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I. DISPERSIVE HOLSTEIN MODEL

The dispersive Holstein Hamiltonian can be written as

Ĥ =
N∑
i

(
ϵi + V̂B,i

)
â†i âi +

N∑
⟨ij⟩

vij â
†
i âj +

N∑
i

ĤB,i, (S1)

ĤB,i =
1

2

∑
α

[
P̂ 2
i,α + ω2

iαX̂
2
i,α

]
, (S2)

V̂B,i =
∑
α

ci,αX̂i,α, (S3)

where the fermions (electrons or holes whose creation and annihilation operators are â†i and

âj) are assumed to be described by a tight binding system Hamiltonian parameterized by site

energies ϵi and hopping integrals vij. Local nuclear motions are assumed to cause Gaussian

fluctuations of the site energies, enabling one to write the local nuclear environment as a set

of harmonic modes localized on site i with momenta P̂α, positions X̂α, and frequencies ωα.

The coupling between the fermions and bosons associated with a given site is linear in the

bosonic coordinates, with the coupling constants ci,α given by the site’s spectral density

ξi(ω) =
π

2

∑
α

c2i,α
ωiα

δ(ω − ωiα). (S4)

The ξi(ω) for each site are assumed to be equivalent and take the Debye form commonly

used to capture the dissipation in the condensed phase

ξ(ω) =
ηωcω

ω2 + ω2
c

. (S5)

Here, η/2 is the reorganization energy and 1/ωc is the timescale at which the phonon en-

vironment decorrelates. Since we focus on a purely homogeneous lattice, all parameters

become site-independent, with ϵi = 0. Different instances of the model are thus uniquely

defined by the set [η, ωc, v, β] which we dimensionalize to [η/v, ωc/v] with β fixed at 300 K

throughout. We employ cyclical boundary conditions since our previous workS1 demon-

strated that non-periodic models do not exhibit a well-defined DC mobility, except in the

limit of an infinitely large system.

II. MORI GQME

To derive a GQME for the current autocorrelation function directly, we employ a Mori-

type projector

P = |Ĵ)(Ĵ |Ĵ)−1(Ĵ |. (S6)
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In contrast to previous uses of the Mori projector for quantum equilibrium time correlation

functionsS2–S4 we define the inner product to yield the direct correlation function rather than

the Kubo-transformed counterpart,

(A|Ô|A) = 1

Z
Tr[e−βHA†ÔA], (S7)

where Ô is a superoperator, like the Liouvillian, L ≡ [H, . . . ]. This projector satisfies

the conditions for its validity: idempotency P2 = P and orthogonality PQ = 0, where

Q = 1−P is the complementary projector. Traditionally, one adopts the Kubo-transformed

correlation function because of the natural orthogonality of the cross-correlation function of

the dynamical variable in the projector, Ĵ in this case, and its derivative. When we augment

the projector with the derivative of the current in Section IV, we diagonalize the correlation

matrix directly to ensure the idempotency of the projector.

This definition for the projector enables us to construct the current autocorrelation func-

tion, CJJ(t), as follows:

C(t) = (Ĵ |eiLt|Ĵ) = 1

Z
Tr[e−βH ĴeiLtĴ ]. (S8)

We can immediately write down the GQME for this correlation function (for a detailed

derivation of the GQME using this notation, see Refs. S5–S7),

Ċ(t) = Ċ(0)C(t)−
∫ t

0

dsK(s)C(t− s) (S9)

where the memory kernel takes the form

K(t) =
1

Z
Tr

[
e−βH ĴLQeiQLtQLĴ

]
, (S10)

where occurrence of complementary projector in the propagator, eiQLt, makes it difficult to

obtain. To circumvent this difficulty, we adopt the self-consistent expansion of the memory

kernelS5–S9 into auxiliary kernels K1 and K3:S5

K(t) = K1(t) +

∫ t

0

dτ K3(t− τ)K(τ). (S11)

One can straightforwardly construct the auxiliary kernels using the derivatives of the corre-

lation matrix C(t),S5–S7

K1(t) = C̈(t)− {Ċ(0), Ċ(t)}+ Ċ(0)C(t)Ċ(0), (S12)

and
K3(t) = Ċ(0)C(t)− Ċ(t), (S13)
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where {Â, B̂} corresponds to the anticommutator relation between Â and B̂. Thus, comput-

ing numerical derivatives Ċ(t) and C̈(t), we construct the auxiliary memory kernels. From

the auxiliary kernels, one can construct the memory kernel K(t) using the algorithm pre-

sented in Appendix B of Ref. S10 based on the discrete reformulation of the convolution

integral in the self-consistent expansion of the memory kernel, Eq. S11. To obtain the

current autocorrelation function from knowledge of the memory kernel, we integrate the

GQME in Eq. S9 employing a Heun integrator.S11 To satisfy the idempotency requirement

of the projector, we always employ normalized correlation function for GQME calculation

i.e. C(t) = CJJ(t)/CJJ(0) for quantum correlation function and C(t) = CKubo
JJ (0)/CKubo

JJ (0)

for the Kubo-transformed version.

III. HEOM DETAILS

We employ HEOM to obtain the numerically exact dynamics of the dispersive Holstein

model in the first excitation subspace, corresponding to the dilute limit of one electron or

hole on the lattice. HEOM integrates the bosonic variables and predicts the reduced density

matrix,
Ckl;ij(t) = Tr

[
ρk,l(0)e

iLtâ†i âj

]
, (S14)

subject to any spectroscopic (nonequilibrium) initial condition, ρk,l(0) = â†kâle
−βĤb/Zb,

where Zb = Tr[e−βĤb ] is the partition function of the isolated bath.

By noting that the nonequilibrium approach to predicting the transport coefficient only

requires the MSD of the polaron, µ = 1
2kBT

limt→∞
dMSD(t)

dt
, it suffices to project onto the

time-dependent site populations.S12–S14 Thus, one needs to perform O(N) calculations corre-

sponding to cases where i = j and k = l in Eq. S14. Because our system is fully symmetric,

all such population-based starting positions are equivalent, meaning that one only needs

to perform one simulation, but this simplification is not generally applicable. Indeed for a

disordered system with varying site energies and hopping integrals, all positions are unique.

A detailed investigation of the effects of static disorder will form the basis of future work.

To construct the population-based GQMEs in the main text we employ two distinct types

of initial condition: Franck-Condon and Marcus-type. HEOM calculations, as described by

Eq. S14, directly access Franck-Condon initial conditions. The Marcus initial condition

corresponds to a change in the definition of e−βĤB → e−βĤ
(j)
B , where the superscript denotes

that the local bath Hamiltonian for the jth site is equilibrated with its excited state, Ĥ
(j)
B =
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ĤB+VB,j. To generate this initial condition a pre-equilibration run with all hopping integrals

set to zero before a second simulation with finite hopping integrals, as outlined in Refs. S1

and S14.

Our methodology for computing equilibrium correlation functions using HEOM follows

the protocol outlined in Refs. S1 and S15. It consists of a pre-equilibration step that gen-

erates the canonical initial condition e−βĤ/Z, followed by right-side multiplication by the

current operator, Ĵ , followed by real time evolution. We ensured that our pre-equilibration

step was successful by varying the time of the pre-equilibration and ensuring that the result-

ing correlation functions converged as a function of this parameter. By examining the error

between the autocorrelation functions obtained with different initialization times and the

selected best one, we determine that approximately 725 fs of simulation time are required

for the initial canonical density preparation. This analysis is depicted in Fig. S1. For our

production runs, we used a pre-equilibration time of 4000 fs, which exceeded the minimum

required pre-equilibration time in our tests.

We converged all HEOM calculations with respect to the hierarchical depth L, number

of Matsubara frequencies K, and timestep δt. For example, we set L = 22, K = 1, and

δt = 0.25 fs for Fig. 2. To estimate the computational resource requirements (time and

memory) in Table. 1., we used the same settings. To compare results across parameter

regimes, we employed L = 26, K = 2, and δt = 0.1 fs, which was sufficient to converge the

most difficult parameter regime: [η/v, ωc/v] = [400/50, 150/50]. We also employed dynamic

filtering parameters in our simulations, setting δ = 10−7 atomic units for the nonequilibrium

simulations and canonical density preparation. For the second real time propagation in the

calculation of equilibrium correlation functions, we set δ = 10−10 atomic units.

To construct the Kubo-transformed correlation function CKubo
JJ (t) from CJJ(t), we lever-

age their connection in the frequency domain: CKubo
JJ (ω) = 1−e−βω

βω
CJJ(ω). The factor e−βω

behaves well for ω > 0 but diverges for ω < 0, complicating its use in this second region.

However, since CKubo
JJ (ω) = CKubo

JJ (−ω), we mirror this function around ω = 0, taking the

ω ≥ 0 region as the generator of the ω ≤ 0 part. Without imposing this symmetry, the

inverse transform of CKubo
JJ (ω) to CKubo

JJ (t) is prone to numerical artifacts. We generate all

instances of CKubo
JJ (t) using this approach.
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FIG. S1. Error (||L||2 norm of the difference) between the current autocorrelation function

computed with different equilibration times and 4000 fs equilibration time. The cut-off for error is

chosen as 10−7 (black solid line) leading to 725 fs as sufficient for preparing the initial condition for

the equilibrium autocorrelation function. η/v = 6.46, ωc/v = 0.82, v = 50 cm−1, and T = 300 K.

IV. AUGMENTING THE EQUILIBRIUM PROJECTOR WITH

DYNAMICAL DERIVATIVES

Adding derivatives of the motion to the projector can offer an easy strategy to obtain

an even swifter evaluation of the transport coefficient, i.e., a faster-decaying memory kernel.

Here we augment our Mori projector of Eq. S8 with the time derivative of the current,

ζ̂ ≡ i[Ĥ, Ĵ ]

= d
∑
⟨mn⟩

vmn(â
†
mân + â†nâm)

(
ϵm − ϵn +

∑
α

cm,αX̂m,α − cn,αX̂n,α

)
,

(S15)

which includes the coordinates of the nuclear modes X̂i,α.

Since HEOM integrates over the bosonic environment, one cannot directly measure ζ.

However, one can employ finite difference on CJJ to obtain a numerical approximation to

ĊJJ(t) = CJζ(t) = −CζJ(t), and, upon applying the finite difference derivative a second

time, C̈JJ(t) = −Cζζ(t). To confirm that this approximation is sufficiently accurate, we

employ HEOM to calculate the polarization autocorrelation function, CPP (t), and compare

its numerical time derivatives with the direct HEOM calculation of CPJ(t), CJP (t) and

CJJ(t). We employ a linear (open-chain) topology for the Holstein model for this test as

it circumvents the ambiguity in the definition of polarization in a periodic topology. As

Fig. S2 shows, we obtain numerical agreement between −C̈PP (t) and CJJ(t). Hence, the

time resolution in our HEOM simulations enables us to use numerical time derivatives to

augment the projector numerically.
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FIG. S2. The agreement of real and imaginary parts between the negative of the numerical double

derivative of CPP (t) i.e. −C̈PP (t) and CJJ(t) in the linear topology for η/v = 6.46, ωc/v = 0.81,

v = 50 cm−1, and T = 300 K.

Augmenting the projection with the derivatives of the current results, naively, in the

following 2× 2 matrix,

C̃(t) =

CJJ(t) CJζ(t)

CζJ(t) Cζζ(t)

 . (S16)

However, C̃(t = 0) ̸= 1, indicating that the projector is not idempotent. To fix this problem,

we multiply the dynamical matrix by its inverse at t = 0,

C(t) = C̃(t)C̃(0)−1, (S17)

ensuring C(t = 0) = 1. We can then use Eq. S9 to compute the memory kernel. As we

show in the main text, augmenting the projector with derivatives of the original dynamical

variable can shorten the memory kernel lifetime and result in significant computational

savings.

V. CURRENT AND MEMORY KERNEL FITTING

The widely invoked Drude-Smith model offers a two-parameter analytical approximation

for the current autocorrelation function and interprets conductance measurements. The

MNZ approach to the current autocorrelation function offers an exact means to obtain its

memory kernel. Hence, we employ our Mori GQME to assess the validity of the Drude-Smith

approach.

In Laplace space, Eq. S9 takes the form,S16

CKubo
JJ (ω) =

1

KKubo(ω) + iω
. (S18)
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Ref S17 has shown that the Drude-Smith form can arise from setting the memory kernel

to KKubo(t) = q exp (−rt), moving to Laplace space, solving for the roots that lead to a

singularity in Eq. S18, and considering only the case where the two poles are degenerate, i.e.,

r = 2
√
q. A general solution would consider two distinct, complex poles 2ω± = r±

√
r2 − 4q

which give two different decay terms after an inverse Laplace transform,

CKubo
JJ (t)/CKubo

JJ (0) =
(ω+ − r)e−ω+t + (r − ω−)e

−ω−t

(ω+ − ω−)
. (S19)

This motivates employing a more flexible form to fit our exact current autocorrelation func-

tions,

CKubo
JJ (t)/CKubo

JJ (0) =

nfit∑
i

ai cos(ωit)e
−kit. (S20)

With 5 parameters (nfit = 2 and a1 + a2 = 1 is a constraint) we are guaranteed to obtain a

better fit, but one can observe from Fig. S3 that the oscillatory frequencies are qualitatively

wrong. By extension, Eq. S19 cannot fit the data. We must conclude that KKubo(t) is not

well-described by a single exponential. Further, a single exponential in time would yield a

Lorentzian in frequency, but our simplest K̃(ω) is instead a Gaussian. Indeed, using just

decaying exponentials in time, KKubo(t) =
∑

i αi exp(−κit), we find that using even five

terms is insufficient to describe the data of Fig. 4.

We fit the CKubo
JJ (t) using Eq. S20 for 16 points in the parameter space with nfit =

2. The fits are closer than the Drude-Smith form, but are clearly qualitatively lacking.

Figure S3 shows an example where [η/v, ωc/v] = [100/50, 25/50]. Table. I summarizes the

corresponding fit parameters. Unlike the Drude-Smith form, neither term has a negative

coefficient. Our analysis of this Drude-Smith fitting protocol suggests that decomposing

the current autocorrelation function reporting on small polaron transport into decaying and

oscillatory exponentials can lead to significant ambiguities, motivating our cumulant-based

analysis in the main text.

ith term ai ωi [fs
−1] ki [fs

−1]

1 0.7386 0.0169 0.0143

2 0.2614 0.0359 0.0147

TABLE I. Fit parameters for CKubo
JJ (t) in Fig. S3 for η/v = 2, ωc/v = 0.5, v = 50 cm−1, and

T = 300 K.
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FIG. S3. Two damped cosine fit (orange) according to Eq. S20 to the CKubo
JJ obtained with HEOM

(black) for η/v = 2, ωc/v = 0.5, v = 50 cm−1, and T = 300 K. The 5-parameters fit is not sufficient

to capture the CKubo
JJ .

VI. CUMULANT-BASED ANALYSIS

We now provide a detailed description of our backmapping technique. It employs the

normalized real part of the Kubo memory kernel in frequency space, K̃(ω), which one obtains

from KKubo(ω) as mentioned in the main text,

K̃(ω) = Re
[
KKubo(ω)

]
/Re

[∫
dωKKubo(ω)

]
. (S21)

Below, we show theoretical ways of extracting K̃(ω) and then demonstrate how to extract the

same quantity from experimentally accessible data. Specifically, one can compute KKubo(ω)

in two ways: 1) from the Fourier-Laplace transform of the time-domain Kubo memory

kernel KKubo(t), which can be accessed through the GQME Eq. S9; or from Eq. S18 where

we employ the frequency-domain correlation function CKubo
JJ (ω). Both approaches require

the normalized time-domain correlation function, CKubo
JJ (t). While this correlation function

must, in general, be computed using one’s choice of dynamical method (e.g., HEOM), we

show that one can extract K̃(ω) using only the experimentally accessible σ(ω). In particular,

one can show that:

K̃(ω) = Re [1/σ(ω)] /Re

[∫
dω 1/σ(ω)

]
. (S22)

Thus, when an experiment gives access to σ(ω), one can directly follow our backmapping

strategy to infer the appropriate parameter regime of the dispersive Holstein Hamiltonian

using K̃(ω), as we showed with our theoretical data in the main text. We note that one

should be able to generalize this procedure to other models that users may find more relevant

for their particular applications.
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VII. CURRENT AUTOCORRELATION FUNCTIONS AND

CONDUCTIVITY RESPONSES FOR THE DISPERSIVE HOLSTEIN

MODEL

Here, we display the current autocorrelation functions and conductivity for the homo-

geneous, 1-dimensional dispersive Holstein model in the thermodynamic limit as one varies

the charge-lattice coupling, η, and characteristic frequency of the local lattice phonons, ωc,

for v = 50 cm−1 and T = 300 K.
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FIG. S4. Parameters: η/v = 2.0, ωc/v = 0.5. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 317 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S5. Parameters: η/v = 2.0, ωc/v = 1.0. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 164 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S6. Parameters: η/v = 2.0, ωc/v = 2.0. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 167 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S7. Parameters: η/v = 2.0, ωc/v = 3.0. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 65 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S8. Parameters: η/v = 4.0, ωc/v = 0.5. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 337 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S9. Parameters: η/v = 4.0, ωc/v = 1.0. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 178 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S10. Parameters: η/v = 4.0, ωc/v = 2.0. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 93 fs. Right: Real and imaginary part of the

conductance, σ(ω).

0 50 100
Time [fs]

0.0

0.2

0.4

0.6

0.8

1.0

(t)
/

(0
)

REAL
IMAG

0 50 100
Time [fs]

0

1

2

3

4

 [f
s

2 ]

REAL
IMAG

0.0 0.1 0.2 0.3
 [fs 1]

0.5

0.0

0.5

1.0

(
)/

(0
)

×10 3

REAL
IMAG

FIG. S11. Parameters: η/v = 4.0, ωc/v = 3.0. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 60 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S12. Parameters: η/v = 6.0, ωc/v = 0.5. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 305 fs. Right: Real and imaginary part of the

conductance, σ(ω).

0 50 100 150
Time [fs]

0.0

0.2

0.4

0.6

0.8

1.0

(t)
/

(0
)

REAL
IMAG

0 50 100 150
Time [fs]

0

1

2

3

4

5

 [f
s

2 ]

REAL
IMAG

0.0 0.1 0.2 0.3
 [fs 1]

0.5

0.0

0.5

1.0

(
)/

(0
)

×10 3

REAL
IMAG

FIG. S13. Parameters: η/v = 6.0, ωc/v = 1.0. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 189 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S14. Parameters: η/v = 6.0, ωc/v = 2.0. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 96 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S15. Parameters: η/v = 6.0, ωc/v = 3.0. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 61 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S16. Parameters: η/v = 8.0, ωc/v = 0.5. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 378 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S17. Parameters: η/v = 8.0, ωc/v = 1.0. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 195 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S18. Parameters: η/v = 8.0, ωc/v = 2.0. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 96 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S19. Parameters: η/v = 8.0, ωc/v = 3.0. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 62 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S20. Parameters: η/v = 0.2, ωc/v = 0.5. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 173 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S21. Parameters: η/v = 0.2, ωc/v = 1.0. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 105 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S22. Parameters: η/v = 0.2, ωc/v = 2.0. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 80 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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FIG. S23. Parameters: η/v = 0.2, ωc/v = 3.0. Left: Current autocorrelation function, CJJ(t).

Middle: Memory kernel, K(t) with lifetime τK = 74 fs. Right: Real and imaginary part of the

conductance, σ(ω).
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S11E. Süli and D. F. Mayers, An introduction to numerical analysis (Cambridge university

press, 2003).

S17



S12M. Sparpaglione and S. Mukamel, “Dielectric friction and the transition from adiabatic

to nonadiabatic electron transfer. i. solvation dynamics in liouville space,” Journal of

Chemical Physics 88, 3263–3280 (1988).

S13A. A. Golosov and D. R. Reichman, “Reference system master equation approaches to

condensed phase charge transfer processes. i. general formulation,” Journal of Chemical

Physics 115, 9848–9861 (2001).

S14Y. Yan, M. Xu, Y. Liu, and Q. Shi, “Theoretical study of charge carrier transport in

organic molecular crystals using the nakajima-zwanzig-mori generalized master equation,”

Journal of Chemical Physics 150, 234101 (2019).

S15L. Song and Q. Shi, “A new approach to calculate charge carrier transport mobility in

organic molecular crystals from imaginary time path integral simulations,” Journal of

Chemical Physics 142, 174103 (2015).

S16D. Forster, Hydrodynamic fluctuations, broken symmetry, and correlation functions (CRC

Press, 2018).

S17W.-C. Chen and R. A. Marcus, “The drude-smith equation and related equations for the

frequency-dependent electrical conductivity of materials: Insight from a memory function

formalism,” ChemPhysChem 22, 1667–1674 (2021).

S18


	Supplemental material for ``Mori generalized master equations offer an efficient route to predict and interpret polaron transport''
	Dispersive Holstein Model
	Mori GQME
	HEOM Details
	Augmenting the equilibrium projector with dynamical derivatives
	Current and memory kernel fitting
	Cumulant-based analysis
	Current autocorrelation functions and conductivity responses for the dispersive Holstein model
	References


