Supporting Information

Nickel-Catalyzed Selective Disulfides Formation by Reductive Cross-Coupling of Thiosulfonates

Tingting Yuan,^{a,b} Xiang-Yu Chen,^{b,c} Tengfei Ji,^b Huifeng Yue,^a Kathiravan Murugesan,^a and Magnus Rueping ^{*a}

^aKAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia.

^bInstitute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany).

^c.School of Chemical Science, University of Chinese Academy of Science, Beijing 10049, China.

*E-mail: magnus.rueping@kaust.edu.sa

Table of Contents

Table of Contents	S1
1. General Information	S2
2. Preparation and Characterization of Thiosulfonates	S3
3. Optimizations of Nickel-Catalyzed Reduction Homo-Coupling Reaction	S5
4. Optimizations of Nickel-Catalyzed Reduction Cross-Coupling Reaction	S6
5. General Procedure for the Homo-Coupling Reaction	S9
6. General Procedure for the Cross-Coupling Reaction	S9
7. Specific Procedures and Spectroscopic Data of the Products	S10
8. Control experiments	S23
9. Reference	S25
10. Copies of NMR Spectra	S26

1. General Information

Reagents

Unless otherwise noted, all commercially available compounds were used directly without further purification. Solvents for chromatography were technical grade and distilled prior to use. *N*,*N*-Dimethylacetamide (DMA) and 1,2-dichloroethane (DCE, 99.5% extra dry over molecular sieve) used in reactions were purchased from Acros, bubbled for 30 min with N₂, and stored at room temperature. *N*,*N*-dimethylformamide (DMF), tetrahydrofuran (THF), dichloromethane (DCM), acetonitrile (MeCN) and toluene used in reaction optimization were acquired from the solvent purification system MBraun SPS-5.

Thin layer chromatography (TLC)

Analytical thin layer chromatography (TLC) was corried out on Macherey-Nagel ALUGRAM Xtra SIL G/UV F254, visualised by irradiation with UV light.

Flash column chromatography (FCC)

Column chromatography was performed on silica gel (Macherey-Nagel, particle size 0.040-0.063 mm). The eluents for column chromatography were presented as ratios of solvent volumes.

NMR spectra

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Varian VNMRS-300, VNMRS-400 and VNMRS-600 spectrometer in CDCl₃ and (CD₃)₂SO. Spectra were calibrated relative to residual proton signal of the deuterated solvents: δH = 7.26 ppm and δC =77.16 ppm for CDCl₃; δH = 2.50 ppm and δC = 39.52 ppm for (CD₃)₂SO. Coupling constants (J) are reported in hertz (Hz). The multiplicities of signals are designated by the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), m (multiplet).

Infrared (IR) spectra

Infrared (IR) spectra were conducted on a Perkin Elmer-100 spectrometer and are reported in terms of frequency of absorption.

Gas chromatography (GC)

Gas chromatography were conducted on a Shimadzu GC-2010 chromatograph.

Mass spectra (MS)

Mass spectra were performed on a Finnigan SSQ 7000 spectrometer.

High resolution mass spectrometer (HRMS)

High resolution mass spectrometer were acquired on a ThermoFisher Scientific LTQOrbitrap XL (ESI), Finnigan MAT SSQ7000 (EI/CI), maXis II Bruker (APCI).

2. Preparation and Characterization of Thiosulfonates

General procedure A for the preparation of thiosulfonates (SM1-4)

The thiosulfonates were synthesized from the corresponding disulfide according to the procedure in literature.^[1] An oven-dried 50 mL round-bottom flask was charged with $PhSO_2Na$ (4.0 equiv.), disulfide (1.0 equiv.), NBS (2.0 equiv.) and MeCN. The mixture was stirred at room temperature and monitored by TLC. Upon completion, the crude mixture was quenched by the addition of water and extracted with ethyl acetate (EtOAc). Then the organic phase was dried over anhydrous Na_2SO_4 and filtered. The filtrate was concentrated by rotary evaporation and then was purified by column chromatography on silica to afford the desired products.

General procedure C for the preparation of thiosulfonates (SM5-9, SM23)

The thiosulfonates were synthesized from the corresponding thiol according to the procedure in literature.^[2] lodine (2.0 equiv.) was added to the oven-dried 50 mL round-bottom flask equipped with thiol (2.0 equiv.) and pyridine (1.05 equiv.) in DCM (1 M in respect to the thiol) slowly. The mixture was stirred at room temperature and then sodium benzenesulfinate or sodium 4-methylbenzenesulfinate (1.70 equiv.) was added to the mixture. The mixture was monitored by TLC, after all the disulfide intermediate was consumed, the reaction mixture was quenched by addition of water and extracted with ethyl acetate. The organic phase was washed with water, saturated Na₂S₂O₃ solution, then, dried over anhydrous Na₂SO₄ and filtered. The filtrate was concentrated by rotary evaporation and then was purified by column chromatography on silica to obtain the desired products.

General procedure B for the preparation of thiosulfonates (SM10-22)

The thiosulfonates were synthesized from the corresponding alkyl bromide according to the procedure in literature. An oven-dried 50 mL round-bottom flask was equipped with PhSO₂SNa (1.0 equiv.), alkyl bromide (2.0 equiv.) and DMF. The mixture was stirred at room temperature and monitored by TLC. Upon completion, the mixture was diluted with ethyl acetate and washed with water. Then the organic phase was dried over anhydrous Na₂SO₄ and filtered. The filtrate was concentrated by rotary evaporation and then was purified by column chromatography on silica to afford the desired products. *S*-(pent-4-yn-1-yl) benzenesulfonothioate was synthesized according to the procedure in literature.^[3]

S-heptyl benzenesulfonothioate (SM11)

Following general procedure C, the title compound (4.23 g, 78% yield) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.98 – 7.87 (m, 2H), 7.65 – 7.59 (m, 1H), 7.58 – 7.51 (m, 2H), 2.98 (t, J = 7.4 Hz, 2H), 1.61 – 1.53 (m, , 2H), 1.28 – 1.17 (m 8H), 0.84 (t, J = 7.0

Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.0, 133.7, 129.3, 127.0, 36.2, 31.6, 28.6, 28.6, 28.5, 22.6, 14.1. IR (ATR) : v 3434, 2931, 2869, 1655, 1497, 1439, 1388, 1254, 1096, 660 cm⁻¹. HRMS (APCI) *m/z* Calcd for C₁₃H₂₁O₂S₂⁺ [M +H]⁺: 273.09775; found: 273.09827.

S-(3-chloropropyl) benzenesulfonothioate (SM19)

Following general procedure C, the title compound (1.33 g, 52% yield) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCI₃) δ = 7.93 (d, J = 8.8 Hz, 2H), 7.66 – 7.62 (m, 1H), 7.58 – 7.54 ((m, 2H), 3.54 (t, J = 6.1 Hz, 2H), 3.13 (t, J = 7.0 Hz, 2H), 2.13 – 2.06 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 134.0, 129.5, 127.0, 42.8, 33.0, 31.5.

IR (ATR) : v 2959, 1444, 1319, 1140, 1075, 755, 713, 684 cm⁻¹.

HRMS (APCI) m/z Calcd for C₉H₁₂O₂ClS₂⁺ [M +H]⁺: 250.99618; found: 250.99691.

S-cycloheptyl benzenesulfonothioate (SM21)

Following general procedure C, the title compound (1.49 g, 55% yield) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.94 (d, *J* = 7.3 Hz, 2H), 7.66 – 7.62 (m,1H), 7.58 – 7.54 (m, 2H), 3.57 – 3.50 (m, 1H), 2.00 – 1.95 (m, 2H), 1.72 – 1.64 (m, 2H), 1.58 -

1.46 (m, 8H).

¹³C NMR (101 MHz, CDCl₃) δ 145.7, 133.6, 129.3, 127.0, 52.6, 35.4, 28.0, 25.6. IR (ATR) : v 2926, 2856, 1447, 1323, 1141, 1076, 754, 714, 685 cm⁻¹. HRMS (APCI) *m*/*z* Calcd for $C_{13}H_{19}O_2S_2^+$ [M +H]⁺: 271.08210; found: 271.08240.

S-(2,4-dimethylphenyl) benzenesulfonothioate(SM9)

Following general procedure B, the title compound (2.57 g, 92% yield) was isolated as a white solid. ¹H NMR (300 MHz, CDCl₃) δ = 7.72 – 7.51 (m, 3H), 7.48 – 7.39 (m, 2H), 7.20 (d, *J* = 7.9 Hz, 1H), 7.04 (s, 1H), 6.96 (d, *J* = 7.8 Hz, 1H), 2.33 (s, 3H), 2.09 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 144.1, 143.7, 142.7, 138.3, 133.7, 132.0, 129.0, 128.0, 127.61, 21.5, 20.6. IR (ATR) : v 3041, 2921, 1598, 1473, 1443, 1315, 1140, 1072, 996, 824, 760, 713, 685 cm⁻¹. HRMS (APCI) *m*/*z* Calcd for $C_{14}H_{15}O_2S_2^*$ [M +H]⁺: 279.05080; found: 279.05100.

methyl ((S)-2-methyl-3-(tosylthio)propanoyl)-D-prolinate(SM23)

Following general procedure B, the title compound (2.23 g, 58% yield) was isolated as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 7.80 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 4.49 (dd, *J* = 8.6, 4.0 Hz, 1H), 3.70 (s, 3H), 3.59 (t, *J* =

6.6 Hz, 2H), 3.25 (dd, *J* = 13.9, 9.1 Hz, 1H), 3.17 – 3.08 (m, 1H), 2.88 (dd, *J* = 13.9, 4.9 Hz, 1H), 2.45 (s, 3H), 2.25 – 2.17 (m, 1H), 2.09 – 1.94 (m, 3H), 1.20 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.0, 172.7, 145.0, 141.8, 130.0, 127.2, 58.8, 52.3, 47.0, 38.7, 38.6, 29.2, 25.0, 21.8, 17.0.

IR (ATR) : v 3477, 2972, 2879, 1743, 1637, 1596, 1432, 1367, 1321, 1177, 1137, 1077, 814, 752, 703 cm⁻¹. **HRMS (ESI)** m/z Calcd for C₁₅H₁₆ONaS₂⁺ [M +Na]⁺: 299.05348; found: 299.05311.

3. Optimizations of Nickel-Catalyzed Reduction Homo-Coupling Reaction

	0, S 0 1 0.2 mmol	NiCl ₂ •glyme (5 ligand (5 mo reductant (1.0 e solvent, rt, 1	mol%) %) equiv.) 5 h	S S 36	
entry	Ni-Cat	ligand	solvent	reductant	yield (%) ^a
1	NiCl ₂ ·glyme	6,6'-di-Me-2,2'-bpy	DMF	Mn	92
2	NiCl ₂ ·glyme	6,6'-di-Me-2,2'-bpy	DMA	Mn	90
3	NiCl ₂ ·glyme	6,6'-di-Me-2,2'-bpy	DMSO	Mn	84
4	NiCl ₂ ·glyme	6,6'-di-Me-2,2'-bpy	THF	Mn	23
5	NiCl ₂ ·glyme	bpy	DMF	Mn	18
6	NiCl ₂ ·glyme	dtbbpy	DMF	Mn	55
7	NiCl ₂ ·glyme	6,6'-di-Me-2,2'-bpy	DMF	Mg	82
8	-	6,6'-di-Me-2,2'-bpy	DMF	Mn	29
9	NiCl ₂ ·glyme	-	DMF	Mn	44
10	NiCl ₂ ·glyme	6,6'-di-Me-2,2'-bpy	DMF	-	30
^a GC yi	eld using n-deca	ne (0.1 mmol) as the in	ternal standa	rd.	

Table S1. Optimizations of homo-coupling reaction.

4. Optimizations of Nickel-Catalyzed Reduction Cross-Coupling Reaction

			0	
o s s	Ph S S S	NiBr ₂ •diglym Ligand (1	e (10 mol%) 0 mol%)	S-IX pt S-pt
1 0.1 mmol	+ 0 48 2.0 equiv	Zn (2.0 e KF (1.0 e DMF, 40 [°]	equiv.) equiv.) ℃, 16 h	S ⁷ (76 + Pn∼S ⁷ Pn 15 2
entry	ligand	15/2	yield 15 (%)) ^a yield 2 (%) ^a
1	L1	7/1	21	3
2	L2	3.5/1	7	2
3	L3	15/1	15	1
4	L4	1.5/1	3	2
5	L5	5.3/1	21	4
6	L6	4.5/1	9	2
7	L7	5/1	5	1
8	L8	5/1	15	3
9	L9	4.7/1	14	3
10	L10	12/1	12	1
^a Yields dete	rmined by GC analys	is using decan	e as internal stand	ard.

 Table S2. Optimization of ligands.

O S O O 1 0.1 mmol	0, 5, 6 0 48 2.0 equiv	NiBr ₂ •digly bpy (* reductant KF (1. DMF, 4	me (10 mol%) 10 mol%) (2.0 equiv.) 0 equiv.) 0 °C,16 h	⁻ Ph _~ s⁄ ^S 15	∯ _{6 +} Ph∼ _S ∕ ^S ∼Ph 2
entry	reductant	15/2	yield 15	(%) ^a	yield 2 (%) ^a
1	Zn	7/1	21		3
2	Mn	1/1	4		4
3	Mg	0.8/1	4		5
4	Fe	1/1	5		5
^a Yields deter	mined by GC analy	sis using de	cane as intern	al standar	d.

Table S4. Optimization of catalyst precursors

o s s	Ph O S 6	[Ni] (10 mol%) bpy (10 mol%)	. s.x	S
	+ 0 couiv	Zn (2.0 equiv.) KF (1.0 equiv.) DMF, 40 °C, 16 h	► Ph _{~S} [™] [™] 6	+ Ph~S ² Ph
0.1 mmoi	2.0 equiv			
entry	[Ni]	15/2	yield 15 (%) ^a	yield 2 (%) ^a
1	NiBr ₂ ·diglyme	7.7/1	23	3
2	NiCl ₂ ·glyme	6.7/1	20	3
3	NiCl ₂ ·6H ₂ O	6/1	24	4
4 ^b	Ni(BF ₄) ₂ ·6H ₂ O	6.8/1	27	4
5	Ni(acac) ₂	1.1/1	14	13
6	Ni(OAc) ₂ ·4H ₂ O	5/1	20	4
7	NiBr ₂ ·3H ₂ O	4.8/1	29	6
8	NiCl ₂	5/1	25	5
^a Yields de	termined by GC analysis	using decane as int	ernal standard. ^b [l	Ni] (7.5 mol%).

Table S5. Optimization of solvent

O S_S_Ph	S-S+G	Ni(BF ₄) ₂ •6H bpy (10 mol	5 ₂ O (7.5 mol%) %) ───── ─ P	h-c ^S (6 +	Ph∖o∕ ^S ∼Ph
1 0.1 mmol	48 2.0 equiv.	Zn (2.0 equ KF (1.0 equ solvent, 40	iv.) ive.) ℃, 16 h	15	2
entry	solvent	15/2	yield 15 (%) ^a yield 2	2 (%) ^a
1	DMF	6/1	24	4	
2	DMA	3.6/1	36	10	
3	THF	2.1/1	64	30	
4 ^b	THF	3.5/1	77	22	
5	MeCN	1.0/1	26	25	
6	Toluene	0.8/1	19	23	

^a Yields determined by GC analysis using decane as internal standard.

^b Ni(BF₄)₂·6H₂O (10 mol%).

Table S6. Optimization of temperature

0 S_S_F	vh S.S.	H6	Ni(BF ₄) ₂ •6H ₂ O (10 mol%) bpy (10 mol%)	S., S.,	
0	+		Zn (2.0 equiv.)	r ₽n∼S′	\/ <mark>6 + PN~S</mark> ⁄ PN
1 0.1 mmol	48 2 0 equi	iv	THF, temp., 16 h	15	2
0.1 1111101	2.0 equ				
entry	temp. (°C)	15/2	yield 15 (%)	a	yield 2 (%) ^a
1	rt	0.8/1	5		7
2	40	3.9/1	77		20
3	60	86/1	89 (77)		1
4	100	3.8/1	42		11
^a Yields de	termined by GC	analy	sis using decane as intern	al standard	. The value in

parentheses indicates the isolated yield.

Table S7. Optimization of the additives

ſ	O S_S_Ph	S-S-M6	Ni(BF ₄) ₂ •6H ₂ O (10 mc bpy (10 mol%)	DI%)	_{₽h} ∕S∼ _{Ph}
Į	1 0.1 mmol	48 2.0 equiv.	Zn (2.0 equiv.) additive (1.0 equive.) THF, 60 °C, 16 h	15	+ r n∼s [,] r n 2
	entry	additives	15/2	yield 15 (%) ^a	yield 2 (%) ^a
-	1	KF	89/1	89	1
	2	LiF	3.1/1	58	19
	3	NaF	3.5/1	53	15
	4	CsF	5.1/1	36	7
	5	KI	3.1/1	58	19
	6	K ₂ CO ₃	3.6/1	43	12
-	^a Yields deterr	nined by GC analy	ysis using decane as	internal standard.	

Table S8. Optimization of the amount of KF

O S S O	h +	D S Ni(S S 6 O	BF ₄) ₂ •6H ₂ O (10 mol%) bpy (10 mol%) Zn (2.0 equiv.)	Ph-S ^{S+} 6	+ Ph∼S ^{∕S∼} Ph
1 0.1 mmol	2.	48 0 equiv.	THF, 60 °C, 16 h	15	2
entry	X =	15/2	yield 15 (%) ^a	yield 2 (%	(o) ^a
1	0	3.2/1	51	16	
2	0.5	4.8/1	62	13	
3	1	44.5/1	89	2	
4	1.5	4.8/1	72	15	
5	2	12.3/1	86	7	
^a Yields det	termined b	y GC analysis	using decane as intern	al standard.	

Table S9. Optimization of the amount of 2a

$\begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$
0.1 mmol Y equiv.
entry Y = 15/2 yield 15 (%) ^a yield 2 (%)
1 1.0 1.4/1 14 10
2 1.2 2/1 26 13
3 1.5 2.6/1 36 14
4 2.0 86/1 86 (78) 1

^{*a*} Yields determined by GC analysis using decane as internal standard. The value in parentheses indicates the isolated yield.

5. General Procedure for the Homo-Coupling Reaction

General Procedure D

A oven-dried vial containing a teflon coated stirring bar was equipped with benzenesulfonothioate (0.2 mmol, 1.0 equiv.), NiCl₂·glyme (0.01 mmol, 5 mol%), 6,6'-dimethyl-2,2'-bipyridine (0.01 mmol, 5 mol%), Mn (0.2 mmol, 1.0 equiv.). The vial was close with a rubber septum, evacuated and backfilled with nitrogen three times. Then, degassed DMF (1.0 mL) was added via syringe. The septum and the vial were sealed with parafilm and then was stirred at rt for 16 h. Upon completion, the crude reaction mixture was concentrated by rotary evaporation and then was purified by column chromatography on silica to using hexane: Et_2O as eluent to obtain the desired products.

6. General Procedure for the Cross-Coupling Reaction

General Procedure E for the Cross-Coupling Reaction

A oven-dried vial containing a teflon coated stirring bar was equipped with benzenesulfonothioate (black) (0.1 mmol, 1.0 equiv., if solid), benzenesulfonothioate (red) (0.2 mmol, 2.0 equiv., if solid), Ni(BF₄)₂·6H₂O (0.01 mmol, 10 mol%), 2,2'-bipyridine (0.01 mmol, 10 mol%), Zn (0.2 mmol, 2.0 equiv.), KF (0.1 mmol, 1.0 equiv.). The vial was close with a rubber septum, evacuated and backfilled with nitrogen three times. Then, degassed THF (1 mL) and benzenesulfonothioate (black) (0.1 mmol, 1.0 equiv., if liquid), benzenesulfonothioate (red) (0.2 mmol, 2.0 equiv., if liquid) were added via syringe. The septum and the vial were sealed with parafilm and then was stirred at 60 °C for 16-48 h. Upon completion, the crude reaction mixture was filtered and washed with EtOAc (10 mL), the mixture was concentrated by rotary evaporation. Then, the crude mixture was purified by column chromatography on silica to afford the desired products.

General Procedure F for the Cross-Coupling Reaction

A oven-dried vial containing a teflon coated stirring bar was equipped with benzenesulfonothioate (black) (0.1 mmol, 1.0 equiv., if solid), benzenesulfonothioate (red) (0.2 mmol, 2.0 equiv., if solid), Ni(BF₄)₂·6H₂O (0.01 mmol, 10 mol%), 2,2'-bipyridine (0.015 mmol, 15 mol%), Zn (0.2 mmol, 2.0 equiv.), KF (0.1 mmol, 1.0 equiv.). The vial was close with a rubber septum, evacuated and backfilled with nitrogen three times. Then, degassed THF (1.0 mL), benzenesulfonothioate (black) (0.1 mmol, 1.0 equiv., if liquid), benzenesulfonothioate (red) (0.2 mmol, 2.0 equiv., if liquid) were added via syringe. The septum and the vial were sealed with parafilm and then was stirred at 60 °C for 48 h. Upon completion, the crude reaction mixture was filtered and washed with EtOAc (10 mL), the mixture was concentrated by rotary evaporation. Then, the crude mixture was purified by column chromatography on silica to afford the desired products.

General Procedure G for the Cross-Coupling Reaction

A oven-dried vial containing a teflon coated stirring bar was equipped with benzenesulfonothioate (black) (0.1 mmol, 1.0 equiv., if solid), benzenesulfonothioate (red) (0.2 mmol, 2.0 equiv., if solid), Ni(BF₄)₂·6H₂O (0.01 mmol, 10 mol%), 2,2'-bipyridine (0.005 mmol, 5 mol%), 4'-(p-tolyl)-2,2':6',2''-terpyridine (0.005 mmol, 5 mol%), Zn (0.2 mmol, 2.0 equiv.), KF (0.1 mmol, 1.0 equiv.). The vial was close with a rubber septum, evacuated and backfilled with nitrogen three times. Then, degassed THF (1.0 mL) and benzenesulfonothioate (black) (0.1 mmol, 1.0 equiv., if liquid), benzenesulfonothioate (red) (0.2 mmol, 2.0 equiv., if liquid) were added via syringe. The septum and the vial were sealed with parafilm and then was stirred at 60 °C for 48 h. Upon completion, the crude reaction mixture was filtered and washed with EtOAc (10 mL), the mixture was concentrated by rotary evaporation. Then, the crude mixture was purified by column chromatography on silica to afford the desired products.

General Procedure F for the Scale-up Reaction

A 250 mL flask containing a teflon coated stirring bar was equipped with benzenesulfonothioate **1** (5 mmol, 1.0 equiv.), benzenesulfonothioate **49** (10 mmol, 2.0 equiv.), Ni(BF₄)₂·6H₂O (0.5 mmol, 10 mol%), 2,2'-bipyridine (0.5 mmol, 10 mol%), Zn (10 mmol, 2.0 equiv.), KF (5 mmol, 1.0 equiv.). The flask was introduced to a glovebox which with Argon atmosphere. Then, anhydrous THF (25 mL) were added via syringe. The flask was close with a rubber septum and removed from the glovebox. The flask then was stirred at 60 °C for 48 h. Upon completion, the crude reaction mixture was filtered and washed with EtOAc (20 mL), the mixture was concentrated by rotary evaporation. Then, the crude mixture was purified by column chromatography on silica (eluent: 80:1 to 50:1 hexane: Et₂O) to afford **27'** as a white solid in 65% yield (852 mg).

7. Specific Procedures and Spectroscopic Data of the Products

1,2-Diphenyldisulfane (2)

Following general procedure D, the title compound (19.4 mg, 89% yield) was isolated as a white solid after flash chromatography on silica gel (eluent: hexane), starting from *S*-phenyl benzenesulfonothioate (50.0 mg, 0.2 mmol, 1.0 equiv.), NiCl₂·glyme (2.2 mg, 0.01 mmol, 5

mol%), 6,6'-dimethyl-2,2'-bipyridine (1.9 mg, 0.01 mmol, 5 mol%), Mn (11.0 mg, 0.2 mmol, 1.0 equiv.) in DMF (1 mL) at rt for 16 h.

¹H NMR (400 MHz, CDCl₃) δ = 7.55 – 7.44 (m, 4H), 7.32 – 7.28 (m, 4H), 7.23 (dd, *J* = 8.5, 3.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 137.2, 129.2, 127.7, 127.3.

The data is consistent with the literature.^[9]

1,2-Bis(4-methoxyphenyl)disulfane (3)

Following general procedure D, the title compound (24.9 mg, 90% yield) was isolated as a yellow solid after flash chromatography on silica gel (eluent: 200:1 to 100:1 hexane: Et_2O), starting from S-(4-methoxyphenyl) benzenesulfonothioate (56.0 mg, 0.2 mmol, 1.0 equiv.), NiCl₂·glyme (2.2 mg, 0.01 mmol, 5 mol%), 6,6'-

dimethyl-2,2'-bipyridine (1.9 mg, 0.01 mmol, 5 mol%), Mn (11 mg, 0.2 mmol, 1.0 equiv.) in DMF (1 mL) at rt for 16 h.

¹H NMR (600 MHz, CDCI₃) δ = 7.41 (dd, J = 8.7, 1.8 Hz, 4H), 6.84 (dd, J = 8.7, 1.8 Hz, 4H), 3.80 (s, 6H).

¹³C NMR (151 MHz, CDCI₃) δ 160.0, 132.8, 128.5, 114.7, 55.5.

The data is consistent with the literature.^[9]

1,2-Di-p-tolyldisulfane (4)

S^S

Following general procedure D, the title compound (20.8 mg, 85% yield) was isolated as a pale yellow solid after flash chromatography on silica gel (eluent: hexane), starting from S-(p-tolyl) benzenesulfonothioate (52.8 mg, 0.2 mmol, 1.0 equiv.), NiCl₂·glyme

(2.2 mg, 0.01 mmol, 5 mol%), 6,6'-dimethyl-2,2'-bipyridine (1.9 mg, 0.01 mmol, 5 mol%), Mn (11.0 mg, 0.2 mmol, 1.0 equiv.) in DMF (1 mL) at rt for 16 h.

¹H NMR (600 MHz, CDCl₃) δ = 7.39 (d, J = 8.0 Hz, 4H), 7.11 (d, J = 8.0 Hz, 4H), 2.33 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 137.6, 134.0, 129.9, 128.7, 21.2.

The data is consistent with the literature.^[9]

1,2-Bis(4-chlorophenyl)disulfane (5)

Following general procedure D, the title compound (28.4 mg, 99% yield) was isolated as a pale yellow solid after flash chromatography on silica gel (eluent: hexane), starting from *S*-(4-chlorophenyl) benzenesulfonothioate (56.9 mg, 0.2 mmol, 1.0 equiv.), NiCl₂·glyme (2.2 mg, 0.01 mmol, 5 mol%), 6,6'-dimethyl-2,2'-bipyridine (1.9 mg, 0.01

mmol, 5 mol%), Mn (11.0 mg, 0.2 mmol, 1.0 equiv.) in DMF (1 mL) at rt for 16 h. The data of are consistent with the literature.⁹

¹H NMR (600 MHz, CDCI₃) δ = 7.42 – 7.38 (m, 4H), 7.30 – 7.26 (m, 4H). ¹³C NMR (151 MHz, CDCI₃) δ 135.3, 133.8, 129.4. The data is consistent with the literature.^[9]

1,2-Bis(3-phenylpropyl)disulfane (6)

Following general procedure D, the title compound (25.3 mg, 84% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: 400:1 to 200:1hexane: Et₂O), starting from *S*-(3-phenylpropyl) benzenesulfonothioate (58.5 mg, 0.2 mmol, 1.0 equiv.), NiCl₂·glyme (2.2 mg, 0.01 mmol, 5 mol%), 6,6'-

dimethyl-2,2'-bipyridine (1.9 mg, 0.01 mmol, 5 mol%), Mn (11.0 mg, 0.2 mmol, 1.0 equiv.) in DMF (1 mL) at rt for 16 h.

¹H NMR (600 MHz, CDCl₃) δ = 7.30 (m, 4H), 7.21 (m, 6H), 2.73 (t, *J* = 7.6 Hz, 4H), 2.69 (t, *J* = 7.2 Hz, 4H), 2.05 – 2.00 (m, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 141.5, 128.6, 128.5, 126.1, 38.3, 34.5, 30.7.

The data is consistent with the literature.^[10]

1,2-Bis(2-phenoxyethyl)disulfane (7)

Following general procedure D, the title compound (26.7 mg, 87% yield) was isolated as a white solid after flash chromatography on silica gel (eluent: 80:1 to 50:1 hexane: Et₂O), starting from *S*-(2-phenoxyethyl) benzenesulfonothioate (58.9 mg, 0.2 mmol, 1.0 equiv.), NiCl₂·glyme (2.2 mg, 0.01 mmol, 5 mol%), 6,6'-

dimethyl-2,2'-bipyridine (1.9 mg, 0.01 mmol, 5 mol%), Mn (11.0 mg, 0.2 mmol, 1.0 equiv.) in DMF (1 mL) at rt for 16 h.

¹H NMR (600 MHz, CDCI₃) δ = 7.32 – 7.27 (m, 4H), 6.99 – 6.96 (m, 2H), 6.93 (d, *J* = 8.5 Hz, 4H), 4.26 (t, *J* = 6.6 Hz, 4H), 3.10 (t, *J* = 6.6 Hz, 4H).

¹³C NMR (151 MHz, CDCI₃) δ 158.5, 129.7, 121.6, 114.8, 66.1, 38.0.

IR (ATR) : v 2926, 1595, 1493, 1467, 1421, 1294, 1237, 1171, 1076, 1023, 824, 742, 685 cm⁻¹. **HRMS (EI)** *m*/*z* Calcd for C₁₆H₁₈O₂S₂⁺ [M]⁺: 306.07436; found: 306.07428.

1,2-Bis(naphthalen-2-ylmethyl)disulfane (8)

Following general procedure D, the title compound (26.5 mg, 77% yield) was isolated as a white solid after flash chromatography on silica gel (eluent: 400:1 to 20:1 hexane: Et₂O), starting from S-(naphthalen-2-ylmethyl) benzenesulfonothioate (62.9 mg, 0.2 mmol, 1.0 equiv.), NiCl₂·glyme (2.2 mg, 0.01 mmol, 5 mol%), 6,6'-dimethyl-2,2'-bipyridine (1.9 mg, 0.01 mmol, 5 mol%), Mn (11.0 mg, 0.2 mmol, 1.0 equiv.) in DMF (1 mL) at rt for 16 h. **1H NMR (600 MHz, CDCl₃)** δ = 7.83 (d, *J* = 7.8 Hz, 2H), 7.79 (t, *J* = 8.6 Hz, 4H), 7.56 – 7.45 (m, 6H), 7.35 (dd, *J* = 8.4, 1.6 Hz, 2H), 3.73 (s, 4H).

¹³C NMR (151 MHz, CDCl₃) δ 134.7, 133.3, 132.8, 128.4, 128.4, 127.9, 127.9, 127.4, 126.4, 126.1, 43.8. The data is consistent with the literature.^[11]

1,2-Diheptyldisulfane (9)

Following general procedure D, the title compound (21.7 mg, 83% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: hexane), starting from S-heptyl benzenesulfonothioate (45.5 mg, 0.2 mmol, 1.0 equiv.), NiCl₂·glyme (2.2 mg, 0.01 mmol, 5 mol%), 6,6'-dimethyl-2,2'-bipyridine (1.9 mg, 0.01 mmol, 5 mol%), Mn (11.0 mg, 0.2 mmol, 1.0 equiv.) in DMF (1 mL) at rt for 16 h. **1H NMR (600 MHz, CDCl₃)** δ = 2.70 – 2.65 (m, 4H), 1.69 – 1.64 (m, 4H), 1.38 (m, 4H), 1.29 (m, 12H), 0.88 (t, *J* = 6.9 Hz, 6H).

 ^{13}C NMR (151 MHz, CDCl₃) δ 39.4, 31.9, 29.4, 29.1, 28.6, 22.8, 14.2. The data is consistent with the literature. $^{[12]}$

1,2-Diethyldisulfane (10)

Following general procedure D, the title compound (23.9 mg, 83% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: hexane), starting from *S*-octyl benzenesulfonothioate (57.3 mg, 0.2 mmol, 1.0 equiv.), NiCl₂·glyme (2.2 mg, 0.01 mmol, 5 mol%), 6,6'-dimethyl-2,2'-bipyridine (1.9 mg, 0.01 mmol, 5 mol%), Mn (11.0 mg, 0.2 mmol, 1.0 equiv.) in DMF (1 mL) at rt for 16 h. ¹H NMR (600 MHz, CDCl₃) δ = 2.71 – 2.64 (m, 4H), 1.69 – 1.64 (m, 4H), 1.40 – 1.24 (m, 20H), 0.88 (t, *J* = 7.0 Hz, 6H).

¹³C NMR (151 MHz, CDCI₃) δ 39.4, 32.0, 29.4, 29.4, 29.3, 28.7, 22.8, 14.2.

The data is consistent with the literature.^[12]

1,2-Dinonyldisulfane (11)

Following general procedure D, the title compound (22.8 mg, 72% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: hexane), starting from S-nonyl benzenesulfonothioate (60.1 mg, 0.2 mmol, 1.0 equiv.), NiCl₂·glyme (2.2 mg, 0.01 mmol, 5 mol%), 6,6'-dimethyl-2,2'-bipyridine (1.9 mg, 0.01 mmol, 5 mol%), Mn (11.0 mg, 0.2 mmol, 1.0 equiv.) in DMF (1 mL) at rt for 16 h. ¹H NMR (600 MHz, CDCl₃) δ = 2.71 – 2.65 (m, 4H), 1.69 – 1.64 (m, 4H), 1.39 – 1.25 (m, 24H), 0.93 – 0.85 (m, 6H).

 ^{13}C NMR (151 MHz, CDCl₃) δ 39.4, 32.0, 29.6, 29.4, 29.4, 29.4, 28.7, 22.8, 14.3.

The data is consistent with the literature.^[13]

1,2-Bis(1-phenylethyl)disulfane (12) dr = 1:1

Following general procedure D, the title compound (26.2 mg, 93% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: 100:1 to 80:1 hexane: Et_2O), starting from *S*-(1-phenylethyl) benzenesulfonothioate (55.7 mg, 0.2 mmol, 1.0

equiv.), NiCl₂·glyme (2.2 mg, 0.01 mmol, 5 mol%), 6,6'-dimethyl-2,2'-bipyridine (1.9 mg, 0.01 mmol, 5 mol%), Mn (11.0 mg, 0.2 mmol, 1.0 equiv.) in DMF (1 mL) at rt for 16 h.

¹H NMR (400 MHz, CDCl₃) δ = 7.35 – 7.30 (m, 4H), 7.29 – 7.20 (m, 6H), 3.62 (q, *J* = 7.0 Hz, 1H), 3.54 (q, *J* = 7.0 Hz, 1H), 1.56 (dd, *J* = 7.0, 4.3 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 142.5, 128.5, 127.9, 127.8, 127.6, 127.6, 77.5, 77.2, 76.8, 49.6, 49.6, 20.7, 20.6. IR (ATR): v 2961, 2923, 2857, 1492, 1450, 1371, 1182, 1026, 762, 694 cm⁻¹.

HRMS (APCI) *m*/z Calcd for C₁₆H₁₉S₂⁺ [M +H]⁺: 275.09227; found: 275.09267.

1,2-Dicyclopentyldisulfane (13)

Following general procedure D, the title compound (17.3 mg, 86% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: hexane), starting from *S*-cyclopentyl benzenesulfonothioate (48.5 mg, 0.2 mmol, 1.0 equiv.), NiCl₂·glyme (2.2 mg, 0.01

mmol, 5 mol%), 6,6'-dimethyl-2,2'-bipyridine (1.9 mg, 0.01 mmol, 5 mol%), Mn (11.0 mg, 0.2 mmol, 1.0 equiv.) in DMF (1 mL) at rt for 16 h.

¹H NMR (400 MHz, CDCl₃) δ = 3.31 – 3.27 (m, 2H), 2.01 – 1.94 (m, 4H), 1.79 – 1.71 (m, 4H), 1.70 – 1.63 (m, 4H), 1.59 (m, 4H).

¹³C NMR (101 MHz, CDCI₃) δ 77.4, 77.2, 77.0, 50.5, 33.3, 24.8. The data is consistent with the literature.^[14]

1,2-Dicycloheptyldisulfane (14)

Following general procedure D, the title compound (11.9 mg, 46% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: hexane), starting from *S*-cycloheptyl benzenesulfonothioate (54.1 mg, 0.2 mmol, 1.0 equiv.), NiCl₂·glyme (2.2 mg, 0.01 mmol, 5 mol%), 6,6'-dimethyl-2,2'-bipyridine (1.9 mg, 0.01 mmol, 5 mol%), Mn (11.0

mg, 0.2 mmol, 1.0 equiv.) in DMF (1 mL) at rt for 16 h.

¹H NMR (400 MHz, CDCI₃) δ = 2.91 – 2.86 (m, 2H), 2.11 – 2.06 (m, 4H), 1.76 – 1.70 (m, 4H), 1.55 (m, 12H), 1.48 – 1.41 (m, 4H).

 ^{13}C NMR (101 MHz, CDCl₃) δ 77.2, 76.8, 51.6, 34.4, 29.9, 28.5, 26.1.

IR (ATR): v 2921, 2852, 1453, 1348, 1213, 1054, 947, 815 cm⁻¹.

HRMS (APCI) m/z Calcd for $C_{14}H_{27}S_2^+$ [M +H]⁺: 259.15487; found: 259.15557.

1-Heptyl-2-phenyldisulfane (15)

Following general procedure E, the title compound (18.4 mg, 77% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: hexane), starting from S-phenyl benzenesulfonothioate (25.0 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (1.6 mg, 0.01 mmol, 10 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-heptyl benzenesulfonothioate (49 µL, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 16 h.

¹H NMR (400 MHz, CDCl₃) δ = 7.58 – 7.46 (m, 2H), 7.35 – 7.25 (m, 2H), 7.23 – 7.16 (m, 1H), 2.74 (t, *J* = 8 Hz, 2H), 1.68 – 1.61 (m, 2H), 1.35 – 1.21 (m, 8H), 0.85 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.8, 129.1, 127.5, 126.8, 39.1, 31.8, 29.0, 29.0, 28.6, 22.7, 14.2.

IR (ATR): v 2924, 2854, 1579, 1468, 1440, 1070, 1023, 737, 688 cm⁻¹.

HRMS (APCI) m/z Calcd for $C_{13}H_{21}S_2^+[M + H]^+$: 241.10792; found: 241.10804.

1-Heptyl-2-(4-methoxyphenyl)disulfane (16)

Following general procedure E, the title compound (16.0 mg, 60% yield) was isolated as a pale yellow oil after flash chromatography on silica gel (eluent: 400:1 to 20:1 hexane: Et₂O), starting from S-(4-methoxyphenyl) benzenesulfonothioate (28.0 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (1.6 mg, 0.01 mmol, 10 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-heptyl benzenesulfonothioate (49 μ L, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 36 h.

¹H NMR (400 MHz, CDCl₃) δ = 7.48 (d, *J* = 8.7 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 3.81 (s, 3H), 2.72 (d, *J* = 6 Hz, 2H), 1.70 – 1.63 (m, 2H), 1.38 – 1.21 (m, 8H), 0.87 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCI₃) δ 159.6, 131.8, 128.7, 114.7, 55.5, 39.0, 31.8, 29.0, 28.8, 28.6, 22.7, 14.2. IR (ATR): v 2924, 2854, 1590, 1489, 1459, 1287, 1243, 1173, 1031, 823, 722 cm⁻¹. HRMS (EI) *m*/z Calcd for $C_{14}H_{22}S_2^{+}$ [M]⁺: 270.11066; found: 270.11050.

1-Heptyl-2-(p-tolyl)disulfane (17)

Following general procedure E, the title compound (21.3 mg, 83% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: hexane), starting from S-(p-tolyl) benzenesulfonothioate (26.4 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (1.6 mg, 0.01 mmol, 10 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-heptyl benzenesulfonothioate (49 µL, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 24 h.

¹H NMR (400 MHz, CDCl₃) δ = 7.43 (d, *J* = 8.1 Hz, 2H), 7.13 (d, *J* = 8.1 Hz, 2H), 2.73 (t, *J* = 8.0 Hz, 2H), 2.34 (s, 3H), 1.70 - 1.62 (m, 2H), 1.38 - 1.23 (m, 8H), 0.88 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCI₃) δ 137.1, 134.4, 129.9, 128.5, 39.1, 31.8, 29.0, 28.9, 28.6, 22.7, 21.2, 14.2.

IR (ATR): v 3020, 2924, 2855, 1488, 1457, 1377, 1112, 1077, 1016, 803, 722 cm⁻¹.

HRMS (APCI) *m*/z Calcd for C₁₅H₂₃S₂⁺ [M +H]⁺: 255.12357; found: 255.12428.

1-(4-(Tert-butyl)phenyl)-2-heptyldisulfane (18)

Following general procedure F, the title compound (17.7 mg, 60% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: hexane), starting from S-(4-(tert-butyl)phenyl) benzenesulfonothioate (30.6 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂· $6H_2O$

(3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-heptyl benzenesulfonothioate (49 μ L, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 48 h.

¹H NMR (400 MHz, CDCl₃) δ = 7.49 – 7.44 (m, 2H), 7.37 – 7.33 (m, 2H), 2.74 (t, *J* = 8 Hz, 2H), 1.71 – 1.64 (m, 2H), 1.39 – 1.25 (m, 17H), 0.88 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCI₃) δ 150.3, 134.4, 128.0, 126.2, 39.1, 34.7, 31.8, 31.4, 29.0, 28.9, 28.6, 22.7, 14.2.

IR (ATR): v 2956, 2925, 2858, 1487, 1460, 1396, 1365, 1268, 1114, 1012, 822, 724 cm⁻¹. **HRMS (APCI)** *m*/z Calcd for $C_{17}H_{29}S_2^+$ [M +H]⁺: 297.17052; found: 297.17056.

1-(2,4-Dimethylphenyl)-2-heptyldisulfane (19)

Following general procedure F, the title compound (20.0 mg, 75% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: hexane), starting from S-(2,4-dimethylphenyl) benzenesulfonothioate (27.8 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5

mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-heptyl benzenesulfonothioate (49 μ L, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 48 h.

¹H NMR (600 MHz, CDCl₃) δ = 7.56 (d, *J* = 6 Hz, 1H), 7.01 (d, *J* = 6 Hz, 2H), 2.70 (t, *J* = 9 Hz, 2H), 2.40 (s, 3H), 2.31 (s, 3H), 1.69 – 1.64 (m, 2H), 1.37 – 1.32 (m, 2H), 1.30 – 1.22 (m, 6H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 137.8, 137.4, 132.8, 131.5, 129.5, 127.4, 38.7, 31.8, 29.0, 28.9, 28.6, 22.7, 21.1, 20.2, 14.2.

IR (ATR): v 2923, 2855, 1601, 1465, 1376, 1276, 1231, 1044, 873, 810, 722 cm⁻¹. **HRMS (APCI)** *m*/*z* Calcd for C₁₅H₂₅S₂⁺ [M +H]⁺: 269.13922; found: 269.13923.

1-Octyl-2-phenyldisulfane (20)

Following general procedure E, the title compound (17.5 mg, 69% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: hexane), starting from S-phenyl benzenesulfonothioate (25.0 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (1.6 mg, 0.01 mmol, 10 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-octyl benzenesulfonothioate (53 μ L, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 36 h.

¹H NMR (400 MHz, CDCI₃) δ = 7.54 (d, *J* = 8 Hz, 2H), 7.32 (m, 2H), 7.22 (m, 1H), 2.74 (t, *J* = 8 Hz, 2H), 1.70 - 1.63 (m, 2H), 1.39 - 1.33 (m, 2H), 1.31 - 1.25 (m, 8H), 0.88 (t, *J* = 8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.8, 129.1, 127.5, 126.8, 39.1, 31.9, 29.3, 29.0, 28.6, 22.8, 14.2. The data is consistent with the literature.^[15]

1-Nonyl-2-phenyldisulfane (21)

Following general procedure F, the title compound (16.4 mg, 61% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: hexane), starting from *S*-phenyl benzenesulfonothioate (25.0 mg, 0.1 mmol, 1.0 equiv.), *S*-nonyl benzenesulfonothioate (60 mg,

0.2 mmol, 2.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) in THF at 60 °C for 48 h. ¹H NMR (400 MHz, CDCI₃) δ = 7.55 – 7.52 (m, 2H), 7.34 – 7.30 (m, 2H), 7.24 – 7.19 (m, 1H), 2.74 (t, *J* = 8.0 Hz, 2H), 1.70 – 1.62 (m, 2H), 1.39 – 1.33 (m, 2H), 1.24 (m, 10H), 0.88 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 137.8, 129.1, 127.5, 126.8, 39.1, 32.0, 29.6, 29.4, 29.3, 28.9, 28.6, 22.8, 14.3. IR (ATR): v 3061, 2923, 2853, 1734, 1579, 1467, 1440, 1070, 1023, 737, 688 cm⁻¹.

HRMS (APCI) *m*/z Calcd for C₁₅H₂₄S₂⁺ [M +H]⁺: 269.13922; found: 269.13967.

1-Methyl-2-phenyldisulfane (22)

Following general procedure F, the title compound (9 mg, 58% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: hexane), starting from *S*-phenyl benzenesulfonothioate (25.0 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10

mol%), 2,2'-bipyridine (2.4 mg, 0.01 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-methyl benzenesulfonothioate (29 μ L, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 48 h.

¹H NMR (400 MHz, CDCl₃) δ = 7.47 (d, *J* = 7.8 Hz, 2H), 7.30 – 7.26 (m, 2H), 7.18 – 7.16 (m, 1H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 137.1, 129.2, 127.8, 127.0, 23.1. The data is consistent with the literature.^[16]

1-Phenyl-2-(3-phenylpropyl)disulfane (23)

Following general procedure F, the title compound (16.7 mg, 65% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: 200:1 to 100:1 hexane: Et₂O), starting from S-phenyl benzenesulfonothioate (25.0 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (1.6 mg, 0.01 mmol, 10 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-(3-phenylpropyl) benzenesulfonothioate (48 μ L, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 39 h.

¹H NMR (400 MHz, CDCl₃) δ = 7.58 – 7.48 (m, 2H), 7.32 (m 2H), 7.29 – 7.16 (m, 4H), 7.15 – 7.09 (m, 2H), 2.74 (t, *J* = 8.0 Hz, 2H), 2.70 (t, *J* = 8.0 Hz, 2H), 2.05 – 1.98 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 141.3, 137.7, 129.1, 128.6, 128.5, 127.8, 126.9, 126.1, 38.2, 34.4, 30.3.

IR (ATR): v 3060, 3025, 2926, 2853, 1579, 1475, 1440, 1070, 1024, 738, 693 cm⁻¹.

HRMS (EI) m/z Calcd for $C_{15}H_{16}S_2^+$ [M]⁺: 260.06880; found: 260.06889.

1-(Naphthalen-2-ylmethyl)-2-phenyldisulfan (24)

Following general procedure E, the title compound (13.6 mg, 48% yield) was isolated as a white solid after flash chromatography on silica gel (eluent: 400:1 to 20:1 hexane: Et₂O), starting from S-phenyl benzenesulfonothioate (25.0 mg, 0.1 mmol, 1.0 equiv.), *S*-(naphthalen-2-ylmethyl) benzenesulfonothioate (60.0 mg, 0.2 mmol, 2.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (1.6 mg, 0.01 mmol, 10 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) in THF at 60 °C for 36 h.

¹H NMR (400 MHz, CDCl₃) δ = 7.91 – 7.84 (m, 3H), 7.79 (s, 1H), 7.61 – 7.53 (m, 4H), 7.50 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.36 – 7.31 (m, 2H), 7.28 – 7.24 (m, 1H), 4.20 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 137.8, 129.1, 127.5, 126.8, 39.1, 32.0, 29.6, 29.4, 29.3, 28.9, 28.6, 22.8, 14.3. IR (ATR): v 3053, 2925, 1575, 1471, 1434, 900, 867, 827, 736, 686 cm⁻¹.

HRMS (EI) m/z Calcd for $C_{17}H_{14}S_2^+$ [M]⁺: 282.05315; found: 282.05356.

1-(Cyclopropylmethyl)-2-phenyldisulfane (25)

Following general procedure F, the title compound (14.9 mg, 79% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: hexane), starting from *S*-phenyl benzenesulfonothioate (25.0 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol,

10 mol%), 2,2'-bipyridine (2.4mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-(cyclopropylmethyl) benzenesulfonothioate (35 μ L, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 48 h.

¹H NMR (400 MHz, CDCl₃) δ = 7.62 – 7.47 (m, 2H), 7.35 – 7.27 (m, 2H), 7.24 – 7.17 (m, 1H), 2.70 (d, 2H), 1.15 – 0.91 (m, 1H), 0.58 – 0.49 (m, 2H), 0.28 – 0.19 (m, 2H).

¹³C NMR (75 MHz, CDCI₃) ¹³C NMR (101 MHz, CDCI₃) δ 138.0, 129.0, 127.3, 126.7, 45.3, 10.9, 5.8.

IR (ATR): v 3398, 2325, 2258, 2117, 1649, 1150, 998, 824, 763 cm⁻¹.

HRMS (APCI) m/z Calcd for $C_{10}H_{13}S_2^+$ [M +H]⁺: 197.04532; found: 197.04587.

1-(3-Chloropropyl)-2-phenyldisulfane (26)

Following general procedure G, the title compound (13.5 mg, 62% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: hexane), starting from S-phenyl benzenesulfonothioate (25.0 mg, 0.1 mmol, 1.0 equiv.), S-(3-chloropropyl) benzenesulfonothioate (50 mg, 0.2 mmol, 2 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (0.8 mg, 0.005 mmol, 5 mol%), 4'-(p-tolyl)-2,2':6',2"-terpyridine (1.7 mg, 0.005 mmol, 5 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) in THF at 60 °C for 48 h.

¹H NMR (300 MHz, CDCl₃) δ = 7.64 – 7.53 (m, 2H), 7.41 – 7.34 (m, 2H), 7.31 – 7.25 (m, 1H), 3.65 (t, *J* = 6.0 Hz, 2H), 2.92 (t, *J* = 7.5 Hz, 2H), 2.19 (m, 2H).

 ^{13}C NMR (75 MHz, CDCl₃) δ 137.2, 129.2, 128.0, 127.2, 43.2, 35.5, 31.3.

IR (ATR): v 2955, 2916, 1579, 1475,1437, 1303, 1263, 1069, 1022, 739, 688 cm⁻¹.

HRMS (APCI) m/z Calcd for C₉H₁₂S₂⁺ [M +H]⁺: 219.00767; found: 219.00720.

1-(2-Phenoxyethyl)-2-phenyldisulfane (27)

Following general procedure E, the title compound (18.0 mg, 70% yield) was isolated as awhite solide after flash chromatography on silica gel (eluent: 80:1 to 50:1 hexane: Et_2O), starting from S-phenyl benzenesulfonothioate (25.0 mg, 0.1

mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (1.6 mg, 0.01 mmol, 10 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-(2-phenoxyethyl) benzenesulfonothioate (58.8 mg, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 39 h.

¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.57 – 7.55 (m, 2H), 7.35 – 7.32 (m, 2H), 7.29 – 7.23 (m, 3H), 6.95 – 6.92 (m, 1H), 6.91 – 6.87 (m, 2H), 4.18 (t, *J* = 6.0 Hz, 2H), 3.17 (t, *J* = 6.0 Hz, 2H).

¹³C NMR (151 MHz, DMSO-d₆) δ 158.0, 136.4, 129.5, 129.3, 127.1, 127.1, 120.9, 114.5, 65.2, 37.6.

IR (ATR): v 3395, 1652, 996, 824, 762 cm⁻¹.

HRMS (EI) *m/z* Calcd for C₁₄H₁₄S₂⁺ [M]⁺: 262.04806; found: 262.04852.

1-(Pent-4-yn-1-yl)-2-phenyldisulfane (28)

Following general procedure F, the title compound (11.6 mg, 56% yield) was isolated as a brown oil after flash chromatography on silica gel (eluent: hexane), starting from *S*-phenyl benzenesulfonothioate (25.0 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-(pent-4-yn-1-yl) benzenesulfonothioate (39 μ L, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 48 h. ¹H NMR (400 MHz, CDCI₃) δ = 7.59 – 7.48 (m, 2H), 7.35 – 7.31 (m, 2H), 7.25 – 7.21 (m,1H), 2.85 (d, *J* = 8.0 Hz, 2H), 2.30 (td, *J* = 8.0, 4.0 Hz, 2H), 1.96 (t, *J* = 2.0 Hz, 1H), 1.90 (m, 2H). ¹³C NMR (101 MHz, CDCI₃) δ 137.5, 129.1, 127.8, 127.0, 83.3, 69.3, 37.4, 27.4, 17.3. IR (ATR): v 3297, 2922, 2853, 1715, 1579, 1473, 1438, 1253, 1068, 1023, 739, 689 cm⁻¹.

HRMS (EI) *m/z* Calcd for C₁₁H₁₂S₂⁺ [M]⁺: 208.03750; found: 208.03821.

1-Phenyl-2-(1-phenylethyl)disulfane (29)

Following general procedure E, the title compound (16.5 mg, 67% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: 100:1 to 50:1 hexane: Et_2O),

starting from S-phenyl benzenesulfonothioate (25.0 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (1.6 mg, 0.01 mmol, 10 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-(1-phenylethyl) benzenesulfonothioate (45 μL, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 36 h.

¹H NMR (400 MHz, CDCl₃) δ = 7.37 (d, *J* = 7.7 Hz, 2H), 7.26 – 7.15 (m, 7H), 7.14 – 7.10 (m, 1H), 4.05 (q, *J* = 7.0 Hz, 1H), 1.62 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 141.6, 137.78, 129.0, 128.7, 127.8, 127.8, 127.6, 126.7, 50.4, 20.7. The data is consistent with the literature.^[17]

1-(4-Methoxyphenyl)-2-phenyldisulfane (30)

OMe

Following general procedure F, the title compound (15.5 mg, 63% yield) was isolated as a yellow oil after flash chromatography on silica gel (eluent: 100:1 to 50:1 hexane: Et_2O), starting from *S*-phenyl benzenesulfonothioate (25.0 mg, 0.1 mmol, 1.0 equiv.), *S*-(4-

methoxyphenyl) benzenesulfonothioate (56.0 mg, 0.2 mmol, 2.0 equiv.), $Ni(BF_4)_2 \cdot 6H_2O$ (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) in THF at 60 °C for 48 h.

¹H NMR (400 MHz, CDCl₃) δ = 7.57 – 7.47 (m, 2H), 7.46 – 7.38 (m, 2H), 7.34 – 7.27 (m, 2H), 7.26 – 7.19 (m, 1H), 6.84 (d, *J* = 8.9 Hz, 2H), 3.79 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 160.0, 137.6, 131.9, 129.1, 128.4, 128.2, 127.4, 114.8, 55.5. The data is consistent with the literature.^[18]

1-(4-Chlorophenyl)-2-phenyldisulfane (31)

MeO

Following general procedure F, the title compound (16.4 mg, 65% yield) was isolated as a pale yellow oil after flash chromatography on silica gel (eluent: hexane), starting from *S*-phenyl benzenesulfonothioate (25.0 mg, 0.1 mmol, 1.0 equiv.), *S*-(4-chlorophenyl)

benzenesulfonothioate (56.7 mg, 0.2 mmol, 2.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) in THF at 60 °C for 48 h.

¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.47 – 7.40 (m, 2H), 7.40 – 7.35 (m, 2H), 7.29 – 7.24 (m, 2H), 7.24 – 7.18 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 136.7, 135.8, 133.4, 129.3, 129.3, 129.2, 127.9, 127.6. The data is consistent with the literature.^[18]

1-(4-Methoxyphenyl)-2-(p-tolyl)disulfane (32)

Following general procedure F, the title compound (13.0 mg, 50% yield) was isolated as a pale yellow oil after flash chromatography on silica gel (400:1 to 200:1 hexane: Et₂O), starting from *S*-(4-methoxyphenyl) benzenesulfonothioate (28.0 mg, 0.1 mmol,

1.0 equiv.), S-(p-tolyl) benzenesulfonothioate (52.8 mg, 0.2 mmol, 2.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) in THF at 60 °C for 48 h.

¹H NMR (400 MHz, CDCI₃) δ = 7.51 − 7.33 (m, 4H), 7.12 (d, *J* = 8.2 Hz, 2H), 6.86 − 6.81 (m, 2H), 3.79 (s, 3H), 2.34 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.9, 137.7, 134.2, 132.1, 129.9, 129.3, 128.4, 114.8, 55.5, 21.2. The data is consistent with the literature.^[19]

1-(4-(Tert-butyl)phenyl)-2-(4-methoxyphenyl)disulfane (33)

Following general procedure F, the title compound (14.0 mg, 46% yield) was isolated as a pale yellow oil after flash chromatography on silica gel (400:1 to 200:1 hexane: Et₂O), starting from *S*-(4-methoxyphenyl) benzenesulfonothioate (28.0 mg, 0.1 mmol, 1.0 equiv.), *S*-(4-(tert-butyl)phenyl) benzenesulfonothioate (71.2 mg,

0.2 mmol, 2.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) in THF at 60 °C for 48 h.

¹H NMR (400 MHz, CDCI₃) δ = 7.44 (dd, *J* = 8.8, 6.8 Hz, 4H), 7.33 (d, *J* = 8.7 Hz, 2H), 6.84 (d, *J* = 8.9 Hz, 2H), 3.79 (s, 3H), 1.31 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 159.9, 150.9, 134.2, 131.8, 128.6, 128.5, 126.2, 114.8, 55.5, 34.7, 31.4. IR (ATR): v 2958, 2867, 1589, 1488, 1460, 1397, 1365, 1288, 1244, 1173, 1111, 1030, 822 cm⁻¹. HRMS (EI) *m/z* Calcd for C₁₇H₂₀OS₂⁺ [M]⁺: 304.09501; found: 304.09510.

1-(4-Bromophenyl)-2-(4-methoxyphenyl)disulfane (34)

Following general procedure F, the title compound (18.7 mg, 57% yield) was isolated as a pale yellow oil after flash chromatography on silica gel (400:1 to 200:1 hexane: Et_2O), starting from *S*-(4-methoxyphenyl) benzenesulfonothioate (28.0 mg, 0.1 mmol, 1.0 equiv.), *S*-(4-bromophenyl) benzenesulfonothioate (65.8 mg, 0.2 mmol,

2.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) in THF at 60 °C for 48 h.

 ${}^{1}\text{H NMR} \text{ (400 MHz, CDCl}_{3} \text{) } \delta = 7.51 - 7.28 \text{ (m, 6H)}, \text{ } 6.85 - 6.81 \text{ (m, 2H)}, \text{ } 3.79 \text{ (s, 3H)}.$

 ^{13}C NMR (101 MHz, CDCl_3) δ 160.2, 136.9, 132.2, 132.2, 130.0, 127.6, 121.4, 114.9, 55.5.

The data is consistent with the literature.^[18]

1-(4-Methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)disulfane (35)

Following general procedure F, the title compound (17.4 mg, 55% yield) was isolated as a pale yellow oil after flash chromatography on silica gel (400:1 to 200:1 hexane: Et_2O), starting from S-(4-methoxyphenyl) benzenesulfonothioate (28.0 mg, 0.1 mmol, 1.0 equiv.), S-(4-(trifluoromethyl)phenyl) benzenesulfonothioate (63.7

mg, 0.2 mmol, 2.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) in THF at 60 °C for 48 h. **¹H NMR (400 MHz, CDCl₃):** δ = 7.63 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 8.8 Hz, 2H), 6.84

(d, *J* = 8.8 Hz, 2H), 3.79 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 160.3, 142.5, 132.0, 129.0 (q, *J* = 30.3 Hz), 127.2, 127.1, 126.0 (q, *J* = 4.0 Hz), 124.2 (q, *J* = 272.7 Hz), 115.03, 55.52.

¹⁹F NMR (376 MHz, CDCI₃) δ -62.48 (3F).

The data is consistent with the literature.^[18]

1-(3-Bromophenyl)-2-(4-methoxyphenyl)disulfane (36)

Following general procedure F, the title compound (21.2 mg, 65% yield) was isolated as a pale yellow oil after flash chromatography on silica gel (eluent: 400:1 to 200:1 hexane: Et_2O), starting from *S*-(4-methoxyphenyl) benzenesulfonothioate (28.0 mg, 0.1 mmol, 1.0 equiv.), *S*-(3-bromophenyl) benzenesulfonothioate (65.8

mg, 0.2 mmol, 2.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) in THF at 60 °C for 48 h. ¹H NMR (400 MHz, CDCI₃) δ = 7.68 – 7.67 (m, 1H), 7.42 (m, 3H), 7.35 (m, 1H), 7.19 – 7.14 (m, 1H), 6.86 – 6.83 (m, 2H), 3.79 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 160.2, 139.9, 132.2, 130.4, 130.2, 127.5, 126.4, 123.1, 115.0, 55.5.
 IR (ATR): v 2936, 1566, 1399, 1289, 1245, 1173, 1029, 822, 744, 675 cm⁻¹.
 HRMS (EI) *m*/z Calcd for C₁₃H₁₁BrOS₂⁺ [M]⁺: 325.9473; found: 325.94406.

1-Heptyl-2-(2-phenoxyethyl)disulfane (37)

Following general procedure F, the title compound (16 mg, 55% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: 200:1 to 100:1 hexane: Et₂O), starting from *S*-(2-phenoxyethyl) benzenesulfonothioate (29.4 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and *S*-heptyl benzenesulfonothioate (49 μ L, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 48 h. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.31 – 7.27 (m, 2H), 6.98 – 6.91 (m, 3H), 4.21 (t, *J* = 6.2 Hz, 2H), 3.08 (t, *J* = 6.2 Hz, 2H), 2.76 – 2.67 (m, 2H), 1.64 – 1.57 (m, 2H), 1.34 – 1.16 (m, 8H), 0.88 – 0.81 (m, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 158.1, 130.0, 120.8, 114.5, 65.5, 37.9, 37.2, 31.1, 28.5, 28.2, 27.7, 22.0, 13.9. IR (ATR): v 2924, 2855, 1596, 1493, 1462, 1378, 1296, 1238, 1171, 1075, 1031, 878, 751, 690 cm⁻¹. HRMS (EI) *m/z* Calcd for C₁₅H₂₄OS₂⁺ [M]⁺: 284.12631; found: 284.12646.

1-Octyl-2-(2-phenoxyethyl)disulfane (38)

Following general procedure F, the title compound (16.7 mg, 57% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: 200:1 to 100:1 hexane: Et₂O), starting from *S*-(2-phenoxyethyl) benzenesulfonothioate (29.4 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and *S*-octyl benzenesulfonothioate (53 μ L, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 48 h.

¹**H** NMR (400 MHz, DMSO-*d*₆) $\delta = \delta = 7.31 - 7.27$ (m, 2H), 6.96 - 6.93 (m, 3H), 4.20 (t, *J* = 6.0 Hz, 2H), 3.07 (d, *J* = 6.0 Hz, 2H), 2.74 - 2.69 (m, 2H), 1.64 - 1.57 (m, 2H), 1.33 - 1.21 (m, 10H), 0.85 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 158.1, 129.6, 120.8, 114.5, 65.5, 37.9, 37.2, 31.2, 28.6, 28.5, 28.5, 27.8, 22.1, 14.0.

IR (ATR): v 2923, 2854, 1596, 1494, 1463, 1378, 1296, 1238, 1172, 1074, 1031, 877, 750, 689 cm⁻¹. **HRMS (EI)** *m*/*z* Calcd for C₁₆H₂₆OS₂⁺ [M]⁺: 298.14196; found: 298.14208.

1-Nonyl-2-(2-phenoxyethyl)disulfane (39)

Following general procedure F, the title compound (14.3 mg, 46% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: 200:1 to 100:1 hexane: Et_2O), starting from *S*-(2-phenoxyethyl) benzenesulfonothioate (29.4 mg, 0.1 mmol, 1.0

equiv.), *S*-nonyl benzenesulfonothioate (60 mg, 0.2 mmol, 2.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) in THF at 60 °C for 48 h.

¹H NMR (300 MHz, CDCl₃) δ = 7.33 – 7.26 (m, 2H), 6.99 – 6.91 (m, 3H), 4.24 (t, *J* = 7.5 Hz, 2H), 3.05 (t, *J* = 7.5 Hz, 2H), 2.74 – 2.68 (m, 2H), 1.68 (m, 2H), 1.42 – 1.24 (m, 14H), 0.91 – 0.86 (m, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 158.6, 129.7, 121.2, 114.8, 66.4, 39.5, 37.7, 32.0, 29.6, 29.4 (2C), 29.3, 28.7, 22.8, 14.3.

IR (ATR): v 2923, 2854, 1596, 1494, 1462, 1378, 1297, 1238, 1171, 1074, 1032, 877, 751, 690 cm⁻¹. **HRMS (EI)** *m/z* Calcd for C₁₇H₂₈OS₂⁺ [M]⁺: 312.15761; found: 312.15783.

1-(Cyclopropylmethyl)-2-(2-phenoxyethyl)disulfane (40)

Following general procedure F, the title compound (10.9 mg, 45% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: 200:1 to 100:1 hexane: Et₂O), starting from *S*-(2-phenoxyethyl) benzenesulfonothioate (29.4 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%),

2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-(cyclopropylmethyl) benzenesulfonothioate (35 μ L, 0.2 mmol, 2 equiv.) in THF at 60 °C for 48 h.

¹H NMR (400 MHz, CDCl₃) δ = 7.31 – 7.26 (m, 2H), 6.98 – 6.92 (m, 3H), 4.26 (t, *J* = 6.0 Hz, 2H), 3.09 (t, *J* = 6.0 Hz, 2H), 2.70 (d, *J* = 8 Hz, 2H), 1.19 – 1.00 (m, 1H), 0.67 – 0.53 (m, 2H), 0.34 – 0.23 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 158.6, 129.7, 121.2, 114.8, 66.4, 45.6, 37.9, 11.1, 5.7.

IR (ATR) : v 3073, 3004, 2922, 2867, 1595, 1493, 1464, 1418, 1381, 1296, 1237, 1172, 1075, 1017, 827, 752, 690 cm⁻¹.

HRMS (APCI) *m*/*z* Calcd for C₁₂H₁₇OS₂⁺ [M +H]⁺: 241.07154; found: 241.07243.

1-(Naphthalen-2-ylmethyl)-2-(2-phenoxyethyl)disulfane (41)

Following general procedure F, the title compound (15.6 mg, 48% yield) was isolated as a white solid after flash chromatography on silica gel (eluent: 200:1 to 100:1 hexane: Et_2O), starting from S-(2-phenoxyethyl)

benzenesulfonothioate (29.4 mg, 0.1 mmol, 1.0 equiv.), S-(naphthalen-2-ylmethyl) benzenesulfonothioate (60.0 mg, 0.2 mmol, 2.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) in THF at 60 °C for 48 h.

¹H NMR (400 MHz, CDCl₃) δ = 7.83 – 7.80 (m, 3H), 7.74 (s, 1H), 7.51 – 7.45 (m, 3H), 7.26 – 7.22 (m, 2H), 6.96 – 6.92 (m, 1H), 6.81 – 6.79 (m, 2H), 4.07 (s, 2H), 4.03 (t, J = 6.6 Hz, 2H), 2.77 (t, J = 6.6 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 158.5, 134.7, 133.4, 132.8, 129.6, 128.6, 128.3, 127.9, 127.9, 127.3, 126.5, 126.2, 121.1, 114.7, 66.2, 44.2, 37.6.

IR (ATR) : v 3055, 2922, 2866, 1692, 1593, 1493, 1460, 1379, 1294, 1241, 1170, 1076, 1015, 865, 824, 749, 689 cm⁻¹.

HRMS (EI) m/z Calcd for C₁₉H₁₈OS₂⁺ [M +H]⁺:326.07936 ; found:326.07946.

1-(3-Chloropropyl)-2-(2-phenoxyethyl)disulfane (42)

Following general procedure F, the title compound (12.3 mg, 47% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: 200:1 to 100:1 hexane: Et_2O), starting from *S*-(2-phenoxyethyl) benzenesulfonothioate (29.4

mg, 0.1 mmol, 1.0 equiv.), S-(3-chloropropyl) benzenesulfonothioate (50 mg, 0.2 mmol, 2.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) in THF at 60 °C for 48 h.

¹H NMR (300 MHz, CDCl₃) δ = 7.33 – 7.26 (m, 2H), 7.00 – 6.90 (m, 3H), 4.25 (t, *J* = 7.5 Hz, 2H), 3.63 (t, *J* = 7.5 Hz, 2H), 3.06 (t, *J* = 6.0 Hz, 2H), 2.85 (t, *J* = 7.5 Hz, 2H), 2.22 – 2.13 (m, 2H).

 ^{13}C NMR (75 MHz, CDCl₃) δ 158.5, 129.7, 121.3, 114.8, 66.2, 43.2, 37.8, 35.6, 31.6.

IR (ATR): v 2922, 2865, 1595, 1493, 1463, 1299, 1237, 1172, 1073, 1029, 877, 753, 690 cm⁻¹.

HRMS (EI) *m*/z Calcd for C₁₁H₁₅ClOS₂⁺ [M]⁺: 262.02474; found: 262.02484.

1-(2-Phenoxyethyl)-2-(3-phenylpropyl)disulfane (43)

Following general procedure F, the title compound (15.1 mg, 50% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: 200:1 to 100:1 hexane: Et₂O), starting from S-(2-phenoxyethyl) benzenesulfonothioate (29.4 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-(3-phenylpropyl) benzenesulfonothioate (48 µL, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 48 h.

¹H NMR (300 MHz, CDCl₃) δ = 7.37 – 7.26 (m, 4H), 7.23 – 7.17 (m, 3H), 7.00 – 6.90 (m, 3H), 4.23 (t, *J* = 6.0 Hz, 2H), 3.05 (t, *J* = 7.5 Hz, 2H), 2.72 (t, *J* = 7.5 Hz, 4H), 2.09 – 1.99 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 158.5, 141.3, 129.7, 128.6, 128.6, 126.1, 121.2, 114.8, 66.3, 38.4, 37.7, 34.5, 30.6. IR (ATR) : v 3062, 3027, 2924, 2857, 1595, 1493, 1459, 1381, 1295, 1238, 1172, 1074, 1029, 877, 748, 694 cm⁻¹.

HRMS (EI) *m*/*z* Calcd for C₁₇H₂₀OS₂⁺ [M]⁺: 304.09501; found: 304.09444.

1-(2-Phenoxyethyl)-2-(1-phenylethyl)disulfane (44)

Following general procedure F, the title compound (14.5 mg, 50% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: 200:1 to 100:1 hexane: Et_2O), starting from S-(2-phenoxyethyl) benzenesulfonothioate (29.4

mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-(1-phenylethyl) benzenesulfonothioate (45 μ L, 0.2 mmol, 2 equiv.) in THF at 60 °C for 48 h.

¹H NMR (400 MHz, CDCI₃) δ = 7.39 – 7.22 (m, 7H), 6.98 – 6.94 (m,1H), 6.87 (d, *J* = 8.0 Hz, 2H), 4.11 – 4.04 (m, 3H), 2.69 – 2.65 (m, 2H), 1.69 (d, *J* = 8.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.5, 142.2, 129.6, 128.7, 127.8, 121.1, 114.8, 66.2, 50.4, 37.5, 20.7.

IR (ATR) : v 3061, 3030, 2967, 2923, 2866, 1595, 1492, 1456, 1374, 1297, 1238, 1172, 1077, 1028, 878, 754, 693 cm⁻¹.

HRMS (APCI) *m*/z Calcd for C₁₆H₁₉OS₂⁺ [M +H]⁺: 291.08719; found: 291.08779.

1-Cyclopentyl-2-(2-phenoxyethyl)disulfane (45)

Following general procedure F, the title compound (16.5 mg, 65% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: 200:1 to 100:1 hexane: Et₂O), starting from S-(2-phenoxyethyl)benzenesulfonothioate (29.4 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015

mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and S-cyclopentyl benzenesulfonothioate (38 μ L, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 48 h.

¹**H NMR (600 MHz, CDCI**₃) δ = 7.33 – 7.27 (m, 2H), 6.98 – 6.95 (m, 1H), 6.95 – 6.91 (m, 2H), 4.25 (td, *J* = 6.9, 0.8 Hz, 2H), 3.34 – 3.29 (m, 1H), 3.07 (td, *J* = 6.9, 0.8 Hz, 2H), 2.02 – 1.96 (m, 2H), 1.79 – 1.73 (m, 2H), 1.71 – 1.66 (m, 2H), 1.63 – 1.57 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 158.6, 129.6, 121.2, 114.8, 66.5, 50.5, 37.9, 33.1, 24.8.

IR (ATR) : v 3034, 2951, 2863, 2325, 2091, 2000, 1595, 1493, 1465, 1379, 1298, 1238, 1171, 1075, 1031, 879, 830, 753, 689 cm⁻¹.

HRMS (EI) *m*/*z* Calcd for C₁₃H₁₈OS₂⁺ [M]⁺: 254.07936; found: 254.07944.

1-Cycloheptyl-2-(2-phenoxyethyl)disulfane (46)

Following general procedure F, the title compound (19.4 mg, 69% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: 200:1 to 100:1 hexane: Et₂O), starting from *S*-(2-phenoxyethyl) benzenesulfonothioate (29.4 mg, 0.1 mmol, 1.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) and *S*-cycloheptyl benzenesulfonothioate (44 μ L, 0.2 mmol, 2.0 equiv.) in THF at 60 °C for 48 h.

¹**H NMR (600 MHz, CDCI**₃) δ = 7.31 – 7.28 (m, 2H), 6.98 – 6.96 (m, 1H), 6.93 (d, *J* = 8.4 Hz, 2H), 4.24 (t, *J* = 6.8 Hz, 2H), 3.05 (t, *J* = 6.8 Hz, 2H), 2.93 (dq, *J* = 9.3, 4.6 Hz, 1H), 2.10 (m, 2H), 1.73 (m, 2H), 1.57 (m, 6H), 1.47 – 1.41 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 158.6, 129.6, 121.1, 114.7, 66.4, 51.4, 38.1, 34.3, 28.3, 26.0.
 IR (ATR) : v 3036, 2922, 2853, 2083, 1595, 1493, 1459, 1297, 1238, 1172, 1031, 877, 827, 751, 690 cm⁻¹.
 HRMS (EI) *m*/z Calcd for C₁₅H₂₂OS₂⁺ [M]⁺: 282.11066; found: 282.11076.

Methyl ((S)-2-methyl-3-(phenyldisulfaneyl)propanoyl)-D-prolinate (47)

Following general procedure F, the title compound (20.4 mg, 60% yield) was isolated as a colorless oil after flash chromatography on silica gel (eluent: 2:1 to 1:1 hexane: Et_2O), starting from S-phenyl benzenesulfonothioate (25.0 mg, 0.1 mmol, 1.0 equiv.), methyl ((S)-2-methyl-3-(tosylthio)propanoyl)-D-prolinate (61.0 mg, 0.2

mmol, 2.0 equiv.), Ni(BF₄)₂·6H₂O (3.5 mg, 0.01 mmol, 10 mol%), 2,2'-bipyridine (2.4 mg, 0.015 mmol, 15 mol%), Zn (13 mg, 0.2 mmol, 2.0 equiv.), KF (5.8 mg, 0.1 mmol, 1.0 equiv.) in THF at 60 °C for 48 h.

¹**H NMR (400 MHz, CDCI**₃) δ = 7.52 (d, *J* = 7.6 Hz, 2H), 7.33 – 7.30 (m, 2H), 7.23 (d, *J* = 7.4 Hz, 1H), 4.49 (dd, *J* = 8.5, 3.4 Hz, 1H), 3.71 (s, 3H), 3.57 – 3.48 (m, 1H), 3.31 – 3.25 (m, 1H), 3.13 (dd, *J* = 13.2, 8.5 Hz, 1H), 3.10 – 2.93 (m, 1H), 2.69 (dd, *J* = 13.4, 5.4 Hz, 1H), 2.19 – 2.10 (m, 1H), 2.03 – 1.86 (m, 3H), 1.20 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 173.2, 172.9, 137.6, 129.1, 127.7, 127.0, 58.7, 52.3, 46.7, 42.0, 37.6, 29.1, 24.9, 16.9.

The data is consistent with the literature.^[15]

8. Control experiments

A oven-dried vial containing a teflon coated stirring bar was equipped with S-phenyl benzenesulfonothioate **1** (0.1 mmol, 1.0 equiv), Ni(BF₄)₂·6H₂O (0.01 mmol, 10 mol%), 2,2'-bipyridine (0.01 mmol, 10 mol%), Zn (0.2 mmol, 2.0 equiv.), KF (0.1 mmol, 1.0 equiv.), TEMPO (0.3 mmol, 3.0 equiv.). The vial was close with a rubber septum, evacuated and backfilled with nitrogen three times. Then, degassed THF (1.0 mL), S-heptyl benzenesulfonothioate **48** (0.2 mmol, 2.0 equiv.,) were added via syringe. The septum and the vial were sealed with parafilm and then was stirred at 60 °C for 16 h. Upon completion, the crude reaction mixture was filtered and washed with EtOAc (10 mL), the mixture was concentrated by rotary evaporation. Then, **15** and **2** were obtained in 12%, 3% assay yield, respectively, (determined by GC analysis of the crude reaction mixtures using 0.1 mmol n-decane as internal standard).

A oven-dried vial containing a teflon coated stirring bar was equipped with S-(2-phenoxyethyl) benzenesulfonothioate (58.8 mg, 0.2 mmol,), Ni(BF₄)₂·6H₂O (0.01 mmol, 10 mol%), 2,2'-bipyridine (0.01 mmol, 10 mol%), Zn (0.2 mmol, 2.0 equiv.), KF (0.1 mmol, 1.0 equiv.).The vial was close with a rubber septum, was introduced to a glovebox which with Argon atmosphere. Then anhydrous THF (1.0 mL), diethyl 2,2-diallylmalonate (0.6 mmol, 3 equiv.) were added via syringe, sequentially. The vial was close with a rubber septum and removed from the glovebox. The vial then was stirred at 60 °C for 16 h. Upon completion, the reaction mixture was analyzed by HRMS.

A oven-dried vial containing a teflon coated stirring bar was equipped with S-(p-tolyl) benzenesulfonothioate (52.8 mg, 0.2 mmol), Ni(BF₄)₂·6H₂O (0.01 mmol, 10 mol%), 2,2'-bipyridine (0.01 mmol, 10 mol%), Zn (0.2 mmol, 2.0 equiv.), KF (0.1 mmol, 1.0 equiv.). The vial was close with a rubber septum, was introduced to a glovebox which with Argon atmosphere. Then anhydrous THF (1.0 mL), diethyl 2,2-diallylmalonate (0.6 mmol, 3 equiv.) were added via syringe, sequentially. The vial was close with a rubber septum and removed from the glovebox. The vial then was stirred at 60 °C for 16 h. Upon completion, the reaction mixture was analyzed by HRMS.

A oven-dried vial containing a teflon coated stirring bar was equipped with S-phenyl benzenesulfonothioate **1** (0.1 mmol, 1.0 equiv), Ni(COD)₂ (0.1 mmol, 1.0 equiv.), 2,2'-bipyridine (0.1 mmol, 1.0 equiv.), KF (0.1 mmol, 1.0 equiv.). The vial was close with a rubber septum, evacuated and backfilled with nitrogen three times. Then, degassed THF (1.0 mL), S-heptyl benzenesulfonothioate **48** (0.2 mmol, 2.0 equiv.) were added via syringe. The septum and the vial were sealed with parafilm and then was stirred at 60 °C for 16 h. Upon completion, the crude reaction mixture was filtered and washed with EtOAc (10 mL), the mixture was concentrated by rotary evaporation. Then, **15** and **2** were obtained in 78%, 16% assay yield, respectively, (determined by GC analysis of the crude reaction mixtures using 0.1 mmol n-decane as internal standard).

A oven-dried vial containing a teflon coated stirring bar was equipped with S-phenyl benzenesulfonothioate **1** (0.1 mmol, 1.0 equiv), Ni(COD)₂ (0.01 mmol, 10 mol%), 2,2'-bipyridine (0.01 mmol, 10 mol%), KF (0.1 mmol, 1.0 equiv.). The vial was close with a rubber septum, evacuated and backfilled with nitrogen three times. Then, degassed THF (1.0 mL), S-heptyl benzenesulfonothioate **48** (0.2 mmol, 2.0 equiv.) were added via syringe. The septum and the vial were sealed with parafilm and then was stirred at 60 °C for 16 h. Upon completion, the crude reaction mixture was filtered and washed with EtOAc (10 mL), the mixture was concentrated by rotary evaporation. Then, **15** and **2** were obtained in 10%, 4% assay yield, respectively, (determined by GC analysis of the crude reaction mixtures using 0.1 mmol n-decane as internal standard).

A oven-dried vial containing a teflon coated stirring bar was equipped with S-phenyl benzenesulfonothioate **1** (0.1 mmol, 1.0 equiv), 1,2-bis(4-methoxyphenyl)disulfane **49** (0.1 mmol, 1.0 equiv), Ni(BF₄)₂·6H₂O (0.01 mmol, 10 mol%), 2,2'-bipyridine (0.01 mmol, 10 mol%), Zn (0.2 mmol, 2.0 equiv.), KF (0.1 mmol, 1.0 equiv.). The vial was close with a rubber septum, evacuated and backfilled with nitrogen three times. Then, degassed THF (1.0 mL) was added via syringe. The septum and the vial were sealed with parafilm and then was stirred at 60 °C for 16 h. Upon completion, the crude reaction mixture was filtered and washed with EtOAc (10 mL), the mixture was concentrated by rotary evaporation. Then, **30** and **2** were obtained in 43%, 46% assay yield, respectively, (determined by GC analysis of the crude reaction mixtures using 0.1 mmol n-decane as internal standard).

A oven-dried vial containing a teflon coated stirring bar was equipped with S-phenyl benzenesulfonothioate **1** (0.1 mmol, 1.0 equiv), Ni(BF₄)₂·6H₂O (0.01 mmol, 10 mol%), 2,2'-bipyridine (0.01 mmol, 10 mol%), Zn (0.2 mmol, 2.0 equiv.), KF (0.1 mmol, 1.0 equiv.). The vial was close with a rubber septum, evacuated and backfilled with nitrogen three times. Then, degassed THF (1.0 mL), S-heptyl 1,2-diheptyldisulfane **50** (0.2 mmol, 2.0 equiv.,) were added via syringe. The septum and the vial were sealed with parafilm and then was stirred at 60 °C for 16 h. Upon completion, the crude reaction mixture was filtered and washed with EtOAc (10 mL), the mixture was concentrated by rotary evaporation. Then, **15** and **2** were obtained in 34%, 10% assay yield, respectively, (determined by GC analysis of the crude reaction mixtures using 0.1 mmol n-decane as internal standard).

9. References

- [1] Y. Fang, T. Rogge, L. Ackermann, S. Y. Wang, S. J. Ji, *Nat. Commun.* 2018, 9, 2240.
- [2] L. D. Bizzini, P. Zwick, M. Mayor, Eur. J. Org. Chem. 2019, 2019, 6955-6960.
- [3] W. Wang, X. Peng, F. Wei, C-H Tung, Z. Xu, Angew. Chem. Int. Ed. 2016, 55, 649-653.
- [4] P. K. Shyam, Y. K. Kim, C. Lee, H.-Y. Jang, Adv. Synth. Catal. 2016, 358, 56-61.
- [5] Z.-Y. Mo, T. R. Swaroop, W. Tong, Y.-Z. Zhang, H.-T. Tang, Y.-M. Pan, H.-B. Sun, Z.-F. Chen, *Green Chem.* **2018**, 20, 4428-4432.
- [6] A.C. Bonaparte, M. P. Betush, B. M. Panseri, D.J. Mastarone, R. K. Murphy, S. S. Murphree, *Org. Lett.* 2011, 13, 1447-1449.
- [7] R. Jannapu Reddy, M. Waheed, G. R. Krishna, Org. Biomol. Chem. 2020, 18, 3243-3248.
- [8] Q. Chen, Y. Huang, X. Wang, J. Wua, G. Yu, Org. Biomol. Chem. 2018, 16, 1713-1719.
- [9] M. Oba, K. Tanaka, K. Nishiyama, W. Ando, J. Org. Chem. 2011, 76, 4173-4177.
- [10] P. Franzmann, S. B. Beil, D. Schollmeyer, S. R. Waldvogel, *Chem. Eur. J.* 2019, 25, 1936-1940.
- [11] D. Bhattacherjee, A. Sufian, S. K. Mahato, S. Begum, K. Banerjee, S. De, H. K. Srivastava, K. P. Bhabak, Chem. Commun. 2019, 55, 13534-13537.
- [12] X. Xu, P. Lu, Y. Zhang, Synth Commun 2000, 30, 1917-1925.
- [13] N. A. Noureldin, M. Caldwell, J. Hendry, D. G. Lee, Synthesis 1998, 11, 1587-1589.
- [14] J. L. Howard, C. Schotten, S. Alston, D. L. Browne, Chem. Commun. 2016, 52, 8448-8451.
- [15] J. Zou, J. Chen, T. Shi, Y. Hou, F. Cao, Y. Wang, X. Wang, Z. Jia, Q. Zhao, Z. Wang, ACS Catal. 2019, 9, 11426-11430.
- G. O'Donnell, R. Poeschl, O. Zimhony, M. Gunaratnam, J. B. C. Moreira, S. Neidle, D. Evangelopoulos, S. Bhakta, J. P. Malkinson, H. I. Boshoff, A. Lenaerts, S. Gibbons, *J. Nat. Prod.* 2009, 72, 360-365.
- [17] Z. Dai, X. Xiao, X. Jiang, *Tetrahedron* 2017, 73, 3702-3706.
- [18] A. Parida, K. Choudhuri, P. Mal, Chem Asian J 2019, 14, 2579-2583.
- [19] N. Stellenboom, R. Hunter, M. R. Caira, *Tetrahedron* 2010, 66, 3228-3241.

10. Copies of NMR Spectra

¹H and ¹³C of SM9

¹H and ¹³C of SM11

200 190 180 170 160 150 140 130 120

20 10

6

110 100 f1 (ppm) 90 80

60 50 40 30

70

S33

S34

¹H and ¹³C of 7

¹H and ¹³C of 9

¹H and ¹³C of 10

¹H and ¹³C of 11

¹H and ¹³C of 12

¹H and ¹³C of 13

¹H and ¹³C of 15

¹H and ¹³C of 19

¹H and ¹³C of 22

¹H and ¹³C of 30

¹H and ¹³C of 36

¹H and ¹³C of 38

¹H and ¹³C of 39

¹H and ¹³C of 40

¹H and ¹³C of 41

¹H and ¹³C of 42

¹H and ¹³C of 43

¹H and ¹³C of 44

¹H and ¹³C of 45

¹H and ¹³C of 46

¹H and ¹³C of 47

