Supporting Information

Tandem Catalytic Allylic C-H Amination and Asymmetric

[2,3]-Rearrangement via Bimetallic Relay Catalysis

Table of Contents

1. General information	2
2. General procedure for the synthesis of amino amide	2
3. Preparation of allylbenzene derivatives	2
4. Reaction optimization for [2,3]-rearrangement	6
5. Scope Limitation	15
6. General procedure for synthesis of [2,3]-rearrangement products	16
7. Synthetic applications	72
8. Determination of the absolute configuration	82
9. Control experiment	83
10. Initial Rate Kinetic Isotope Effects (KIE) study	84
11. NMR spectrum	85

1. General information

All solvents were dried and distilled according to general practice prior to use. All reagents were purchased from commercial sources and used without further purification unless specified otherwise. Solvents for flash column chromatography were technical grade and distilled prior to use. Analytical thin-layer chromatography (TLC) was performed using Huanghai silica gel plates with HSGF 254. Visualization of the developed chromatogram was performed by UV absorbance (254 nm) and appropriate stains. Flash column chromatography was performed using silica gel (200-300 mesh, from Leyan.com) with the indicated solvent system according to standard techniques. CDC13 was also bought from Leyan.com. ¹H NMR and ¹³C NMR were recorded on a Bruker NMR 400 (400MHz, 101MHz). Multiplicities are described as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet); and coupling constants (*J*) are reported in Hertz (Hz). ¹³C NMR spectra were recorded with total proton decoupling. Melting points were recorded on a Shanghai Jingke SGWX-4B melting-point Meter and are uncorrected. Chiral HPLC was recorded on a Shimadzu LC-20AD spectrometer using Daicel Chiralcel columns. HRMS (ESI) analysis was performed by the Analytical Instrumentation Center at Peking University Shenzhen Graduate School and (HRMS) data were reported with ion mass/charge (m/z) ratios as values in atomic mass units.

2. General procedure for the synthesis of amino amide

A solution of amino acid (1.1 equiv.) in anhydrous THF was cooled to 0 °C. The 3,5-dimethyl-1H-pyrazole (1.0 equiv.), EDCI (1.2 equiv.), HOBt (1.2 equiv.) and DMAP (0.1 equiv.) were successively added, the reaction mixture was stirred for 24 h at room temperature. To the mixture was added brine and the aqueous layer was separated and extracted with dichloromethane. The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated. The residue was subjected to column chromatography to give the product.

3. Preparation of allylbenzene derivatives

3.1 Method A

Under N₂ atmosphere, to a solution of arylboronic acid (1.0 equiv.), $Pd(OAc)_2$ (2.5 mol%) and K_2CO_3 (2.0 equiv.) in toluene, allyl bromide (2.0 equiv.) was added via syringe. After being heated at 90 °C overnight, the mixture was cooled to room temperature, filtered and concentrated in vacuo. The residue was purified by silica gel chromatography to afford the product.

benzyl 4-allylbenzoate (**1p**): Following the general procedure, (4-((benzyloxy)carbonyl)phenyl)boronic acid (1.6 g, 6.25 mmol) to yield **1p** as a colorless oil (1.12 g, 71% yield).

TLC: $R_f = 0.9$ (petroleum ether).

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.3 Hz, 2H), 7.47 – 7.32 (m, 6H), 7.27 (s, 1H), 7.25 (s, 1H), 6.02 – 5.89 (m, 1H), 5.36 (s, 2H), 5.14 – 5.06 (m, 2H), 3.44 (d, *J* = 6.7 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 166.5, 145.7, 136.5, 136.2, 133.1, 130.0, 128.7, 128.7, 128.3, 128.2, 116.7, 66.6, 40.2.

HRMS m/z $[M+H]^+$ calcd for $C_{17}H_{17}O_2^+ = 253.1223$, found 253.1225.

3-allyldibenzo[*b,d*]**thiophene** (1t): Following the general procedure, dibenzo[*b,d*]thiophen-3-ylboronic acid (1.5 g, 6.25 mmol) to yield 1t as white solid (0.96 g, 65% yield), M.p. 50 - 51 °C.

TLC: $R_f = 0.9$ (petroleum ether).

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 – 8.10 (m, 1H), 8.08 (d, *J* = 8.1 Hz, 1H), 7.87 – 7.82 (m, 1H), 7.68 (s, 1H), 7.46 – 7.41 (m, 2H), 7.30 (dd, *J* = 8.1, 1.5 Hz, 1H), 6.14 – 5.96 (m, 1H), 5.20 – 5.09 (m, 2H), 3.55 (d, *J* = 6.7 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 139.8, 139.4, 139.1, 137.3, 135.5, 133.9, 126.4, 125.5, 124.4, 122.9, 122.5, 121.5, 121.4, 116.3, 40.4.

HRMS m/z $[M+H]^+$ calcd for $C_{15}H_{13}S^+ = 225.0732$, found 225.0736.

3-allyldibenzo[*b*,*d*]**furan (1u):** Following the general procedure, dibenzo[*b*,*d*]furan-3-ylboronic acid (1.5 g, 7.08 mmol) to yield **1u** as a colorless oil (1.02 g, 69% yield).

TLC: $R_f = 0.9$ (petroleum ether).

¹**H** NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.7 Hz, 1H), 7.78 (s, 1H), 7.57 (d, J = 8.3 Hz, 1H), 7.53 – 7.42 (m, 2H), 7.39 – 7.27 (m, 2H), 6.18 – 6.01 (m, 1H), 5.21 – 5.07 (m, 2H), 3.57 (d, J = 6.6 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.6, 155.0, 137.9, 134.6, 127.9, 127.1, 124.4, 124.3, 122.7, 120.7, 120.4, 115.9, 111.7, 111.5, 40.2.

HRMS m/z $[M+H]^+$ calcd for $C_{15}H_{13}O^+ = 209.0961$, found 209.0964.

1-allyl-4-((1r,4s)-4-propylcyclohexyl)benzene (1x): Following the general procedure, (4-((1r,4s)-4-propylcyclohexyl)phenyl)boronic acid (1.8 g, 7.31 mmol) to yield 1x as a colorless oil (1.23 g, 69% yield).

TLC: $R_f = 0.9$ (petroleum ether).

¹**H** NMR (400 MHz, CDCl₃) δ 7.20 – 7.09 (m, 4H), 6.05 – 5.87 (m, 1H), 5.16 – 5.01 (m, 2H), 3.37 (d, *J* = 6.8 Hz, 2H), 2.54 – 2.35 (m, 1H), 1.98 – 1.78 (m, 4H), 1.52 – 1.40 (m, 2H), 1.40 – 1.26 (m, 3H), 1.26 – 1.19 (m, 2H), 1.12 – 0.97 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 145.8, 137.7, 137.5, 128.5, 126.9, 115.7, 44.3, 39.9, 39.8, 37.1, 34.5, 33.7, 20.1, 14.5.

HRMS m/z $[M+H]^+$ calcd for $C_{18}H_{27}^+ = 243.2107$, found 243.2110.

3.2 Method B

To a solution of 4-allylbenzaldehyde (5.0 mmol) in MeOH (20 mL) at 0 °C, NaBH₄ (0.38 g, 10 mmol) was slowly added. The reaction mixture was slowly warmed to room temperature and stirred overnight. After washed with 5% HCl (aq.), brine, and H₂O, the combined organic layers were dried over Na₂SO₄, filtrated, and then concentrated under vacuum. The crude product was purified by flash column chromatography (petroleum ether/ethyl acetate = 10/1) to afford the desired product.

Under nitrogen atmosphere, to a solution of carboxylic acid compound (1.0 equiv.), DMAP (0.2 equiv.), DCC (1.1 equiv.), Et₃N (2.0 equiv.) and alcohol in dichloromethane was added at rt. The mixture was stirred at room temperature overnight. After the reaction was completed, the suspension was filtered through a celite pad. The filtrate was concentrated under reduced pressure. The resulting crude product was purified by flash column chromatography (petroleum ether/ethyl acetate) to afford the desired product.

4-Allylphenyl 4-(*N*,*N*-**dipropylsulfamoyl)benzoate** (**1ca**): Following the general procedure, dibenzo[*b*,*d*]furan-3-ylboronic acid (1.0 g, 3.5 mmol) to yield **1ca** as a white solid (0.87 g, 62% yield), M.p. 66 - 68 °C.

TLC: $R_f = 0.7$ (petroleum ether/ethyl acetate 10/1).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.32 - 8.30$ (m, 2H), 7.95 - 7.93 (m, 2H), 7.31 - 7.22 (m, 2H), 7.15 - 7.13 (m, 2H), 6.04 - 5.90 (m, 1H), 5.15 - 5.07 (m, 2H), 3.42 (d, J = 6.6 Hz, 2H), 3.18 - 3.09 (m, 4H), 1.61 - 1.52 (m, 4H), 0.88 (t, J = 7.4 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 164.1, 149.0, 144.9, 138.2, 137.1, 133.0, 130.9, 129.8, 127.2, 121.4, 116.3, 50.0, 39.7, 22.0, 11.2.

HRMS m/z $[M+H]^+$ calcd for $C_{22}H_{28}NO_4S^+ = 402.1734$, found 402.1733.

4-allylbenzyl (*R*)-2-(6-methoxynaphthalen-2-yl)propanoate (1cb): Following the general procedure, Naproxen (1.0 g, 4.3 mmol) to yield 1cb as a white solid (1.14 g, 73% yield), M.p. 61 - 63 °C.

TLC: $R_f = 0.8$ (petroleum ether/ethyl acetate 10/1).

¹**H** NMR (400 MHz, CDCl₃) δ 7.81 – 7.67 (m, 3H), 7.51 – 7.44 (m, 1H), 7.34 – 7.15 (m, 6H), 6.07 – 5.93 (m, 1H), 5.23 – 5.07 (m, 4H), 3.97 (s, 4H), 3.42 (d, *J* = 6.7 Hz, 2H), 1.65 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 174.6, 157.7, 140.1, 137.3, 135.7, 133.82, 133.77, 129.4, 129.0, 128.8, 128.3, 127.2, 126.4, 126.1, 119.0, 116.1, 105.6, 66.5, 55.4, 45.5, 40.0, 18.7.

HRMS m/z $[M+H]^+$ calcd for $C_{24}H_{25}O_3^+ = 361.1798$, found 361.1800.

4. Reaction optimization for [2,3]-rearrangement

Ph	+ NN	Lewis acid/L ₃ N Pd ₂ dba ₃ /P 2,5-DTBQ, N MeCN, 50 °C	$\begin{array}{c} \text{-PiMe}_2 \\ \text{Ph}_3 \\ \text{a}_2\text{CO}_3 \\ \text{C}, 24 \text{ h} \end{array} \xrightarrow{N} N \\ N$	Ph
1	a 2		3a	
Entry ^a	Lewis Acid	Yield	dr (anti:syn)	er
1	Sc(OTf) ₃	No product	N.D. ^e	N.D.
2	Ni(OTf) ₂	No product	N.D.	N.D.
3	Zn(OTf) ₂	No product	N.D.	N.D.
4	Fe(OTf) ₂	No product	N.D.	N.D.
5	Yb(OTf) ₃	No product	N.D.	N.D.
6	Mg(OTf) ₂	trace	N.D.	N.D.
7	$Co(BF_4)_2 \bullet 6H_2O$	No product	N.D.	N.D.

Table S1: Screening of Lewis acids

Reaction conditions: **1a** (0.2 mmol, 2.0 equiv.), **2** (0.1 mmol, 1.0 equiv.), $Pd_2(dba)_3$ (4 mol%), PPh₃ (8 mol%), 2,5-DTBQ (0.11 mmol, 1.1 equiv.), Lewis acid (10 mol%), **L₃-PiMe₂** (10 mol%), and Na₂CO₃ (0.12 mmol, 1.2 equiv.) in MeCN (2.0 mL) at 50 °C for 24 h. The yield and diastereomeric ratio (*dr*) were determined via ¹H NMR analysis of the crude reaction mixtures using 4-methylanisole as the internal standard. The enantiomeric ratio (*er*) was determined by chiral HPLC analysis. Compound **3a** was converted into its methyl ester derivative quantitatively with MeOH at 60 °C to determine its *er* value. [b] N.D. = no detection. 2,5-DTBQ = 2,5-ditertbutylquinone.

Table S2: Screening of chiral *N*,*N*'-dioxide ligands

Entry	Ligand	Yield	dr (anti:syn)	er
1	L ₃ -PiMe ₂	trace	N.D.	N.D.
2	L ₃ -PiAd	44	2:1	54:46/51:49
3	L ₃ -RaAd	47	3:1	82:18/62:38
4	L ₃ -PrAd	55	5:1	78:22/62:38
5	L_3 - Pr^iPr_2	38	3:1	57:43/60:40
6	L ₃ -PrMe ₂	35	2:1	56:44/53:47
7	L ₃ -PrcH	48	3:1	60:40/57:43
8	L ₃ -PrCHPh ₂	30	3:1	56:44/57:43
9	L ₃ -PrEt ₂	35	2:1	56:44/57:43
10	L ₃ -PrAdMe ₂	36	3:1	62:38/55:45
11	L ₃ -PrCH ₂ Ad	35	2:1	60:40/56:44
12	L ₃ -PrcP	35	2.5:1	66:34/76:24
13	L ₂ -PrAd	30	1.5:1	57:43/59:41

Reaction conditions: **1a** (0.2 mmol, 2.0 equiv.), **2** (0.1 mmol, 1.0 equiv.), $Pd_2(dba)_3$ (4 mol%), PPh₃ (8 mol%), 2,5-DTBQ (0.11 mmol, 1.1 equiv.), Mg(OTf)₂ (10 mol%), **Ligand** (10 mol%), and Na₂CO₃ (0.12 mmol, 1.2 equiv.) in MeCN (2.0 mL) at 50 °C for 24 h. The yield and diastereomeric ratio (*dr*) were determined via ¹H NMR analysis of the crude reaction mixtures using 4-methylanisole as the internal standard. The enantiomeric ratio (*er*) was determined by chiral HPLC analysis. Compound **3a** was converted into its methyl ester derivative quantitatively with MeOH at 60 °C to determine its *er* value.

Ph		Lewis acid/L: N _ Pd ₂ dba ₃ /F 2,5-DTBQ, N MeCN, 50 °(a_2 -PrAd B^2 -Ph ₃ a_2 CO ₃ C, 24 h	n √/
	1a 2		За	
Entry	Lewis Acid	Yield	dr (anti:syn)	er
1	Sc(OTf) ₃	trace	N.D.	N.D.
2	Ni(OTf) ₂	trace	N.D.	N.D.

Table S3: Screening of Lewis acids again with the use of L3-PrAd

Reaction conditions: **1a** (0.2 mmol, 2.0 equiv.), **2** (0.1 mmol, 1.0 equiv.), $Pd_2(dba)_3$ (4 mol%), PPh₃ (8 mol%), 2,5-DTBQ (0.11 mmol, 1.1 equiv.), lewis acid (10 mol%), **L₃-PrAd** (10 mol%), Na₂CO₃ (1.2 equiv.) in MeCN (2.0 mL) at 50 °C for 24 h. The yield and diastereomeric ratio (*dr*) were determined via ¹H NMR analysis of the crude reaction mixtures using 4-methylanisole as the internal standard. The enantiomeric ratio (*er*) was determined by chiral HPLC analysis. Compound **3a** was converted into its methyl ester derivative quantitatively with MeOH at 60 °C to determine its *er* value.

Table S4: Screening of solvent

Entry	Solvent	Yield	dr (anti:syn)	er
1	Dichloromethane	trace	N.D.	N.D.
2	Toluene	No product	N.D.	N.D.
3	Tetrahydrofuran	No product	N.D.	N.D.
4	2-Methyltetrahydrofuran	15	2.5:1	N.D.
5	1,4-Dioxane	61	1:1	54:46/50:50
6	Ethyl acetate	67	1.5:1	53:47/52:48
7	Acetonitrile	55	5:1	78:22/62:38
8	Isobutyronitrile	No product	N.D.	N.D.
9	Benzonitrile	No product	N.D.	N.D.

Reaction conditions: **1a** (0.2 mmol, 2.0 equiv.), **2** (0.1 mmol, 1.0 equiv.), $Pd_2(dba)_3$ (4 mol%), PPh₃ (8 mol%), 2,5-DTBQ (0.11 mmol, 1.1 equiv.), Mg(OTf)₂ (10 mol%), **L**₃-**PrAd** (10 mol%), Na₂CO₃ (1.2 equiv.) in solvent (2.0 mL) at 50 °C for 24 h. The yield and diastereomeric ratio (*dr*) were determined via ¹H NMR analysis of the crude reaction mixtures using 4-methylanisole as the internal standard. The enantiomeric ratio (*er*) was determined by chiral HPLC analysis. Compound **3a** was converted into its methyl ester derivative quantitatively with MeOH at 60 °C to determine its *er* value.

Table S5: Screening of palladium catalyst

		Mg(OTf) ₂ /L ₃ -PrAd [Pd]/PPh ₃ 2,5-DTBQ, Na ₂ CO ₃ MeCN, 50 °C, 24 h		1
	1a 2		3a	
Entry	[Pd]	Yield	dr (anti:syn)	er
1	$Pd(PPh_3)_4$	trace	N.D.	N.D.
2	Pd(MeCN) ₂ Cl ₂	trace	N.D.	N.D.
3	Pd(MeCN) ₄ (BF ₄) ₂	trace	N.D.	N.D.
4	Pd(TFA) ₂	48	3.5:1	76:24/54:46
5	$Pd_2(dba)_3$	55	5:1	78:22/62:38
6	Pd ₂ (dba) ₃ ·CHCl ₃	69	4.5:1	77:23/61:39

Reaction conditions: **1a** (0.2 mmol, 2.0 equiv), **2** (0.1 mmol, 1.0 equiv), **[Pd]** (4 or 8 mol% for dimer or monomer), PPh₃ (8 mol%), 2,5-DTBQ (0.11 mmol, 1.1 equiv.), Mg(OTf)₂ (10 mol%), **L₃-PrAd** (10 mol%), and Na₂CO₃ (0.12 mmol, 1.2 equiv.) in MeCN (2.0 mL) at 50 °C for 24 h. The yield and diastereomeric ratio (*dr*) were determined via ¹H NMR analysis of the crude reaction mixtures using 4-methylanisole as the internal standard. The enantiomeric ratio (*er*) was determined by chiral HPLC analysis. Compound **3a** was converted into its methyl ester derivative quantitatively with MeOH at 60 °C to determine its *er* value.

Table S6: Screening of base

		Mg(OTf) ₂ /L ₃ -PrAd Pd2(dba)3/PPh ₃ 2,5-DTBQ, Base MeCN, 50 °C, 24 h	N N Ph	/
	1a 2		3a	
Entry	Base	Yield	dr (anti:syn)	er
1	DABCO	trace	N.D. ^e	N.D.
2	Et ₃ N	29	1:1	65:35/55:45
3	^{<i>i</i>} Pr ₂ NEt	48	3.5:1	76:24/54:46
4	KO ^t Bu	trace	N.D.	N.D.
5	LiOAc	No product	N.D.	N.D.
6	KOAc	37	1:1	0/0
7	K_2CO_3	59	1:1	53:47/52:48
8	Na ₂ CO ₃	55	5:1	78:22/62:38
9	Na ₂ HPO ₄	47	3:1	77:24/61:39
10	K ₂ HPO ₄	52	4.5:1.	78:22/63:37
11	No base	41	3:1	80:20/62:38

Reaction conditions: **1a** (0.2 mmol, 2.0 equiv.), **2** (0.1 mmol, 1.0 equiv.), $Pd_2(dba)_3$ (4 mol%), PPh₃ (8 mol%), 2,5-DTBQ (0.11 mmol, 1.1 equiv.), Mg(OTf)₂ (10 mol%), **L₃-PrAd** (10 mol%), and base (0.12 mmol, 1.2 equiv.) in MeCN (2.0 mL) at 50 °C for 24 h. The yield and diastereomeric ratio (*dr*) were determined via ¹H NMR analysis of the crude reaction mixtures using 4-methylanisole as the internal standard. The enantiomeric ratio (*er*) was determined by chiral HPLC analysis. Compound **3a** was converted into its methyl ester derivative quantitatively with MeOH at 60 °C to determine its *er* value.

Table S7: Screening of temperature

Reaction conditions: **1a** (0.2 mmol, 2.0 equiv.), **2** (0.1 mmol, 1.0 equiv.), $Pd_2(dba)_3$ (4 mol%), PPh₃ (8 mol%), 2,5-DTBQ (0.11 mmol, 1.1 equiv.), Mg(OTf)₂ (10 mol%), L₃-PrAd (10 mol%), and Na₂CO₃ (0.12 mmol, 1.2 equiv.) in MeCN (2.0 mL) at T °C for 24 h. The yield and diastereomeric ratio (*dr*) were determined via ¹H NMR analysis of the crude reaction mixtures using 4-methylanisole as the internal standard. The enantiomeric ratio (*er*) was determined by chiral HPLC analysis. Compound **3a** was converted into its methyl ester derivative quantitatively with MeOH at 60 °C to determine its *er* value.

	Ph +	N N N Mg(OTf) ₂ Pd Cat 2,5-D MeCN, 50	/ Ligand /PPh₃ TBQ °C, 24 h		n
	1a	2		3a	
Entry	[Pd]	Additive	Yield	dr (anti:syn)	er
1	Pd ₂ dba ₃	-	47	3:1	82:18/62:38
2 <i>a</i>	Pd ₂ dba ₃	-	60	4.5:1	83:17/60:40
3 ^{<i>a</i>}	Pd ₂ (dba) ₃ ·CHCl ₃	-	65	4.5:1	84:16/60:40
$4^{a,b}$	Pd ₂ (dba) ₃ ·CHCl ₃	-	62	5:1	87:13/63:37
$5^{a,b,c}$	Pd ₂ (dba) ₃ ·CHCl ₃	-	56	5:1	93:7/60:40
6 <i>a,b,c</i>	Pd ₂ (dba) ₃ ·CHCl ₃	40 mg 4Å MS	trace	N.D. ^e	N.D.
$7^{a,b,c}$	Pd ₂ (dba) ₃ ·CHCl ₃	TBAB	trace	N.D.	N.D.
$8^{a,b,c}$	Pd ₂ (dba) ₃ ·CHCl ₃	15% mmol NaBAr ^F ₄	67	8:1	95:5/-

Table S8: Optimization for reaction of dimethylglycine pyrazoleamide 1a with allylbenzene 2.

Reaction conditions: **1a** (0.2 mmol, 2.0 equiv.), **2** (0.1 mmol, 1.0 equiv.), **[Pd]** (4 or 8 mol% for dimer or monomer), PPh₃ (8 mol%), 2,5-DTBQ (0.11 mmol, 1.1 equiv.), Mg(OTf)₂ (10 mol%), **L₃-PrAd** (10 mol%), and Na₂CO₃ (0.12 mmol, 1.2 equiv.) in MeCN (2.0 mL) at T °C for 24 h. The yield and diastereomeric ratio (*dr*) were determined via ¹H NMR analysis of the crude reaction mixtures using 4-methylanisole as the internal standard. The enantiomeric ratio (*er*) was determined by chiral HPLC analysis. Compound **3a** was converted into its methyl ester derivative quantitatively with MeOH at 60 °C to determine its *er* value. [a] 2,5-DTBQ (1.5 equiv.). [b] At 20 °C for 72 h. [c] No base.

Ph + N	Pd ₂ (dba) ₃ •CHCl ₃ /[P] (1:2, 4 mol%) 2,5-DTBQ (1.5 equiv.) Mg(OTf) ₂ /L ₃ -RaAd (1:1, 10 mol%) NaBAr ^F ₄ (15 mol%) MeCN, 20 °C, 72 h	$ \begin{array}{c} \begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
P1 Pd ₂ (dba) ₃ •CHCl ₃ /[P] (1:1, 4 mol%)	P2	MeO P3
$ \begin{array}{c} \text{MeO} \\ \leftarrow \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ - \\ + \\ - \\ -$	P5	$F \rightarrow F \rightarrow$
Entry	[P]	Yield
1	P1	N.D.
2	P2	trace
3	Р3	trace
4	P4	trace
5	P5	<10%
6	P6	N.D.

Table S9: Screening of achiral phosphorus ligands

Reaction conditions: **1a** (0.2 mmol, 2.0 equiv.), **2** (0.1 mmol, 1.0 equiv.), $Pd_2(dba)_3 \cdot CHCl_3$ (4 mol%), [P] (4 or 8 mol% for dimer or monomer), 2,5-DTBQ (0.15 mmol, 1.5 equiv.), Mg(OTf)₂ (10 mol%), **L**₃-**PrAd** (10 mol%) in MeCN (2.0 mL) at 20 °C for 72 h. The yield was determined via ¹H NMR analysis of the crude reaction mixtures using 4-methylanisole as the internal standard.

5. Scope Limitation

6. General procedure for synthesis of [2,3]-rearrangement products

Under an Ar atmosphere, a tube was added Mg(OTf)₂ (0.02 mmol, 10mol%), *N*,*N*'-dioxide ligand **L**₃-**RaAd** (0.02 mmol, 10 mol%), amino amide **2** (0.2 mmol, 1.0 equiv.) and MeCN (1.5 mL). Another tube was added Pd₂(dba)₃·CHCl₃ (4 mol%), PPh₃ (8 mol%) and MeCN (0.5 mL). After being stirred at 35 °C for 1 h, two tubes were mixed. Then, 2,5-DTBQ (1.5 equiv.), terminal alkene **1** (0.4 mmol, 2.0 equiv.) and MeCN (2.0 mL) were added sequentially. The reaction mixture was stirred at 20 °C for 48-72 h. After the reaction was completed, the suspension was filtered through a celite pad. The filtrate was concentrated under vacuum, and the residue was purified by silica gel chromatography to give the desired product **3**.

The product **3** was dissolved in 1.0 mL of methanol. The reaction was stirred at 60 $^{\circ}$ C overnight. The reaction mixture was subjected to column chromatography on silica gel to afford the corresponding methyl ester derivative. The *er* value was determined by HPLC using a Daicel chiral column. The analytical data of the products were summarized below.

(2R,3S)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)-3-phenylpent-4-en-1-one (3a): Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3a was obtained as a colorless liquid (38.1 mg, 64% yield, *anti:syn* = 8:1).

TLC: $R_f = 0.7$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ _D = +49.7 (*c* = 0.40, in CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃) δ 7.25-7.20 (m, 2H), 7.18-7.11 (m, 2H), 7.09-7.03 (m, 1H), 6.25 – 6.14 (m, 1H), 5.77 (s, 1H), 5.36 (d, *J* = 11.7 Hz, 1H), 5.18 – 5.09 (m, 2H), 3.91 (m, 1H), 2.44 (s, 6H), 2.31 (s, 3H), 2.17 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.0, 151.3, 143.3, 140.4, 139.7, 128.5, 128.3, 126.6, 115.9, 111.2, 66.4, 49.9, 41.3, 14.4, 13.8.

HRMS m/z $[M+H]^+$ calcd for $C_{18}H_{24}N_3O^+ = 298.1919$, found 298.1920.

Methyl (2*R*,3*S*)-2-(dimethylamino)-3-phenylpent-4-enoate (3a-methyl ester): Following the general procedure, product 3a-methyl ester was obtained as a colorless liquid, 22.4 mg, 48% yield in two steps,

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28} = +26.1$ (*c* = 0.12, in CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.30 – 7.25 (m, 2H), 7.23 – 7.16 (m, 3H), 6.12 (m, 1H), 5.19 – 5.04 (m, 2H), 3.82 – 3.68 (m, 1H), 3.58 (d, *J*=11.7 Hz, 1H), 3.42 (s, 3H), 2.40 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 170.3, 140.8, 138.9, 128.6, 128.3, 126.9, 116.2, 71.8, 50.6, 49.8, 41.4.

HPLC: 95:5 *er*, chiral stationary column: OJ-H, mobile phase: hexane/^{*i*}PrOH = 99/1, flow rate 0.8 mL/min, $\lambda = 254$ nm, 30 °C, major isomer: t_r (major) = 6.3 min, t_r (minor) = 7.4 min. **HRMS** m/z [M+H]⁺ calcd for C₁₄H₂₀NO₂⁺ = 234.1494, found 234.1493.

Racemic **3a-methyl ester**

1 PDA Multi 1 / 254nm,4nm

PeakTable

PDA Cł	112	54nm				
Peak	¥	Ret. Time	Area	Height	Area %	Height %
	1	6.196	445606	30889	30.068	34.995
	2	7.287	449643	27207	30.341	30.823
	3	8.132	295599	18377	19.946	20.819
	4	11.295	291136	11795	19.645	13.363
T	otal		1481983	88268	100.000	100.000

Enantioenriched **3a-methyl ester**

1 PDA Multi 1 / 220nm,4nm

PeakTable

1	PDA Ch1 2	20nm					
	Peak#	Ret. Time	Area	Height	Area %	Height %	
	1	6.316	1561485	125926	85.963	88.994	
	2	7.422	88696	5972	4.883	4.220	
	3	8.289	112649	7394	6.202	5.225	
	4	11.604	53640	2208	2.953	1.560	
	Total		1816469	141499	100.000	100.000	

(2R,3S)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)-3-(p-tolyl)pent-4-en-1-one (3b)Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3b was obtained as a colorless liquid (25.0 mg, 40% yield, *anti:syn* = 7:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}_{D} = +66.7 (c = 0.14, in CH_2Cl_2).$

¹**H** NMR (500 MHz, CDCl₃) δ 7.12 (d, J = 8.1 Hz, 2H), 6.96 (d, J = 7.9 Hz, 2H), 6.21 – 6.12 (m, 1H), 5.79 (s, 1H), 5.34 (d, J = 11.7 Hz, 1H), 5.11 (s, 1H), 5.09 (d, J = 4.2 Hz, 1H), 3.88 (dd, J = 11.7, 8.6 Hz, 1H), 2.43 (s, 6H), 2.32 (s, 3H), 2.21 (s, 3H), 2.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.9, 151.3, 143.4, 140.0, 137.4, 136.1, 129.0, 128.3, 115.6, 111.2, 66.3, 49.4, 41.3, 21.0, 14.4, 13.9.

HPLC: 93:7 *er*, chiral stationary column: AD-H, mobile phase: hexane/PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 8.6 min, t_r (minor) = 8.2 min.

HRMS m/z $[M+H]^+$ calcd for $C_{19}H_{26}N_3O^+ = 312.2076$, found 312.2076.

Racemic 3b

1 PDA Multi 1 / 254nm,4nm

			PeakTable			
PDA Ch1 2	PDA Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	8.203	216224	26399	49.761	50.913	
2	8.590	218300	25452	50.239	49.087	
Total		434524	51851	100.000	100.000	

Enantioenriched 3b

1 PDA Multi 1 / 254nm,4nm

PeakTable

				1 curi ruore				
]	PDA Ch1 254nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %		
	1	8.215	28904	3426	7.127	7.124		
ſ	2	8.589	376632	44664	92.873	92.876		
	Total		405536	48090	100.000	100.000		

(2*R*,3*S*)-3-(4-(*tert*-butyl)phenyl)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)pent-4-e **n-1-one** (3c) Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3c was obtained as a colorless liquid (49.8 mg, 70% yield, *anti:syn* =9:1).

TLC: $R_f = 0.7$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ D = +44.8 (*c* = 0.21, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ 7.16-7.09 (m, 4H), 6.18 (m, 1H), 5.74 (s, 1H), 5.31 (d, J = 11.6 Hz, 1H), 5.16-5.10 (m, 2H), 3.93-3.80 (m, 1H), 2.46 (s, 6H), 2.27 (s, 3H), 2.17 (s, 3H), 1.20 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 150.1, 148.2, 142.2, 138.7, 136.0, 126.9, 124.0, 114.6, 109.9, 65.5, 48.6, 40.3, 33.2, 30.2, 13.2, 12.7.

HRMS m/z $[M+H]^+$ calcd for $C_{22}H_{32}N_3O^+ = 354.2545$, found 354.2546.

Methyl (*2R*,*3S*)-3-(4-(*tert*-butyl)phenyl)-2-(dimethylamino)pent-4-enoate (3c-methyl ester): Following the general procedure, product 3c-methyl ester was obtained as a colorless liquid, 35.9 mg, 62% yield in two steps,

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ D = +63.8 (*c* = 0.28, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ 7.30 – 7.26 (m, 3H), 7.14 – 7.08 (m, 2H), 6.18 – 6.02 (m, 1H), 5.19 – 5.05 (m, 2H), 3.73 (dd, *J* = 12.0, 8.5 Hz, 1H), 3.56 (d, *J* = 11.6 Hz, 1H), 3.41 (s, 3H), 2.39 (s, 6H), 1.28 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.4, 149.7, 139.1, 137.6, 127.7, 125.5, 115.9, 71.8, 50.6, 49.4, 41.4, 34.4, 31.4.

HPLC: 94:6 *er*, chiral stationary column: OD-H, mobile phase: hexane/[†]PrOH = 99/1, flow rate 1.0 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 3.9 min, t_r (minor) = 4.2 min.

HRMS m/z $[M+H]^+$ calcd for $C_{18}H_{28}NO_2^+ = 290.2115$, found 290.2116.

Racemic 3c-methyl ester

1 PDA Multi 1 / 254nm,4nm

PeakTable

				I Cak Table		
PDA Ch1 254nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	3.912	132809	28167	50.014	48.532
	2	4.186	132734	29871	49.986	51.468
	Total		265543	58039	100.000	100.000

Enantioenriched 3c-methyl ester

1 PDA Multi 1 / 254nm,4nm

PeakTable

			1 car laute				
PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	3.887	864134	183429	93.755	92.929		
2	4.157	57562	13958	6.245	7.071		
Total		921696	197387	100.000	100.000		

(2S,3R)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)-3-(m-tolyl)pent-4-en-1-one

(3d): Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3d was obtained as a colorless liquid (44.0 mg, 71% yield, *anti:syn* >19:1).

TLC: $R_f = 0.7$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ D = +54.9 (*c* = 0.46, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ 7.09 – 6.98 (m, 3H), 6.87 (d, *J* = 6.0 Hz, 1H), 6.26 – 6.09 (m, 1H), 5.77 (s, 1H), 5.36 (d, *J* = 11.7 Hz, 1H), 5.17 – 5.10 (m, 2H), 3.87 (dd, *J* = 11.7, 8.7 Hz, 1H), 2.45 (s, 6H), 2.30 (s, 3H), 2.21 (s, 3H), 2.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.3, 151.3, 143.3, 140.1, 139.8, 137.8, 129.3, 128.1, 127.4, 125.5, 115.8, 111.1, 66.3, 50.0, 41.3, 21.3, 14.4, 13.8.

HRMS m/z $[M+H]^+$ calcd for $C_{19}H_{26}N_3O^+ = 312.2076$, found 312.2072.

Methyl (2*R*,3*S*)-2-(dimethylamino)-3-(*m*-tolyl)pent-4-enoate (3d-methyl ester): Following the general procedure, product 3d-methyl ester was obtained as a colorless liquid, 31.5 mg, 64% yield in two steps,

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ D = +41.6 (*c* = 0.30, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ 7.19-7.12 (m, 1H), 7.04-6.96 (m, 3H), 6.18-6.03 (m, 1H), 5.17 – 5.06 (m, 2H), 3.75 – 3.68 (m, 1H), 3.57 (d, J = 11.7 Hz, 1H), 3.43 (s, 3H), 2.39 (s, 6H), 2.31 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 170.3, 140.8, 139.1, 138.2, 129.0, 128.5, 127.7, 125.2, 116.0, 71.7, 50.6, 49.8, 41.4, 21.5.

HPLC: 93.5:6.5 *er*, chiral stationary column: OJ-H, mobile phase: hexane/^{*i*}PrOH = 99.5/0.5, flow rate 1.0 mL/min, λ = 254 nm, 30 °C, major isomer: t_r (major) = 5.2 min, t_r (minor) = 5.9 min. **HRMS** m/z [M+H]⁺ calcd for C₁₅H₂₂NO₂⁺ = 248.1651, found 248.1646.

Racemic 3d-methyl ester

1 PDA Multi 1/254nm,4nm

				PeakTable		
PDA Ch	12	54nm				
Peak#		Ret. Time	Area	Height	Area %	Height %
	1	5.302	666116	80217	28.980	55.334
	2	5.921	656847	27690	28.577	19.101
	3	6.568	492649	17374	21.433	11.984
	4	8.812	482926	19689	21.010	13.581
То	tal		2298538	144969	100.000	100.000

Enantioenriched 3d-methyl ester

1 PDA Multi 1 / 254nm,4nm

PeakTable

				1 cur ruore		
]	PDA Ch1 2	54nm				
l	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	5.232	1656741	189413	88.184	95.382
	2	5.925	114247	4669	6.081	2.351
	3	6.530	65555	2388	3.489	1.203
ſ	4	8.814	42182	2114	2.245	1.064
	Total		1878725	198583	100.000	100.000

(2*R*,3*S*)-3-([1,1'-biphenyl]-4-yl)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)pent-4-e **n-1-one** (3e): Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3e was obtained as a colorless liquid (53.0 mg, 71% yield, *anti:syn* = 6:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}_{D} = +78.5 \ (c = 0.40, \text{ in CH}_2\text{Cl}_2).$

¹**H NMR** (400 MHz, CDCl₃) δ = 7.52 – 7.46 (m, 2H), 7.41 – 7.35 (m, 4H), 7.33 – 7.27 (m, 3H), 6.29 – 6.15 (m, 1H), 5.77 (s, 1H), 5.39 (d, *J* = 11.7 Hz, 1H), 5.22 – 5.12 (m, 2H), 3.99 – 3.94 (m, 1H), 2.46 (s, 6H), 2.32 (s, 3H), 2.17 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 171.0, 151.4, 143.4, 140.9, 139.7, 139.6, 139.4, 128.9, 128.7, 127.1, 127.0, 127.0, 116.0, 111.3, 66.4, 49.6, 41.4, 14.4, 13.9.

HPLC: 95:5 *er*, chiral stationary column: AD-H, mobile phase: hexane/PrOH = 99.5/0.5, flow rate 1.0 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 6.1 min, t_r (minor) = 5.2 min.

HRMS m/z $[M+H]^+$ calcd for $C_{24}H_{28}N_3O^+ = 374.2227$, found 374.2229.

Racemic 3e

1 PDA Multi 1 / 254nm,4nm

PeakTable

			Peak rable		
PDA Ch1 2	54nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	4.912	1474243	170445	49.979	53.520
2	5.710	1475477	148027	50.021	46.480
Total		2949720	318472	100.000	100.000

Enantioenriched 3e

1 PDA Multi 1 / 254nm,4nm

PeakTable

			1 car raore			
PDA Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	5.166	310006	41507	5.355	6.396	
2	6.073	5478892	607479	94.645	93.604	
Total		5788899	648985	100.000	100.000	

(2R,3S)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)-3-(3-methoxyphenyl)pent-4-en-

1-one (3f): Following the general procedure, the reaction was conducted at 0.2 mmol scale, product **3f** was obtained as a colorless liquid (42.0 mg, 64% yield, anti:syn = 10:1).

TLC: $R_f = 0.8$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{20} D = +75.7 (c = 0.74, in CH₂Cl₂).$

¹**H** NMR (400 MHz, CDCl₃) δ 7.10 (t, J = 7.9 Hz, 1H), 6.88 – 6.82 (m, 2H), 6.70 – 6.62 (m, 1.0 Hz, 1H), 6.26 – 6.15 (m, 1H), 5.83 (d, J = 1.1 Hz, 1H), 5.42 (d, J = 11.8 Hz, 1H), 5.19 (dd, J = 2.0, 1.0 Hz, 1H), 5.18 – 5.14 (m, 1H), 3.93 (dd, J = 11.8, 8.5 Hz, 1H), 3.73 (s, 3H), 2.48 (s, 6H), 2.36 (d, J = 1.1 Hz, 3H), 2.21 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.6, 170.8, 159.7, 159.5, 151.6, 151.3, 143.6, 143.4, 143.0, 141.9, 139.6, 138.6, 129.5, 129.3, 121.1, 120.7, 116.6, 115.9, 114.6, 113.1, 113.0, 111.6, 111.4, 111.2, 66.1, 65.8, 55.2, 55.1, 50.2, 49.9, 41.3, 14.7, 14.4, 14.0, 13.8.

HPLC: 95:5 *er*, chiral stationary column: AD, mobile phase: hexane/^{*i*}PrOH = 99.5/0.5, flow rate 1.0 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 6.4 min, t_r (minor) = 7.5 min.

HRMS m/z $[M+H]^+$ calcd for $C_{19}H_{26}N_3O_2^+ = 328.2020$, found 328.2019.

Racemic 3f

1 PDA Multi 1 / 254nm,4nm

			PeakTable		
PDA Ch1	254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.280	639648	77720	13.001	20.888
2	7.091	1809276	197633	36.774	53.115
3	7.501	659902	60702	13.413	16.314
4	8.398	1811197	36029	36.813	9.683
Tota	1	4920023	372084	100.000	100.000

1 PDA Multi 1 / 254nm,4nm

PeakTable

			1 can raoic				
PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	6.421	2949775	319695	94.989	98.318		
2	7.490	155620	5470	5.011	1.682		
Total		3105395	325166	100.000	100.000		

(2*R*,3*S*)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)-3-(3-isopropoxyphenyl)pent-4-e n-1-one (3g): Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3g was obtained as a colorless liquid (42.0 mg, 59% yield, *anti:syn* = 15:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{20} = +99.9 \ (c = 0.24, \text{ in CH}_2\text{Cl}_2).$

¹**H NMR** (400 MHz, CDCl₃) δ 7.08 (t, *J* = 7.8 Hz, 1H), 6.82 (d, *J* = 7.8 Hz, 2H), 6.64 (dd, *J* = 8.3, 1.6 Hz, 1H), 6.27 - 6.14 (m, 1H), 5.82 (s, 1H), 5.39 (d, *J* = 11.7 Hz, 1H), 5.20 - 5.13 (m, 2H), 4.51 - 4.40 (m, 1H), 3.91 (dd, *J* = 11.7, 8.6 Hz, 1H), 2.47 (s, 6H), 2.36 (s, 3H), 2.20 (s, 3H), 1.29 (d, *J* = 6.0 Hz, 3H), 1.24 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.9, 157.8, 151.3, 143.4, 141.8, 139.6, 129.3, 121.1, 115.9, 115.3, 115.1, 111.2, 69.7, 66.2, 49.9, 41.3, 22.1, 22.0, 14.4, 13.8.

HPLC: 93:7 *er*, chiral stationary column: OD, mobile phase: hexane/ⁱPrOH = 99.7/0.3, flow rate 0.5 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 16.3 min, t_r (minor) = 19.1 min.

HRMS m/z $[M+H]^+$ calcd for $C_{21}H_{30}N_3O_2^+ = 356.2333$, found 356.2332.

Racemic 3g

PeakTable

				1 contraore		
I	PDA Ch1 2	54nm				
Γ	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	15.462	227498	10587	12.426	15.867
	2	16.221	685805	28355	37.460	42.495
ſ	3	19.474	689733	16741	37.675	25.090
	4	24.204	227717	11042	12.438	16.548
	Total		1830753	66725	100.000	100.000

Enantioenriched 3g

1 PDA Multi 1 / 254nm,4nm

PeakTable

			PeakTable		
PDA Ch1 2	254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.655	50783	2464	1.495	1.625
2	16.280	3006226	129365	88.486	85.317
3	19.078	229811	5340	6.764	3.522
4	22.846	110572	14459	3.255	9.536
Total		3397391	151629	100.000	100.000

(2*R*,3*S*)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)-3-(4-phenoxyphenyl)pent-4-en-1-one (3h):Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3h was obtained as a colorless liquid (55.0 mg, 71% yield, *anti:syn* = 6:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ _D = +103.5 (*c* = 0.42, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.30 – 7.24 (m, 3H), 7.21 – 7.17 (m, 2H), 7.08 – 7.02 (m, 1H), 6.86 – 6.78 (m, 4H), 6.25 – 6.17 (m, 1H), 5.82 (s, 1H), 5.32 (d, *J* = 11.7 Hz, 1H), 5.20 – 5.12 (m, 2H), 3.92 – 3.87 (m, 1H), 2.46 (s, 6H), 2.34 (d, *J* = 0.8 Hz, 3H), 2.16 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 171.5, 155.5, 151.4, 143.3, 139.5, 135.4, 129.9, 129.6, 122.9, 119.1, 118.4, 116.1, 111.2, 66.7, 49.4, 41.3, 14.5, 13.8.

HPLC: 93:7 *er*, chiral stationary column: AD-H, mobile phase: hexane/PrOH = 99.5/0.5, flow rate 1.0 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 7.2 min, t_r (minor) = 5.7 min.

HRMS m/z $[M+H]^+$ calcd for $C_{24}H_{28}N_3O_2^+ = 390.2176$, found 390.2175.

Racemic 3h

1 PDA Multi 1 / 254nm,4nm

 PeakTable

 PDA Ch1 254nm
 Area
 Height
 Area %
 Height %

 1
 5.538
 185481
 25766
 49.908
 56.640

 2
 6.994
 186167
 19725
 50.092
 43.360

 Total
 371648
 45491
 100.000
 100.000

Enantioenriched 3h

1 PDA Multi 1 / 254nm,4nm

PeakTable

			1 cultilacite					
PDA Ch1 2	PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	5.694	373811	51009	7.046	9.637			
2	7.236	4931170	478299	92.954	90.363			
Total		5304981	529308	100.000	100.000			

(2*R*,3*S*)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)-3-(4-(trifluoromethyl)phenyl)pe nt-4-en-1-one (3i) Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3i was obtained as a colorless liquid (38.0 mg, 52% yield, *anti:syn* = 2:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ _D = +57.5 (*c* = 0.69, in CH₂Cl₂).

¹**H** NMR (500 MHz, CDCl₃) δ 7.42 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 6.24-6.13 (m, 1H), 5.81 (s, 1H), 5.36 (d, J = 11.7 Hz, 1H), 5.17 (d, J = 10.2 Hz, 1H), 5.10 (d, J = 17.1 Hz, 1H), 3.98 (dd, J = 11.7, 8.3 Hz, 1H), 2.44 (s, 6H), 2.33 (s, 3H), 2.17 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 170.7, 151.7, 144.8, 143.5, 139.0, 129.0, 125.4, 125.3 (q, $J_{C-F} = 3.9$ Hz, $J_{C-F} = 8.0$ Hz), 123.2, 116.7, 111.5, 66.3, 49.6, 41.4, 14.4, 13.8.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -62.51.

HPLC: major isomer, 90:10 *er*, chiral stationary column: IA, mobile phase: hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 9.2 min, t_r (minor) = 7.6 min.

minor isomer, 65:35 *er*, chiral stationary column: IA, mobile phase: hexane/^{*i*}PrOH = 99.5/0.5, flow rate 0.5 mL/min, λ = 254 nm, 30 °C, t_r (major) = 10.1 min, t_r (minor) = 8.6 min.

HRMS $m/z [M+H]^+$ calcd for $C_{19}H_{23}F_3N_3O^+ = 366.1793$, found 366.1790.

Racemic-major 3i

PeakTable

	reakiable						
PDA Ch1 254nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %	
	1	7.958	281450	32111	49.896	55.818	
	2	9.367	282621	25416	50.104	44.182	
	Total		564071	57527	100.000	100.000	

Enantioenriched-major 3i

1 PDA Multi 1 / 254nm,4nm

PeakTable

	i cak i dole							
PDA Ch1 254nm								
	Peak#	Ret. Time	Area	Height	Area %	Height %		
	1	7.557	93462	12223	9.972	12.384		
	2	9.151	843785	86476	90.028	87.616		
	Total		937247	98698	100.000	100.000		

PeakTable					
PDA Ch1 2	54nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.454	757561	74752	49.756	51.520
2	9.762	764988	70341	50.244	48.480
Total		1522549	145092	100.000	100.000

Enantioenriched-minor 3i

1 PDA Multi 1 / 254nm,4nm

Peak Table

	I can fable						
PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	8.579	314524	31702	35.137	37.493		
2	10.121	580614	52853	64.863	62.507		
Total		895137	84555	100.000	100.000		

(2*R*,3*S*)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)-3-(4-fluorophenyl)pent-4-en-1one (3j): Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3j was obtained as a colorless liquid (29.0 mg, 46% yield, *anti:syn* = 5:1).

TLC: $R_f = 0.7$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ D = +46.4 (*c* = 0.54, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.23 – 7.16 (m, 2H), 6.90 – 6.79 (m, 2H), 6.22 – 6.13 (m, 1H), 5.80 (s, 1H), 5.31 (d, *J*=11.8 Hz, 1H), 5.19 – 5.05 (m, 2H), 2.43 (s, 6H), 2.33 (s, 3H), 2.17 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 170.9, 161.6 (d, J_{C-F} = 243.3 Hz) 151.5, 143.4, 139.5, 136.1 (d, J_{C-F} = 3.2 Hz), 130.1 (d, J_{C-F} = 7.9 Hz), 116.1, 115.1 (d, J_{C-F} = 21.0 Hz), 111.4, 66.5, 49.0, 41.3, 14.4, 13.8.

¹⁹F NMR (376 MHz, CDCl₃) δ = -72.98.

HPLC: 92.5:7.5 *er*, chiral stationary column: IA, mobile phase: hexane/ⁱPrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 9.1 min, t_r (minor) = 8.4 min.

HRMS m/z $[M+H]^+$ calcd for $C_{18}H_{23}FN_3O^+ = 316.1825$, found 316.1822.
Racemic 3j

1 PDA Multi 1 / 254nm,4nm

			PeakTable					
PDA Ch1 2	DA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	8.646	17231323	1652374	49.417	52.037			
2	9.380	17637861	1523032	50.583	47.963			
Total		34869184	3175406	100.000	100.000			

1 PDA Multi 1 / 254nm,4nm

				I cur I uoic		
1	PDA Ch1 2	54nm				
	Peak# Ret. Time Area Height Area %					Height %
	1	8.408	489580	51931	7.562	8.812
	2	9.129	5984910	537378	92.438	91.188
	Total		6474489	589309	100.000	100.000

(2R,3S)-3-(4-chlorophenyl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(dimethylamino)pent-4-en-1one (3k): Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3k was obtained as a colorless liquid (31.9 mg, 48% yield, *anti:syn* = 5:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ D = +88.3 (*c* = 0.24, in CH₂Cl₂).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.21 – 7.10 (m, 4H), 6.23 – 6.09 (m, 1H), 5.82 (s, 1H), 5.31 (d, *J* = 11.8 Hz, 1H), 5.19 – 5.04 (m, 2H), 3.94 – 3.84 (m, 1H), 2.42 (s, 6H), 2.35 (s, 3H), 2.18 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ = 170.6, 151.6, 143.4, 139.3, 139.1, 132.4, 129.9, 128.5, 116.3, 111.4, 66.3, 49.1, 41.3, 14.5, 13.9.

HPLC: 90:10 *er*, chiral stationary column: IA, mobile phase: hexane/^{*i*}PrOH = 99.5/0.5, flow rate 1.0 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 4.8 min, t_r (minor) = 4.3 min.

HRMS m/z $[M+H]^+$ calcd for $C_{18}H_{23}CIN_3O^+ = 332.1530$, found 332.1530.

Racemic 3k

1 PDA Multi 1 / 254nm,4nm

				PeakTable				
1	PDA Ch1 254nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %		
	1	4.057	453036	71161	50.893	51.715		
	2	4.440	437136	66441	49.107	48.285		
	Total		890173	137602	100.000	100.000		

Enantioenriched 3k

1 PDA Multi 1 / 254nm,4nm

				r cak lable		
PDA	Ch1 2	54nm				
Pe	eak#	Ret. Time	Area	Height	Area %	Height %
	1	4.314	425555	68551	9.647	10.542
	2	4.794	3985822	581701	90.353	89.458
	Total		4411378	650252	100.000	100.000

(2*R*,3*S*)-3-(3-chlorophenyl)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)pent-4-en-1one (3l) Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3l

was obtained as a colorless liquid (34.0 mg, 51% yield, *anti:syn* = 17:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ D = +42.6 (*c* = 0.26, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ 7.28 – 7.26 (m, 1H), 7.12 – 7.01 (m, 3H), 6.21 – 6.22 (m, 1H), 5.80 (s, 1H), 5.33 (d, *J* = 11.7 Hz, 1H), 5.19 – 5.08 (m, 2H), 3.87 (dd, *J* = 11.7, 8.4 Hz, 1H), 2.44 (s, 6H), 2.33 (s, 3H), 2.18 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 171.1, 151.7, 143.4, 142.5, 139.1, 134.1, 129.5, 128.9, 126.9, 126.9, 116.6, 111.4, 66.3, 49.7, 41.3, 14.4, 13.8.

HRMS $m/z [M+H]^+$ calcd for $C_{18}H_{23}ClN_3O^+ = 332.1530$, found 332.1527.

methyl (2*R*,3*S*)-3-(3-chlorophenyl)-2-(dimethylamino)pent-4-enoate (31-methyl ester) Following the general procedure, product 31-methyl ester was obtained as a colorless liquid, 24.1 mg, 48% yield in two steps,

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28} D = +63.3 (c = 0.34, in CH₂Cl₂).$

¹**H** NMR (400 MHz, CDCl₃) δ 7.23 – 7.14 (m, 3H), 7.08 (d, *J* = 7.0 Hz, 1H), 6.17 – 5.99 (m, 1H), 5.15 (d, *J* = 10.2 Hz, 1H), 5.09 (d, *J* = 17.1 Hz, 1H), 3.73 (dd, *J* = 11.6, 8.5 Hz, 1H), 3.53 (d, *J* = 11.7 Hz, 1H), 3.46 (s, 3H), 2.38 (s, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.9, 142.9, 138.2, 134.3, 129.8, 128.5, 127.1, 126.5, 116.7, 71.5, 50.8, 49.4, 41.3.

HPLC: 92:8 *er*, chiral stationary column: AD-H, mobile phase: hexane/PrOH = 99.8/0.2, flow rate 0.5 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 13.1 min, t_r (minor) = 12.4 min.

HRMS m/z [M+H]⁺ calcd for $C_{14}H_{19}CINO_2^+ = 268.1104$, found 268.1100.

Racemic **3l-methyl ester**

1 PDA Multi 1 / 254nm,4nm

			PeakTable		
PDA Ch1	254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	1 12.277	718670	41997	49.511	58.859
2	2 12.981	732863	29355	50.489	41.141
Tota	al	1451533	71352	100.000	100.000

Enantioenriched **31-methyl ester**

1 PDA Multi 1 / 254nm,4nm

			Peak lable					
PDA Ch1 2	PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	12.431	73751	4076	8.148	12.808			
2	13.071	831436	27749	91.852	87.192			
Total		905187	31825	100.000	100.000			

PeakTable

(2*R*,3*S*)-3-(4-(benzyloxy)-3-fluorophenyl)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamin o)pent-4-en-1-one (3m): Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3m was obtained as a colorless liquid (36.2 mg, 43% yield, *anti:syn* = 9:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ _D = +72.6 (*c* = 0.62, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.40 – 7.29 (m, 5H), 7.03 – 7.00 (m, 1H), 6.89 – 6.87 (m, 1H), 6.80 – 6.76 (m, 1H), 6.18 – 6.09 (m, 1H), 5.79 (s, 1H), 5.28 (d, *J* = 11.7 Hz, 1H), 5.16 – 5.08 (m, 2H), 5.02 (s, 2H), 3.86 – 3.81 (m, 1H), 2.42 (s, 6H), 2.33 (d, *J* = 0.8 Hz, 3H), 2.17 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ = 171.0, 152.6 (d, *J*_{C-F} = 244.6 Hz), 151.6, 145.3 (d, *J*_{C-F} = 10.8 Hz), 143.4, 139.3, 136.7, 135.1 (d, *J*_{C-F} = 5.9 Hz), 128.6, 128.1, 127.4, 124.2 (d, *J*_{C-F} = 3.5 Hz), 116.4 (d, *J*_{C-F} = 18.9 Hz), 116.1, 115.4 (d, *J*_{C-F} = 2.1 Hz), 111.4, 71.4, 66.4, 48.9, 41.3, 14.4, 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ = -133.76.

HPLC: 94.5:5.5 *er*, chiral stationary column: OD-H, mobile phase: hexane/^{*i*}PrOH = 99.5/0.5, flow rate 1.0 mL/min, $\lambda = 254$ nm, 30 °C, major isomer: t_r (major) = 10.5 min, t_r (minor) = 11.7 min. **HRMS** m/z [M+H]⁺ calcd for C₂₅H₂₉FN₃O₂⁺ = 422.2238, found 422.2237.

Racemic 3m

1 PDA Multi 1 / 254nm,4nm

PeakTable PDA Ch1 254nm Peak# Ret Height % 27.517 25.714 26.854 Ret. Time 10.880 Height 116314 Area % 19.105 Area Area 2196099 2210197 3545538 3542945 11494779 11.901 16.941 20.952 108694 19.228 2 113510 30.845 3 84178 422695 4 30.822 19.914 100.000 Total 100.000

Enantioenriched 3m

1 PDA Multi 1 / 254nm,4nm

PeakTable

			1 cuntinoic		
PDA Ch1 2	54nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.511	10586914	536678	88.936	90.969
2	11.673	600474	31272	5.044	5.301
3	16.651	434917	14130	3.654	2.395
4	20.415	281706	7876	2.366	1.335
Total		11904011	589956	100.000	100.000

(2*R*,3*S*)-3-(3,4-dichlorophenyl)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)pent-4-e **n-1-one** (3**n**) Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3**n** was obtained as a colorless liquid (47.4 mg, 65% yield, *anti:syn* = 8:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ _D = +54.8 (*c* = 0.70, in CH₂Cl₂).

¹**H** NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 2.1 Hz, 1H), 7.22 (d, J = 8.3 Hz, 1H), 7.06 (dd, J = 8.3, 2.1 Hz, 1H), 6.19-6.08 (m, 1H), 5.83 (s, 1H), 5.30 (d, J = 11.7 Hz, 1H), 5.17 (dt, J = 10.1, 1.1 Hz, 1H), 5.10 (dt, J = 17.1, 1.3 Hz, 1H), 3.86 (dd, J = 11.7, 8.2 Hz, 1H), 2.42 (s, 6H), 2.36 (s, 3H), 2.18 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 170.8, 151.9, 143.5, 140.9, 138.7, 132.3, 130.8, 130.7, 130.2, 128.1, 116.8, 111.6, 66.3, 49.0, 41.3, 14.4, 13.8.

HPLC: 89:11 *er* chiral stationary column: AD-H, mobile phase: hexane/ⁱPrOH = 100/0, flow rate 1.0 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 4.1 min, t_r (minor) = 3.9 min.

HRMS m/z $[M+H]^+$ calcd for $C_{18}H_{22}Cl_2N_3O^+ = 366.1140$, found 366.1142.

Racemic 3n

1 PDA Multi 1 / 254nm,4nm

 PeakTable

 PDA Ch1 254nm
 Area
 Height
 Area %
 Height %

 1
 3.873
 510068
 90438
 51.803
 50.985

 2
 4.094
 474561
 86945
 48.197
 49.015

 Total
 984629
 177384
 100.000
 100.000

1 PDA Multi 1 / 254nm,4nm

PeakTable

			1 contractore		
PDA Ch1 2	54nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	3.853	95764	18743	10.750	11.683
2	4.061	795043	141692	89.250	88.317
Total		890807	160436	100.000	100.000

Methyl 4-((3S,4R)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4-(dimethyllamino)-5-oxopent-1-en-3-yl) benzoate (3o): Following the general procedure, the reaction was conducted at 0.1 mmol scale, product 3o was obtained as a colorless liquid (30.1 mg, 85% yield, *anti:syn* =4:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ _D = +49.7 (*c* = 0.48, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.89 – 7.80 (m, 2H), 7.35 – 7.29 (m, 2H), 6.23 – 6.14 (m, 1H), 5.79 (s, 1H), 5.38 (d, *J* = 11.7 Hz, 1H), 5.20 – 5.05 (m, 2H), 4.01 – 3.96 (m, 1H), 3.85 (s, 3H), 2.43 (s, 6H), 2.31 (s, 3H), 2.17 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 170.5, 167.1, 151.6, 146.0, 143.4, 139.0, 137.9, 129.9, 129.7, 128.6, 128.5, 128.4, 117.3, 116.6, 111.7, 111.5, 66.1, 65.7, 52.1, 50.2, 49.7, 41.3, 41.2, 14.7, 14.4, 14.0, 13.8.

HPLC: 92.5:7.5 *er*, chiral stationary column: OD-H, mobile phase: hexane/ⁱPrOH = 99.5/0.5, flow rate 1.0 mL/min, $\lambda = 254$ nm, 30 °C, major isomer: t_r (major) = 7.3 min, t_r (minor) = 15.3 min. **HRMS** m/z [M+H]⁺ calcd for C₂₀H₂₆N₃O₃⁺ = 356.1969, found 356.1967.

Racemic 30

1 PDA Multi 1 / 254nm,4nm

PDA Ch1 254nm Peak# Ret. Time 1 7.572 226 PeakTable Area 819197 Height Area % Height % 84937 18.305 31.099 2 3 4 9.236 10.095 31.471 31.874 29.074 28.342 79405 1408407 1426418 77406 821205 4475228 15.347 31365 18.350 11.484 273113 Total 100.000 100.000

1 PDA Multi 1 / 254nm,4nm

			PeakTable		
PDA Ch1 2	54nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	7.354	2805185	247351	73.702	84.727
2	9.546	544126	20004	14.296	6.852
3	10.740	228203	14294	5.996	4.896
4	15.335	228583	10289	6.006	3.525
Total		3806097	291938	100.000	100.000

S47

Enantioenriched 30

Benzyl

4-((3*S***,4***R***)-5-(3,5-dimethyl-1***H***-pyrazol-1-yl)-4-(dimethylamino)-5-oxopent-1-en-3-yl)benzoat e (3p)** Following the general procedure, the reaction was conducted at 0.2 mmol scale, product **3p** was obtained as a colorless liquid (39.0 mg, 45% yield, *anti:syn* = 3:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ D = +64.4 (*c* = 0.54, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.42 – 7.30 (m, 7H), 6.24 – 6.12 (m, 1H), 5.80 (s, 1H), 5.38 (d, *J* = 11.8 Hz, 1H), 5.30 (s, 2H), 5.19 – 5.07 (m, 2H), 3.99 (dd, *J* = 11.7, 8.4 Hz, 1H), 2.42 (s, 6H), 2.32 (s, 3H), 2.24 (s, 1H), 2.17 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.1, 170.4, 166.4, 166.3, 151.7, 151.6, 147.1, 146.1, 143.7, 143.4, 140.0, 137.9, 136.3, 136.1, 130.0, 129.8, 128.61, 128.57, 128.5, 128.43, 128.36, 128.21, 128.17, 128.15, 128.12, 117.2, 116.5, 111.6, 111.4, 66.6, 66.5, 66.1, 65.7, 50.1, 49.6, 41.3, 41.2, 14.6, 14.4, 13.9, 13.8.

HPLC: 90:10 *er*, chiral stationary column: OD-H, mobile phase: hexane/^{*i*}PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 254$ nm, 30 °C, major isomer: t_r (major) = 16.4 min, t_r (minor) = 27.8 min. **HRMS** m/z [M+H]⁺ calcd for C₂₆H₃₀N₃O₃⁺ = 432.2282, found 432.2283.

Racemic 3p

1 PDA Multi 1 / 254nm,4nm

PeakTable

1 car fabre						
PDA Ch1 2						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	16.426	130694	5755	18.713	25.718	
2	20.632	218973	7205	31.352	32.195	
3	22.245	217422	6547	31.130	29.257	
4	27.795	131337	2871	18.805	12.830	
Total		698425	22378	100.000	100.000	

Enantioenriched 3p

1 PDA Multi 1 / 254nm,4nm

PeakTable

			I Cak Iaule		
PDA Ch1 2	54nm				
Peak#	Ret. Time	Area	Height	Area%	Height %
1	16.422	541260	24479	65.939	73.960
2	20.640	141783	4868	17.273	14.707
3	22.237	78750	2463	9.594	7.442
4	27.780	59053	1288	7.194	3.891
Total		820847	33097	100.000	100.000

(2R,3S)-3-(benzo[*d*][1,3]dioxol-5-yl)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)pen t-4-en-1-one (3q): Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3q was obtained as a white solid (55.0 mg, 81% yield, *anti:syn* =10:1), M.p. 30 – 31 °C. TLC: R_f = 0.6 (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ D = +65.0 (*c* = 0.90, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 6.77 - 6.74$ (m, 1H), 6.70 - 6.68 (m, 1H), 6.61 - 6.59 (m, 1H), 6.19 - 6.10 (m, 1H), 5.85 - 5.80 (m, 3H), 5.28 (d, J = 11.7 Hz, 1H), 5.16 - 5.07 (m, 2H), 3.85 - 3.80 (m, 1H), 2.41 (s, 6H), 2.36 (s, 3H), 2.18 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 170.9, 151.4, 147.5, 146.1, 143.4, 139.8, 134.3, 121.6, 115.8, 111.3, 109.0, 108.1, 100.8, 66.4, 49.4, 41.3, 14.5, 13.8.

HPLC: 94:6 *er*, chiral stationary column: OD-H, mobile phase: hexane/PrOH = 99.5/0.5, flow rate 1.0 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 6.3 min, t_r (minor) = 11.1 min.

HRMS m/z $[M+H]^+$ calcd for $C_{19}H_{24}N_3O_3^+ = 342.1812$, found 342.1811.

Racemic 3q

1 PDA Multi 1 / 254nm,4nm

			PeakTable		
PDA Ch1 2	254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.701	283649	33441	33.583	51.660
2	7.348	135101	8225	15.995	12.705
3	8.459	136260	7059	16.132	10.905
4	11.022	289622	16009	34.290	24.730
Total		844631	64733	100.000	100.000

Enantioenriched 3q

1 PDA Multi 1 / 254nm,4nm

PeakTable

PDA Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	6.229	1728381	408275	93.636	98.789			
2	11.055	117464	5003	6.364	1.211			
Total		1845846	413278	100.000	100.000			

S51

(2*R*,3*S*)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)-3-(naphthalen-2-yl)pent-4-en-1one (3*r*): Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3*r* was obtained as a colorless liquid (45.0 mg, 65% yield, *anti:syn* = 10:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

[α] ²⁸ _D = +110.2 (*c* = 0.12, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.75 – 7.63 (m, 4H), 7.41 – 7.33 (m, 3H), 6.34 – 6.21 (m, 1H), 5.69 (s, 1H), 5.51 (d, *J* = 11.7 Hz, 1H), 5.17 – 5.13 (m, 2H), 4.12 – 4.07 (m, 1H), 2.48 (s, 6H), 2.24 (s, 3H), 2.16 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 170.9, 151.4, 143.4, 139.7, 138.0, 133.5, 132.4, 127.9, 127.8, 127.5, 127.10, 127.08, 125.8, 125.4, 116.2, 111.3, 66.2, 49.9, 41.4, 14.4, 13.8.

HPLC: 95:5 *er*, chiral stationary column: IA, mobile phase: hexane/PrOH = 99.8/0.2, flow rate 0.5 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 13.7 min, t_r (minor) = 12.7 min.

HRMS m/z $[M+H]^+$ calcd for $C_{22}H_{26}N_3O^+ = 348.2076$, found 348.2077.

Racemic 3r

1 PDA Multi 1 / 254nm,4nm

				PeakTable			
Р	PDA Ch1 254nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %	
Г	1	12.784	954532	31925	49.711	50.211	
	2	14.136	965640	31657	50.289	49.789	
	Total		1920172	63582	100.000	100.000	

1 PDA Multi 1 / 254nm,4nm

			PeakTable			
PDA Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	12.695	242558	9208	5.275	5.321	
2	13.748	4356002	163842	94.725	94.679	
Total		4598560	173050	100.000	100.000	

(2*R*,3*S*)-3-(benzofuran-6-yl)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)pent-4-en-1 -one (3s) Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3s was obtained as a colorless liquid (25.6 mg, 38% yield, *anti:syn* =10:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}_{D} = +63.5 \ (c = 0.26, \text{ in CH}_2\text{Cl}_2).$

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 2.2 Hz, 1H), 7.48 (d, J = 1.7 Hz, 1H), 7.28 (d, J = 8.5 Hz, 1H), 7.18 (dd, J = 8.5, 1.8 Hz, 1H), 6.63 (dd, J = 2.1, 0.8 Hz, 1H), 6.31-6.19 (m, 1H), 5.72 (s, 1H), 5.40 (d, J = 11.7 Hz, 1H), 5.18 – 5.10 (m, 2H), 4.01 (dd, J = 11.7, 8.6 Hz, 1H), 2.46 (s, 6H), 2.27 (s, 3H), 2.15 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.8, 171.1, 154.0, 153.9, 151.6, 151.3, 145.1, 145.0, 143.7, 143.3, 140.1, 139.2, 135.8, 135.0, 127.8, 127.4, 124.9, 124.5, 121.1, 120.6, 116.3, 115.8, 111.6, 111.5, 111.2, 111.0, 106.7, 106.6, 66.7, 66.1, 50.1, 49.7, 41.33, 41.28, 14.7, 14.4, 14.0, 13.8.

HPLC: 93.5:6.5 *er*, chiral stationary column: AD-H, mobile phase: hexane/PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 254$ nm, 30 °C, major isomer: t_r (major) = 10.7 min, t_r (minor) = 9.8 min.

HRMS $m/z [M+H]^+$ calcd for $C_{20}H_{24}N_3O_2^+ = 338.1863$, found 338.1863.

1 PDA Multi 1 / 254nm,4nm

PeakTable

	reak lable						
PDA Ch1 2	54nm						
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	9.729	105995	11727	29.056	37.896		
2	10.017	74316	8753	20.372	28.288		
3	10.410	110761	6288	30.362	20.319		
4	12.192	73724	4177	20.210	13.497		
Total		364797	30944	100.000	100.000		

Enantioenriched 3s

reakrable						
PDA Ch1 2	54nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	9.782	24007	2539	6.095	8.441	
2	10.127	11073	1146	2.811	3.810	
3	10.658	342836	25323	87.046	84.203	
4	12.345	15942	1066	4.048	3.546	
Total		393857	30074	100.000	100.000	

(2*R*,3*S*)-3-(dibenzo[*b*,*d*]thiophen-3-yl)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)pe nt-4-en-1-one (3t) Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3t was obtained as a colorless liquid (24.4 mg, 30% yield, *anti:syn* =19:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ D = +91.0 (*c* = 0.27, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ 8.07 – 8.01 (m, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.81 – 7.75 (m, 2H), 7.43 – 7.36 (m, 2H), 7.34 (dd, J = 8.2, 1.5 Hz, 1H), 6.36 – 6.22 (m, 1H), 5.70 (s, 1H), 5.47 (d, J = 11.7 Hz, 1H), 5.20 (s, 1H), 5.16 (d, J = 7.4 Hz, 1H), 4.07 (dd, J = 11.7, 8.5 Hz, 1H), 2.48 (s, 6H), 2.27 (s, 3H), 2.17 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.9, 151.6, 143.4, 139.6, 139.5, 139.3, 135.4, 134.2, 126.5, 125.2, 124.3, 122.8, 122.7, 121.43, 121.37, 116.3, 111.4, 66.5, 50.0, 41.4, 14.4, 13.8.

HPLC: 95:5 *er*, chiral stationary column: IA, mobile phase: hexane/^{*i*}PrOH = 99/1, flow rate 0.5 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 11.8 min, t_r (minor) = 10.3 min.

HRMS m/z $[M+H]^+$ calcd for $C_{24}H_{26}N_3OS^+ = 404.1791$, found 404.1793.

Racemic 3t

1 PDA Multi 1 / 254nm,4nm

PeakTable

		reactable						
PDA Ch1 254nm								
	Peak#	Ret. Time	Area	Height	Area %	Height %		
	1	10.168	1324564	161761	49.691	72.307		
	2	11.953	1341013	61955	50.309	27.693		
	Total		2665577	223716	100.000	100.000		

Enantioenriched 3t

1 PDA Multi 1 / 254nm,4nm

	I cakiaole						
Р	PDA Ch1 254nm						
Γ	Peak#	Ret. Time	Area	Height	Area %	Height %	
	1	10.299	76414	8174	5.139	8.984	
Γ	2	11.786	1410566	82812	94.861	91.016	
Γ	Total		1486981	90986	100.000	100.000	

(2*R*,3*S*)-3-(dibenzo[*b*,*d*]furan-3-yl)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)pent-4-en-1-one (3u) Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3u was obtained as a colorless liquid (39.2 mg, 51% yield, *anti:syn* =19:1). TLC: R_f = 0.6 (petroleum ether/ethyl acetate 10/1). [α] ²⁸ _D = +38.8 (*c* = 0.32, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.83 (m, 2H), 7.49 (d, *J* = 8.2 Hz, 1H), 7.43-7.38 (m, 1H), 7.38 – 7.33 (m, 2H), 7.33 – 7.28 (m, 1H), 6.36 – 6.23 (m, 1H), 5.68 (s, 1H), 5.50 (d, *J* = 11.8 Hz, 1H), 5.20 – 5.13 (m, 2H), 4.08 (dd, *J* = 11.8, 8.3 Hz, 1H), 2.49 (s, 6H), 2.25 (s, 3H), 2.15 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 156.4, 155.1, 151.5, 143.3, 140.0, 134.9, 127.9, 127.0, 124.3, 124.2, 122.6, 120.6, 116.0, 111.6, 111.32, 111.27, 66.6, 49.7, 41.3, 14.4, 13.8. HPLC: 90:10 *er*, chiral stationary column: AD-H, mobile phase: hexane/ⁱPrOH = 99/1, flow rate 0.5 mL/min, λ = 254 nm, 30 °C, t_r (major) = 15.6 min, t_r (minor) = 10.5 min. HRMS m/z [M+H]⁺ calcd for C₂₄H₂₆N₃O₂⁺ = 388.2020, found 388.2020.

S58

Racemic 3u

1 PDA Multi 1 / 254nm,4nm

PeakTable

				1 current and 1 current			
1	PDA Ch1 254nm						
[Peak#	Ret. Time	Area	Height	Area %	Height %	
	1	9.951	704952	121808	49.760	78.946	
	2	15.727	711763	32485	50.240	21.054	
	Total		1416715	154293	100.000	100.000	

Enantioenriched 3u

1 PDA Multi 1 / 254nm,4nm

PeakTable

F	PDA Ch1 254nm								
Γ	Peak#	Ret. Time	Area	Height	Area %	Height %			
Γ	1	10.462	78029	8239	9.692	16.149			
Γ	2	15.608	727076	42780	90.308	83.851			
Γ	Total		805105	51020	100.000	100.000			

(2*R*,3*R*)-3-(benzo[*b*]thiophen-2-yl)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)pent-4-en-1-one (3v): Following the general procedure, the reaction was conducted at 0.1 mmol scale, product 3v was obtained as a colorless liquid (32.3 mg, 46% yield, *anti:syn* = 10:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}_{D} = +88.1 \ (c = 0.24, \text{ in CH}_2\text{Cl}_2).$

¹**H NMR** (400 MHz, CDCl₃) $\delta = 7.71 - 7.69$ (m, 1H), 7.60 - 7.56 (m, 1H), 7.24 - 7.18 (m, 2H), 7.12 (s, 1H), 6.22 - 6.13 (m, 1H), 5.83 (s, 1H), 5.39 (d, J = 11.6 Hz, 1H), 5.28 - 5.17 (m, 2H), 4.33 - 4.28 (m, 1H), 2.41 (s, 9H), 2.20 (s, 3H).

¹³**C NMR** δ = 169.9, 151.7, 145.0, 143.7, 139.9, 139.5, 138.6, 124.0, 123.7, 123.2, 122.2, 121.4, 116.7, 111.6, 66.7, 45.1, 41.3, 14.6, 13.9.

HPLC: 96:4 *er*, chiral stationary column: OD-H, mobile phase: hexane/PrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 11.4 min, t_r (minor) = 12.1 min.

HRMS m/z $[M+H]^+$ calcd for $C_{20}H_{24}N_3OS^+ = 354.1640$, found 354.1639.

Racemic 3v

1 PDA Multi 1 / 254nm,4nm

				PeakTable				
P	PDA Ch1 254nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %		
Γ	1	11.921	4141381	320937	49.906	49.822		
	2	12.488	4156979	323227	50.094	50.178		
	Total		8298361	644164	100.000	100.000		

Enantioenriched 3v

1 PDA Multi 1 / 254nm,4nm

			I Cak Table			
PDA Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	11.446	5678224	432895	95.710	95.885	
2	12.132	254523	18576	4.290	4.115	
Total		5932747	451472	100.000	100.000	

(2*R*,3*S*,*E*)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)-5-phenyl-3-vinylpent-4-en-1one (3w): Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3w was obtained as a colorless liquid (26.0 mg, 41% yield, *anti:syn* >19:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ D = +14.6 (*c* = 0.54, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.25 – 7.12 (m, 5H), 6.43 – 6.40 (m, 1H), 6.08 – 5.99 (m, 2H), 5.87 (s, 1H), 5.27 – 5.14 (m, 2H), 5.05 (d, *J* = 11.2 Hz, 1H), 3.60 – 3.48 (m, 1H), 2.46 (s, 3H), 2.42 (s, 6H), 2.23 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ = 171.7, 151.7, 143.7, 138.2, 137.4, 131.8, 128.5, 128.4, 127.3, 126.3, 116.3, 111.6, 66.0, 47.7, 41.3, 14.6, 13.9.

HPLC: 96:4 *er*, chiral stationary column: OD-H, mobile phase: hexane/PrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 10.0 min, t_r (minor) = 11.7 min.

HRMS m/z $[M+H]^+$ calcd for $C_{20}H_{26}N_3O^+ = 324.2076$, found 324.2069.

Racemic 3w

1 PDA Multi 1 / 254nm,4nm

			PeakTable			
PDA Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	10.022	15560947	1331159	50.064	54.250	
2	11.754	15520964	1122590	49.936	45.750	
Total		31081911	2453749	100.000	100.000	

Enantioenriched 3w

1 PDA Multi 1 / 254nm,4nm

	I Cak Table						
PDA Ch1 254nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %	
	1	10.015	7643000	675180	95.871	96.253	
	2	11.709	329162	26285	4.129	3.747	
	Total		7972161	701465	100.000	100.000	

(2*R*,3*S*)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-2-(dimethylamino)-3-(4-((1*r*,4*R*)-4-propylcyclohexy l)phenyl)pent-4-en-1-one (3x) Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3x was obtained as a colorless liquid (45.3 mg, 54% yield, *anti:syn* = 7:1). TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ D = +61.7 (*c* = 0.51, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ 7.10 (d, *J* = 8.2 Hz, 2H), 6.96 (d, *J* = 8.2 Hz, 2H), 6.27 – 6.09 (m, 1H), 5.74 (s, 1H), 5.32 (d, *J* = 11.6 Hz, 1H), 5.18 – 5.08 (m, 2H), 3.86 (dd, *J* = 11.7, 8.7 Hz, 1H), 2.46 (s, 6H), 2.36 – 2.29 (m, 1H), 2.27 (s, 3H), 2.16 (s, 3H), 1.85 – 1.71 (m, 4H), 1.38 – 1.14 (m, 7H), 1.05 – 0.92 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.4, 151.2, 146.1, 143.3, 139.8, 137.4, 128.2, 126.6, 115.8, 111.0, 66.5, 49.8, 44.2, 41.3, 39.8, 37.1, 34.3, 34.2, 33.6, 20.1, 14.5, 14.3, 13.8.

HRMS m/z $[M+H]^+$ calcd for $C_{27}H_{40}N_3O^+ = 422.3166$, found 422.3167.

(2*R*,3*S*)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-3-phenyl-2-(pyrrolidin-1-yl)pent-4-en-1-one (3aa): Following the general procedure, the reaction performed at 50 °C and was conducted at 0.2 mmol scale, product **3aa** was obtained as a white solid (24.0 mg, 37% yield, *anti:syn* = 10:1), M.p. 62 – 64 °C.

TLC: $R_f = 0.8$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{20} = +75.0 \ (c = 0.16, \text{ in CH}_2\text{Cl}_2).$

¹**H** NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 7.8 Hz, 2H), 7.15 (t, J = 7.5 Hz, 2H), 7.07 (t, J = 7.2 Hz, 1H), 6.33 – 6.16 (m, 1H), 5.77 (s, 1H), 5.62 – 5.52 (m, 1H), 5.15 – 5.02 (m, 2H), 4.00 – 3.90 (m, 1H), 2.92 (s, 2H), 2.74 (s, 2H), 2.28 (s, 3H), 2.18 (s, 3H), 1.79 – 1.64 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 171.6, 151.4, 143.4, 140.7, 140.0, 128.5, 128.3, 126.6, 115.7, 111.1, 63.3, 50.8, 48.3, 23.6, 14.4, 13.9.

HPLC: 89:11 *er*, chiral stationary column: OD, mobile phase: hexane/^{*i*}PrOH = 99.7/0.3, flow rate 0.5 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 11.6 min, t_r (minor) = 21.7 min.

HRMS m/z $[M+H]^+$ calcd for $C_{20}H_{26}N_3O^+ = 324.2070$, found 324.2071.

Racemic 3aa

Enantioenriched 3aa

1 PDA Multi 1 / 254nm,4nm

	1 car faore						
PDA Ch1 254nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %	
Ľ	1	11.615	1112486	70588	88.545	95.661	
	2	21.665	143915	3202	11.455	4.339	
	Total		1256401	73790	100.000	100.000	

(2*R*,3*S*)-2-(benzyl(methyl)amino)-1-(3,5-dimethyl-1*H*-pyrazol-1-yl)-3-phenylpent-4-en-1-one (3ab): Following the general procedure, the reaction performed at 50 °C and was conducted at 0.2 mmol scale, product 3ab was obtained as a white solid (39.0 mg, 52% yield, *anti:syn* = 5:1), M.p. 75 – 86 °C.

TLC: $R_f = 0.8$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{20} D = +42.5 (c = 0.32, in CH₂Cl₂).$

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 – 7.34 (m, 2H), 7.33 – 7.28 (m, 2H), 7.27 – 7.23 (m, 3H), 7.20 – 7.14 (m, 2H), 7.12 – 7.08 (m, 1H), 6.38 – 6.26 (m, 1H), 5.81 (s, 1H), 5.50 (d, *J* = 11.7 Hz, 1H), 5.14 (dd, *J* = 29.6, 13.7 Hz, 2H), 4.04 (dd, *J* = 11.6, 8.2 Hz, 1H), 3.86 (d, *J* = 13.9 Hz, 1H), 3.75 (d, *J* = 13.9 Hz, 1H), 2.35 (s, 3H), 2.32 (s, 3H), 2.17 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.0, 171.3, 151.7, 151.3, 143.7, 143.4, 141.2, 140.5, 140.1, 140.0, 139.9, 138.7, 128.7, 128.6, 128.5, 128.3, 128.1, 127.9, 126.8, 126.6, 126.5, 116.6, 116.0, 111.7, 111.2, 66.5, 66.0, 58.1, 57.9, 50.3, 49.8, 37.6, 37.5, 14.7, 14.4, 14.0, 13.8.

HPLC: 75:25 *er*, chiral stationary column: OD, mobile phase: hexane/^{*i*}PrOH = 99.7/0.3, flow rate 0.5 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 17.1 min, t_r (minor) = 22.2 min.

HRMS m/z $[M+H]^+$ calcd for $C_{24}H_{28}N_3O^+ = 374.2227$, found 374.2227.

Racemic 3ab

PDA Ch1 254nm PeakTable							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	14.968	43940	2436	4.238	6.414		
2	15.697	48730	2295	4.700	6.044		
3	17.843	458449	17639	44.215	46.443		
4	22.789	485745	15610	46.848	41.100		
Total		1036864	37980	100.000	100.000		

Enantioenriched 3ab

1 PDA Multi 1 / 254nm,4nm

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	14.431	21773	1317	2.216	2.491		
2	15.137	33150	1719	3.374	3.252		
3	17.129	698452	27536	71.085	52.100		
4	22.211	229184	22281	23.325	42.156		
Total		982559	52852	100.000	100.000		

PeakTable

4-((35,4R)-5-(3,5-dimethyl-1*H***-pyrazol-1-yl)-4-(dimethylamino)-5-oxopent-1-en-3-yl)phenyl 4-(***N***,***N***-dipropylsulfamoyl)benzoate (3ca): Following the general procedure, the reaction was conducted at 0.2 mmol scale, product 3ca was obtained as a colorless liquid (52.0 mg, 45% yield, anti:syn = 8:1).**

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ D = +28.2 (*c* = 0.95, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.32 - 8.25$ (m, 2H), 7.97 - 7.90 (m, 2H), 7.37 - 7.31 (m, 2H), 7.10 - 7.02 (m, 2H), 6.27 - 6.18 (m, 1H), 5.86 (s, 1H), 5.40 (d, J = 11.7 Hz, 1H), 5.23 - 5.13 (m, 2H), 4.02 - 3.97 (m, 1H), 3.18 - 3.11 (m, 4H), 2.48 (s, 6H), 2.39 (s, 3H), 2.21 (s, 3H), 1.63 - 1.54 (m, 4H), 0.91 (t, J = 7.4 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ = 170.7, 163.7, 151.6, 149.3, 144.9, 143.5, 139.4, 138.5, 138.4, 133.0, 130.9, 130.8, 129.7, 129.5, 127.2, 121.5, 121.2, 116.9, 116.3, 111.7, 111.5, 66.3, 50.0, 49.2, 41.3, 22.0, 14.7, 14.5, 13.9, 11.2.

HPLC: 93:7 *er*, chiral stationary column: IA, mobile phase: hexane/PrOH = 95/5, flow rate 1.0 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 9.7 min, t_r (minor) = 8.2 min.

HRMS $m/z [M+H]^+$ calcd for $C_{31}H_{41}N_4O_5S^+ = 581.2792$, found 581.2797.

Racemic 3ca

 PeakTable

 PDA Ch1 254nm
 Area
 Height
 Area %
 Height %

 1
 8.253
 94449
 7399
 50.141
 54.522

 2
 9.818
 93917
 6171
 49.859
 45.478

 Total
 188366
 13570
 100.000
 100.000

Enantioenriched 3ca

1 PDA Multi 1 / 254nm,4nm

Dag	1	ba.	h	0
i ca	Λ.	ıa	U	

				1 cultitude			
PDA Ch1 254nm							
	Peak#	Ret. Time	Area	Height	Area %	Height %	
	1	8.164	42875	3334	6.927	8.262	
	2	9.717	576058	37019	93.073	91.738	
	Total		618933	40353	100.000	100.000	

4-((35,4R)-5-(3,5-dimethyl-1*H***-pyrazol-1-yl)-4-(dimethylamino)-5-oxopent-1-en-3-yl)benzyl** (*R*)-2-(6-methoxynaphthalen-2-yl)propanoate (3cb) Following the general procedure, the reaction was conducted at 0.2 mmol scale, product **3cb** was obtained as a colorless liquid (61.7 mg, 57% yield, *anti:syn* = 10:1).

TLC: $R_f = 0.6$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}_{D} = +40.5 \ (c = 0.60, \text{ in CH}_2\text{Cl}_2).$

¹**H** NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 8.6, 4.7 Hz, 2H), 7.84 (s, 1H), 7.58 (dd, J = 8.5, 1.8 Hz, 1H), 7.42 – 7.32 (m, 4H), 7.27 (d, J = 8.1 Hz, 2H), 6.45 – 6.33 (m, 1H), 5.97 (s, 1H), 5.56 (d, J = 11.7 Hz, 1H), 5.38 – 5.29 (m, 2H), 5.26 (d, J = 12.5 Hz, 1H), 5.16 (d, J = 12.5 Hz, 1H), 4.15 – 4.05 (m, 5H), 2.66 (s, 6H), 2.52 (s, 3H), 2.37 (s, 3H), 1.78 (d, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 174.5, 174.4, 170.7, 170.6, 157.7, 157.6, 151.5, 151.4, 143.4, 143.3, 140.4, 140.3, 139.5, 139.4, 135.6, 135.5, 134.3, 134.2, 133.7, 133.6, 129.34, 129.25, 129.0, 128.9, 128.6, 128.5, 128.0, 127.9, 127.2, 127.1, 126.3, 126.2, 126.0, 125.9, 119.0, 118.9, 116.1, 116.0, 111.3, 111.2, 105.6, 105.5, 66.3, 66.2, 55.4, 55.3, 49.6, 49.5, 45.5, 45.4, 41.3, 41.2, 18.7, 18.6, 14.4, 14.3, 13.8, 13.7.

HRMS m/z $[M+H]^+$ calcd for $C_{33}H_{38}N_3O_4^+ = 540.2857$, found 540.2858.

7. Synthetic applications

The product **3e** (0.1 mmol) in THF/H₂O (0.8 mL/0.2 mL) was added NaBH₄ (8.0 equiv.) at 0 °C, and the resulting solution was stirred 36 h at 40 °C. After quenching with 1.0 M HCl, the resultant mixture was extracted with EtOAc. The combined organic layer was washed with brine and dried over Na₂SO₄. After evaporation of the organic solvent under reduced pressure, the crude mixture was purified by silica gel column chromatography to give **4**.

(2R,3S)-3-([1,1'-biphenyl]-4-yl)-2-(dimethylamino)pent-4-en-1-ol (4) the reaction was conducted at 0.1 mmol scale, product 4 was obtained as a white solid (24.0 mg, 85% yield, *anti:syn* =19:1), M.p. 135 – 137 °C.

TLC: $R_f = 0.2$ (ethyl acetate).

 $[\alpha]^{28} = +88.03 \ (c = 0.44, \text{ in CH}_2\text{Cl}_2).$

¹**H** NMR (400 MHz, CDCl₃) δ 7.64 – 7.52 (m, 4H), 7.52 – 7.42 (m, 2H), 7.42 – 7.33 (m, 1H), 7.26 (d, *J* = 8.0 Hz, 2H), 6.31 – 6.18 (m, 1H), 5.21 (dd, *J* = 16.9, 1.3 Hz, 1H), 5.14 – 5.10 (M, 1H), 3.58 (t, *J* = 8.9 Hz, 1H), 3.20 – 3.08 (m, 3H), 2.65 – 2.60 (m, 6H), 2.50 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 141.1, 140.8, 140.7, 139.7, 128.8, 127.9, 127.7, 127.3, 127.1, 115.8, 68.1, 59.8, 51.2, 40.7.

HPLC: 95:5 *er*, chiral stationary column: OD-H, mobile phase: hexane/ⁱPrOH = 97/3, flow rate 1.0 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 9.0 min, t_r (minor) = 12.3 min.

HRMS m/z $[M+H]^+$ calcd for $C_{19}H_{24}NO^+ = 282.1852$, found 282.1850.
Racemic 4

1 PDA Multi 1 / 254nm,4nm

PeakTable								
PDA Ch1 2	PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	9.091	543811	41989	50.104	58.022			
2	12.408	541563	30378	49.896	41.978			
Total		1085374	72366	100.000	100.000			

1 PDA Multi 1 / 254nm,4nm

PeakTable

		I can lable				
PDA Ch1 254nm						
Ret. Time	Area	Height	Area %	Height %		
8.977	412164	30575	94.801	96.061		
12.345	22602	1254	5.199	3.939		
	434766	31828	100.000	100.000		
	54nm Ret. Time 8.977 12.345	S4nm Ret. Time Area 8.977 412164 12.345 22602 434766	Ket. Time Area Height 8.977 412164 30575 12.345 22602 1254 434766 31828	Ket. Time Area Height Area % 8.977 412164 30575 94.801 12.345 22602 1254 5.199 434766 31828 100.000		

The product **3e** (0.1 mmol), methyl (2*S*)-2-amino-3,3-dimethylbutanoate (2.0 equiv.), HOBT (2.0 equiv.) and toluene (1.0 mL) was added into a reaction tube equipped with a stirring bar. Then the tube was stirred 24h at 80 °C. The mixture was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography to give product **5**.

Methyl

(*S*)-2-((2*R*,3*S*)-3-([1,1'-biphenyl]-4-yl)-2-(dimethylamino)pent-4-enamido)-3,3-dimethylbutan oate (5) the reaction was conducted at 0.1 mmol scale, product 5 was obtained as a white solid (31.9 mg, 76% yield, *anti:syn* =19:1), M.p. 156 – 158 °C.

TLC: $R_f = 0.2$ (petroleum ether/ethyl acetate 1/1).

 $[\alpha]^{28} D = +30.63 (c = 0.37, in CH₂Cl₂).$

¹**H** NMR (400 MHz, CDCl₃) δ 7.56 – 7.49 (m, 4H), 7.48 – 7.43 (m, 2H), 7.39 – 7.33 (m, 3H), 6.33 – 6.15 (m, 1H), 5.89 (d, *J* = 9.5 Hz, 1H), 5.21 (dd, *J* = 14.1, 2.7 Hz, 2H), 4.29 (d, *J* = 9.4 Hz, 1H), 4.00 – 3.87 (m, 1H), 3.71 (s, 3H), 3.40 (d, *J* = 10.9 Hz, 1H), 2.48 (s, 6H), 0.58 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 172.3, 168.5, 141.1, 140.3, 140.1, 138.9, 128.9, 128.8, 127.6, 127.2, 127.1, 116.4, 73.6, 59.2, 51.8, 49.6, 41.5, 34.7, 26.1.

HRMS m/z $[M+H]^+$ calcd for $C_{26}H_{35}N_2O_3^+ = 423.2642$, found 423.2639.

The product **3e** (0.1 mmol) in THF/H₂O (0.8 mL/0.2 mL) was added LiOH·H₂O(8.0 equiv.) at 0 °C, and the resulting solution was stirred 36h at 50 °C. After quenching with 4.0 M HCl, the resultant mixture was extracted with EtOAc (3 × equal volume) and dried over Na₂SO₄. After evaporation of the organic solvent under reduced pressure, the crude mixture was purified by silica gel column chromatography to give **6**.

(2R,3S)-3-([1,1'-biphenyl]-4-yl)-2-(dimethylamino)pent-4-enoic acid hydrochloride (6) the reaction was conducted at 0.1 mmol scale, product 6 was obtained as a white solid (21.2 mg, 64% yield, *anti:syn* =19:1), M.p. 89 – 91 °C.

TLC: $R_f = 0.2$ (dichloromethane/CH₃OH 10/1).

 $[\alpha]^{28}_{D} = -1.61$ (*c* = 0.31, in CH₃OH).

¹**H** NMR (400 MHz, MeOD) δ 7.55 – 7.47 (m, 4H), 7.41 – 7.32 (m, 4H), 7.30 – 7.21 (m, 1H), 6.19 – 6.07 (m, 1H), 5.32 (dd, J = 17.0, 1.4 Hz, 1H), 5.20 (dd, J = 10.1, 1.3 Hz, 1H), 4.02 – 3.88 (m, 2H), 2.87 (s, 6H).

¹³C NMR (101 MHz, MeOD) δ 169.0, 140.6, 140.2, 138.1, 137.1, 128.7, 128.5, 127.04, 126.95, 126.5, 117.9, 73.2, 49.6, 40.7.

Er was determined on the corresponding 3e (95:5 *er*, see compound 3e).

HRMS m/z $[M+H]^+$ calcd for $C_{19}H_{22}NO_2^+ = 296.1645$, found 296.1646.

The product **3e** (0.1 mmol) was dissolved in 1.0 mL of methanol. The reaction was stirred at 60 $^{\circ}$ C overnight. After the reaction was completed, the solution was concentrated under vacuum, and the residue was purified by silica gel chromatography to give the desired product **7**.

methyl (2*R*,3*S*)-3-([1,1'-biphenyl]-4-yl)-2-(dimethylamino)pent-4-enoate (7) the reaction was conducted at 0.1 mmol scale, product 7 was obtained as a white solid (27.8 mg, 90% yield, *anti:syn* =19:1), M.p. 98 – 99 °C.

TLC: $R_f = 0.5$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}$ D = -4.8 (*c* = 0.08, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ 7.59 – 7.55 (m, 2H), 7.54 – 7.49 (m, 2H), 7.45 – 7.39 (m, 2H), 7.35 – 7.29 (m, 1H), 7.29 – 7.25 (m, 2H), 6.23 – 6.08 (m, 1H), 5.19 – 5.10 (m, 2H), 3.81 (dd, J = 11.7, 8.6 Hz, 1H), 3.62 (d, J = 11.7 Hz, 1H), 3.45 (s, 3H), 2.41 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 170.2, 140.8, 139.9, 139.7, 138.8, 128.8, 128.6, 127.32, 127.25, 127.0, 116.3, 71.7, 50.7, 49.5, 41.4.

HPLC: 96:4 *er*, chiral stationary column: OJ-H, mobile phase: hexane/^{*i*}PrOH = 99.5/0.5, flow rate 1.0 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 19.8 min, t_r (minor) = 26.4 min.

HRMS m/z $[M+H]^+$ calcd for $C_{20}H_{24}NO_2^+ = 310.1802$, found 310.1800.

Racemic 7

1 PDA Multi 1 / 254nm,4nm

			PeakTable				
PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	19.615	1004039	15554	50.247	56.292		
2	25.764	994160	12077	49.753	43.708		
Total		1998198	27630	100.000	100.000		

Enantioenriched 7

1 PDA Multi 1 / 254nm,4nm

PeakTable

			1 can rable			
PDA Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	19.817	6877815	102285	96.096	96.821	
2	26.419	279455	3358	3.904	3.179	
Total		7157270	105643	100.000	100.000	

The product **7** (0.1 mmol) and 10% Pd/C was dissolved in 1 mL MeOH under H₂ atmosphere. The reaction was stirred at rt. overnight. After the reaction was completed, the solution was concentrated under vacuum, and the residue was purified by silica gel chromatography to give the desired product **8**.

methyl (2*R*,3*S*)-3-([1,1'-biphenyl]-4-yl)-2-(dimethylamino)pentanoate (8) the reaction was conducted at 0.1 mmol scale, product 8 was obtained as a white solid (28.3 mg, 91% yield, *anti:syn* =19:1), M.p. 133 - 135 °C.

TLC: $R_f = 0.7$ (petroleum ether/ethyl acetate 10/1).

 $[\alpha]^{28}_{D} = +98.4 \ (c = 0.1, \text{ in CH}_2\text{Cl}_2).$

¹**H** NMR (400 MHz, CDCl₃) δ 7.61 – 7.56 (m, 2H), 7.54 – 7.48 (m, 2H), 7.42 (dd, J = 8.3, 7.0 Hz, 2H), 7.35 – 7.29 (m, 1H), 7.23 (d, J = 8.3 Hz, 2H), 3.42 (d, J = 11.4 Hz, 1H), 3.38 (s, 3H), 2.98 – 2.87 (m, 1H), 2.39 (s, 6H), 2.20 – 2.03 (m, 1H), 1.57 – 1.48 (m, 1H), 0.76 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.8, 140.9, 140.5, 139.3, 129.0, 128.7, 127.1, 126.92, 126.86, 72.4, 50.3, 46.6, 41.4, 24.8, 11.6.

HPLC: 95:5 *er*, chiral stationary column: OJ-H, mobile phase: hexane/^{*i*}PrOH = 99.5/0.5, flow rate 0.5 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 22.6 min, t_r (minor) = 27.5 min.

HRMS m/z $[M+H]^+$ calcd for $C_{20}H_{26}NO_2^+ = 312.1958$, found 312.1955.

Racemic 8

PeakTable PDA Ch1 254nm Height % 54.626 45.374 100.000 Area % 50.285 Ret. Time 22.259 Height Peak# Area 1226100 14668 1 121220100 1212220 2438319 27.378 12184 49.715 2 Total 26851 100.000

1 PDA Multi 1 / 254nm,4nm

PeakTable PDA Ch1 254nm Peak# Ret Ret. Time 22.553 27.470 Height % 95.624 Height 137314 Area % 95.383 Area 13268654 1 642274 4.376 2 6285 4.617 Total 13910928 143598 100.000 100.000

The product 7 (0.1 mmol) was dissolved in 9-BBN (0.5 M in tetrahydrofuran, 0.4 mL, 0.20 mmol) under N₂ atmosphere, and the resulting solution was stirred 24 h at room temperature. The reaction was diluted with ethanol (1.0 mL) and treated with 4 M sodium hydroxide (0.2 mL). Then 30% hydrogen peroxide (0.3 mL) was added dropwise at 0 °C. The reaction was stirred at 0 °C for 1 h, then quenched by addition of saturated NH₄Cl. The mixture was extracted with diethyl ether. The combine organic phase was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography to give the desired product **9**.

methyl (2*R*,3*S*)-3-([1,1'-biphenyl]-4-yl)-2-(dimethylamino)-5-hydroxypentanoate (9) the reaction was conducted at 0.1 mmol scale, product 9 was obtained as a white solid (27.2 mg, 83% yield, *anti:syn* =19:1), M.p. 79 – 81 °C.

TLC: $R_f = 0.2$ (petroleum ether/ethyl acetate 2/1).

[α] ²⁸ _D = -0.95 (*c* = 0.35, in CH₂Cl₂).

¹**H** NMR (400 MHz, CDCl₃) δ 7.64 – 7.58 (m, 2H), 7.57 – 7.52 (m, 2H), 7.51 – 7.41 (m, 2H), 7.40 – 7.32 (m, 1H), 7.32 – 7.24 (m, 2H), 3.80 – 3.69 (m, 1H), 3.65 – 3.53 (m, 2H), 3.40 (s, 3H), 3.30 – 3.21 (m, 1H), 2.49 (s, 6H), 2.26 – 2.14 (m, 1H), 2.06 – 1.96 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 170.1, 141.2, 140.7, 139.7, 128.8, 128.5, 127.3, 127.2, 127.0, 72.3, 61.3, 50.8, 44.5, 41.6, 39.0.

HPLC: 95:5 *er*, chiral stationary column: OJ-H, mobile phase: hexane/^{*i*}PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, 30 °C, t_r (major) = 14.4 min, t_r (minor) = 17.6 min.

HRMS m/z $[M+H]^+$ calcd for $C_{20}H_{26}NO_3^+ = 328.1907$, found 328.1905.

1 PDA Multi 1 / 254nm,4nm

PeakTable

			1 cun ruore				
PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	10.855	928805	31781	15.125	21.540		
2	14.316	2178817	62784	35.480	42.552		
3	17.552	2128407	42733	34.659	28.963		
4	21.738	904956	10246	14.736	6.945		
Total		6140986	147545	100.000	100.000		

Enantioenriched 9

1 PDA Multi 1 / 254nm,4nm

PeakTable

			1 concrete				
PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	14.350	883880	25501	95.251	96.293		
2	17.574	44070	982	4.749	3.707		
Total		927950	26483	100.000	100.000		

8. Determination of the absolute configuration

The reaction depicted in Eq (b) was run according to our previous report (*Chem. Sci.* **2020**, *11*, 3068-3073). The compound **3a** prepared by our previous method is (2*R*,3*S*) configuration in 97:3 *er*, and its optical rotation has been measured as $[\alpha]^{24}_{D} = +82.0$ (c = 1.02, CH₂Cl₂, $\lambda = 589$ mm).

In the present manuscript, the sample of **3a** was prepared in 95:5 *er* and its optical rotation was measured as $[\alpha]^{28}_{D} = +49.7$ (c = 0.40, CH₂Cl₂, $\lambda = 589$ mm). Therefore, we assigned **3a** as (2*R*,3*S*) configuration.

9. Control experiment

The reaction was conducted with dimethylglycine pyrazoleamide (2, 0.1 mmol) and cinnamyl bromide (0.1 mmol) in 2.0 mL of acetone. The mixture was stirred at room temperature overnight under a N_2 atmosphere, and then concentrated in vacuo to give product 10.

¹**H** NMR (400 MHz, D₂O) δ 7.26 (d, *J* = 7.1 Hz, 2H), 7.18 (d, *J* = 6.9 Hz, 3H), 6.67 (d, *J* = 15.7 Hz, 1H), 6.23 - 6.11 (m, 1H), 5.97 (s, 1H), 4.60 (s, 2H), 4.15 (d, *J* = 7.7 Hz, 2H), 3.19 (s, 5H), 2.31 (s, 3H), 1.95 (s, 3H).

¹³C NMR (101 MHz, D₂O) δ 163.7, 155.8, 145.8, 143.5, 134.7, 129.6, 128.9, 127.2, 114.3, 112.7, 67.6, 61.1, 51.9, 13.6, 12.8.

HRMS m/z $[M+H]^+$ calcd for $C_{18}H_{24}N_3O^+ = 298.1914$, found 298.1906.

In order to gain insight into the catalytic mechanism, a series of control experiments to investigate the [2,3]-rearrangement of allylic ammonium salt **10** were subsequently performed. The results summarized as below:

Note: All the reactions were conducted at MeCN, 20 °C, 72 h

10. Initial Rate Kinetic Isotope Effects (KIE) study

Under an N₂ atmosphere, the tube was added Mg(OTf)₂ (0.01 mmol, 10mol%), *N*,*N*'-dioxides ligand L₃-RaAd (0.01 mmol, 10 mol%), amino amide **2** (0.1 mmol, 1.0 equiv.) and MeCN (0.5 mL). Another tube was added Pd₂(dba)₃·CHCl₃ (4 mol%), PPh₃ (8 mol%) and MeCN (0.5 mL). After being stirred at 35 °C for 1 h, two tubes were mixed, and 2,5-DTBQ (1.5 equiv.) and terminal alkene **1e/1e-d₂** (0.2 mmol, 2.0 equiv.) were added sequently. Then the reaction mixture was stirred at 40 °C. The concentration of **3e** and **3e-d₁** was monitored by NMR ¹H analysis. The results were shown in Figure S1. The KIE (k_{H}/k_D) was calculated to be 2.9 (Figure S1).

Figure S1: Graph illustrating the KIE data. Slopes were fit using a least square linear regression model.

11. NMR spectrum

¹³C NMR of Compound **1p** (101 MHz, CDCl₃)

¹³C NMR of Compound 1t (101 MHz, CDCl₃)

¹³C NMR of Compound **1u** (101 MHz, CDCl₃)

7,1,135 7,1,135 7,1,135 7,1,135 7,1,135 5,5,992 5,5,992 5,5,984 5,5,084 2,2,484 1,2,194 1,2,1093 1,2,294

110 100 90 80 f1 (ppm)

¹³C NMR of Compound 1ca (101 MHz, CDCl₃)

¹³C NMR of Compound **3a** (101 MHz, CDCl₃)

¹³C NMR of Compound **3a-methyl ester** (101 MHz, CDCl₃)

¹³C NMR of Compound **3c** (101 MHz, CDCl₃)

¹³C NMR of Compound **3c-methyl ester** (101 MHz, CDCl₃)

¹³C NMR of Compound **3d** (101 MHz, CDCl₃)

¹H NMR of Compound **3f** (400 MHz, CDCl₃)

$\begin{array}{c} 171.62 \\ 170.83 \\ 151.59 \\ 151.59 \\ 151.59 \\ 151.59 \\ 151.59 \\ 151.59 \\ 151.59 \\ 151.59 \\ 143.63 \\ 143.63 \\ 143.63 \\ 113.03 \\ 112.05 \\ 112.05 \\ 113.03 \\ 113.03 \\ 111.20 \\ 111.$

¹³C NMR of Compound **3f** (101 MHz, CDCl₃)

¹³C NMR of Compound **3g** (101 MHz, CDCl₃)

7.290 7.269 7.265 7.269 7.260 7.260 7.260 7.203 7.218 7.203 7.218 7.203 7.203 7.203 7.203 7.203 7.203 7.203 7.203 7.004 7.203 7.005 6.843 6.843 6.843 6.843 6.843 6.843 6.843 6.843 6.832 6.832 6.832 6.832 6.833 6.833 6.833 6.833 6.833 6.833 6.833 6.833 6.833 6.833 6.833 6.833 6.833 6.833 6.833 6.833 6.2336 6.2337 6.2336 6.2337 6.2336 6.2336 6.2336 6.2336 6.23376 6.2336 6.

¹³C NMR of Compound **3i** (125 MHz, CDCl₃)

¹⁹F NMR of Compound **3i** (376 MHz, CDCl₃)

¹H NMR of Compound **3i-minor** (400 MHz, CDCl₃)

¹³C NMR of Compound **3i-minor** (101 MHz, CDCl₃)

 ^{13}C NMR of Compound of 3j (101 MHz, CDCl₃)

 ^{19}F NMR of Compound 3j (376 MHz, CDCl_3)

¹³C NMR of Compound **3l** (125 MHz, CDCl₃)

¹³C NMR of Compound **31-methyl ester** (101 MHz, CDCl₃)

$\begin{array}{c} 7,386\\ 7,338\\ 7,342\\ 7,348\\ 7,$

¹³C NMR of Compound **3m** (101 MHz, CDCl₃)

 $^{19}\mathrm{F}$ NMR of Compound 3m (376 MHz, CDCl_3)

$\begin{array}{c} 8.026\\ 8.026\\ 8.022\\ 8.010\\ 8.022\\ 8.010\\ 8.022\\ 8.010\\ 7.850\\ 7.850\\ 7.7850\\ 7.7850\\ 7.7852\\ 7.7852\\ 7.7852\\ 7.7413\\ 7.7423\\ 7.7413\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7433\\ 7.7423\\ 7.7433\\ 7.7423\\ 7.7423\\ 7.7433\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7433\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7423\\ 7.7433\\ 7$

$\begin{array}{c} 8.073\\ 8.052\\ 7.894\\ 7.431\\ 7.431\\ 7.424\\ 7.424\\ 7.423\\ 7.423\\ 7.423\\ 7.423\\ 7.423\\ 7.423\\ 7.423\\ 7.335\\ 7.$

¹³C NMR of Compound **3p** (101 MHz, CDCl₃)

¹³C NMR of Compound **3r** (101 MHz, CDCl₃)

¹H NMR of Compound **3s** (400 MHz, CDCl₃)

¹³C NMR of Compound **3t** (101 MHz, CDCl₃)

$\begin{array}{c} 7.375\\ 7.3856\\ 7.7.3856\\ 7.7.385\\ 7.7.385\\ 7.7.385\\ 7.7.340$

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹³C NMR of Compound **3aa** (101 MHz, CDCl₃)

r1 (ppm)

¹³C NMR of Compound **3ca** (101 MHz, CDCl₃)

¹H NMR of Compound **3cb** (400 MHz, CDCl₃)

174.50 174.50 173.55 173.55 173.55 173.55 173.55 173.53 173.53 173.53 173.53 173.53 173.53 173.53 122.53 122.53 127.08

HO

Ν

¹³C NMR of Compound 4 (101 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹³C NMR of Compound 5 (101 MHz, CDCl₃)

$\begin{array}{c} 7.523\\ 7.519\\ 7.519\\ 7.519\\ 7.512\\ 7.512\\ 7.512\\ 7.512\\ 7.512\\ 7.523\\ 7.$

¹³C NMR of Compound 7 (101 MHz, MeOD)

¹³C NMR of Compound 7 (101 MHz, CDCl₃)

¹³C NMR of Compound 9 (101 MHz, CDCl₃)

 ^{13}C NMR of Compound 10 (101 MHz, D₂O)