Electronic Supplementary Information (ESI)

Unleashing the Potential of Li-O₂ Batteries with Electronic

Modulation and Lattice Strain in Pre-Lithiated Electrocatalysts

Zhengcai Zhang,^{a†} Dulin Huang,^{a†} Shuochao Xing,^a Minghui Li,^a Jing Wu,^a Zhang Zhang,^a Yaying Dou,^{a,b*} Zhen Zhou^{a*}

- 1. Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE²), School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China *Corresponding Author(s): Yaying Dou: <u>yydou@zzu.edu.cn</u>.

Zhen Zhou: zhenzhou@zzu.edu.cn

Fig. S1 (a) LSV curves of RuO_2 with a scan rate of 0.05 mV s⁻¹ and (b) discharge profile of RuO_2 at a current density of 10 mA g⁻¹.

Fig. S2 The initial discharge-charge potential profiles of RuO_2 as the work electrode with Li metal as the counter electrode at a current density of 10 mA g⁻¹.

The theoretical specific capacity of RuO₂ is approximately 201 mAh g⁻¹, corresponding to the insertion of 1 mol of Li⁺ into 1 mol of RuO₂. As shown in Figure S2, the coulombic efficiency of the 1st cycle is ~ 65%, indicating 35% irreversible capacities occurred during the lithiation, which mainly corresponds to Li⁺ without inserting RuO₂. In this case, we assume that the coulombic efficiency is the same when the RuO₂ electrode is cycled between different voltage windows. Discharge experiments were conducted at a current density of 10 mA g⁻¹ for 4, 8, 12, and 16 hours, resulting in specific capacities of 40, 80, 120, and 160 mAh g⁻¹, respectively. Considering the 35% irreversible capacities occurred during the lithiation, the Li⁺ concentration (x) in Li_xRuO₂ was determined to be 0.13, 0.27, 0.39, and 0.52, respectively. Importantly, even after 16h discharge, the terminal voltage remained above 2 V, indicating continuous lithium intercalation throughout the entire process.

Fig. S3 XRD patterns of pristine RuO₂.

Fig. S4 Simulated XRD diffraction patterns of Li_xRuO_2 with different Li^+ concentrations based on theoretical calculations.

Samples	Lattice constant (Å)	Volume (Å ³)
RuO ₂	a=b=4.501, c=3.120	63.21
Li _{0.08} RuO ₂	a=4.52, b=4.542, c=3.111	63.87
Li _{0.25} RuO ₂	a=4.584, b=4.624, c=3.097	65.65
Li _{0.33} RuO ₂	a=4.601, b=4.662, c=3.121	66.95
Li _{0.5} RuO ₂	a=4.669, b=4.676, c=3.128	68.29

Tab. S1 Lattice parameters of the Li_xRuO_2 obtained by DFT calculations.

Fig. S5 SEM images of (a) pristine RuO_2 and (b) $Li_{0.52}RuO_2$ electrodes.

Fig. S6 XRD patterns of $Li-O_2$ batteries with RuO_2 and Li_xRuO_2 cathodes after discharge (a) and recharge (b).

Fig. S7 Li 1s XPS of oxygen cathodes after the 1st (a) and 10th (b) recharge.

Fig. S8 SEM images of $Li-O_2$ batteries with RuO_2 and Li_xRuO_2 cathodes after discharge (a-e) and recharge (f-k).

Fig. S9 (a-e) The electrostatic potential and work function on the catalyst surface of Li_xRuO_2 (x=0, 0.08, 0.25, 0.33, 0.5) embedded at different Li concentrations. (f) The electron transfer of Ru and O in the catalyst Li_xRuO_2 with different Li⁺ concentrations.

Fig. S11 Charge density difference plots of LiO_2 on (a) RuO_2 (110) or (b) $Li_{0.5}RuO_2$ (110), with yellow denoting the increased charge and cyan the decreased charge.

Fig. S12 Charge density difference plots of LiO_2 on (a) RuO_2 (110) or (b) $Li_{0.5}RuO_2$ (110) covered by Li_2O_2 , with yellow denoting the increased charge and cyan the decreased charge.