Electronic Supplementary Information

for

Quantitative analysis of air-oxidation reactions of thiolate-protected gold nanoclusters

Wataru Suzuki,^{a†} Ryo Takahata,^{a,b} Yoshiyuki Mizuhata,^{a,b,c} Norihiro Tokitoh,^{a,b,c}

Songlin Xue^d and Toshiharu Teranishi*a,b

^a Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

^b Graduate School of Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

^c Integrated Research Consortium on Chemical Sciences, Uji, Kyoto 611-0011, Japan

^d School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China

[†] Present address: University of Hyogo, Himeji, Hyogo 671-2280, Japan E-mail: teranisi@scl.kyoto-u.ac.jp; Fax: +81-774-38-3121

Contents

1.	Experimental section (Synthesis and Measurements)	Pages S3–S6
2.	Figures S1–S20 and Tables S1–S3	Pages S7–S29
3.	References	Page S30

Experimental Section

Materials

General. Organic solvents, starting materials and reagents for synthesis were purchased from commercial sources and used without further purification. $TOA^+[Au_{25}(SC_2Ph)_{18}]^-$ (SC₂Ph = phenylethanethiolate, TOA^+ = tetraoctylammonium),¹ and $TOA^+[Au_{23}(SCy)_{16}]^-$ (SC₂ = cyclohexanethiolate)² were synthesized according to the previous reports.

Synthesis

$$\mathsf{TOA}^{+}[\mathsf{Au}_{25}(\mathsf{SC}_{2}\mathsf{Ph})_{18}]^{-} \xrightarrow{\mathsf{CH}_{2}\mathsf{Cl}_{2}} \mathsf{TOA}^{+}[\mathsf{Au}_{25}(\mathsf{SC}_{1}\mathsf{Ph})_{18}]^{-}$$

TOA⁺[Au₂₅(SC₁Ph)₁₈]⁻. Benzyl mercaptan (PhC₁SH, 1.8 mL, 1.9 g, 15 mmol) was added to a solution of TOA⁺[Au₂₅(SC₂Ph)₁₈]⁻ (30.0 mg, 3.82 μ mol) in CH₂Cl₂ (6 mL) and the solution was stirred for 1 h at 313 K. Progress of the reaction was monitored using UV–vis spectroscopy. After the reaction, MeOH (~40 mL) was added and the mixture was centrifuged (9600 g, 10 min) to precipitate the targeted clusters. The precipitate was collected and washed with MeOH to afford TOA⁺[Au₂₅(SC₁Ph)₁₈]⁻ (20.0 mg, 2.63 μ mol) in 69% yield.

TOA⁺[Au₂₅(SPh)₁₈]⁻. Benzenethiol (PhSH, 0.80 mL, 0.86 g, 7.8 mmol) was added to the solution of TOA⁺[Au₂₃(SCy)₁₆]⁻ (18.7 mg, 2.73 μ mol) in CH₂Cl₂ (4 mL) and the solution was stirred overnight at 298 K. Progress of the reaction was monitored using UV–vis spectroscopy. After the reaction, MeOH (~25 mL) was added and the mixture was centrifuged (9600 g, 5 min) to precipitate impurities. The supernatant was concentrated to a small volume and centrifuged (9600 g, 10 min) to precipitate the targeted clusters. The precipitate was collected and washed with MeOH to afford TOA⁺[Au₂₅(SPh)₁₈]⁻ (10.4 mg, 1.41 μ mol) in 56% yield.

$$TOA[Au_{23}(SCy)_{16}] \xrightarrow{MeO} TOA^{+}[Au_{25}(SPhOMe)_{18}]^{-}$$

 $TOA^{+}[Au_{25}(SPhOMe)_{18}]^{-}$. 4-Methoxybenzenethiol (MeOPhSH, 0.75 mL, 0.85 g, 6.1 mmol) was added to the solution of $TOA^{+}[Au_{23}(SCy)_{16}]^{-}$ (17.5 mg, 2.56 μ mol) in CH₂Cl₂ (3 mL) and

the solution was stirred for 1.5 h at 313 K. Progress of the reaction was monitored using UV– vis spectroscopy. After the reaction, MeOH (~25 mL) was added and the mixture was centrifuged (9600 g, 5 min) to precipitate impurities. The supernatant was concentrated to a small volume and centrifuged (9600 g, 10 min) to precipitate the targeted clusters. The precipitate was collected and washed with MeOH to afford **TOA**⁺[Au₂₅(SPhOMe)₁₈]⁻ (7.5 mg, 0.94 μ mol) in 37% yield.

Measurements

X-ray Crystallography. Single crystals of $TOA^+[Au_{25}(SPh)_{18}]^-$ were grown by recrystallization with a vapour diffusion of EtOH into the toluene solution of $TOA^+[Au_{25}(SPh)_{18}]^-$. The single crystals were mounted using a mounting loop. The intensity data were collected at 90 K on a Bruker D8 VENTURE system (PHOTONIII 14 with I μ S Diamond) using Mo K α radiation ($\lambda = 0.71073$ Å). The structure was solved using SHELXT-2018/2³ and refined by least-squares calculations on F^2 for all reflections (SHELXL-2019/3).⁴ All non-hydrogen atoms were refined anisotropically. All calculations were performed using Yadokari-XG 2011 software package⁵ and Olex2-1.5.⁶ In the CheckCIF report, several level B alerts are noted as below, which are derived from the severe disorders on the long alkyl chains and a number of positive residual densities remained around the cluster core. These are considered unavoidable due to the nature of the skeleton and measurements. The crystallographic data and a summary of the solution and refinement are given in Table S3. Supplementary crystallographic data of is available from the Cambridge Crystallographic Data Centre as CCDC-2299526.

Alert level B

PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of C155 Check PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of C158 Check PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of C160 Check PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of C163 Check PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of C159 Check PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of C161 Check PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of C161 Check **Response:** These are derived from the disorders on the octyl substituent. It was difficult to separate the disordered parts in an appropriate form.

PLAT420_ALERT_2_B D-H Bond Without Acceptor O1 --H1 . Please Check **Response:** Phenyl ring (C13-C18) accepts the OH with $OH-\pi$ interaction.

PLAT910_ALERT_3_B Missing # of FCF Reflection(s) Below Theta(Min). 12 Note **Response:** This is probably due to the large unit cell.

PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.79Ang From Au19 2.60 eA-3 PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.94Ang From S11 2.55 eA-3 PLAT971_ALERT_2_B Check Calcd Resid. Dens. 0.74Ang From Au20 2.52 eA-3 PLAT973_ALERT_2_B Check Calcd Positive Resid. Density on Au1 1.61 eA-3 PLAT973_ALERT_2_B Check Calcd Positive Resid. Density on Au25 1.56 eA-3 PLAT973_ALERT_2_B Check Calcd Positive Resid. Density on Au25 1.56 eA-3 PLAT973_ALERT_2_B Check Calcd Positive Resid. Density on Au6 1.55 eA-3 Response: These are the residual densities near heavy atom core.

Spectroscopic and Spectrometric Measurements. UV–vis–NIR measurements were performed on a V-750 spectrophotometer from JASCO Corporation. The cell length of the quartz cuvette was 10 mm. ¹H NMR spectra were measured on JEOL JNM-ECA600 and JNM-ECA400 spectrometers. For ¹H NMR measurements, the solvent residual signal was used as the internal standard in acetone- d_6 or THF- d_8 . Negative-mode ESI–MS spectra in MeCN were measured on a Solarix-JA spectrometer. The concentration of O₂ was controlled by changing the ratio of bubbled gas of O₂, air and N₂.⁷

Electrochemical Measurements. Cyclic voltammetric and differential pulse voltammetric measurements were carried out in THF containing 0.1 M TBAPF₆ as an electrolyte at room temperature under Ar. All measurements were made using a BAS ALS-730E electrochemical analyser with a glassy carbon electrode as a working electrode, a platinum wire as a counter electrode and Ag/AgNO₃ as a reference electrode. All redox potentials were determined relative to that of Fc/Fc^+ as 0 V and converted into the redox potential relative to that of $SCE.^8$

X-ray absorption fine structure measurements. The Au L_3 -edge X-ray absorption fine structure (XAFS) measurements were conducted at beamline BL01B1 of the SPring-8 facility of the Japan Synchrotron Radiation Research Institute (JASRI). The incident X-ray beam was monochromatized by a Si(111) double-crystal monochromator. As a reference, Au foil was measured in transmission mode using ionization chambers at room temperature. XAFS spectra of Au₂₅ cluster anions were measured in transmission mode at 10 K using ionization chambers as detectors. The X-ray energies were calibrated using Pt foil. Obtained EXAFS spectra were analysed using the xTunes program.⁹ The k^3 -weighted EXAFS spectra in the *k* range 3.0–20.0 Å⁻¹ for the Au- L_3 edge were Fourier transformed into *r* space for structural analysis. The curve-fitting analysis was conducted in the range of 1.5–3.3 Å for the Au- L_3 edge. In the curve-fitting analysis, the phase shifts and backscattering amplitude function of Au–Au, and Au–S were calculated using the FEFF8.5L program.

Fig. S1. Negative-mode ESI–MS spectra of $TOA^+[Au_{25}(SR)_{18}]^-$ in MeCN. SR = (a) SC₂Ph (calcd. m/z = 7392.90), (b) SC₁Ph (calcd. m/z = 7140.66), (c) SPh (calcd. m/z = 6888.38) and (d) SPhOMe (calcd. m/z = 7428.53).

Fig. S2. ¹H NMR spectra of $TOA^+[Au_{25}(SC_2Ph)_{18}]^-$ in acetone- d_6 .

Fig. S3. ¹H NMR spectra of $TOA^+[Au_{25}(SC_1Ph)_{18}]^-$ in acetone- d_6 .

Fig. S4. ¹H NMR spectra of $TOA^+[Au_{25}(SPh)_{18}]^-$ in acetone- d_6 .

Fig. S5. ¹H NMR spectra of $TOA^+[Au_{25}(SPhOMe)_{18}]^-$ in acetone- d_6 .

Fig. S6. (a) Au- L_3 edge XANES spectra, (b) EXAFS oscillation, and (c) Fourier-transformed EXAFS spectra of TOA⁺[Au₂₅(SR)₁₈]⁻. SR = SC₂Ph (black), SC₁Ph (green), SPh (blue), and SPhOMe (red). Spectroscopic measurements were conducted at 10 K in transmission mode. It should be noted that the XANES spectra of TOA⁺[Au₂₅(SR)₁₈]⁻ were almost overlapped in (a).

Fig. **S7.** Unit structure of $TOA^+[Au_{25}(SPh)_{18}]^-$ with thermal ellipsoids (50% probability). Hydrogen atoms were omitted for clarity.

Fig. **S8.** Cyclic voltammograms (CV) and differential pulse voltammograms (DPV) of $TOA^{+}[Au_{25}(SR)_{18}]^{-}$ in THF containing 0.1 M TBAPF₆ as an electrolyte. $SR = (a) SC_{2}Ph (0.26 \text{ mM})$, (b) $SC_{1}Ph (0.37 \text{ mM})$, (c) SPh (0.41 mM) and (d) SPhOMe (0.25 mM).

Fig. S9. UV–vis spectral changes of $TOA^+[Au_{25}(SR)_{18}]^-$ (0.010 mM) in THF under air at 298 K. SR = (a) SC₂Ph, (b) SC₁Ph, (c) SPh and (d) SPhOMe.

Fig. S10. UV–vis spectral changes of $TOA^+[Au_{25}(SC_2Ph)_{18}]^-$ (0.010 mM) in THF under air in the presence of TFA (0.050 mM) at 298 K.

Fig. S11. ¹H NMR spectra of (a) $TOA^+[Au_{25}(SC_2Ph)_{18}]^-$, (b) $TOA^+[Au_{25}(SC_2Ph)_{18}]^-$ (0.10 mM) with TFA (2.0 mM) and (c) authentic $[Au_{25}(SC_2Ph)_{18}]^0$ in THF-*d*₈. $[Au_{25}(SC_2Ph)_{18}]^0$ was prepared according to the previous report. ¹⁰

Fig. S12. Comparison of cyclic voltammograms of $TOA^+[Au_{25}(SC_2Ph)_{18}]^-$ (0.33 mM) with (2.0 mM, solid line) and without TFA (dotted line) in THF containing 0.1 M TBAPF₆ as an electrolyte. Asterisks indicate the open circuit potential of each voltammogram.

Fig. S13. UV–vis spectra of $TOA^+[Au_{25}(SC_2Ph)_{18}]^-$ (0.010 mM) in THF. Black solid line: before adding TFA; Gray dotted line: after oxidation to form $[Au_{25}(SC_2Ph)_{18}]^0$ in the presence of TFA (0.50 mM); Blue dotted line; Addition of NaBH₄ to the solution after oxidation reaction of $TOA^+[Au_{25}(SC_2Ph)_{18}]^-$.

Fig. S14. UV–vis spectra of $TOA^+[Au_{25}(SC_2Ph)_{18}]^-$ (0.010 mM) in THF. Black solid line: before adding TFA; Gray dotted line: after oxidation to form $[Au_{25}(SC_2Ph)_{18}]^0$ in the presence of high concentration of TFA (10 mM); Blue dotted line; Addition of NaBH₄ to the solution after oxidation reaction of $TOA^+[Au_{25}(SC_2Ph)_{18}]^-$.

Fig. S15. UV–vis spectral change of $TOA^+[Au_{25}(SC_2Ph)_{18}]^-$ (0.010 mM) in degassed THF in the presence of TFA (0.50 mM).

Fig. **S16.** Time-course UV–vis spectral change of $TOA^+[Au_{25}(SR)_{18}]^-$ (0.010 mM) in THF containing TFA. Inset: The time profile of absorbance at 600 nm. (a) $TOA^+[Au_{25}(SC_1Ph)_{18}]^-$ with TFA (0.50 mM), (b) $TOA^+[Au_{25}(SPh)_{18}]^-$ with TFA (2.0 mM) and (c) $TOA^+[Au_{25}(SPhOMe)_{18}]^-$ (0.50 mM).

Fig. **S17.** UV–vis spectra of $TOA^+[Au_{25}(SR)_{18}]^-$ (0.010 mM) in THF. SR = (a) SC_1Ph , (b) SPh, and (c) SPhOMe. Black solid line: before adding TFA; Gray dotted line: after oxidation to form $[Au_{25}(SR)_{18}]^0$ in the presence of TFA (0.50 mM); Blue dotted line; Addition of NaBH₄ to the solution after oxidation reaction of $TOA^+[Au_{25}(SR)_{18}]^-$.

Fig. S18. [O₂] dependence of k_{obs} in the oxidation reaction of **TOA**⁺[**Au**₂₅(**SC**₂**Ph**)₁₈]⁻ in THF ([TFA] = 2.0 mM) at 298 K.

Fig. **S19.** Representative cone half angle of (a) $[Au_{25}(SC_2Ph)_{18}]^-$ and (b) $[Au_{25}(SPh)_{18}]^-$. Protons were omitted for clarity. The half cone angles (θ) were calculated as the averaged values of 24 C-Au-S angles in single crystallographic data of $[Au_{25}(SR)_{18}]^-$. Atom labels: Yellow: gold, Green: sulfur, Light grey: carbon.

Fig. S20. Plot of rate constants (k_2) against the first redox potentials ($E_{1/2}$ (Au₂₅^{-/}Au₂₅⁰)) of TOA⁺[Au₂₅(SR)₁₈]⁻. SR = SC₂Ph (black), SC₁Ph (green), SPhOMe (red) and SPh (blue).

[Au ₂₅ (SR) ₁₈] [−]	Bond	CN	<i>r</i> , Å	DW (<i>ơ</i> ²), Ų	<i>R</i> , %
[Au₂₅(SC₂Ph) ₁₈] [–]	Au-S Au-Au Au-Au	1.40(18) 1.63(15) 1.27(17)	2.31(3) 2.78(2) 2.94(2)	0.0030(24) 0.0031(13) 0.0035(18)	13.7
[Au ₂₅ (SC₁Ph) ₁₈]⁻	Au-S Au-Au Au-Au	1.40(18) 1.59(15) 1.2(2)	2.32(3) 2.78(2) 2.92(3)	0.0030(23) 0.0030(13) 0.0042(23)	14.7
[Au ₂₅ (SPh) ₁₈]⁻	Au-S Au-Au Au-Au	1.39(19) 1.54(17) 1.2(2)	2.31(3) 2.78(2) 2.89(5)	0.0036(28) 0.0037(16) 0.0064(39)	10.4
[Au ₂₅ (SPhOMe) ₁₈]⁻	Au-S Au-Au Au-Au	1.36(19) 1.75(18) 1.2(2)	2.32(3) 2.79(2) 2.90(4)	0.0036(28) 0.0038(16) 0.0053(30)	12.3

Table S1. Structural parameters of $TOA^+[Au_{25}(SR)_{18}]^-$ obtained by curve-fitting analysis of Au L_3 -edge EXAFS spectra.

	TOA⁺[Au ₂₅ (SC₂Ph) ₁₈]⁻	TOA⁺[Au ₂₅ (SPh) ₁₈]⁻
Au-Au _{core} , Å	2.776	2.782
Au-Au _{surface} , Å	2.919	2.926
Au _{staple} -S _{core} , Å Au _{staple} -S _{apex} , Å	2.30	2.30
Au _{surface} -S _{core} , Å	2.39	2.40

Table S2. Comparison of structural parameters of $TOA^+[Au_{25}(SPh)_{18}]^-$ obtained by singlecrystal X-ray diffraction analysis with previously reported $TOA^+[Au_{25}(SC_2Ph)_{18}]^{-11}$

The bond distances are described as averaged values.

crystal system	Triclinic
space group	P 1 (#2)
Т, К	90(2)
formula	C _{147.35} H _{170.12} Au ₂₅ NOS ₁₈
FW	7472.46
<i>a</i> , Å	17.0841(8)
<i>b</i> , Å	20.5511(10)
<i>c</i> , Å	26.5333(12)
α , deg	73.391(2)
β , deg	72.258(2)
γ , deg	65.634(2)
<i>V</i> , Å ³	7943.6(7)
Z	2
λ, Å	0.71073
	(Mo K <i>α</i>)
$D_{\rm c}$, g cm ⁻³	3.124
reflns measured	193152
reflns unique	36399
$R_1 (I > 2\sigma(I))$	0.0306
w R_2 (all)	0.0704
GOF	1.034

Table S3. X-ray crystallographic data for TOA⁺[Au₂₅(SPh)₁₈]⁻.

References

- J. F. Parker, J. E. F. Weaver, F. McCallum, C. A. Fields-Zinna, R. W. Murray, *Langmuir*, 2010, 26(16), 13650-13654.
- A. Das, T. Li, K. Nobusada, C. Zeng, N. L. Rosi, R. Jin, J. Am. Chem. Soc., 2013, 135(49), 18264-18267.
- 3. G. M. Sheldrick, Acta Cryst., 2015, A71, 3.
- 4. G. M. Sheldrick, Acta Cryst., 2015, C71, 3.
- 5. C. Kabuto, S. Akine, S. E. Kwon, J. Cryst. Soc. Jpn., 2009, 51, 218.
- 6. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.* 2009, **42**, 339.
- 7. W. Suzuki, H. Kotani, T. Ishizuka, T. Kojima, J. Am. Chem. Soc. 2019, 141, 5987-5994.
- 8. N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877-910.
- 9. H. Asakura, S. Yamazoe, T. Misumi, A. Fujita, T. Tsukuda, T. Tanaka, *Radiat. Phys. Chem.*, 2020, **175**, 108270.
- M. A. Tofanelli, K. Salorinne, T. W. Ni, S. Malola, B. Newell, B. Phillips, H. Häkkinen, C. J. Ackerson, *Chem. Sci.* 2016, 7, 1882.
- M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, R. Jin, J. Am. Chem. Soc., 2008, 130, 5883-5885.