Palladium-catalyzed decarboxylative (4+3) cycloadditions of

bicyclobutanes with 2-alkylidenetrimethylene carbonates for

the synthesis of 2-oxabicyclo[4.1.1]octanes

Xin-Yu Gao,^a Lei Tang,^a Xu Zhang,^b and Jian-Jun Feng^{*a}

^aState Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China ^bSchool of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P.R. China

jianjunfeng@hnu.edu.cn

Supporting Information

Table of Contents

1	General Information	S2
2	Optimization Study	S3
3	General Procedure for the (4+3) Cycloadditions of BCBs 1 and ADTMC 2a (GP1)	S7
4	General Procedure for the (4+3) Cycloadditions of BCBs and substituted ADTMCs (GP2)	S8
5	Scale-Up Experiment	S8
6	Synthetic Transformations	S9
7	Sensitivity Assessment	311
8	Unsuccessful Substrates	313
9	Characterization Data of the Products	314
10	Crystal Structure of 3ab	337
11	NMR Spectra	339
12	References	368

1 General Information

All reactions were performed in flame-dried glassware using conventional Schlenk techniques under a static pressure of nitrogen unless otherwise stated. Liquids and solutions were transferred with syringes. Bicyclo[1.1.0]butanes (BCBs)^[1] and 2alkylidenetrimethylene carbonates (ADTMCs)^[2] were prepared according to reported procedures. Pd₂(dba)₃·CHCl₃ (98%, *Energy Chemical* and other commercially available reagents were purchased from Sigma-Adrich, Leyan, Energy Chemical and Bide Chemical Company and used as received.) 1,4-dioxane was purchased from Energy Chemical (99%, Extra Dry) and used as received. All other solvents (CH₃CN, THF, toluene and 1,2-dichloroethane etc.) were dried and purified following standard procedures. Technical grade solvents for extraction or chromatography (Petroleum ether, CH₂Cl₂, and ethyl acetate) were distilled prior to use. Analytical thin layer chromatography (TLC) was performed on silica gel 60 F254 glass plates by Merck. Flash column chromatography was performed on silica gel 60 (40-63 µm, 230-400 mesh, ASTM) by Grace using the indicated solvents. ¹H, ¹³C NMR spectra were recorded in CDCl₃ on Bruker AV400 or 600 instruments. Chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent resonance as the internal standard (CDCl₃: δ = 7.26 ppm for ¹H NMR and CDCl₃: δ = 77.0 ppm for ¹³C NMR). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplett, q = quartet, m = multiplet), coupling constants (Hz), and integration. Thefull-scan mass spectra were taken on a hybrid quadrupole-orbitrap mass spectrometer equipped with a heated electrospray ionization source (ThermoFischer Scientific, Bremen, Germany). The configuration was determined by single crystal X-ray diffraction analysis on Bruker D8 Venture dual system with a Cu micro-focus source. Acknowledgement: the ¹H, ¹³C NMR spectra, single crystal X-ray diffraction and HRMS (ESI) were performed at Analytical Instrumentation Center of Hunan University.

2 Optimization Study

Table S1. Screening of ligand and solvent for the (4+3) cycloaddition of BCB 1a and ADTMC $2a^{[a]}$

	Naph	★ ↓	Pd₂(dba)₃CHCl₃ (5 mo Ligand (10 mol%) solvent 25 ℃, 12 h	I%) → oy Naph	è
	1a	2a		3aa	
Entry	Ligand	Solvent	Conversion of 1a [%] ^[b]	Conversion of 2a [%] ^[b]	Yield of 3aa [%] ^[b]
1	L1	toluene	36	100	0
2	L2	toluene	<5	100	0
3	L3	toluene	34	100	0
4	L4	toluene	42	100	11
5	L5	toluene	58	100	14
6	L6	toluene	44	100	0
7	L7	toluene	50	100	0
8	L8	toluene	10	100	0
9	L9	toluene	66	100	49
10	L10	toluene	8	73	0
11	L11	toluene	15	100	0
12	L12	toluene	35	100	0
13	L13	toluene	32	100	0
14	L14	toluene	16	75	0
15	L15	toluene	25	100	0
16	L16	toluene	24	100	0
17	L17	toluene	20	100	0
18	L9	PhCl	75	100	40
19	L9	CH ₂ Cl ₂	30	100	10
20	L9	EtOAc	64	100	53
21	L9	CH₃CN	32	97	7
22	L9	THF	85	100	71
23	L9	1,4-dioxane	>99	100	96
24	L9	HFIP	38	12	0

[a] Reaction conditions: **1a** (0.10 mmol), **2a** (0.12 mmol), $Pd_2(dba)_3 \cdot CHCl_3$ (5 mol%) and ligand (10 mol%), solvent (2 mL), 25 °C, under N₂ for 12 h. [b] Determined by ¹H NMR analysis using CH₂Br₂ as the internal reference. HFIP = Hexafluoroisopropanol.

The primary side reaction in the present decarboxylative (4+3) cycloadditions of BCBs is the rapid decomposition of 2-alkylidenetrimethylene carbonates (ADTMCs). Ligands like L4, L7, L8, and L10 have been identified as effective for the palladium-catalyzed decarboxylative cycloadditions of ADTMCs (ref 29j: *Angew. Chem. Int. Ed.*, 2020, *59*, 11316; ref 29b:*Org. Lett.*, 2023, *25*, 5011 in the main text). However, these ligands yielded unsatisfactory results in the current decarboxylative (4+3) cycloadditions of BCBs. These results suggest that the benefits of employing DTBM-Segphos L9 may stem from the formation of a relatively stable intermediate int-II, preventing its rapid decomposition, and promoting subsequent reactions (Scheme 5 in the main text) through steric hindrance or dispersion interactions.

In 2013, the Wanbin Zhang group reported the asymmetric hydrogenation of αacyloxy-1-arylethanones using Pd and DTBM-Segphos as the catalyst (*Angew. Chem. Int. Ed.* **2013**, *52*, 11632). Unlike SegPHOS **L8**, which did not yield the desired products, the use of DTBM-Segphos **L9** as the ligand resulted in the formation of the desired products with high yield and excellent *ee*. The DFT results demonstrated that an extensive network of C-H ... H-C interactions provided by the heavily substituted phenyl rings of DTBM-SegPHOS leads to increased stabilities of all intermediates and transition states in the corresponding catalytic cycles compared with the unsubstituted analogues (K. N. Houk, *et al. Org. Chem. Front.*, **2023**, *10*, 3485; I. D. Gridnev, *et al. iScience* **2020**, *23*, 100960). Due to the formation of 1,4-O/C dipole species **int-II** in the reaction, a polar solvent may serve as a stabilizing agent for this intermediate. The use of CH₂Cl₂ resulted in a low yield of product **3aa** (Table S1, entry 19), whereas an O-containing polar solvent such as EtOAc, THF and 1,4-dioxane led to a higher yield of **3aa** (Table S1, entries 20, 22-23). Oxygen atoms in the solvent could coordinate with the palladium catalyst to enhance the reaction.

Table S2. Screening of ligand and solvent for the (4+3) cycloaddition ofBCB 1a and ADTMC 2b^[a]

Entry	Ligand	Solvent	Conversion of 1a [%] ^[b]	Conversion of 2b [%] ^[b]	Yield of 3ab [%] ^[b]
1	L1	1,4-dioxane	36	70	12
2	L2	1,4-dioxane	15	34	0
3	L3	1,4-dioxane	15	44	0
4	L4	1,4-dioxane	34	18	4
5	L5	1,4-dioxane	51	28	14
6	L6	1,4-dioxane	71	95	19
7	L7	1,4-dioxane	37	84	4
8	L8	1,4-dioxane	16	89	<3
9	L9	1,4-dioxane	42	100	13
10	L10	1,4-dioxane	8	<5	<5
11	L11	1,4-dioxane	28	42	0
12	L12	1,4-dioxane	20	90	<5
13	L13	1,4-dioxane	55	56	9
14	L14	1,4-dioxane	19	13	6
15	L15	1,4-dioxane	34	53	7
16	L16	1,4-dioxane	25	71	4
17	L17	1,4-dioxane	36	90	14
18	L18	1,4-dioxane	45	86	15

19	L19	1,4-dioxane	26	54	0
20	L20	1,4-dioxane	25	51	<5
21	L21	1,4-dioxane	23	100	0
22	L22	1,4-dioxane	17	100	0
23	L23	1,4-dioxane	64	97	0
24	L24	1,4-dioxane	17	24	2
25	L25	1,4-dioxane	60	100	7
26	L26	1,4-dioxane	60	91	10
27	L27	1,4-dioxane	46	82	8
28	L6	THF	47	88	13
29	L6	toluene	45	96	10
30	L6	CH_2CI_2	35	93	7
31	L6	EtOAc	42	90	9
32	L6	CH ₃ CN	36	64	<5

[a] Reaction conditions: **1a** (0.10 mmol), **2a** (0.12 mmol), $Pd_2(dba)_3$ •CHCl₃ (5 mol%) and ligand (10 mol%), solvent (2 mL), 25 °C, under N₂ for 12 h. [b] Determined by ¹H NMR analysis using CH₂Br₂ as the internal reference.

Table S3. Screening of temperature and the stoichiometric amount of 2b for the (4+3) cycloaddition of BCB 1a^[a]

Entry	T (°C)	1a (equiv.)	2b (equiv.)	Conversion of 1a [%] ^[b]	Conversion of 2a [%] ^[b]	Yield of 3ab [%] ^[b]
1 ^[c]	0	1.0	1.2	53	87	5
2	25	1.0	1.2	71	95	19
3	65	1.0	1.2	76	>99	30
4	85	1.0	1.2	77	97	34
5	100	1.0	1.2	90	97	42
6	100	1.0	2.0	100	99	53
7	100	1.0	3.0	100	98	46

[a] Reaction conditions: **1a** (0.10 mmol, 1.0 equiv.), **2a** (x equiv.), $Pd_2(dba)_3$ •CHCl₃ (5 mol%) and **L6** (10 mol%), 1,4-dioxane (2 mL), T °C, under N₂ for 12 h. [b] Determined by ¹H NMR analysis using CH₂Br₂ as the internal reference. [c] THF was used.

General Procedure for the (4+3) Cycloadditions of BCBs 1 and ADTMC 2a (GP1)

Under an atmosphere of N₂, to a 25 mL oven-dried Schlenk tube were added BCBs **1** (0.20 mmol, 1.0 equiv), ADTMC **2a** (27.4 mg, 0.24 mmol, 1.2 equiv), Pd₂(dba)₃·CHCl₃ (10.24 mg, 0.010 mmol, 5 mol%), **L9** (23.6 mg, 0.020 mmol, 10 mol%) and 1,4-dioxane (4.0 mL). Then the resulting mixture was stirred at 25 °C for 12 h. After the solvent was removed under reduced pressure, the residue was directly subjected to a column

chromatography purification using petroleum ether /EtOAc (10:1, v/v) as the eluent, to afford the desired product **3**.

4 General Procedure for the (4+3) Cycloadditions of BCBs and substituted ADTMCs (GP2)

Under an atmosphere of N₂, to a 25 mL oven-dried Schlenk tube were added BCB **1a** (20.83 mg, 0.10 mmol, 1.0 equiv), ADTMC **2** (0.20 mmol, 2.0 equiv), $Pd_2(dba)_3$ ·CHCl₃ (5.12 mg, 0.005 mmol, 5 mol%), **L6** (5.39 mg, 0.010 mmol, 10 mol%) and 1,4-dioxane (2.0 mL). Then the resulting mixture was stirred at 100 °C for 12 h. After the solvent was removed under reduced pressure, the residue was directly subjected to a column chromatography purification using petroleum ether /EtOAc (15:1, v/v) as the eluent, to afford the desired product **3**.

5 Scale-Up Experiment

Under an atmosphere of N₂, to a 25 mL oven-dried Schlenk tube were added $Pd_2(dba)_3$ ·CHCl₃ (51.2 mg, 0.05 mmol, 5 mol%) and L9 (118.0 mg, 0.1 mmol, 10 mol%), followed by 5.0 mL of anhydrous 1,4-dioxane. The solution was stirred at 25 °C for 10 mintus. The **1a** (208.3 mg, 1.0 mmol, 1.0 equiv), **2a** (342.3 mg, 3.0 mmol) and 1,4-dioxane (7.0 mL) were added. Then the resulting mixture was stirred at 25 °C for 12 h. After removal of the solvents under reduced pressure, the crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 10/1) to afford analytically pure product **3aa** as a white solid (178.2 mg, 64% yield).

6 Synthetic Transformations

Synthesis of (6): To a solution of **3aa** (0.10 mmol, 27.84 mg, 1.0 equiv) in MeCN (1.6 mL) and H₂O (0.4 mL) was added K₂OsO₄·2H₂O (1.0 umol, 0.3 mg, 1 mol%), *N*-methylmorpholine-*N*-oxide (NMO) (1.30 mmol, 152.3 mg, 13.0 equiv). The reaction mixture was stirred at 60 °C for 12 h. After completion (monitored by TLC), the mixture was then quenched with aqueous Na₂S₂O₃ and stirred for 30 mins. The biphasic reaction mixture was then extracted with EtOAc and the combined organic layers were washed with brine, dried over Na₂SO₄. The filtrate was evaporated under *vacuo*, and purified by silica gel column chromatography (petroleum ether/EtOAc = 1/1) to afford **6** as a white solid (29.0 mg, 93% yield).

Synthesis of (7): To a 25 mL Schlenk tube equipped with a stir bar was charged with **3aa** (0.10 mmol, 27.8 mg, 1.0 equiv) and dichloromethane (2 mL). The mixture was cooled to 0 °C and then *m*-CPBA (85%) (0.3 mmol, 51.8 mg, 3.0 equiv) was added to the reaction. The mixture was slowly warmed to room temperature and stirred overnight. Then, the mixture was quenched with a saturated aqueous NaHCO₃ solution, then diluted with water. The aqueous phase was extracted twice with dichloromethane. The combined organic phases were washed by brine and dried over Na₂SO₄ and concentrated under reduced pressure after filtration. The residue was directly purified

by silica gel column chromatography using (petroleum ether/EtOAc = 3/1) as the eluent to give product **7** as a white solid (18.2 mg, 62% yield).

Synthesis of (8): To a solution of **3aa** (0.15 mmol, 41.8 mg, 1.0 equiv) in MeOH (3.0 mL) was added Pd/C (10 wt%) (4.2 mg). This flask was in a vacuum and back-filled with H_2 (1 atm). After being stirred at room temperature overnight, the reaction solution was filtered, and the filtered-cake was washed with EtOAc (5.0 mL). The filtrate was evaporated under *vacuo*, and purified by silica gel column chromatography (petroleum ether/EtOAc = 20/1) to afford **8** as a yellow oil (32.4 mg, 77% yield).

Synthesis of (9): To a 25 mL Schlenk tube equipped with a stir bar was charged with methyl triphenylphosphonium bromide (0.30 mmol, 107.2 mg, 3.0 equiv) and anhydrous THF (1 mL). The mixture was cooled to 0 °C and then 'BuOK (0.3 mmol, 33.7 mg, 3.0 equiv) was added to the reaction. The resulting yellow suspension was stirred at 0 °C for 45 min, then a solution of **3aa** (0.10 mmol, 27.8 mg, 1.0 equiv) in THF (1 mL) added dropwise. The resulting mixture was warmed gradually to room temperature and stirred until **3aa** disappeared (monitored by TLC). The reaction mixture was quenched with water, extracted with EtOAc, dried over Na₂SO₄, filtered and concentrated in *vacuo*. The residue was purification by flash chromatography on silica gel (petroleum ether/EtOAc = 30/1) to afford analytically pure product **9** as a white solid (26.3 mg, 95% yield).

Synthesis of (10): To a solution of **3aa** (0.10 mmol, 27.8 mg, 1.0 equiv) in the MeOH (2.0 mL) was added NaBH₄ (4.5 mg, 0.12 mmol, 1.2 equiv) at 0 °C. The mixture was slowly warmed to room temperature and stirred overnight. Then aqueous saturated NH₄Cl solution (5 mL) was added to quench the reaction. The aqueous phase was extracted with EtOAc. The combined organic phases were washed by brine and dried over Na₂SO₄ and concentrated under reduced pressure after filtration. The crude residue was purified by silica gel column chromatography (petroleum ether/EtOAc = 5/1) to afford **10** as a colorless oil (23.9 mg, 85% yield).

Synthesis of (11): 3aa (0.10 mmol, 27.8 mg, 1.0 equiv) and hydroxylamine hydrochloride (0.20 mmol, 13.9 mg, 2.0 equiv) were dissolved in EtOH (0.5 mL) and H_2O (1 mL). To the mixture was added NaOAc·3H₂O (0.4 mmol, 54.4 mg, 4.0 equiv) and the reaction was heated under reflux for 12 h. After completion of the reaction, the reaction mixture was cooled to room temperature, and water (5 mL) were added. The aqueous layer was extracted three times with EtOAc (3×15 mL). The combined organic phases were washed by brine and dried over Na₂SO₄ and concentrated under reduced pressure after filtration. The product was purified by column chromatography on silica gel (petroleum ether/ EtOAc = 1:1) to afford **11** (the major isomer: 16.2 mg, 55%; the minor isomer: 12.8 mg, 44%) as a white solid.

7 Sensitivity Assessment^[3]

Standard conditions: Under an atmosphere of N₂, to a 25 mL oven-dried Schlenk tube were added BCB **1a** (0.10 mmol, 20.8 mg, 1.0 equiv), ADTMC **2a** (0.12 mmol, 13.7 mg, 1.2 equiv), Pd₂(dba)₃·CHCl₃ (5.12 mg, 0.005 mmol, 5 mol%), **L9** (11.8 mg, 0.010 mmol, 10 mol%) and 1,4-dioxane (2.0 mL). Then the resulting mixture was stirred at 25 °C for 12 h. After the solvent was removed under reduced pressure, CH_2Br_2 (0.10 mmol, 17.4 mg) was added as an internal standard, and the yield was determined by ¹H NMR analysis of the crude mixture.

Entry	Description	Deviation from standard condition	Yield	Deviation
1	High c	1,4-dioxane (1 mL)	75%	-21%
2	Low c	1,4-dioxane (3 mL)	83%	-13%
3	H ₂ O	+5 μL H2O	61%	-35%
4	Low O ₂	degassed solvent	96%	0%
5	High O ₂	+5 mL air	97%	+1%
6	Low T	at 15 °C	73%	-23%
7	High <i>T</i>	at 40 °C	89%	-7%
8	Big Scale	1.0 mmol scale	65%	-31%
		(10 times of standard scale)		
9	control	-	96%	-

Comment: we conducted condition-based sensitivity screening, revealing that the O_2 level had no significant impact on the reaction. However, this reaction exhibited moderate sensitivity to concentration, moisture, temperature, and scale.

8 Unsuccessful Substrates

The following Scheme S1 and Scheme S2 list the BCB and ADTMC substrates that were unsuccessfully tested. The reactions were carried out according to General Procedure and were analyzed by crude ¹H NMR with CH₂Br₂ as an internal standard.

Scheme S1. Unsuccessful BCB substrates

Scheme S2. Unsuccessful ADTMC substrates

9 **Characterization Data of the Products**

(4-Methylene-2-oxabicyclo[4.1.1]octan-6-yl)(naphthalen-2-yl)methanone (**3aa**): Prepared from bicyclo[1.1.0]butan-1-yl(naphthalen-2-yl)methanone (1a, 41.7 mg, 0.20 mmol) and 5-methylene-1,3-dioxan-2-one (2a, 27.4 mg, 0.24 mmol) according to the GP1 at 25 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (10/1) afforded 3aa as a white solid (51.8 mg, 93% yield).

3aa: $\mathbf{R}_f = 0.30$ (petroleum ether/EtOAc = 10/1). ¹H NMR (600 MHz, CDCl₃): δ 8.31 (s, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.90-7.88 (m, 3H), 7.62 (t, J = 7.2 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 5.33 (s, 1H), 5.14 (s, 1H), 4.48 (t, J = 6.0 Hz, 1H), 4.41 (s, 2H), 2.87-2.84 (m, 4H), 2.64 (d, *J* = 11.4 Hz, 2H) ppm. ¹³**C NMR** (150 MHz, CDCl₃): δ 203.6, 144.3, 135.4, 132.4, 131.2, 130.6, 129.6, 128.6, 128.5, 127.7, 126.8, 124.6, 119.6, 72.6, 68.7, 50.9, 43.6, 37.1 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₁₉H₁₉O₂: 279.1380; found: 279.1272.

M = 228.29 g/mol

(4-Methylene-2-oxabicyclo[4.1.1]octan-6-yl)(phenyl)methanone (3ba): Prepared from bicyclo[1.1.0]butan-1-yl(phenyl)methanone (1b, 31.6 mg, 0.20 mmol) and 5-methylene-1,3-dioxan-2-one (2a, 27.4 mg, 0.24 mmol) according to the **GP1** at 25 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (15/1) afforded 3ba as a yellow oil (34.2 mg, 75% yield).

3ba: **R**_{*f*} = 0.35 (petroleum ether/EtOAc = 15/1). ¹**H NMR** (600 MHz, CDCl₃): δ 7.82 (d, *J* = 7.8 Hz, 2H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 2H), 5.29 (s, 1H), 5.10 (s, 1H), 4.44 (t, *J* = 6.6 Hz, 1H), 4.37 (s, 2H), 2.79-2.76 (m, 4H), 2.56 (d, *J* = 14.4 Hz, 2H) ppm. ¹³**C NMR** (150 MHz, CDCl₃): δ 203.5, 144.3, 134.0, 132.9, 128.9, 128.6, 119.5, 72.5, 68.7, 50.8, 43.4, 36.9 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₁₅H₁₇O₂: 229.1223; found: 229.1220.

(4-Fluorophenyl)(4-methylene-2-oxabicyclo[4.1.1]octan-6-yl)methanone (3ca): Prepared from bicyclo[1.1.0]butan-1-yl(4-fluorophenyl)methanone (1c, 26.4 mg, 0.15 mmol) and 5-methylene-1,3-dioxan-2-one (2a, 20.5 mg, 0.18 mmol) according to the **GP1** at 25 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (10/1) afforded 3ca as a white solid (16.0 mg, 43% yield).

3ca: $\mathbf{R}_{f} = 0.30$ (petroleum ether/EtOAc = 15/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.85 (dd, J = 8.4, 5.6 Hz, 2H), 7.15 (t, J = 8.4 Hz, 2H), 5.30 (s, 1H), 5.11 (s, 1H), 4.43 (t, J = 6.4 Hz, 1H), 4.36 (s, 2H), 2.79-2.74 (m, 4H), 2.57-2.52 (m, 2H) ppm. ¹³**C NMR** (150 MHz, CDCl₃): δ 201.9, 165.5 (d, J = 253.7 Hz), 144.1, 131.6 (d, J = 9.2 Hz), 130.3 (d, J = 3.0 Hz), 119.7, 115.8 (d, J = 21.8 Hz), 72.4, 68.6, 50.6, 43.4, 36.9 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.92 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₁₅H₁₆FO₂: 247.1129; found: 247.1139.

(3,5-Dimethoxyphenyl)(4-methylene-2-oxabicyclo[4.1.1]octan-6-yl)methanone (3da): Prepared from bicyclo[1.1.0]butan-1-yl(3,5-dimethoxyphenyl)methanone (1d, 43.7 mg, 0.20 mmol) and 5-methylene-1,3-dioxan-2-one (2a, 27.4 mg, 0.24 mmol) according to the **GP1** at 25 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (10/1) afforded 3da as a white solid (42.9 mg, 74% yield).

3da: $\mathbf{R}_{f} = 0.3$ (petroleum ether/EtOAc = 10/1). ¹H NMR (400 MHz, CDCl₃): δ 6.95 (s, 2H), 6.64 (s, 1H), 5.29 (s, 1H), 5.11 (s, 1H), 4.42 (t, *J* = 6.0 Hz, 1H), 4.35 (s, 2H), 3.83 (s, 6H), 2.79-2.73 (m, 4H), 2.56-2.51 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 203.2, 160.7, 144.3, 135.7, 119.5, 106.7, 105.1, 72.4, 68.6, 55.5, 50.8, 43.5, 37.0 ppm. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₁₇H₂₁O₄: 289.1434; found: 289.1427.

Furan-2-yl(4-methylene-2-oxabicyclo[4.1.1]octan-6-yl)methanone (**3ea**): Prepared from bicyclo[1.1.0]butan-1-yl(furan-2-yl)methanone (**1e**, 29.6 mg, 0.20 mmol) and 5-methylene-1,3-dioxan-2-one (**2a**, 27.4 mg, 0.24 mmol) according to the **GP1** at 25 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (10/1) afforded **3ea** as a white solid (26.1 mg, 60% yield).

3ea: **R**_f = 0.3 (petroleum ether/EtOAc = 15/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.59 (s, 1H), 7.14 (d, *J* = 3.2 Hz, 1H), 6.55-6.54 (m, 1H), 5.28 (s, 1H), 5.09 (s, 1H), 4.43 (t, *J* =

6.4 Hz, 1H), 4.35 (s, 2H), 2.74 (s, 2H), 2.71-2.65 (m, 2H), 2.52-2.47 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 192.5, 150.8, 146.1, 144.3, 119.5, 118.1, 112.1, 72.4, 68.6, 49.8, 42.5, 35.7 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₁₃H₁₅O₃: 219.1016; found: 219.1028.

(4-Methylene-2-oxabicyclo[4.1.1]octan-6-yl)(thiophen-2-yl)methanone (3fa): Prepared from bicyclo[1.1.0]butan-1-yl(thiophen-2-yl)methanone (1f, 24.6 mg, 0.15 mmol) and 5-methylene-1,3-dioxan-2-one (2a, 20.5 mg, 0.18 mmol) according to the **GP1** at 25 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (10/1) afforded 3fa as a white solid (26.3 mg, 75% yield).

3fa: $\mathbf{R}_f = 0.30$ (petroleum ether/EtOAc = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 4.4 Hz, 2H), 7.56 (d, J = 3.6 Hz, 2H), 7.13 (t, J = 4.4 Hz, 2H), 5.29 (s, 1H), 5.11 (s, 1H), 4.43 (t, J = 6.4 Hz, 1H), 4.35 (s, 2H), 2.79 (s, 2H), 2.78-2.72 (m, 2H), 2.56-2.55 (m, 1H), 2.53-2.51 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 196.8, 144.2, 140.8, 133.4, 132.2, 128.1, 119.6, 72.2, 68.6, 50.7, 43.7, 36.6 ppm. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₁₃H₁₅O₂S: 236.0866; found: 236.0873.

1-(4-Methylene-2-oxabicyclo[4.1.1]octan-6-yl)pentan-1-one (**3ga**): Prepared from bicyclo[1.1.0]butan-1-yl(naphthalen-2-yl)methanone (**1g**, 27.6 mg, 0.20 mmol) and 5-methylene-1,3-dioxan-2-one (**2a**, 27.4 mg, 0.24 mmol) according to the **GP1** at 100 °C

for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (15/1) afforded **3ga** as a yellow oil (18.7 mg, 42% yield).

3ga: **R**_{*f*} = 0.35 (petroleum ether/EtOAc = 15/1). ¹**H NMR** (400 MHz, CDCl₃): δ 5.24 (s, 1H), 5.07 (s, 1H), 4.37 (t, *J* = 5.6 Hz, 1H), 4.28 (s, 2H), 2.56 (s, 2H), 2.53-2.48 (m, 2H), 2.42 (t, *J* = 7.2 Hz, 2H), 2.26-2.22 (s, 2H), 1.62-1.52 (m, 2H), 1.38-1.26 (m, 2H), 0.92 (t, *J* = 7.2 Hz, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 213.1, 144.2, 119.4, 71.6, 68.4, 53.4, 51.2, 41.4, 36.1, 34.6, 25.8, 22.4, 13.9 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₁₃H₂₁O₂: 210.1614; found: 210.1608.

7-((*tert*-Butyldimethylsilyl)oxy)-1-(4-methylene-2-oxabicyclo[4.1.1]octan-6-yl)hept-2-yn-1-one (**3ha**): Prepared from 1-(bicyclo[1.1.0]butan-1-yl)-8-((*tert*-butyldimethylsilyl)oxy)oct-3yn-1-one (**1h**, 61.3 mg, 0.20 mmol) and 5-methylene-1,3-dioxan-2-one (**2a**, 27.4 mg, 0.24 mmol) according to the **GP1** at 100 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (10/1) afforded **3ha** as a yellow oil (47.4 mg, 63% yield).

3ha: **R**_{*f*} = 0.30 (petroleum ether/EtOAc = 20/1). ¹**H NMR** (400 MHz, CDCl₃): δ 5.23 (s, 1H), 5.09 (s, 1H), 4.41 (t, *J* = 6.0 Hz, 1H), 4.27 (s, 2H), 3.64 (t, *J* = 5.2 Hz, 2H), 2.68 (s, 2H), 2.66-2.62 (m, 2H), 2.45 (t, *J* = 5.6 Hz, 2H), 2.26-2.22 (m, 2H), 1.72-1.62 (m, 4H), 0.89 (s, 9H), 0.05 (s, 6H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 190.6, 144.0, 119.5, 97.1, 78.3, 71.8, 68.4, 67.0, 62.3, 51.5, 40.5, 34.9, 31.8, 25.9, 24.4, 18.9, 18.3, -5.4 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₂₁H₃₅O₃Si: 363.2350; found: 363.2344.

(4-((Z)-benzylidene)-2-oxabicyclo[4.1.1]octan-6-yl)(naphthalen-2-yl)methanone ((Z)-**3ab**): Prepared from bicyclo[1.1.0]butan-1-yl(naphthalen-2-yl)methanone (**1a**, 20.8 mg, 0.10 mmol) and 5-benzylidene-1,3-dioxan-2-one (**2b**, 38.0 mg, 0.20 mmol) according to the **GP2** at 100 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (15/1) afforded **3ab** as a white solid (16.3 mg, 46% yield).

(*Z*)-**3ab**: $\mathbf{R}_f = 0.35$ (petroleum ether/EtOAc = 15/1). (*Z*)-**3ab**: ¹H NMR (400 MHz, CDCl₃): $\delta 8.33$ (s, 1H), 7.95-7.87 (m, 4H), 7.61 (t, *J* = 7.2 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.2 Hz, 2H), 7.31 (t, *J* = 7.6 Hz, 1H), 6.69 (s, 1H), 4.57 (t, *J* = 6.4 Hz, 1H), 4.52 (s, 2H), 2.92 (s, 2H), 2.91-2.86 (m, 2H), 2.81-2.77 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 203.6, 137.2, 136.5, 135.4, 133.4, 132.5, 131.2, 130.6, 129.6, 129.0, 128.6, 128.5, 128.4, 127.7, 127.4, 126.8, 124.7, 73.2, 62.7, 51.7, 45.6, 37.4 ppm. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₂₅H₂₃O₂: 355.1693; found: 355.1688.

(4-((Z)-2-Methylbenzylidene)-2-oxabicyclo[4.1.1]octan-6-yl)(naphthalen-2-yl)methanone ((Z)-3ac): Prepared from bicyclo[1.1.0]butan-1-yl(naphthalen-2-yl)methanone (1a, 20.8 mg, 0.10 mmol) and 5-(2-methylbenzylidene)-1,3-dioxan-2-one (2c, 40.9 mg, 0.20 mmol)

according to the **GP2** at 100 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3ac** as a white solid (23.6 mg, 64% yield).

(*Z*)-**3ac**: **R**_{*f*} = 0.30 (petroleum ether/EtOAc = 20/1). ¹**H NMR** (400 MHz, CDCl₃): δ 8.34 (s, 1H), 7.95-7.87 (m, 4H), 7.62-7.55 (m, 3H), 7.26-7.20 (m, 3H), 6.67 (s, 1H), 4.55 (t, *J* = 6.0 Hz, 1H), 4.44 (s, 2H), 2.97 (s, 2H), 2.92-2.88 (m, 2H), 2.78 (d, *J* = 11.6 Hz, 2H), 2.28 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 203.6, 136.9, 136.3, 135.6, 135.4, 132.6, 132.4, 131.3, 130.6, 129.83, 129.77, 129.6, 128.54, 128.46, 127.7, 127.6, 126.8, 125.8, 124.7, 73.0, 62.8, 51.6, 45.5, 37.3, 20.0 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₂₆H₂₅O₂: 369.1849; found: 369.1843.

(4-((*Z*)-3-methylbenzylidene)-2-oxabicyclo[4.1.1]octan-6-yl)(naphthalen-2-yl)methanone ((*Z*)-3ad): Prepared from bicyclo[1.1.0]butan-1-yl(naphthalen-2-yl)methanone (1a, 20.8 mg, 0.10 mmol) and 5-(3-methylbenzylidene)-1,3-dioxan-2-one (2d, 40.9 mg, 0.20 mmol) according to the **GP2** at 100 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (15/1) afforded 3ad as a white solid (16.3 mg, 44% yield).

(*Z*)-**3ad**: **R**_{*f*} = 0.35 (petroleum ether/EtOAc = 15/1). ¹**H NMR** (400 MHz, CDCl₃): δ 8.33 (s, 1H), 7.95-7.87 (m, 4H), 7.60 (t, *J* = 7.2 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.30-7.25 (m, 3H), 7.14-7.12 (m, 1H), 6.65 (s, 1H), 4.56 (t, *J* = 6.4 Hz, 1H), 4.52 (s, 2H), 2.91 (s, 2H), 2.89-2.86 (m, 2H), 2.79-2.76 (m, 2H), 2.40 (s, 3H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 203.6, 138.0, 137.0, 136.5, 135.4, 133.5, 132.5, 131.3, 130.6, 129.64,

129.59, 128.6, 128.5, 128.3, 128.1, 127.7, 126.8, 126.1, 124.7, 73.2, 62.8, 51.7, 45.7, 37.4, 21.5 ppm. **HRMS** (ESI) m/z: [M+H]⁺ calcd. for C₂₆H₂₅O₂: 369.1849; found: 369.1841.

((1s,6r)-4-((Z)-4-methylbenzylidene)-2-oxabicyclo[4.1.1]octan-6-yl)(naphthalen-2-yl)methanone ((Z)-3ae): Prepared from bicyclo[1.1.0]butan-1-yl(naphthalen-2-yl)methanone (1a, 20.8 mg, 0.10 mmol) and 5-(4-methylbenzylidene)-1,3-dioxan-2-one (2e, 40.9 mg, 0.20 mmol) according to the **GP2** at 100 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (15/1) afforded **3ae** as a white solid (15.2 mg, 41% yield).

(*Z*)-**3ae**: $\mathbf{R}_f = 0.30$ (petroleum ether/EtOAc = 15/1). ¹H NMR (600 MHz, CDCl₃): δ 8.33 (s, 1H), 7.95-7.87 (m, 4H), 7.61 (t, *J* = 7.2 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 7.8 Hz, 2H), 7.22 (d, *J* = 7.8 Hz, 2H), 6.66 (s, 1H), 4.57 (t, *J* = 6.0 Hz, 1H), 4.52 (s, 2H), 2.91 (s, 2H), 2.89-2.87 (m, 2H), 2.80-2.76 (m, 2H), 2.39 (s, 3H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 203.7, 137.2, 136.4, 135.4, 133.6, 133.3, 132.4, 131.2, 130.6, 129.6, 129.1, 128.9, 128.6, 128.5, 127.7, 126.8, 124.7, 73.2, 62.8, 51.7, 45.6, 37.4, 21.2 ppm. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₂₆H₂₅O₂: 369.1849; found: 369.1840.

(Z)-4-([1,1'-Biphenyl]-4-ylmethylene)-2-oxabicyclo[4.1.1]octan-6-yl)(naphthalen-2-yl)

methanone ((*Z*)-**3af**): Prepared from bicyclo[1.1.0]butan-1-yl(naphthalen-2yl)methanone (**1a**, 20.8 mg, 0.10 mmol) and 5-([1,1'-biphenyl]-4-ylmethylene)-1,3dioxan-2-one (**2f**, 53.3 mg, 0.20 mmol) according to the **GP2** at 100 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (15/1) afforded **3af** as a white solid (22.1 mg, 51% yield).

(*Z*)-**3af**: **R**_{*f*} = 0.30 (petroleum ether/EtOAc = 15/1). ¹**H NMR** (400 MHz, CDCl₃): δ 8.34 (s, 1H), 7.96-7.87 (m, 4H), 7.65-7.62 (m, 5H), 7.59-7.54 (m, 3H), 7.46 (t, *J* = 7.2 Hz, 2H), 7.36 (t, *J* = 7.2 Hz, 1H), 6.72 (s, 1H), 4.60-4.57 (m, 3H), 2.94 (s, 2H), 2.90-2.89 (m, 2H), 2.80 (d, *J* = 11.6 Hz, 2H) ppm.¹³**C NMR** (100 MHz, CDCl₃): δ 203.6, 140.7, 140.2, 137.4, 135.5, 135.4, 133.0, 132.4, 131.2, 130.6, 129.6, 129.5, 128.8, 128.6, 128.5, 127.7, 127.4, 127.1, 127.0, 126.8, 124.7, 73.3, 62.8, 51.7, 45.7, 37.4 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₃₁H₂₇O₂: 431.2006; found: 431.1998.

(4-((*Z*)-4-Methoxybenzylidene)-2-oxabicyclo[4.1.1]octan-6-yl)(naphthalen-2-yl)methanone ((*Z*)-3ag): Prepared from bicyclo[1.1.0]butan-1-yl(naphthalen-2-yl)methanone (1a, 20.8 mg,

0.10 mmol) and 5-(4-methoxybenzylidene)-1,3-dioxan-2-one (**2g**, 44.0 mg, 0.20 mmol) according to the **GP2** at 100 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (15/1) afforded **3ag** as a yellow solid (17.8 mg, 46% yield).

(*Z*)-**3ag**: **R**_{*f*} = 0.25 (petroleum ether/EtOAc = 15/1). ¹**H NMR** (400 MHz, CDCl₃): δ 8.32 (s, 1H), 7.95-7.87 (m, 4H), 7.60 (t, *J* = 7.2 Hz, 1H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 2H), 6.94 (d, *J* = 7.6 Hz, 2H), 6.63 (s, 1H), 4.56 (t, *J* = 6.4 Hz, 1H), 4.52 (s, 2H), 3.84 (s, 3H), 2.90 (s, 2H), 2.87-2.85 (m, 2H), 2.78 (d, *J* = 11.2 Hz, 2H) ppm.¹³**C NMR** (100 MHz, CDCl₃): δ 203.7, 159.0, 135.8, 135.4, 132.9, 132.5, 131.3, 130.6, 130.3, 129.7, 129.1, 128.5, 128.4, 127.7, 126.8, 124.7, 113.8, 73.2, 62.8, 55.3, 51.8, 45.6, 37.4 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₂₆H₂₅O₃: 385.1798; found: 385.1792.

(4-((*Z*)-3-Methoxybenzylidene)-2-oxabicyclo[4.1.1]octan-6-yl)(naphthalen-2-yl)methanone ((*Z*)-3ah): Prepared from bicyclo[1.1.0]butan-1-yl(naphthalen-2-yl)methanone (1a, 20.8 mg, 0.10 mmol) and 5-(3-methoxybenzylidene)-1,3-dioxan-2-one (2h, 44.0 mg, 0.20 mmol) according to the **GP2** at 100 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (15/1) afforded **3ah** as a white solid (16.7 mg, 43% yield).

(Z)-3ah: R_f = 0.35 (petroleum ether/EtOAc = 15/1). ¹H NMR (600 MHz, CDCl₃): δ 8.33 (s, 1H), 7.95-7.88 (m, 4H), 7.61 (t, J = 7.2 Hz, 1H), 7.55 (t, J = 7.8 Hz, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.09 (d, J = 7.2 Hz, 1H), 7.01 (s, 1H), 6.88 (d, J = 8.4 Hz, 1H), 6.67 (s, 1H), 4.57 (t, J = 6.0 Hz, 1H), 4.53 (s, 2H), 3.85 (s, 3H), 2.92 (s, 2H), 2.89-2.87 (m, 2H),

2.79-2.77 (m, 2H) ppm. ¹³**C NMR** (150 MHz, CDCl₃): δ 203.7, 159.5, 137.8, 137.5, 135.4, 133.3, 132.4, 131.2, 130.6, 129.6, 129.4, 128.6, 128.5, 127.7, 126.8, 124.7, 121.5, 114.3, 113.0, 73.2, 62.7, 55.2, 51.6, 45.6, 37.4 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₂₆H₂₅O₃: 385.1798; found: 385.1788.

(4-((*Z*)-2-Methoxybenzylidene)-2-oxabicyclo[4.1.1]octan-6-yl)(naphthalen-2-yl)methanone ((*Z*)-3ai): Prepared from bicyclo[1.1.0]butan-1-yl(naphthalen-2-yl)methanone (1a, 20.8 mg, 0.10 mmol) and 5-(2-methoxybenzylidene)-1,3-dioxan-2-one (2i, 44.0 mg, 0.20 mmol) according to the **GP2** at 100 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (15/1) afforded 3ai as a white solid (26.7 mg, 69% yield).

(*Z*)-**3ai**: $\mathbf{R}_{f} = 0.30$ (petroleum ether/EtOAc = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 8.32 (s, 1H), 7.94-7.86 (m, 4H), 7.67 (d, *J* = 7.2 Hz, 1H), 7.60 (t, *J* = 7.2 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 8.0 Hz, 1H), 7.04 (t, *J* = 7.2 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 1H), 6.79 (s, 1H), 4.56 (t, *J* = 4.8 Hz, 1H), 4.51 (s, 2H), 3.82 (s, 3H), 2.97 (s, 2H), 2.90-2.85 (m, 2H), 2.80-2.76 (m, 2H) ppm.¹³C NMR (100 MHz, CDCl₃): δ 203.7, 157.1, 136.6, 135.3, 132.4, 131.2, 130.9, 130.6, 129.6, 129.4, 129.0, 128.5, 128.4, 127.7, 126.7, 125.3, 124.7, 120.5, 110.2, 73.2, 63.1, 55.3, 51.7, 45.7, 37.4 ppm. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₂₆H₂₅O₃: 385.1798; found: 385.1793.

Naphthalen-2-yl((Z)-4-(thiophen-2-ylmethylene)-2-oxabicyclo[4.1.1]octan-6-yl)methanone ((Z)-3aj): Prepared from bicyclo[1.1.0]butan-1-yl(naphthalen-2-yl)methanone (1a, 20.8 mg, 0.10 mmol) and 5-(thiophen-2-ylmethylene)-1,3-dioxan-2-one (2j, 39.2 mg, 0.20 mmol) according to the **GP2** at 100 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (15/1) afforded 3aj as a white solid (12.5 mg, 35% yield).

(*Z*)-**3a**j: **R**_f = 0.35 (petroleum ether/EtOAc = 15/1). ¹**H NMR** (600 MHz, CDCl₃): δ 8.32 (s, 1H), 7.95 (d, *J* = 7.8 Hz, 1H), 7.92-7.88 (m, 3H), 7.62 (t, *J* = 4.8 Hz, 1H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.34 (d, *J* = 4.8 Hz, 1H), 7.22-7.21 (m, 1H), 7.07 (t, *J* = 3.0 Hz, 1H), 6.68 (s, 1H), 4.71 (s, 2H), 4.55 (t, *J* = 6.0 Hz, 1H), 2.91 (s, 2H), 2.89-2.85 (m, 2H), 2.76-2.73 (m, 2H) ppm.¹³**C NMR** (150 MHz, CDCl₃): δ 203.6, 138.6, 136.7, 135.4, 132.4, 131.2, 130.6, 129.6, 128.6, 128.5, 128.1, 127.7, 127.3, 126.8, 126.0, 125.5, 124.6, 73.2, 62.8, 51.6, 45.8, 37.3 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₂₃H₂₁O₂S: 361.1257; found: 361.1249.

((*Z*)-4-(Cyclohexylmethylene)-2-oxabicyclo[4.1.1]octan-6-yl)(naphthalen-2-yl)methanone ((*Z*)-**3ak**): Prepared from bicyclo[1.1.0]butan-1-yl(naphthalen-2-yl)methanone (**1a**, 20.8 mg, 0.10 mmol) and 5-(cyclohexylmethylene)-1,3-dioxan-2-one (**2k**, 39.3 mg, 0.20 mmol) according to the **GP2** at 100 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3ak** as a colorless oil (15.3 mg, 42% yield).

(*Z*)-**3ak**: $\mathbf{R}_f = 0.35$ (petroleum ether/EtOAc = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 8.29 (s, 1H), 7.94-7.86 (m, 4H), 7.62-7.54 (m, 2H), 5.38 (d, *J* = 9.2 Hz, 1H), 4.45-4.43 (m, 3H), 2.81-2.77 (m, 2H), 2.72 (s, 2H), 2.67-2.62 (m, 2H), 2.54-2.46 (m, 1H), 1.76-1.67 (m, 4H), 1.40-1.31 (m, 2H), 1.25-1.12 (m, 4H) ppm.¹³C NMR (100 MHz, CDCl₃): δ 203.9, 140.6, 135.3, 132.40, 132.36, 131.4, 130.6, 129.6, 128.5, 128.4, 127.7, 126.7, 124.7, 72.7, 61.9, 51.4, 45.5, 37.1, 36.8, 33.7, 25.9, 25.8 ppm. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₂₅H₂₉O₂: 361.2162; found: 361.2157.

Scheme 3. Proposed mechanism for the reaction involving 1d and 2l.

Detector A Channel 2 220nm						
Peak#	Ret. Time [min]	Peak Start [min]	Height [mAU]	Area [mAU*min]	Area%	
1	14.384	13.708	625062	21247750	50.188	
2	16.286	15.492	649358	21088443	49.812	
Total			1274420	42336193	100.000	

The unreacted ADTMC 2I was obtained with an enantiomeric excess of 1%

Detector A	Detector A Channel 2 220nm							
Peak#	Ret. Time [min]	Peak Start [min]	Height [mAU]	Area [mAU*min]	Area%			
1	15.533	15.042	35696	1023688	50.572			
2	17.347	16.917	32857	1000530	49.428			
Total			68553	2024218	100.000			

HPLC analysis (Chiralpak AD-H, /PrOH/hexane = 10/90, 1.0 mL/min, 220 nm; tr (major) = 15.53 min, tr (minor) = 17.35 min) gave the isomeric composition of the unreacted ADTMC **2I**: 1% *ee*.

(4-((*Z*)-benzylidene)-2-oxabicyclo[4.1.1]octan-6-yl)(3,5-dimethoxyphenyl)methanone ((*Z*)-3dl): Prepared from bicyclo[1.1.0]butan-1-yl(3,5-dimethoxyphenyl)methanone (1d, 21.8 mg, 0.10 mmol) and 5-methylene-4-phenyl-1,3-dioxan-2-one (2l, 22.8 mg, 0.12 mmol) according to the **GP1** at 100 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (15/1) afforded (*Z*)-3dl as a white solid (9.2 mg, 25% yield).

(*Z*)-**3dI**: $\mathbf{R}_{f} = 0.20$ (petroleum ether/EtOAc = 15/1). ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.37 (m, 4H), 7.31-7.28 (m, 1H), 6.97 (s, 2H), 6.66 (s, 1H), 6.64 (s, 1H), 4.52 (t, *J* = 6.8 Hz, 1H), 4.47 (s, 2H), 3.82 (s, 6H), 2.84 (s, 2H), 2.82-2.78 (m, 2H), 2.70-2.66 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 203.3, 160.8, 137.1, 136.5, 135.8, 133.4, 129.0, 128.4, 127.3, 106.8, 105.0, 73.1, 62.7, 55.5, 51.6, 45.5, 37.3 ppm. HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₃H₂₄O₄Na: 387.1567; found: 387.1560.

(3,5-dimethoxyphenyl)(4-methylene-3-phenyl-2-oxabicyclo[4.1.1]octan-6-yl)methanone (4dl'): Prepared from bicyclo[1.1.0]butan-1-yl(3,5-dimethoxyphenyl)methanone (1d, 21.8 mg, 0.10 mmol) and 5-methylene-4-phenyl-1,3-dioxan-2-one (2l, 22.8 mg, 0.12 mmol) according to the **GP1** at 100 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **4dl'** as a white solid (3.1 mg, 9% yield, 19% *ee*).

4dl': **R**_{*f*} = 0.25 (petroleum ether/EtOAc = 20/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.43 (d, J = 6.8 Hz, 2H), 7.37 (t, J = 6.8 Hz, 2H), 7.30 (d, J = 6.8 Hz, 1H), 6.97 (s, 2H), 6.64 (s, 1H), 5.53 (s, 1H), 5.15 (s, 1H), 4.73 (s, 1H), 4.62 (t, J = 5.2 Hz, 1H), 3.82 (s, 6H), 2.96-2.86 (m, 3H), 2.80-2.75 (m, 1H), 2.73-2.68 (m, 1H), 2.53-2.49 (m, 1H) ppm. ¹³**C NMR** (150 MHz, CDCl₃): δ 203.1, 160.8, 147.7, 140.5, 135.8, 128.1, 127.4, 127.1, 120.7, 106.7, 105.2, 77.7, 72.6, 55.5, 50.9, 44.7, 39.5, 35.2 ppm. **HRMS** (ESI) *m/z*: [M+Na]⁺ calcd. for C₂₃H₂₄O₄Na: 387.1567; found: 387.1559.

HPLC analysis of **4dl**' (Chiralpak AD-H, PrOH/hexane = 10/90, 1.0 mL/min, 254 nm; tr (major) = 6.96 min, tr (minor) = 8.30 min) gave the isomeric composition of the product: 19% *ee*.

Peak#	Ret. Time [min]	Peak Start [min]	Height [mAU]	Area [mAU*min]	Area%
1	6.919	6.592	11714	207631	50.218
2	8.278	8.000	11820	205826	49.782
Total			23534	413457	100.000

Detector A Channel 1 254nm

Detector A Channel 1 254nm						
Peak#	Ret. Time [min]	Peak Start [min]	Height [mAU]	Area [mAU*min]	Area%	
1	6.957	6.500	123607	1930165	59.514	
2	8.296	7.942	86493	1313029	40.486	
Total			210100	3243194	100.000	

A mixture of **4dI** and (*E*)-**3dI** that is not separable using flash chromatography on silica gel.

(3,5-dimethoxyphenyl)(4-methylene-5-phenyl-2-oxabicyclo[4.1.1]octan-6-yl)methanone (4dl) and (4-((*E*)-benzylidene)-2-oxabicyclo[4.1.1]octan-6-yl)(3,5-dimethoxyphenyl)methanone ((*E*)-3dl): Prepared from bicyclo[1.1.0]butan-1-yl(3,5-dimethoxyphenyl)methanone (1d, 21.8 mg, 0.10 mmol) and 5-methylene-4-phenyl-1,3-dioxan-2-one (2l, 22.8 mg, 0.12 mmol) according to the **GP1** at 100 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded a mixture of 4dl and (*E*)-3dl as a

colorless oil that is not separable using flash chromatography on silica gel (8.2 mg, 23% combined isolated yield).

4dl: R_{*f*} = 0.20 (petroleum ether/EtOAc = 20/1). ¹**H NMR** (400 MHz, CDCl₃): δ 7.29-7.26 (m, 2H), 7.22-7.18 (m, 2H), 6.94-6.92 (m, 1H), 6.62 (s, 2H), 6.54 (s, 1H), 5.42 (s, 1H), 4.89 (s, 1H), 4.52 (s, 2H), 4.46 (t, *J* = 5.2 Hz, 1H), 4.29 (s, 1H), 3.74 (s, 6H), 3.24-3.19 (m, 1H), 2.92-2.87 (m, 1H), 2.84-2.79 (m, 1H), 2.37-2.31 (m, 1H) ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₂₃H₂₅O₄: 365.1747; found: 365.1739.

(*E*)-3dl: **R**_{*f*} = 0.20 (petroleum ether/EtOAc = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.26 (m, 2H), 7.22-7.18 (m, 2H), 7.15-7.13 (m, 1H), 6.89 (s, 1H), 6.81 (s, 2H), 6.56 (s, 1H), 4.52 (s, 2H), 4.46 (t, *J* = 5.2 Hz, 1H), 3.65 (s, 6H), 2.98 (s, 2H), 2.76-2.72 (m, 2H), 2.56-2.52 (m, 2H) ppm. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₂₃H₂₅O₄: 365.1747; found: 365.1736.

¹³C NMR (150 MHz, CDCl₃): δ 203.3 (for (*E*)-3dl), 203.1 (for 4dl), 160.6 (for (*E*)-3dl),
160.4 (for 4dl), 147.9, 139.6, 137.8, 136.9, 136.5, 135.7, 133.8, 128.7, 128.5, 128.3,
128.2, 127.1, 126.7, 121.4, 106.5, 106.1, 105.5, 104.3, 72.7, 72.3, 70.7, 70.5, 68.5,
55.5, 55.4, 55.2, 51.1, 40.4, 37.1, 36.8 ppm.

HPLC analysis of **4dl** (Chiralpak AD-H, [/]PrOH/hexane = 10/90, 1.0 mL/min, 254 nm; tr (major) = 7.73 min, tr (minor) = 9.75 min) gave the isomeric composition of the product: 68% *ee*.

Detector A Channel 2 220nm						
Peak#	Ret. Time [min]	Peak Start [min]	Height [mAU]	Area [mAU*min]	Area%	
1	7.715	7.417	41258	668142	50.296	
2	9.757	9.458	36709	660269	49.704	
Total			77967	1328412	100.000	

Detector A	Channel	1 254nm
Detector A	Channel	1 254nm

Peak#	Ret. Time [min]	Peak Start [min]	Height [mAU]	Area [mAU*min]	Area%
1	7.725	7.450	134421	1881283	83.934
2	9.750	9.500	23130	360092	16.066
Total			157551	2241375	100.000

(4-((*Z*)-4-bromobenzylidene)-2-oxabicyclo[4.1.1]octan-6-yl)(naphthalen-2-yl)methanone ((*Z*)-**3am**): Prepared from bicyclo[1.1.0]butan-1-yl(naphthalen-2-yl)methanone (**1a**, 20.8 mg, 0.10 mmol) and 5-(4-bromobenzylidene)-1,3-dioxan-2-one (**2m**, 53.8 mg, 0.20 mmol) according to the **GP2** at 100 °C for 12 h. Purification by flash chromatography on silica gel using petroleum ether/EtOAc (20/1) afforded **3am** as a white solid (9.2 mg, 21% yield).

(*Z*)-**3am**: **R**_{*f*} = 0.30 (petroleum ether/EtOAc = 20/1). ¹**H NMR** (600 MHz, CDCl₃): δ 8.32 (s, 1H), 7.95 (d, *J* = 8.4 Hz, 1H), 7.91 (s, 2H), 7.89 (d, *J* = 7.8 Hz, 1H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.56 (t, *J* = 7.8 Hz, 1H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 6.61 (s, 1H), 4.57 (t, *J* = 6.0 Hz, 1H), 4.48 (s, 2H), 2.91-2.89 (m, 4H), 2.76 (d, *J* = 11.4 Hz, 2H) ppm.¹³**C NMR** (150 MHz, CDCl₃): δ 203.5, 138.1, 135.4, 135.3, 132.4, 132.2, 131.5, 131.1, 130.64, 130.61, 129.6, 128.6, 128.5, 127.8, 126.8, 124.6, 121.4, 73.3, 62.6, 51.6, 45.5, 37.3 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₂₅H₂₂BrO₂: 433.0803; found: 4333.0792.

(4-Hydroxy-4-(hydroxymethyl)-2-oxabicyclo[4.1.1]octan-6-yl)(naphthalen-2-yl) methanone (6): $\mathbf{R}_f = 0.20$ (petroleum ether/EtOAc = 1/2). ¹H NMR (400 MHz, CDCl₃): δ 8.41 (s, 1H), 7.95 (t, J = 7.2 Hz, 2H), 7.87 (t, J = 8.4 Hz, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 4.55 (t, J = 5.6 Hz, 1H), 4.16 (d, J = 13.6 Hz, 1H), 4.03 (d, J =13.6 Hz, 1H), 3.51 (d, J = 11.2 Hz, 1H), 3.41 (d, J = 11.2 Hz, 1H), 3.23-3.16 (m, 2H), 2.80 (dd, J = 14.0 Hz, 6.0 Hz, 1H), 2.69 (dd, J = 12.4 Hz, 5.6 Hz, 1H), 2.59 (dd, J =13.6 Hz, 7.6 Hz, 1H), 2.39 (d, J = 14.4 Hz, 2H), 1.75 (d, J = 14.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 203.0, 135.4, 132.4, 130.9, 130.8, 129.7, 128.6, 128.5, 127.7, 126.7, 124.7, 76.2, 73.0, 67.7, 67.4, 53.2, 41.8, 40.6, 32.3 ppm. HRMS (ESI) m/z: [M+Na]⁺ calcd. for C₁₉H₂₁O₄Na: 335.1254; found: 335.1251.

Naphthalen-2-yl(5-oxaspiro[bicyclo[4.1.1]octane-3,2'-oxiran]-1-yl)methanone (7): $\mathbf{R}_f = 0.20$ (petroleum ether/EtOAc = 3/1). ¹H NMR (600 MHz, CDCl₃): δ 8.36 (s, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.92-7.86 (m, 3H), 7.61 (t, J = 7.2 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 4.56 (t, J = 6.6 Hz, 1H), 4.31 (d, J = 13.2 Hz, 1H), 3.72 (d, J = 13.2 Hz, 1H), 3.03-2.95 (m, 2H), 2.91 (dd, J = 12.6 Hz, 6.0 Hz, 1H), 2.83 (d, J = 4.2 Hz, 1H), 2.78 (d, J = 4.2 Hz, 1H), 2.64 (dd, J = 13.8 Hz, 7.2 Hz, 1H), 2.44 (d, J = 14.4 Hz, 1H), 2.14 (d, J = 14.4 Hz, 1H) ppm. ¹³C NMR (150 MHz, CDCl₃): δ 202.8, 135.3, 132.3, 130.9, 130.7, 129.7, 128.6, 128.5, 127.7, 126.8, 124.6, 72.3, 69.1, 57.8, 52.0, 51.9, 42.4, 39.4, 34.6 ppm. HRMS (ESI) m/z: [M+H]⁺ calcd. for C₁₉H₁₉O₃: 295.1329; found: 295.1327.

(4-Methyl-2-oxabicyclo[4.1.1]octan-6-yl)(naphthalen-2-yl)methanone (8): \mathbf{R}_{f} = 0.30 (petroleum ether/EtOAc = 20/1). ¹H NMR (400 MHz, CDCl₃): δ 8.32 (s, 1H), 7.96-7.85 (m, 4H), 7.61-7.53 (m, 2H), 4.44 (t, *J* = 5.6 Hz, 1H), 3.90-3.79 (m, 2H), 2.85-2.80 (m, 1H), 2.76-2.72 (m, 1H), 2.63-2.53 (m, 3H), 2.25-2.20 (m, 1H), 1.57 (t, *J* = 12.4 Hz, 1H), 0.95 (d, *J* = 6.4 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 203.9, 135.3, 132.4, 131.5, 130.4, 129.5, 128.4, 128.3, 127.7, 126.7, 124.7, 72.3, 70.6, 53.0, 42.5, 40.0, 33.8, 33.6, 18.2 ppm. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₁₉H₂₁O₂: 281.1536; found: 281.1535.

(4-Methylene-6-(1-(naphthalen-2-yl)vinyl)-2-oxabicyclo[4.1.1]octane (9): $\mathbf{R}_f = 0.30$ (petroleum ether/EtOAc = 30/1). ¹H NMR (400 MHz, CDCl₃): δ 7.82-7.76 (m, 3H), 7.70 (s, 1H), 7.49-7.42 (m, 3H), 5.34 (s, 1H), 5.16 (s, 1H), 5.11 (s, 1H), 4.97 (s, 1H), 4.44 (t, J = 6.4 Hz, 1H), 4.30 (s, 2H), 2.62-2.57 (m, 4H), 2.52 (d, J = 11.6 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 156.3, 145.6, 137.8, 133.2, 132.5, 128.1, 127.6, 127.5, 126.1, 125.84, 125.79, 125.5, 118.3, 111.9, 71.8, 68.7, 46.9, 45.9, 38.4 ppm. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₂₀H₂₁O: 277.1587; found: 277.1584.

(4-Methylene-2-oxabicyclo[4.1.1]octan-6-yl)(naphthalen-2-yl)methanol (10): \mathbf{R}_f = 0.25 (petroleum ether/EtOAc = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 7.83-7.78 (m, 3H), 7.72 (s, 1H), 7.50-7.45 (m, 2H), 7.39 (d, *J* = 8.4 Hz, 1H), 5.06 (s, 1H), 4.90 (s, 1H), 4.68 (s, 1H), 4.40 (t, *J* = 6.4 Hz, 1H), 4.12 (s, 2H), 2.55-2.48 (m, 2H), 2.29 (d, *J* = 14.0 Hz, 2H), 2.15-2.06 (m, 2H), 2.01-1.96 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 145.3, 138.9, 133.0, 132.9, 127.9, 127.8, 127.6, 126.2, 125.9, 125.4, 124.6, 118.2, 79.6, 71.9, 68.4, 45.1, 40.9, 34.0, 33.6 ppm. HRMS (ESI) *m/z*: [M+Na]⁺ calcd. for C₁₉H₂₀O₂Na: 303.1356; found: 303.1357.

(4-Methylene-2-oxabicyclo[4.1.1]octan-6-yl)(naphthalen-2-yl)methanone oxime (11): The major isomer: $\mathbf{R}_f = 0.30$ (petroleum ether/EtOAc = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 7.86-7.80 (m, 4H), 7.52-7.46 (m, 3H), 5.29 (s, 1H), 5.18 (s, 1H), 4.37-4.34 (m, 3H), 3.08 (s, 2H), 2.67-2.62 (m, 2H), 2.45-2.40 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 164.2, 144.9, 133.3, 132.9, 132.3, 128.4, 128.1, 127.7, 126.6, 126.43, 126.36, 124.3, 119.1, 73.5, 68.7, 44.4, 42.2, 38.8 ppm. HRMS (ESI) *m/z*: [M+H]⁺ calcd. for C₁₉H₂₀NO₂: 294.1489; found: 294.1483.

The minor isomer: \mathbf{R}_f = 0.25 (petroleum ether/EtOAc = 5/1). ¹H NMR (400 MHz, CDCl₃): δ 8.19 (broad s, 1H), 7.91-7.86 (m, 3H), 7.71 (s, 1H), 7.55-7.50 (m, 2H), 7.34

(d, J = 8.4 Hz, 1H), 5.14 (s, 1H), 4.94 (s, 1H), 4.43 (t, J = 6.4 Hz, 1H), 4.22 (s, 2H), 2.80-2.75 (m, 2H), 2.56 (s, 2H), 2.36-2.33 (m, 2H) ppm. ¹³**C NMR** (100 MHz, CDCl₃): δ 163.4, 144.5, 133.1, 132.9, 129.9, 128.3, 128.0, 127.8, 126.70, 126.6, 126.4, 125.4, 119.2, 72.2, 68.5, 45.3, 44.2, 36.2 ppm. **HRMS** (ESI) *m/z*: [M+H]⁺ calcd. for C₁₉H₂₀NO₂: 294.1489; found: 294.1481.

10 Crystal Structure of 3ab

Note: The thermal ellipsoids are 50% probability level. The crystals are grown by slow solvent (CH_2CI_2/n -Hexane/Et₂O) evaporation at room temperature. CCDC number of **3ab** is 2352144.

Datablock: cu_2024011201_0m

Bond precision:	C-C = 0.0018 A	Wavelength=1.54178			
Cell:	a=6.0617(2) alpha=113.136(1)	b=11.9065(3) beta=99.600(1)	c=14.3836(4) gamma=90.492(1)		
Temperature:	150 K				
	Calculated	Reported			
Volume	938.11(5)	938.11(5)			
Space group	P -1	P -1			
Hall group	-P 1	-P 1			
Moiety formula	C25 H22 O2	C25 H22 C	2		
Sum formula	C25 H22 O2	C25 H22 C	2		
Mr	354.43	354.42			
Dx,g cm-3	1.255	1.255			
Z	2	2			
Mu (mm-1)	0.612	0.612			
F000	376.0	376.0			
F000'	377.06				
h,k,lmax	7,14,17	7,14,17			
Nref	3444	3424			
Tmin, Tmax	0.852,0.975	0.818,0.9	75		
Tmin'	0.811				
Correction method= # Reported T Limits: Tmin=0.818 Tmax=0.975 AbsCorr = MULTI-SCAN					
Data completene	ss= 0.994	Theta(max) = 68.26	3		
R(reflections)=	0.0355(3062)		wR2(reflections)		
S = 1.074	Npar= 24	5	0.0550(5424)		

NMR Spectra 11

¹H and ¹³C NMR Spectra for Compound 3aa:

¹H NMR (600 MHz, CDCl₃)

¹H and ¹³C NMR Spectra for Compound 3ba:

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H ,¹³C NMR and ¹⁹F NMR Spectra for Compound 3ca:

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H and ¹³C NMR Spectra for Compound 3da:

S42

¹H and ¹³C NMR Spectra for Compound 3ea:

¹H and ¹³C NMR Spectra for Compound 3fa:

¹H and ¹³C NMR Spectra for Compound 3ha:

¹H NMR (400 MHz, CDCl₃)

¹H and ¹³C NMR Spectra for Compound 3ab

¹H and ¹³C NMR Spectra for Compound 3ac:

¹H and ¹³C NMR Spectra for Compound 3ad:

¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} 2.913\\ 2.890\\ 2.882\\ 2.882\\ 2.867\\ 2.867\\ 2.867\\ 2.867\\ 2.867\\ 2.792\\ 2.792\\ 2.758\\ 2.$ -0.000 $\begin{pmatrix} 4.580 \\ 4.564 \\ 4.549 \\ 4.521 \end{pmatrix}$ Me 2.26 1.80 1.80 1.03 3.02-1 9 1.01).5 10.0 9.5 9.0 8.5 6.5 6.0 5.5 5.0 f1 (ppm) 3.5 3. 0 8.0 7.5 7.0 4.5 4.0 2.5 2.0 1.5 1.0 0.5 0.0

¹H and ¹³C NMR Spectra for Compound 3ae

S51

¹H and ¹³C NMR Spectra for Compound 3af:

¹H and ¹³C NMR Spectra for Compound 3ag:

 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

¹H and ¹³C NMR Spectra for Compound 3ah:

 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

¹H and ¹³C NMR Spectra for Compound 3ai:

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

¹H and ¹³C NMR Spectra for Compound 3ak:

¹³C NMR (100 MHz, CDCl₃)

¹H and ¹³C NMR Spectra for Compound (*Z*)-3dI:

¹H NMR (400 MHz, CDCl₃)

¹H and ¹³C NMR Spectra for Compound 4dI':

¹³C NMR (150 MHz, CDCl₃)

¹H and ¹³C NMR Spectra for Compound (*E*)-3dl and 4dl:

¹H NMR (400 MHz, CDCl₃)

³C NMR (150 MHz, CDCl₃)

¹H and ¹³C NMR Spectra for Compound 3am:

¹H NMR (600 MHz, CDCl₃)

¹³C NMR (150 MHz, CDCl₃)

¹H and ¹³C NMR Spectra for Compound 6

 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

¹H NMR (400 MHz, CDCl₃)

¹H and ¹³C NMR Spectra for Compound 10

). 5

10.0 9.5

9.0 8.5

8.0 7.5

7.0 6.5 6.0

5.5 5.0 f1 (ppm) 4.5

4.0 3.5

2.5

2.0 1.5

з. о

0.

1.0 0.5

^{13}C NMR (100 MHz, CDCl_3) for the major isomer

¹³C NMR (100 MHz, CDCl₃) for the minor isomer

12 References

[1] (a) R. Guo, Y.-C. Chang, L. Herter, C. Salome, S. E. Braley, T. C. Fessard and M. K. Brown, Strain-Release $[2\pi+2\sigma]$ Cycloadditions for the Synthesis of Bicyclo[2.1.1]hexanes Initiated by Energy Transfer. *J. Am. Chem. Soc.* **2022**, *144*, 7988–7994; (b) M. de Robichon, T. Kratz, F. Beyer, J. Zuber, C. Merten and T. Bach, Enantioselective, Intermolecular $[\pi 2+\sigma 2]$ Photocycloaddition Reactions of 2(1H) - Quinolones and Bicyclo[1.1.0]butanes. *J. Am. Chem. Soc.* **2023**, *145*, 24466–24470; (c) D. Ni, S. Hu, X. Tan, Y. Yu, Z. Li and L. Deng, Intermolecular Formal Cycloaddition of Indoles with Bicyclo[1.1.0]butanes by Lewis Acid Catalysis. *Angew. Chem. Int. Ed.* **2023**, *62*, e202308606; (d) B. D. Schwartz, M. Y. Zhang, R. H. Attard, M. G. Gardiner and L. R. Malins, Structurally Diverse Acyl Bicyclobutanes: Valuable Strained Electrophiles. *Chem. Eur. J.* **2020**, *26*, 2808–2812.

[2] (a) H. Uno, K. Kawai, T. Araki, M. Shiro and N. Shibata, Enantio-, Diastereo- and Regioselective Synthesis of Chiral Cyclic and Acyclic *gem*-Difluoromethylenes by

Palladium-Catalyzed [4+2] Cycloaddition. *Angew. Chem. Int. Ed.*, **2022**, *61*, e202117635; (b) S.-S. Zhang, Y.-C. Zheng, Z.-W. Zhang, S.-Y. Chen, H. Xie, B. Shu, J.-L. Song, Y.-Z. Liu, Y.-F. Zeng and L. Zhang, Access to Branched Allylarenes via Rhodium(III)-Catalyzed C–H Allylation of (Hetero)arenes with 2-Methylidenetrimethylene Carbonate. *Org. Lett.*, **2021**, *23*, 5719–5723; (c) P.-H. Dou, S.-P. Yuan, Y. Chen, J.-Q. Zhao, Z.-H. Wang, Y. You, Y.-P. Zhang, M.-Q. Zhou and W.-C. Yuan, Dearomatization of 3-Nitroindoles Enabled Using Palladium-Catalyzed Decarboxylative [4 + 2] Cycloaddition of 2-Alkylidenetrimethylene Carbonates. *J. Org. Chem.*, **2022**, *87*, 6025–6037.

[3] L. Pitzer, F. Schäfers and F. Glorius, Rapid Assessment of the Reaction-Condition-Based Sensitivity of Chemical Transformations. *Angew. Chem. Int. Ed.*, **2019**, *58*, 8572–8576.