussian full width at half 

maximum: 𝐹𝑊𝐻𝑀(𝐷𝜙𝜙) = 0.18450, 𝐹𝑊𝐻𝑀(𝐷𝜙𝜃) = 0.16327, and 𝐹𝑊𝐻𝑀(𝐷𝜃𝜃) = 0.28022. 

 
Figure S6. Histograms of deviation Hessian matrix elements for (thiolfan)YbCl(THF). Gaussian full width 

at half maximum: 𝐹𝑊𝐻𝑀(𝐷𝜙𝜙) = 0.38287, 𝐹𝑊𝐻𝑀(𝐷𝜙𝜃) = 0.49800, and 𝐹𝑊𝐻𝑀(𝐷𝜃𝜃) = 1.1507. 
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  Initial  Final  Calc. E (eV)  Expt. E (eV)  E1+M1 E1+M1 with 𝒌𝑩𝑻 

YbCp3 1, 2 9, 10 1.2625 1.2603 8.5660E-07 8.5660E-07 

 
 

11, 12 1.2701 1.2710 4.1860E-07 4.1860E-07 

 
 

13, 14 1.3148 1.3160 1.5551E-06 1.5551E-06 

 3, 4 9, 10 1.2579 (1.2751) 

(1.2934) 

(1.3026) 

1.5330E-07 3.5395E-12 

 
 

11, 12 1.2654 1.2870E-07 2.9716E-12 

 
 

13, 14 1.3102 4.9840E-07 1.1508E-11 

 5, 6 9, 10 1.2257 4.0580E-07 3.2775E-44 

 
 

11, 12 1.2333 1.6538E-06 1.3357E-43 

 
 

13, 14 1.2780 1.4182E-06 1.1454E-43 

 7, 8 9, 10 1.2021 2.4430E-07 3.2166E-68 

 
 

11, 12 1.2097 1.7649E-06 2.3238E-67 

 
 

13, 14 1.2544 1.1470E-06 1.5102E-67 

K3[Yb(BINOL)3] 1, 2 9, 10 1.2688 1.2681 6.3790E-05 6.3790E-05 

  11, 12 1.2870 1.2897 6.5475E-05 6.5475E-05 

  13, 14 1.3701 - 3.1995E-05 3.1995E-05 

 3, 4 9, 10 1.2599 - 8.5364E-06 6.0501E-06 

  11, 12 1.2781 - 2.2912E-05 1.6239E-05 

  13, 14 1.3612 1.3615 1.5666E-05 1.1103E-05 

 5, 6 9, 10 1.2064 - 3.9569E-05 3.5406E-06 

  11, 12 1.2246 - 1.0641E-04 9.5220E-06 

  13, 14 1.3076 1.3089 8.8896E-05 7.9544E-06 

 7, 8 9, 10 1.1502 (1.3281) 2.6678E-05 2.7044E-07 

  11, 12 1.1683 7.4768E-05 7.5795E-07 

  13, 14 1.2514 1.2065E-04 1.2231E-06 

Yb(trensal) 1, 2 9, 10 1.2707 1.2769 1.5378E-05 1.5378E-05 

  11, 12 1.3317 1.3247 6.4042E-06 6.4042E-06 

  13, 14 1.3827 1.3734 4.9244E-06 4.9244E-06 

 3, 4 9, 10 1.2178 1.2198 4.0809E-06 5.0935E-07 

  11, 12 1.2788  8.2069E-06 1.0243E-06 

  13, 14 1.3298   6.2652E-06 7.8197E-07 

 5, 6 9, 10 1.1908 1.2090E-06 5.2169E-08 

  11, 12 1.2518 3.7287E-06 1.6090E-07 

  13, 14 1.3028 3.0817E-06 1.3298E-07 

 7, 8 9, 10 1.1397 1.4780E-06 8.5442E-09 

  11, 12 1.2007 7.2068E-06 4.1662E-08 

  13, 14 1.2517 1.3976E-05 8.0794E-08 

(thiolfan)YbCl 

(THF) 

1, 2 9, 10 1.2645 1.2650 2.8266E-06 2.8266E-06 

 11, 12 1.3427 1.3400 3.4916E-06 3.4916E-06 

 13, 14 1.3830 1.3820 1.8063E-06 1.8063E-06 

 3, 4 9, 10 1.1985 *1.1940 

 
1.1374E-06 8.8545E-08 

  11, 12 1.2766 3.3358E-06 2.5969E-07 

  13, 14 1.3169 5.2871E-06 4.1159E-07 

 5, 6 9, 10 1.1572 2.7020E-07 4.2572E-09 

  11, 12 1.2354 2.1961E-06 3.4601E-08 

  13, 14 1.2756 5.3961E-06 8.5020E-08 

 7, 8 9, 10 1.1312 9.2500E-08 5.3103E-10 

  11, 12 1.2093 6.5590E-07 3.7654E-09 

  13, 14 1.2544 1.1470E-06 1.5102E-67 

Table S11. Calculated f-f transition data with the experimental energy assignments for YbCp3 at 5 K, and 
K3[Yb(BINOL)3], Yb(trensal), (thiolfan)YbCl(THF) at 300 K. Number with “*” indicates that it is measured 
from PL, and numbers in parentheses are ones with no suitable matching from calculated electronic 
structures.25–28  
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6. Atomic similarity factor 𝜸 

 

 First, the basis used overall the spin-orbit crystal field calculation is the fully uncoupled 

Yb(III) 4f atomic orbitals that can be described in 4 quantum numbers, 𝑛 = 4, 𝑙 = 3,𝑚𝑙 = −3…+

3, and 𝑚𝑠 = ±
1

2
, there are 14 of them mutually orthogonal, the spatial projections of them are 

plotted below in Figure S7.  

 

However, this is not the atomic orbitals of interest, the ones that are used to illustrate atomic feature 

here are the gas-phase states, i.e., spin-orbit coupled (SOC) basis, |𝜓𝑆𝑂𝐶⟩, where 𝑛 = 4 and 𝑙 = 3, 

and the coupled quantum numbers, 𝑗 and 𝑚𝑗, there are 14 |𝑗 𝑚𝑗⟩ states and each can be written in 

the linear combination of |𝑚𝑙 𝑚𝑠⟩ as tabulated above in Table S1. It is easy to see that these 14 

|𝑗 𝑚𝑗⟩ states are also mutually orthogonal, and therefore can be used as the atomic/ion basis. In the 

actual Yb(III) complexes, there are also ligands that bring effects onto the atomic orbitals, which 

treated as a perturbation of electric field (crystal field) coupling with 5d admixing. Therefore, the 

normalized resulting states can be written as 

 |𝜂⟩ = ∑𝑐𝑖
4𝑓|𝑚𝑙 𝑚𝑠⟩𝑖

14

𝑖=1

+ 𝑐5𝑑  |5𝑑⟩, 
 

(eq. S24) 

where the coefficients can be written as a 15-by-1 normalized vector, i.e., 

 ∑|𝑐𝑖
4𝑓

|
2

14

𝑖=1

+ |𝑐5𝑑|2 = 1. 
 

(eq. S25) 

Now, to analyze “how similar” the resulting states compare with the gas-phase spin-orbit-only 

orbitals, a simple overlap is used, and the complex overlap, 𝑠, is calculated as 

 

 𝑠𝑖 = ⟨𝜂|𝜓𝑖
𝑆𝑂𝐶⟩, (eq. S26) 

 

It is important to notice that vector 𝑠 here is not necessarily normalized, because the SOC states 

are fully described by a complete basis of |𝑚𝑙 𝑚𝑠⟩, it can only be made normalized by adding back 

the 5d contribution, i.e., 

 

∑|𝑠𝑖|
2

14

𝑖=1

+ |𝑐5𝑑|2 = 1. 
 

(eq. S27) 

  

 
Figure S7. Spatial projection of the uncoupled 14 bare 4f atomic orbitals written in |𝑚𝑙  𝑚𝑠⟩ basis.  
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To discuss the atomic similarity, the 15-by-1 overlap amplitude vector, 𝑎, is constructed as 

  

〈𝑎1, 𝑎2, 𝑎3, … , 𝑎14, 𝑎15〉 = 〈|𝑠1|
2, |𝑠2|

2, |𝑠3|
2, … , |𝑠14|

2, |𝑐5𝑑|2〉. 
(eq. S28) 

 

Now, to illustrate how similar the resulting states with the gas-phase SOC states, the Factor of 

Atomic Similarity, 𝛾, is then defined as the norm-square of 𝑎, i.e. 

 

 

𝛾 = ∑|𝑎𝑖|
2

15

𝑖=1

. 
 

(eq. S29) 

 

There is an upper bound for 𝛾, where a resulting state completely resembles one of the |𝜓𝑆𝑂𝐶⟩, i.e., 

𝑎 = 〈0,0,0,1,0,0,0,… 〉 , 𝛾|𝑚𝑎𝑥  is therefore 1; vice versa, the lower bound of 𝛾  indicates the 

resulting state has absolutely no similarity to any of the specific |𝜓𝑆𝑂𝐶⟩, 𝑎 = 〈
1

15
,

1

15
,

1

15
, … 〉, 𝛾|𝑚𝑖𝑛 

is therefore 15 × (
1

15
)
2

=
1

15
≈ 0.0667 . For example, the 𝑎  vector for the State 1 of the 

(thiolfan)YbCl(THF) and its similarity factor are 

 

 

 

〈0.8549, 0, 0.1366, 0, 0.0072, 0, 0.0006, 0, 0, 0, 0, 0, 0, 0, 0.0007〉,  

 𝛾1
thiolfan = 0.7496. (eq. S30) 

 

 

 
𝒋 State YbCp3 (%) 5d% K3[Yb(BINOL)3] 5d% Yb(trensal) 5d% (thiolfan)YbCl 5d% 

𝟓

𝟐 

10 
29.08 |+3 2⁄ ⟩ 
25.68 |+1 2⁄ ⟩ 

0.42 
40.13 |+5 2⁄ ⟩ 
31.25 |+3 2⁄ ⟩ 

2.78 
36.25 |+3 2⁄ ⟩ 
23.62 |+5 2⁄ ⟩ 

8.39 
90.45 |−5 2⁄ ⟩ 
  8.68 |−3 2⁄ ⟩ 

0.17 

9 
32.67 |−3 2⁄ ⟩ 
27.57 |−1 2⁄ ⟩ 

0.80 
30.61 |+3 2⁄ ⟩ 
24.80 |+5 2⁄ ⟩ 

2.34 
36.41 |−3 2⁄ ⟩ 
23.93 |−5 2⁄ ⟩ 

10.95 
90.64 |+5 2⁄ ⟩ 
  8.68 |+3 2⁄ ⟩ 

0.18 

𝟕

𝟐 

2 
27.14 |+5 2⁄ ⟩ 
24.70 |+3 2⁄ ⟩ 

0.01 
38.54 |−5 2⁄ ⟩ 
29.78 |−7 2⁄ ⟩ 

2.90 
32.67 |+5 2⁄ ⟩ 
29.44 |+3 2⁄ ⟩ 

0.71 
85.91 |−7 2⁄ ⟩ 
11.60 |−5 2⁄ ⟩ 

0.04 

1 
27.23 |−3 2⁄ ⟩ 
24.66 |−5 2⁄ ⟩ 

0.02 
39.45 |+5 2⁄ ⟩ 
32.07 |+7 2⁄ ⟩ 

2.08 
32.66 |−5 2⁄ ⟩ 
30.02 |−3 2⁄ ⟩ 

0.68 
87.48 |+7 2⁄ ⟩ 
11.83 |+5 2⁄ ⟩ 

0.06 

 

Table S12. The highest two 𝑚𝑗 contributions and the 5d involvement in the major transition (states 1, 2, 9, 

and 10) of these four complexes are projected out, and the projection percentages are tabulated.  
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7. Crystal field splits for lowest 2 ground and excited SO states in Yb complexes 

 

 

8. Single charge fluctuation model and all-charge-moving model 

  

 The charge with the nearest atom of oxygen on THF is - 0.6152e, this charge is then 

assumed as the solvent effective charge, which carries much higher freedom of motion in space 

compared with other ligands. Once all other ligands are set to fix in space, the - 0.6152e charge is 

then given a freedom of motion in space, where each position is treated as a random point in space 

constraint in a box, the dimension of the box, 𝐿 × 𝐿 × 𝐿 then determines the freedom in space, 400 

random points are generated in a box for a given 𝐿 (to maximize the efficiency of the computing 

powers). For each random point, a single-point calculation using SOCF is accomplished to 

calculate the three transition energies corresponding to the experimentally measured three 

excitation bands, therefore total of 400 energies will be obtained for each band, and they analyzed 

using histogram with a Gaussian fit, 

 
𝑓(𝑥) =

1

𝜎√2𝜋
exp [−

(𝑥 − 𝑥0)
2

2𝜎2
], 

 

(eq. S31) 

 

where the full width at half maximum (FWHM) is calculated as 

 

 𝐹𝑊𝐻𝑀 = 2√2ln2𝜎. (eq. S32) 

  

 

Index Name of Compound 𝚫𝑬𝐠𝐫𝐨𝐮𝐧𝐝
𝑪𝑭  (meV) 𝚫𝑬𝐞𝐱𝐜𝐢𝐭𝐞𝐝

𝑪𝑭  (meV)  Reference 

1 YbCp3 4.60 7.60 26 

2 K3[Yb(BINOL)3] 8.90 18.20 27 

3 [Yb(DPA)3]3– 12.77 27.40 29 

4 [Yb(S,S)-L3](OTf)3 13.27 17.11 30 

5 Cs3Yb2Br9 14.13 3.35 31 

6 Yb3+ in Sr5(PO4)3F 19.71 1.74 32 

7 
Yb3+ ion in Ga site in a 

GaN epilayer 
24.80 6.57 33 

8 Yb(C5H7O2)3 26.04 42.15 34 

9 Cs2NaYbBr6 26.66 60.13 35 

10 [Yb(Me2DO2PA)]+ 31.00 21.20 29 

11 Cs2NaYbCl6 31.00 58.27 35 

12 Yb(C15H11O2)3 35.46 45.13 34 

13 [YbL1]3+ 39.05 25.66 29 

14 Yb(C10H9O2)3 39.67 38.44 34 

15 Yb(trensal) 52.90 61.00 28 

16 (thiolfan)YbCl(THF) 66.00 78.20 25 

 

Table S13. Summary of 16 different compounds.  
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 In (thiolfan)YbCl(THF), the solvent coordination, THF ligand with a partial charge of  -

0.615e, is allowed to spatially fluctuate around its equilibrium position in a confined cubic box. 

The side length (𝐿) of the box is chosen to be 0.14 Å (about 10% of the average dative bond length), 

0.22 Å, 0.30 Å and 0.38 Å. In each box, 400 random positions are generated and the SOLF 

calculation is performed for each new configuration (Figure S8a). Figure S8b shows the three 

energy fluctuations associated with the excited state against the ones of the ground state while 𝐿 = 

0.38 Å. It can be observed that the states involved in the main absorption peak, states 1, 2, and 

states 9, 10 have a high correlation coefficient of 0.9997, which means that the shifts in energy 

associated with these states have similar responses to the solvent fluctuations.24 Because this 

highly correlated energy movement greatly weakens the inhomogeneous broadening, a narrow 

major absorption peak is expected. While higher energy absorptions, such as the excitations to 

states 11, 12 or 13, 14, their energy correlations with states 1 and 2 are smaller, which indicates 

that they should have wider linewidth, according to the full width at half maximum (FWHM) 

calculation, they are roughly 7 to 8 times wider compared with the narrow peak. The histograms 

of transition energy are illustrated in Figure S8c, together with the absorption spectrum at room 

temperature, the histograms are able to well describe the general shape of the absorption spectrum. 

 

Figure S8. a. Solvent THF coordination on Yb(III) center as a movable ligand, red arrows indicate 3 spatial 

freedoms. The spatial orbital of ( 𝑗 = 7 2⁄ ,𝑚𝑗 = +7/2 ) is used to indicate the overall spatial orientation, 

and the effective point charges are summarized and associated with the Yb-bonded atoms. O3 is the THF 
oxygen which contains a -0.615e charge and is allowed to fluctuate within a constraint (box). b. Correlation 
plot of E(9,10), E(11,12), and E(13,14) against E(1,2) of (thiolfan)YbCl(THF) with a -0.615e charge 

fluctuating in a cubic box (𝐿 = 0.38 Å), the energies from 400 samplings are illustrated with the correlation 
coefficients (C.C.), slopes of linear regression, and the FWHMs. c. Transition energy histograms of 

(thiolfan)YbCl(THF) 400 random samplings with 𝐿 = 0.38 Å  overlaid with the experimental absorption 
spectrum. d. FWHMs associated with each (thiolfan)YbCl(THF) f-f transition band at different single-charge 
fluctuation confinement sizes. 
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Furthermore, the linewidths of each absorption peak related to the box side length are plotted, a 

linear relation is observed in Figure S8d, which allows the prediction of the fluctuation scale of 

the narrowest ever measured 0.6 meV absorption linewidth for (thiolfan)YbCl(THF) (Shin, Zhao, 

Dickerson, and Shen) to be L ~ 0.14 Å, which can be considered as the effective solvent charge 

fluctuating in a cubic space with a side length of 10% of the average dative bond length.25 

  

 In Table S14, we present a comprehensive summary of the statistical results related to the 

ground energy and excited energy. It is evident that when the correlation between the excited and 

ground energies is exceptionally high (i.e., the energies both rise or fall simultaneously), and the 

linear regression slope approaches unity (indicating a similar scale of energy fluctuation), an 

extremely narrow absorption spectrum becomes evident. 

 

 

 

Table S14. Summary of generalized correlated fluctuation and inhomogeneous linewidth, one can see that 
highly correlated excited-ground state energy fluctuation is one of two key factors of narrow inhomogeneous 
linewidth, another key factor is the similar scale of energy fluctuations of the excited and ground states, i.e., 
the linear regression slope of the energy-energy correlation plot tends to 1. 

 



S19 

 

 In Figure S9, we show a full transition energy statistic from all-charge-moving model with 

two selected low-frequency vibrational modes on top of the experimental spectra for YbCp3, 

K3[Yb(BINOL)3], Yb(trensal), and (thiolfan)YbCl(THF). The excited-ground energy correlation 

plots are illustrated next to the spectra.  

 
 

Figure S9. All-charge-moving model 200-sampling transition energy histogram overlaid with the 
experimental spectrum and the excited-ground energy correlation plot corresponding to the 2 selected 
modes, i. and ii. (as discussed in the main text) for a. YbCp3, b. K3[Yb(BINOL)3], c. Yb(trensal), and d. 
(thiolfan)YbCl(THF). 
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