
 S1

Musketeer: a Software Tool for the Analysis of Titration Data

Daniil O. Soloviev and Christopher A. Hunter*

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2
1EW, UK

Supplementary Information

Supplementary Information (SI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2024

 S2

Musketeer Worked Example

The duplex denaturation experiment shown in Figures 6–8 of the main text will be used as a worked
example of how to implement complicated models in Musketeer. A CSV file containing the spectroscopic
data and the concentrations of the three components after each addition is provided as Supporting
Information.

When a new fit is started in Musketeer, the user interface opens with two panels. The panel on the left is
used to set up the fit, i.e. enter the experimental data, specify equilibria to be used in the model, and define
the relationship between the species present and the spectra. The panel on the right displays the results of
fitting.

Experiment: Enter spectroscopic data

In the ”Experiment” section, the “Enter/edit spectroscopic data” button brings up a window with a
spreadsheet interface (Figure S1). The two columns in the CSV file that contain the chemical shift data can
be copied and pasted into the popup window, as shown in Figure S1. The “Signal titles” checkbox should be
selected to indicate that the first row of the spreadsheet contains labels for the signals, ADA and DAD. The
“Measured quantity” and “Unit” should be specified as “Δδ” and “ppm” respectively to ensure that the output
graphs are correctly labelled. Finally, the “OK” button saves the changes and closes the popup window.

Figure S1. Popup window for entering spectroscopic data in Musketeer.

 S3

Experiment: Enter concentrations

The next dropdown menu is used to enter the concentrations of all components after each addition. The
“Concentrations” option brings up a new popup window (Figure S2). By default, two components are listed in
this window, so the “New column” button must be used to add an extra column, because the denaturation
experiment involves three di[erent components. A label should be entered for each component, in this case,
ADA, DAD and DMSO. The concentrations from the CSV file can then be copied and pasted into the popup
window to populate the table, as shown in Figure S2. The units of concentration must be specified from the
dropdown list (M), and the “OK” button is used to save the data.

It is also possible to optimise any number of concentrations as variables. To do this, “?” can be entered in
a cell, or “~value” to provide an initial guess for the optimisation. This can also be done for the concentrations
of stock solutions, when entering addition volumes rather than concentrations directly. In both cases, a
checkbox is provided if multiple concentrations need to be optimised as a single variable.

Figure S2. Popup window for entering concentrations in Musketeer.

 S4

Experiment: Specify fast/slow exchange

The last dropdown in the “Experiment” section is used to specify whether the spectroscopic signals are
proportional to concentration (slow exchange) or mole fraction (fast exchange). For the NMR denaturation
experiment, “Mole fraction (fast exchange)” is used.

Equilibria: Select a binding isotherm

The “Equilibria” section is then used to define the model to be used to fit the data. The denaturation
experiment involves multiple competing equilibria, so the “Custom” option must be selected from the
dropdown menu under “Select a binding isotherm”. The popup window is used to specify the stoichiometries
of all species, which appear as rows. By default, there is one row for each free component and one row for a
1:1 complex between the first two components. To specify all ten complexes shown in Figure 7 of the main
text, nine additional rows must be added. The stoichiometry of each species is entered as the number of
molecules of each component, as shown in Figure S3. A label is automatically generated for each complex,
which can be used to verify that the stoichiometries have been entered correctly. The speciation table is saved
using the “OK” button.

Figure S3. Popup window for entering stoichiometries in Musketeer.

 S5

Equilibria: Fix any K values

The next dropdown menu, “Fix any K values”, is used to reduce the number of variables. Selecting
“Custom” brings up a window with a new table, where the rows specify a set of parameters, and the columns
correspond to the complexes defined in the speciation table (Figure S4). This window is used to enter the
relationships between the equilibrium constants defined in Figure 7 of the main text. The first row is used to
enter statistical factors that describe the degeneracies of the complexes. The global equilibrium constant for
each complex is defined as the product of the statistical factor and the parameter in each row raised to the
power of the entry in the relevant column of the table. By default, the table appears as one row and one
column for each complex, with ones along the diagonal, and zeros everywhere else, so that the global
equilibrium constant for each complex would be equal to one of the parameters defined by the rows. To
implement the model shown in Figure 7 of the main text, the global equilibrium constants for the ten
complexes should be defined in terms of six di[erent parameters. Therefore, four of the rows should be
deleted from the table and the remaining six rows defined as KDMSO, KADA2, KDAD2, K1, K2 and KADA•DAD. The cells in
the table are then used to specify the mathematical relationship between the global equilibrium constant for
each of the complex and the six parameters (Figure S4). The equations defining the global equilibrium
constants are automatically displayed below the table and can be used to verify that the relationships have
been entered correctly. The last column of the table allows any known values of the parameters to be fixed by
entering the relevant value, or optimised in the fitting process by entering “?”.

Figure S4. Popup window for describing relationships between equilibrium constants in Musketeer.

 S6

Spectra: Which species contribute to the spectra

The “Spectra” section is used to describe how the various species contribute to the spectra. The first
dropdown menu is used to specify “Which species contribute to the spectra”. In this case, there are two
di[erent NMR signals due to two di[erent components, ADA and DAD, so the “Custom, di[erent per signal”
must be used to ensure that only the species containing the relevant component are included in the
calculation of mole fractions for the fast exchange signals. Each signal is assigned to the corresponding
component as shown in Figure S5.

Figure S5. Popup window for specifying which components contribute to which signals in Musketeer.

 S7

Spectra: Specify relationship between fitted spectra

The next dropdown menu is used to implement the chemical shift relationships shown in Figure 8 of the
main text. Selecting “Custom” from the “Specify relationship between fitted spectra” dropdown generates a
popup window with a table for each spectroscopically active component. There is a column for each species
that contains the relevant component, and the rows define the di[erent states that contribute to the signal.
In this model, the ADA phosphine oxide groups can take three di[erent states (free, bound or homodimer), so
three rows are needed in the table. The cells in the table specify how many times each state appears in each
species. For example, free ADA contains two phosphine oxides in the free state, whereas ADA in the
ADA•DAD•DMSO complex contains 4/3 phosphine oxides in the bound state and 2/3 of a phosphine oxide in
the free state. Full details of how enter the chemical shift relationships for ADA and for DAD are shown in
Figure S6.

Figure S6. Popup window for describing how di[erent states contribute to the observed spectroscopic
signals in Musketeer.

 S8

Spectra: Specify any known spectra

Known values for any spectra can be fixed using the dropdown menu “Specify any known spectra”. In the
denaturation experiment, the chemical shift changes for the homodimers are known from dilution
experiments, so these values can be set to 2.0 and 4.3 ppm, as shown in Figure S7. The remaining cells are
left as “?” to be optimised as variables.

Figure S7. Popup window for specifying known spectra in Musketeer.

Fit data

Once the model has been entered, pressing the “Fit” button finds optimal values for all of the variables,
and creates three new tabs on the screen displaying the results: the experimental data points and the
calculated lines of the best fit, the calculated populations of all the species, and the values of all optimised
variables. If the user wants to explore a slightly di[erent model, the “Copy fit” button can be used to create a
new tab, which contains a duplicate of the model that can be modified and fitted independently. Once a
satisfying fit is obtained, the File menu at the top of the screen is used to save all tabs as a .fit file, which can
be used to review or share the fit. The .fit file for this denaturation experiment is included in the Supporting
Information.

 S9

The Musketeer Algorithm

Linear and nonlinear variables

Fitting titration data can involve finding the optimum values for a large number of di[erent variables. For
UV/Vis absorption titration data recorded at 300 wavelengths, fitting to a 1:1 binding isotherm with a
spectroscopically silent guest involves 601 variables: the equilibrium constant, and the free and bound
extinction coe[icients at each wavelength. If these variables are optimised simultaneously, fitting will take a
long time, and there is a high risk that the result will be a local minimum rather than the optimal values for all
variables. To increase the speed of fitting and avoid local minima, we first separate the linear and nonlinear
variables. Unknown total concentrations of the components and equilibrium constants are nonlinear
variables. However, given the values of those variables, the concentrations of all species present at each
addition can be calculated (see speciation algorithm below), and from there the concentrations of all
spectroscopically active states are obtained by a simple linear transformation. The observed signal is then
given by

 𝒀 = 𝑨𝑿 (1)	

where Y is the matrix of the observed spectra with dimensions of number of additions and number of
wavelengths, A is the matrix of the concentrations of all spectroscopically active states with dimensions of
number of additions and number of states, and X is the matrix of variables to be optimised, namely the molar
extinction coe[icients of all spectroscopically active states with dimensions of number of states and number
of wavelengths.

Given Y and A, the exact solution for the linear variables X can quickly be found using linear regression. By
separating the variables this way, the fitting can be reformulated as a bilevel optimisation problem. The
objective function to be optimised depends only on the nonlinear variables. For each input value, the
objective function calculates A, solves for X, and returns the RMSE of the solution. A nonlinear optimisation
algorithm can then be used to find the values for the nonlinear variables that return the smallest RMSE. In
Musketeer, the Nelder-Mead method1 is used for the nonlinear optimisation, as implemented in the SciPy
package.2

Speciation algorithm

The most computationally expensive step of the optimisation process is calculation of the concentrations
of all species at each addition given the total concentrations and equilibrium constants, i.e. the speciation.
For some common binding isotherms, such as 1:1 complexes or polymers of a single component, closed-
form solutions can easily be found. However, for more complicated models with multiple competing
equilibria, an exact solution usually requires finding the roots of a high order polynomial, and deriving the
precise form of this polynomial may not be computationally feasible. Instead, it is usually quicker to solve the
speciation for a complicated isotherm numerically to the desired precision. The speciation algorithm used by
Musketeer is described below, and the matrix notation is explained in Table 1 using formation of a 1:2 complex
as an example.

 S10

Matrix Meaning Example for a 1:2 isotherm

𝒔 Concentrations of free components ([𝐻] [𝐺])

𝒄 Concentrations of complexes ([𝐻𝐺] [𝐻𝐺!])

𝒕 Total concentrations of components ([𝐻]" [𝐺]")

𝜷 Global equilibrium constants for formation of complexes (𝐾#$ 𝐾#$!)

𝑴 Stoichiometries of complexes

(rows are components, columns are complexes)
3			1			 			1			
			1			 			2			5

Table 1: Symbols used in the speciation algorithm.

The speciation algorithm must determine s and c, given t, b, and M. Mass balance means that the total
concentration of each component is equal to the concentration of the free component plus the concentration
of each complex multiplied by the stoichiometric coe[icient of the component in that complex. This gives the
following constraint:

 𝒕 = 𝒔 +𝑴𝒄 (2)	

The concentration of each complex 𝑐%is given by the corresponding global equilibrium constant multiplied
by the product of the concentration of each component raised to the power of the stoichiometric coe[icient:

 𝑐% = 𝛽% 9 𝑠&
'"#

"∈%&'(&)*)+,

 (3)	

Substituting Equation (3) into (2) gives the following set of constraints 𝒇 = 𝟎:

 𝑓((𝒔) = 𝑠(+ ? 𝑀(%𝛽% 9 𝑠&
'"#

"∈%&'(&)*)+,#∈%&'(-*.*,

−𝑡(= 0

(4)	

Solving for the value of 𝒔 that satisfies all constraints in 𝒇 = 𝟎 will give the concentrations of all free
components at equilibrium, and the concentrations of all complexes can then be calculated using Equation
(3). Rather than trying to solve all constraints simultaneously, the process can be simplified by first noting
that

 𝑓(
𝑠(
= 1 −

𝑡(
𝑠(
+

𝜕
𝜕𝑠(

F ? 𝛽% 9 𝑠&
'"#

"∈%&'(&)*)+,#∈%&'(-*.*,

G	

=
𝜕
𝜕𝑠(

F𝑠(− 𝑡(ln
𝑠(
𝑐⦵

+ ? 𝛽% 9 𝑠&
'"#

"∈%&'(&)*)+,#∈%&'(-*.*,

G	

=
𝜕
𝜕𝑠(

F ? 3𝑠& − 𝑡& ln
𝑠&
𝑐⦵

5
"∈%&'(&)*)+,

+ ? 𝛽% 9 𝑠&
'"#

"∈%&'(&)*)+,#∈%&'(-*.*,

G

(5)	

where 𝑐⦵ = 1	M is introduced to preserve units inside the logarithm.

 S11

Equation (5) shows that the set of constraints 𝒇 can be expressed as the partial derivatives of a single
multivariate function, 𝐹(𝒔), which is defined as

 𝐹(𝒔) = ? 3𝑠& − 𝑡& ln
𝑠&
𝑐⦵

5
"∈%&'(&)*)+,

+ ? 𝛽% 9 𝑠&
'"#

"∈%&'(&)*)+,#∈%&'(-*.*,

 (6)	

Therefore, satisfying all constraints 𝒇 = 𝟎 is equivalent to solving for 𝛁𝐹(𝒔) = 𝟎, i.e. finding the minimum
of 𝐹(𝒔). Since there is only one set of concentrations at which a system will be at equilibrium, 𝐹(𝒔) has no
local minima, and so a numerical optimisation method can be used to find the minimum. In Musketeer, the
fastest results were obtained by using the L-BFGS-B algorithm3 as implemented in the SciPy package.2

In order guarantee convergence to any desired precision and make the optimisation independent of the
order of magnitude of the concentrations, we can introduce a change of variables. Rather than optimising
𝐹(𝒔) directly with respect to 𝒔, we define a new vector 𝒙 as

 𝒙 = 𝒕⊙ ln
𝒔
𝑐⦵

 (7)	

where ⊙ is the Hadamard product.

This change of variables allows 𝐹(𝒔) to be transformed into a new function 𝐺(𝒙), defined as

 𝐺(𝒙) = 𝐹(𝑐⦵ exp(𝒙⊘ 𝒕)) = 𝐹(𝒔) (8)	

where ⊘ is Hadamard division.

By di[erentiating Equation (8) with respect to 𝒙 and substituting for 𝐹(𝒔) from Equation (5) and 𝒙 from
Equation (7), we can see that the gradient of 𝐺(𝒙) is the relative error in the total concentration of each
component:

𝛁𝐺(𝒙)(=
𝜕
𝜕𝑥(

𝐺(𝒙) =
				𝜕𝐹(𝒔)𝜕𝑠(

				

𝜕𝑥(
𝜕𝑠(

=
				𝑓(𝑠(

				
𝑡(
𝑠(

=
𝑓(
𝑡(
=
𝑠(+∑ 𝑀(%%∈+,-./0102 𝑐% − 𝑡(

𝑡(

(9)	

Therefore, the criteria for convergence of the numerical minimisation can be set to each component of the
gradient being equal to or less than the desired relative precision in the mass balance. To avoid division by
zero, if the total concentration 𝑡(of any component is zero, then 𝑠(must also be zero, and that component is
excluded from the minimisation.

To ensure numerical stability, boundary conditions must be provided for the optimisation. For small values
of 𝑥(, which correspond to 𝑠(approaching zero, 𝐺(𝒙) can exceed the range of representable floating-point
numbers and cause the line search step of the minimisation to fail. Therefore, boundary conditions must be
provided to restrict the range of values sampled in the optimisation process. For component 𝑖, 𝑡(is the largest
physically meaningful value for 𝑠(, so this value is used as the upper bound, 𝑢(. A value for the lower bound,
𝑙(, can be calculated as follows. Starting from Equation (4), we note that

 𝑡(= 𝑠(+ ? 𝑀(%𝛽% 9 𝑠&
'"#

"∈%&'(&)*)+,#∈%&'(-*.*,

	 (10)	

 S12

= 𝑠(F1 + ? 𝑀(%𝛽% 9 𝑠&
'"#34/"

"∈%&'(&)*)+,#∈%&'(-*.*,

G

where 𝛿(& is the Kronecker delta.

Rearranging for 𝑠(gives

 𝑠(=
𝑡(

1 + ∑ 𝑀(%𝛽%∏ 𝑠&
'"#34/"

"∈%&'(&)*)+,#∈%&'(-*.*,

 (11)	

The lower bound on 𝑠(corresponds to the upper bound on the denominator of Equation (11). For any 𝑖, 𝑗,
and 𝑘, either 𝑀(% = 0, meaning that term does not contribute to the sum in the denominator, or 𝑀&% − 𝛿(& ≥
0, meaning every exponent in the denominator is nonnegative. Therefore, since every 𝑠& ≤ 𝑢&, and each
element in the product is either multiplied by zero or raised to a nonnegative exponent, replacing 𝑠& by 𝑢& will
increase the value of the denominator, i.e.

 𝑀(%𝛽% 9 𝑠&
'"#34/"

"∈%&'(&)*)+,

≤ 𝑀(%𝛽% 9 𝑢&
'"#34/"

""∈%&'(&)*)+,

 (12)	

allowing us to define the lower bound for 𝑠(:

 𝑠(≥
𝑡(

1 + ∑ 𝑀(%𝛽%∏ 𝑢&
'"#34/"

"∈%&'(&)*)+,#∈%&'(-*.*,

	

=
𝑡(𝑢(

𝑢(+∑ 𝑀(%𝛽%∏ 𝑢&
'"#

"∈%&'(&)*)+,#∈%&'(-*.*,

≝ 𝑙(

(13)	

Finally, an initial guess 𝒔565758/ must be provided as a starting point for the minimisation process. For the first
addition of a titration, a simple choice is to use the upper bound, which corresponds to the hypothetical
situation where there are no complexes. For each subsequent addition, the initial guess 𝑠(565758/ can be
computed using the total concentration and the optimised value of 𝒔	from the previous addition, denoted as
𝑡(9 and 𝑠(9 respectively. This is done by assuming that aliquots of any components added are entirely free, and
aliquots of any components removed are removed proportionately from all species that contain that
component, as shown in Equation (14).

𝑠(565758/ = e

𝑠(9 + (𝑡(− 𝑡(9), 𝑡(− 𝑡(9 ≥ 0

𝑠(9 ∗
𝑡(
𝑡(9
, 𝑡(− 𝑡(9 < 0

(14)	

𝒔565758/ is then converted to a corresponding initial guess for 𝒙 using Equation (7), and the values are clipped
to the upper or lower bounds if required.

Polymer speciation

The objective function 𝐺(𝒙) can be expanded further to account for homopolymers. In the nucleation-
growth polymerisation model, two microscopic equilibrium constants are required: the nucleation or
dimerisation constant, 𝐾!, and the elongation or growth constant, 𝐾:, in Equation (15) describe the
polymerisation of component A.4

 S13

 𝐴 + 𝐴
;!
⇌𝐴!

𝐴! + 𝐴
;0
⇌𝐴<

𝐴< + 𝐴
;0
⇌𝐴=
…

𝐴: + 𝐴
;0
⇌𝐴:>?

(15)	

Isodesmic polymerisation is the special case where 𝐾! = 𝐾:. The ratio between 𝐾! and 𝐾: is often referred
to as the interaction parameter or cooperativity factor α,5 or the nucleation factor σ,4 which are defined as
follows:

 𝛼 =
1
𝜎
=
𝐾:
𝐾!

 (16)	

Applying Equation (15) more generally to all components in a mixture, we use 𝒅 for the 𝐾! of each
component, and 𝒈 for the 𝐾: (setting 𝑑(and 𝑔(to zero if component 𝑖 does not polymerise). For each
component, we can get the expression for the concentration of that component that is part of a homopolymer,
𝑝(:

𝑝(= ?𝑛[𝐴:]

@

:A!

= ?𝑛	𝑑(𝑔(:3!𝑠(:
@

:A!

=
𝑠(!	𝑑((2 − 𝑠(𝑔()
(1 − 𝑠(𝑔()!

(17)	

Similarly, we can calculate the total concentration of all homopolymer complexes formed from that
component, 𝑞(, by calculating the same sum without the factor of 𝑛:

𝑞(= ?[𝐴:]

@

:A!

= ?𝑑(𝑔(:3!𝑠(:
@

:A!

=
𝑠(!	𝑑(

1 − 𝑠(𝑔(

(18)	

The relationship between the concentrations 𝑝(and 𝑞(is given by

 𝑑
𝑑𝑠(

𝑞(=
𝑠(𝑑((2 − 𝑠(𝑔()
(1 − 𝑠(𝑔()!

=
𝑝(
𝑠(

(19)	

In addition, any homopolymer present may form end-capped complexes with one or more of the other
components. For example, a component A could form the homopolymer An as above, and this polymer could
further bind another component X to form the complex X•An. By first calculating the concentration of An, and
then treating this species as a new component, the concentration of X•An can be treated as a simple 1:1
complex. If X and A also form the binary complex X•A, this model can be used to describe X acting as an
initiator of polymerisation (i.e. if X binds An more strongly than it binds A), or as an inhibitor of polymerisation
(in the reverse case).

Equation (17) can be expanded to describe end-capped complexes in a straightforward manner. If the
equilibrium constant for binding of component j to a homopolymer of component 𝑖 is given by 𝛽, and the
stoichiometry of each component in the end-capped complex is given in the vector 𝒎, then we can obtain
the concentrations of the two components in the end-capped polymer:

[𝑖	in	end-capped	polymer] = ?F𝑛	𝑑(𝑔(:3!𝑠(: ∗ 𝛽 9 𝑠&

B"

"∈%&'(&)*)+,

G
@

:A!

	
(20)	

 S14

= 𝑝(𝛽 9 𝑠&
B"

"∈%&'(&)*)+,

[𝑗	in	end-capped	polymer] = ?F	𝑚%𝑑(𝑔(:3!𝑠(: ∗ 𝛽 9 𝑠&

B"

"∈%&'(&)*)+,

G
@

:A!

	

= 𝑚%𝑞(𝛽 9 𝑠&
B"

"∈%&'(&)*)+,

(21)	

To include polymers in the set of constraints 𝒇, each mass balance in Equation (4) must be expanded to
also include the concentration of each component that is part of a polymer, or bound to a polymer as an end-
cap. To do this, we note that Equations (20) and (21) can be expressed using the partial derivatives of a single
function, namely:

 𝜕
𝜕𝑠(

F𝑞(𝛽 9 𝑠&
B"

"∈%&'(&)*)+,

G =
𝑝(
𝑠(
𝛽 9 𝑠&

B"

"∈%&'(&)*)+,

=
[𝑖	in	end-capped	polymer]

𝑠(

(22)	

 𝜕
𝜕𝑠%

F𝑞(𝛽 9 𝑠&
B"

"∈%&'(&)*)+,

G =
𝑚%
𝑠%
𝑞(𝛽 9 𝑠&

B"

"∈%&'(&)*)+,

=
[𝑗	in	end-capped	polymer]

𝑠%

(23)	

Therefore, using [𝒔	𝒒] to denote the concatenation of the vectors 𝒔 and 𝒒 (with 𝒒 calculated directly from
𝒔), and expanding the rows of the stoichiometry matrix 𝑴 to also allow the stoichiometry of a polymer in a
complex to be specified, we can rewrite 𝐹(𝒔) from Equation (6) as Equation (24) which can be minimised as
described above.

 𝐹(𝒔) = ? 3𝑠& + 𝑞& − 𝑡& ln
𝑠&
𝑐⦵

5
"∈%&'(&)*)+,

	

+ ? 𝛽% 9 [𝒔	𝒒]&
'"#

"∈%&'(&)*)+,	2)3	(&-4'*5,#∈%&'(-*.*,

(24)	

Di[erent boundary conditions must be used for an isotherm that involves polymerisation. For a
component 𝑖 that forms a polymer, 𝐺(𝒙) is only defined for 𝑠(< 1 𝑔(⁄ , as larger values of 𝑠(represent the
nonphysical scenario where the concentration of polymer increases indefinitely with increasing length. In this
case, 𝑡(cannot be used as the upper bound for 𝑠(. If the component were not part of any equilibrium apart
from polymerisation, then the concentration of 𝑠(can be obtained by solving

𝑡(= 𝑠(+ 𝑝(=

𝑠(!	𝑑((2 − 𝑠(𝑔()
(1 − 𝑠(𝑔()!

(25)	

Rearranging gives a third-order polynomial in 𝑠(:

 𝑡(+ (−1 − 2𝑡(𝑔()𝑠(+ �−2𝑑(+ 2𝑔(+ 𝑡(𝑔(!�𝑠(! + �𝑑(𝑔(− 𝑔(!�𝑠(< = 0	 (26)	

 S15

Equation (26) has one real solution in the domain 0 ≤ 𝑠(≤ 1 𝑔(⁄ . Since any additional equilibria that include
component 𝑖 can only decrease the concentration of 𝑠(, and never increase it, the solution to Equation (26)
can be used as the upper bound 𝑢(.

The lower bound 𝑙(also needs to be adapted to include the concentration of the polymers. This can be
done in a similar manner to the method described above. Starting from Equation (24) rather than Equation
(4), we get

 𝑡(= 𝑠(+ 𝑝(+ ? 𝑀(%𝛽% 9 [𝒔	𝒒]&
'"#

"∈%&'(&)*)+,#∈%&'(-*.*,	67+8&9+	:7

+ ? 𝑝(𝛽% 9 [𝒔	𝒒]&
'"#

"∈%&'(&)*)+,#∈%&'(-*.*,	67+8	:7

	

= 𝑠(�1 +
𝑝(
𝑠(
+ ? 𝑀(%𝛽% 9 [𝒔	𝒒]&

'"#34/"

"∈%&'(&)*)+,#∈%&'(-*.*,	67+8&9+	:7

+ ?
𝑝(
𝑠(
𝛽% 9 [𝒔	𝒒]&

'"#

"∈%&'(&)*)+,#∈%&'(-*.*,	67+8	:7

�

(27)	

Rearranging for 𝑠(gives

𝑠(= 𝑡(÷ �1 +

𝑝(
𝑠(
+ ? 𝑀(%𝛽% 9 [𝒔	𝒒]&

'"#34/"

"∈%&'(&)*)+,#∈%&'(-*.*,	67+8&9+	:7

+ ?
𝑝(
𝑠(
𝛽% 9 [𝒔	𝒒]&

'"#

"∈%&'(&)*)+,#∈%&'(-*.*,	67+8	:7

�

(28)	

The lower bound on 𝑠(corresponds to the upper bound on the denominator of Equation (28), which can
be obtained by replacing 𝑝(𝑠(⁄ with 𝑝((𝑢() 𝑢(⁄ , 𝒔 with 𝒖, and 𝒒 with 𝒒(𝒖), which is defined as the largest
possible value of 𝒒, which it takes when 𝒔 = 𝒖. To show that 𝑝(𝑠(⁄ can be replaced with 𝑝((𝑢() 𝑢(⁄ , we note
that

 𝑝(
𝑠(
=
𝑠(𝑑((2 − 𝑠(𝑔()
(1 − 𝑠(𝑔()!

=
𝑑(
𝑔(
∗
1 − (1 − 𝑠(𝑔()!

(1 − 𝑠(𝑔()!
=
𝑑(
𝑔(
�

1
(1 − 𝑠(𝑔()!

− 1�	
(29)	

Since 𝑠(𝑔(≤ 𝑢(𝑔(< 1, this means that 𝑝(𝑠(⁄ ≤ 𝑝((𝑢() 𝑢(⁄ .

Making these substitutions in Equation (28) gives an expression for the lower bound:

 S16

𝑠(≥ 𝑡(÷ �1 +

𝑝((𝑢()
𝑢(

+ ? 𝑀(%𝛽% 9 [𝒖	𝒒(𝒖)]&
'"#34/"

"∈%&'(&)*)+,#∈%&'(-*.*,	67+8&9+	:/

+ ?
𝑝((𝑢()
𝑢(

𝛽% 9 [𝒖	𝒒(𝒖)]&
'"#

"∈%&'(&)*)+,#∈%&'(-*.*,	67+8	:7

�	

= 𝑡(𝑢(÷ �1 + 𝑝((𝑢() + ? 𝑀(%𝛽% 9 [𝒖	𝒒(𝒖)]&
'"#

"∈%&'(&)*)+,#∈%&'(-*.*,	67+8&9+	:7

+ ? 𝑝((𝑢()𝛽% 9 [𝒖	𝒒(𝒖)]&
'"#

"∈%&'(&)*)+,#∈%&'(-*.*,	67+8	:7

� ≝ 𝑙(

(30)	

The lower bound can be interpreted in terms of the maximum fraction of free i:

𝑙(= 𝑡(

max	(free	𝑖)
max	(free	𝑖) + max(𝑖	in	polymers) + max(𝑖	in	complexes)

	 (31)	

References

1 F. Gao and L. Han, Comput. Optim. Appl., 2012, 51, 259–277.

2 P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W.
Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones,
R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa and P. van Mulbregt, Nat.
Methods, 2020, 17, 261–272.

3 C. Zhu, R. H. Byrd, P. Lu and J. Nocedal, ACM Trans. Math. Softw., 1997, 23, 550–560.

4 D. Zhao and J. S. Moore, Org. Biomol. Chem., 2003, 1, 3471–3491.

5 C. A. Hunter and H. L. Anderson, Angew. Chem. Int. Ed., 2009, 48, 7488–7499.

