Gradual evolution of a homo-L-peptide world on homo-D-configured RNA and DNA

Ewa Węgrzyn,*^a Ivana Mejdrová,*^a and Thomas Carell^a

^a Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München, Butenandtstrasse 5-13, 81377 Munich (Germany)

* These authors contributed equally.

E-Mail: thomas.carell@lmu.de

Supporting Information

Table of Contents

1.	Ge	eneral information and instruments for nucleosides and phosphoramidites	2
2.	Sy	nthesis and characterization data of phosphoramidites	2
	2.1	Amino acid-modified methyl N^6 -carbamoyl adenosine phosphoramidites	2
	2.2	Amino acid-modified methyl N^6 -carbamoyl deoxy adenosine phosphoramidites	17
	2.3	Npe-protected amino acids	28
	2.4	5-Methylaminomethyl uridine phosphoramidite	35
	2.5	5-Aminomethyl thymidine phosphoramidite	35
3.	Ge	eneral information and instruments for oligonucleotides	42
4.	Sy	nthesized oligonucleotides using a DNA/RNA automated synthesizer	43
	4.1	Donor strands containing amino acid-modified methyl N ⁶ -carbamoyl adenosine at the 5'-end	43
	4.2	Acceptor strands containing 5-methylaminomethyl uridine at the 3'-end	43
	4.3	Donor strands containing amino acid-modified methyl N ⁶ -carbamoyl deoxy adenosine at the 5'-er	nd43
	4.4	Acceptor strands containing 5-aminomethyl thymidine at the 3'-end	43
5.	Pe	ptide coupling reactions between donor and acceptor oligonucleotides	44
6.	Ca	libration curve hairpin	45
7.	Cle	eavage reaction of hairpin products	46
8.	Co	ompetitive coupling and cleavage reactions (one pot)	47
9. dij	Pa peptide	ir-wise competitive peptide coupling reactions between donor and acceptor oligonucleotides contain es	ing 48
10	. Pa	ir-wise competitive peptide coupling reactions between donor and acceptor deoxy oligonucleotides .	51
11	. Cir	rcular dichroism measurements	52
12	. Re	eferences	52

1. General information and instruments for nucleosides and phosphoramidites

Reagents were purchased from commercial suppliers and used without further purification unless otherwise stated. Anhydrous solvents, stored under inert atmosphere, were also purchased. All reactions involving air/moisture sensitive reagents/intermediates were performed under inert atmosphere using oven-dried glassware. Routine ¹H NMR, ¹³C NMR and ³¹P NMR spectra were recorded on a Bruker Ascend 500 spectrometer (500 MHz for ¹H NMR, 125 MHz for ¹³C NMR and 202 MHz for ³¹P NMR). Deuterated solvents used are indicated in the characterization and chemical shifts (δ) are reported in ppm. Residual solvent peaks were used as reference.¹ All NMR *J* values are given in Hz. COSY, HMQC and HMBC NMR experiments were recorded to help with the assignment of ¹H and ¹³C signals. NMR spectra were analysed using MestReNova software version 10.0. High Resolution Mass Spectra (HRMS) were measured on a Thermo Finnigan LTQ-FT with ESI as ionization mode. IR spectra were recorded on a Perkin-Elmer Spectrum BX II FT-IR instrument or Shimadzu IRSpirit FT-IR instrument. Both equipped with an ATR accessory. Column chromatography was performed with technical grade silica gel, 40-63 µm particle size. Reaction progress was monitored by Thin Layer Chromatography (TLC) analysis on silica gel 60 F254 and stained with *para*-anisaldehyde, potassium permanganate or ninhydrin solution.

2. Synthesis and characterization data of phosphoramidites

2.1 Amino acid-modified methyl N⁶-carbamoyl adenosine phosphoramidites

Scheme S1. Synthesis of amino acid-modified methyl N⁶-carbamoyl adenosine phosphoramidites 7.

Compound 2 was synthesized following a procedure previously reported in the literature.²

General procedure for the synthesis of compound 3: Step 1. Compound **2** (1 equiv.) and 1-*N*-methyl-3-phenoxycarbonylimidazolium chloride (2 equiv.) were added to an oven dried round-bottom flask and kept under high-vacuum for 15 min. After that, dry CH_2Cl_2 was added under nitrogen atmosphere and the reaction was stirred at r.t. for 5 h. Step 2. Onpeprotected amino acid **16**•**HCl** (2 equiv.) was added to an oven-dried round-bottom flask and suspended in dry CH_2Cl_2 , followed by the addition of Et_3N (2 equiv.). The suspension was added dropwise to the reaction mixture. The reaction was stirred at r.t. under nitrogen atmosphere for 20 h. After that, the reaction was quenched with aqueous saturated NaHCO₃. The organic layer was separated and the crude was further extracted with CH_2Cl_2 . The combined organic layers were dried (Na_2SO_4), filtered and concentrated. The crude was purified by silica gel column chromatography affording the product as a white foam.

3_{LD}: Yield = 54%. Rf = 0.30 (EtOAc). ¹H NMR (500 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 10.01 (s, 1H); 9.07 (s, 1H); 8.62 (s, 1H); 8.29 (s, 1H); 8.11 – 8.04 (m, 2H); 7.34 (d, *J* = 8.4 Hz, 2H); 6.98 (s, 1H); 6.00 (s, 1H); 4.65 (s, 1H); 4.53 (dd, *J* = 8.7 Hz, *J* = 5.0 Hz, 1H); 4.46 (dd, *J* = 9.2 Hz, *J* = 5.0 Hz, 2H); 4.38 – 4.32 (m, 2H); 4.27 (d, *J* = 4.6 Hz, 1H); 4.18 (td, *J* = 10.1 Hz, *J* = 5.0 Hz, 1H); 4.03 (dd, *J* = 10.5 Hz, *J* = 9.2 Hz, 1H); 3.68 (s, 3H); 3.03 (hept, *J* = 8.1 Hz, *J* = 7.4 Hz, 2H); 2.36 (h, *J* = 6.7 Hz, 1H); 2.11 (pd, *J* = 6.9 Hz, *J* = 5.2 Hz, 1H); 1.09 (s, 9H); 1.05 (s, 9H); 1.03 (d, *J* = 9.2 Hz, 6H); 0.90 (d, *J* = 6.8 Hz, 3H); 0.83 (d, *J* = 6.9 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 171.7; 171.6; 154.4; 150.0; 147.0; 145.5; 129.8; 123.8; 121.1; 89.9; 82.3; 77.4; 74.9; 67.5; 64.7; 60.1; 59.6; 57.4; 34.8; 31.1; 27.5; 27.2; 22.9; 20.5; 19.8; 19.2; 18.1; 17.9. FTIR v_{max} (cm⁻¹): 2933 (w); 2860 (w); 1677 (m); 1520 (s); 1467 (m); 1345 (s); 1257 (m); 1138 (s); 1063 (s); 828 (s). HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₃₈H₅₆O₁₀N₈SiNa 835.3780; Found 835.3803.

3_{DL}: Yield = 53%. Rf = 0.36 (EtOAc). ¹H NMR (500 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 10.03 (s, 1H); 9.20 (s, 1H); 8.59 (s, 1H); 8.30 (s, 1H); 8.10 – 8.05 (m, 2H); 7.35 – 7.31 (m, 2H); 6.94 (s, 1H); 6.00 (s, 1H); 4.73 (dd, *J* = 9.6 Hz, *J* = 4.7 Hz, 1H); 4.56 – 4.51 (m, 1H); 4.47 – 4.31 (m, 4H); 4.31 – 4.27 (m, 1H); 4.16 (td, *J* = 10.1 Hz, *J* = 5.0 Hz, 1H); 4.02 (dd, *J* = 10.5 Hz, *J* = 9.2 Hz, 1H); 3.67 (s, 3H); 3.02 (td, *J* = 6.7 Hz, *J* = 3.8 Hz, 2H); 2.42 – 2.32 (m, 1H); 2.15 – 2.07 (m, 1H); 1.09 (s, 9H); 1.06 – 1.03 (m, 15H); 0.90 (d, *J* = 6.8 Hz, 3H); 0.83 (d, *J* = 6.9 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 171.8; 171.6; 154.5; 150.0; 147.0; 145.4; 129.8; 123.9; 123.8; 121.1; 89.9; 82.3; 77.4; 74.9; 67.5; 64.7; 60.1; 59.5; 57.3; 34.8; 31.2; 27.5; 27.4; 27.2; 22.9; 22.8; 20.4; 19.8; 19.2; 18.2; 17.9. FTIR v_{max} (cm⁻¹): 2934 (w); 2860 (w); 1677 (m); 1520 (s); 1466 (m); 1345 (s); 1134 (m); 1063 (m); 828 (m). HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₃₈H₅₆O₁₀N₈SiNa 835.3780; Found 835.3801.

3_{DD}: Yield = 53%. Rf = 0.38 (EtOAc). ¹H NMR (500 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 10.06 (s, 1H); 9.36 (s, 1H); 8.59 (s, 1H); 8.32 (t, *J* = 8.1 Hz, 1H); 8.12 (td, *J* = 5.3 Hz, *J* = 2.6 Hz, 2H); 7.39 – 7.35 (m, 2H); 6.97 (s, 1H); 6.00 (s, 1H); 4.70 (dd, *J* = 10.0 Hz, *J* = 4.6 Hz, 1H); 4.49 (dd, *J* = 8.4 Hz, *J* = 5.1 Hz, 1H); 4.44 (dt, *J* = 6.8 Hz, *J* = 3.3 Hz, 2H); 4.38 (td, *J* = 6.7 Hz, *J* = 3.9 Hz, 2H); 4.26 (d, *J* = 4.6 Hz, 1H); 4.16 (td, *J* = 10.0 Hz, *J* = 4.9 Hz, 1H); 4.02 (dd, *J* = 10.5 Hz, *J* = 9.2 Hz, 1H); 3.66 (s, 3H); 3.06 (t, *J* = 6.7 Hz, 2H); 2.37 (h, *J* = 6.8 Hz, 1H); 2.12 – 2.05 (m, 1H); 1.08 (s, 9H); 1.06 – 1.00 (m, 15H); 0.86 (d, *J* = 6.8 Hz, 3H); 0.81 (d, *J* = 6.7 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 171.8; 171.6; 154.5; 150.0; 147.0; 145.4; 129.8; 123.8; 121.1; 89.9; 82.3; 74.9; 67.5; 64.6; 60.1; 59.5; 57.4; 34.9; 31.0; 27.5; 27.2; 22.8; 20.4; 19.7; 19.1; 18.1; 17.9. FTIR v_{max} (cm⁻¹): 2934 (w); 2860 (w); 1676 (m); 1520 (s); 1467 (m); 1345 (s); 1138 (m); 1063 (m); 828 (m). HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₃₈H₅₆O₁₀N₈SiNa 835.3780; Found 835.3802.

General procedure for the synthesis of compound 4: Compound **3** (1 equiv.) and K_2CO_3 (3 equiv.) were suspended in dry DMF. The suspension was stirred for 30 min at 0°C under nitrogen atmosphere. After that, CH_3I (2 equiv.) was added dropwise and the reaction was stirred at r.t. overnight. After that, the reaction mixture was diluted with CH_2CI_2 and washed with aqueous saturated NH_4CI and water. The organic layer was dried (Na_2SO_4), filtered and concentrated. The crude was purified by silica gel column chromatography affording the product as a white foam.

4_{LD}: Yield = 95%. Rf = 0.57 (3:7 iHex/EtOAc). ¹H NMR (500 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 10.61 (s, 1H); 8.56 (s, 1H); 8.15 – 8.11 (m, 2H); 8.02 (s, 1H); 7.38 – 7.34 (m, 2H); 6.90 (d, J = 8.7 Hz, 1H); 6.01 (s, 1H); 4.59 (dd, J = 9.7 Hz, J = 4.6 Hz, 1H); 4.54 (dd, J = 8.7 Hz, J = 5.0 Hz, 1H); 4.48 (dd, J = 9.2 Hz, J = 5.0 Hz, 1H); 4.37 (t, J = 6.7 Hz, 3H); 4.23 (d, J = 4.6 Hz, 1H); 4.19 (td, J = 10.1 Hz, J = 5.0 Hz, 1H); 4.01 (dd, J = 10.5 Hz, J = 9.2 Hz, 1H); 3.96 (s, 3H); 3.68 (s, 3H); 3.04 (td, J = 6.7 Hz, J = 1.6 Hz, 2H); 2.40 (pd, J = 6.9 Hz, J = 5.1 Hz, 1H); 2.09 (pd, J = 6.9 Hz, J = 5.0 Hz, 1H); 1.08 (s, 9H); 1.05 (s, 9H); 1.01 (dd, J = 14.0 Hz, J = 6.8 Hz, 6H); 0.89 (d, J = 6.8 Hz, 3H); 0.78 (d, J = 6.9 Hz, 3H). ¹³C{¹H}</sup> NMR (125 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 171.9; 171.9; 156.2; 153.3; 151.7; 150.5; 147.0; 145.4; 139.9; 129.8; 123.9; 122.7; 89.8; 82.3; 77.3; 74.8; 67.6; 64.6; 61.2; 59.5; 57.2; 34.9; 31.2; 30.3; 27.5; 27.2; 22.9; 20.5; 19.9; 19.1; 17.9; 17.8. FTIR v_{max} (cm⁻¹): 2934 (w); 2860 (w); 1670 (m); 1578 (m); 1520 (s); 1466 (m); 1345 (m); 1137 (m); 1065 (m); 1012 (m); 828 (m). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₉H₅₈O₁₀N₈SiNa 849.3934; Found 849.3958.

4_{DL}: Yield = 98%. Rf = 0.64 (3:7 iHex/EtOAc). ¹H NMR (500 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 10.93 (s, 1H); 8.54 (s, 1H); 8.17 – 8.13 (m, 2H); 8.00 (s, 1H); 7.40 – 7.37 (m, 2H); 6.70 (d, *J* = 8.5 Hz, 1H); 6.02 (s, 1H); 4.59 (dd, *J* = 9.7 Hz, *J* = 4.6 Hz, 1H); 4.51 – 4.46 (m, 2H); 4.39 (q, *J* = 6.8 Hz, 2H); 4.35 (dd, *J* = 6.3 Hz, *J* = 2.8 Hz, 1H); 4.24 (d, *J* = 4.6 Hz, 1H); 4.19 (td, *J* = 10.1 Hz, *J* = 5.0 Hz, 1H); 4.01 (dd, *J* = 10.6 Hz, *J* = 9.4 Hz, 1H); 3.98 (s, 3H); 3.68 (s, 3H); 3.07 (td, *J* = 6.6 Hz, *J* = 1.4 Hz, 2H); 2.42 – 2.34 (m, 1H); 2.09 (pd, *J* = 6.9 Hz, *J* = 5.0 Hz, 1H); 1.09 (s, 9H); 1.05 (s, 9H); 1.02 (dd, *J* = 6.8 Hz, *J* = 5.4 Hz, 6H); 0.87 (d, *J* = 6.9 Hz, 3H); 0.81 (d, *J* = 6.9 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 171.9; 171.8; 156.2; 153.3; 151.7; 150.3; 147.1; 145.5; 139.7; 129.9; 123.9; 122.7; 89.8; 82.3; 77.3; 74.8; 67.6; 64.7; 61.1; 59.5; 57.3; 35.0; 31.2; 30.3; 27.5; 27.2; 22.9; 20.5; 19.8; 19.1; 18.3; 17.9. FTIR v_{max} (cm⁻¹): 2934 (w); 2860 (w); 1670 (m); 1578 (m); 1520 (s); 1466 (m); 1345 (m); 1137 (m); 1065 (m); 1013 (m); 828 (m). HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₃₉H₅₈O₁₀N₈SiNa 849.3934; Found 849.3957.

4_{DD}: Yield = 97%. Rf = 0.64 (3:7 iHex/EtOAc). ¹H NMR (500 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 10.61 (s, 1H); 8.56 (s, 1H); 8.14 – 8.10 (m, 2H); 8.01 (s, 1H); 7.38 – 7.35 (m, 2H); 6.88 (d, *J* = 8.8 Hz, 1H); 6.02 (s, 1H); 4.60 (dd, *J* = 9.7 Hz, *J* = 4.7 Hz, 1H); 4.54 (dd, *J* = 8.8 Hz, *J* = 4.9 Hz, 1H); 4.48 (dd, *J* = 9.2 Hz, *J* = 5.0 Hz, 1H); 4.37 (t, *J* = 6.6 Hz, 3H); 4.24 (d, *J* = 4.6 Hz, 1H); 4.19 (td, *J* = 10.1 Hz, *J* = 5.0 Hz, 1H); 4.01 (dd, *J* = 10.6 Hz, *J* = 9.2 Hz, 1H); 3.95 (s, 3H); 3.68 (s, 3H); 3.05 (td, *J* = 6.7 Hz, *J* = 2.1 Hz, 2H); 2.39 (pd, *J* = 6.9 Hz, *J* = 5.1 Hz, 1H); 2.09 (pd, *J* = 6.9 Hz, *J* = 4.9 Hz, 1H); 1.08 (s, 9H); 1.05 (s, 9H); 1.01 (dd, *J* = 15.6 Hz, *J* = 6.8 Hz, 6H); 0.89 (d, *J* = 6.8 Hz, 3H); 0.78 (d, *J* = 6.9 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 171.9; 171.9; 156.1; 153.3; 151.7; 150.5; 147.0; 145.4; 139.9; 129.8; 123.9; 122.7; 89.8; 82.3; 77.3; 74.8; 67.6; 64.6; 61.2; 59.5; 57.2; 34.9; 34.9; 31.2; 30.3; 27.5; 27.2; 22.9; 20.5; 19.9; 19.1; 18.0; 17.8. FTIR v_{max} (cm⁻¹): 2934 (w); 2860 (w); 1663 (m); 1559 (m); 1520 (s); 1466 (m); 1345 (m); 1137 (m); 1065 (m); 1013 (m); 828 (m). HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₃₉H₅₈O₁₀N₈SiNa 849.3934; Found 849.3960.

General procedure for the synthesis of compound 5: Compound **4** (1 equiv.) was added to a plastic flask and dissolved in dry 9:1 CH_2Cl_2 /pyridine. The solution was stirred at 0°C. Finally, HF•pyridine (from a commercial solution containing 70% HF and 30% pyridine) was added and the reaction was stirred at 0°C for 2 h. After that, the reaction was quenched with aqueous saturated NaHCO₃ and CH_2Cl_2 was added. The organic layer was separated and the crude was further extracted with CH_2Cl_2 . The combined organic layers were dried (Na₂SO₄), filtered and concentrated. The crude was purified by silica gel column chromatography affording the product as a white foam.

5_{LD}: Yield = 92%. Rf = 0.38 (95:5 CH₂Cl₂:MeOH). ¹H NMR (500 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 10.41 (s, 1H); 8.58 (s, 1H); 8.18 (s, 1H); 8.14 – 8.09 (m, 2H); 7.39 – 7.34 (m, 2H); 6.90 (d, *J* = 8.7 Hz, 1H); 5.96 (d, *J* = 6.9 Hz, 1H); 4.67 (dd, *J* = 6.9 Hz, *J* = 4.6 Hz, 1H); 4.60 (d, *J* = 4.2 Hz, 1H); 4.53 (dd, *J* = 8.8 Hz, *J* = 4.9 Hz, 1H); 4.41 – 4.33 (m, 4H); 3.98 – 3.92 (m, 4H); 3.79 (dd, *J* = 13.0 Hz, *J* = 1.7 Hz, 1H); 3.38 (s, 3H); 3.07 – 3.02 (m, 2H); 2.41 – 2.33 (m, 1H); 2.08 (pd, *J* = 6.9 Hz, *J* = 4.9 Hz, 1H); 2.02 (s, 1H); 1.00 (dd, *J* = 17.5 Hz, *J* = 6.8 Hz, 6H); 0.88 (d, *J* = 6.9 Hz, 3H); 0.77 (d, *J* = 6.8 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 171.9; 171.8; 155.9; 153.7; 151.1; 150.0; 147.0; 145.4; 141.7; 129.8; 123.9; 89.5; 88.0; 82.5; 77.4; 70.3; 64.7; 63.1; 61.2; 59.0; 57.2; 35.0; 34.9; 31.2; 30.4; 19.9; 19.1; 17.9; 17.8. FTIR v_{max} (cm⁻¹): 2926 (w); 1663 (m); 1518 (s); 1464 (m); 1345 (m); 1266 (m); 1016 (m). HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₃₁H₄₂O₁₀N₈Na 709.2916; Found 709.2918.

5_{DL}: Yield = 92%. Rf = 0.36 (95:5 CH₂Cl₂:MeOH). ¹H NMR (500 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 10.32 (s, 1H); 8.58 (s, 1H); 8.23 (s, 1H); 8.14 – 8.11 (m, 2H); 7.38 – 7.34 (m, 2H); 6.92 (d, *J* = 8.8 Hz, 1H); 5.97 (d, *J* = 6.7 Hz, 1H); 4.65 (dd, *J* = 6.8 Hz, *J* = 4.6 Hz, 1H); 4.59 (dd, *J* = 4.7 Hz, *J* = 1.6 Hz, 1H); 4.52 (dd, *J* = 8.8 Hz, *J* = 4.9 Hz, 1H); 4.39 – 4.33 (m, 4H); 3.98 – 3.94 (m, 4H); 3.79 (dd, *J* = 1.0 Hz, 1H); 1.02 (d, *J* = 6.8 Hz, 3H); 3.04 (td, *J* = 6.7 Hz, *J* = 1.5 Hz, 2H); 2.37 (pd, *J* = 6.8 Hz, *J* = 5.2 Hz, 1H); 2.08 (pd, *J* = 6.9 Hz, *J* = 5.0 Hz, 1H); 1.02 (d, *J* = 6.8 Hz, 3H); 0.99 (d, *J* = 6.8 Hz, 3H); 0.88 (d, *J* = 6.9 Hz, 3H); 0.78 (d, *J* = 6.9 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 171.9; 171.8; 155.9; 153.6; 151.1; 150.1; 147.0; 145.4; 141.7; 129.9; 129.8; 123.9; 89.5; 88.0; 82.6; 77.4; 70.2; 64.7; 63.0; 61.2; 58.9; 57.2; 35.0; 34.9; 31.2; 30.3; 19.9; 19.1; 18.0; 17.8. FTIR v_{max} (cm⁻¹): 2929 (w); 1663 (m); 1518 (s); 1464 (m); 1345 (m); 1016 (m). HRMS (ESI) *m/z*: [M+Na]* Calcd for C₃₁H₄₂O₁₀N₈Na 709.2916; Found 709.2918.

5_{DD}: Yield = 96%. Rf = 0.37 (95:5 CH₂Cl₂:MeOH). ¹H NMR (500 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 10.72 (s, 1H); 8.55 (s, 1H); 8.18 (s, 1H); 8.16 – 8.12 (m, 2H); 7.40 – 7.36 (m, 2H); 6.76 (d, *J* = 8.4 Hz, 1H); 5.96 (d, *J* = 6.8 Hz, 1H); 4.64 (dd, *J* = 6.9 Hz, *J* = 4.6 Hz, 1H); 4.58 (dd, *J* = 4.7 Hz, *J* = 1.6 Hz, 1H); 4.48 (dd, *J* = 8.5 Hz, *J* = 5.0 Hz, 1H); 4.41 – 4.32 (m, 4H); 3.98 (s, 3H); 3.95 (dd, *J* = 13.0 Hz, *J* = 1.9 Hz, 1H); 3.78 (dd, *J* = 13.0 Hz, *J* = 1.7 Hz, 1H); 3.38 (s, 3H); 3.06 (td, *J* = 6.7 Hz, *J* = 1.9 Hz, 2H); 2.39 – 2.31 (m, 1H); 2.08 (pd, *J* = 6.9 Hz, *J* = 5.0 Hz, 1H); 1.01 (dd, *J* = 6.8 Hz, *J* = 3.8 Hz, 6H); 0.86 (d, *J* = 6.8 Hz, 3H); 0.80 (d, *J* = 6.9 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 171.8; 171.7; 156.0; 153.6; 151.1; 149.8; 147.0; 145.4; 141.5; 129.9; 123.9; 89.4; 88.0; 82.6; 77.4; 70.2; 64.7; 63.0; 61.2; 58.9; 57.3; 35.0; 34.9; 31.1; 30.3; 19.8; 19.1; 18.3; 17.9. FTIR v_{max} (cm⁻¹): 2927 (w); 1654 (m); 1518 (s); 1464 (m); 1345 (m); 1016 (m). HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₃₁H₄₂O₁₀N₈Na 709.2916; Found 709.2917.

General procedure for the synthesis of compound 6: Compound **5** (1 equiv.) was dissolved in dry pyridine and stirred under nitrogen atmosphere at r.t. 4,4-Dimethoxytrityl chloride (1.5 equiv.) was added in two portions and the reaction was stirred at r.t. overnight. After that, the crude was concentrated and purified by silica gel column chromatography (eluent containing 0.1% pyridine) affording the product as a white foam.

6_{LD}: Yield = 81%. Rf = 0.53 (1:1 iHex/Acetone). ¹H NMR (500 MHz with cryoprobe, acetone- d_6 , 298 K): δ (ppm) = 10.47 (d, *J* = 7.8 Hz, 1H); 8.55 (s, 1H); 8.45 (s, 1H); 8.17 – 8.11 (m, 2H); 7.74 – 7.70 (m, 1H); 7.57 – 7.53 (m, 2H); 7.51 – 7.45 (m, 2H); 7.38 – 7.33 (m, 4H); 7.30 – 7.25 (m, 2H); 7.23 – 7.18 (m, 1H); 6.87 – 6.82 (m, 4H); 6.25 (d, *J* = 4.2 Hz, 1H); 4.66 (dt, *J* = 6.4 Hz, *J* = 5.1 Hz, 1H); 4.61 (t, *J* = 4.6 Hz, 1H); 4.47 (dd, *J* = 7.8 Hz, *J* = 4.9 Hz, 1H); 4.44 – 4.33 (m, 3H); 4.25 (q, *J* = 4.6 Hz, 1H); 4.22 (d, *J* = 6.4 Hz, 1H); 3.91 (s, 3H); 3.77 (d, *J* = 1.5 Hz, 6H); 3.51 (s, 3H); 3.48 – 3.45 (m, 2H); 3.10 (t, *J* = 6.5 Hz, 2H); 2.29 (pd, *J* = 6.9 Hz, *J* = 4.9 Hz, 1H); 2.13 – 2.06 (m, 1H); 1.01 (dd, *J* = 12.5 Hz, *J* = 6.8 Hz, 6H); 0.89 (d, *J* = 6.8 Hz, 3H); 0.84 (d, *J* = 6.8 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, acetone- d_6 , 298 K): δ (ppm) = 172.3; 159.6; 156.4; 154.1; 153.1; 151.0; 150.7; 147.7; 147.4; 146.1; 141.9; 136.8; 136.7; 131.1; 131.0; 131.0; 129.0; 128.6; 127.6; 124.2; 123.4; 113.9; 87.7; 87.1; 85.0; 83.6; 70.6; 65.2; 64.4; 61.2; 58.8; 58.3; 55.5; 35.3; 35.0; 31.9; 31.4; 20.1; 19.5; 18.3; 18.1. FTIR v_{max} (cm⁻¹): 2960 (w); 2930 (w); 1670 (m); 1576 (m); 1507 (s); 1464 (m); 1345 (m); 1249 (m); 1177 (m); 1033 (m). HRMS (ESI) *m/z*: [M+H]* Calcd for C₅₂H₆₁O₁₂N₈ 989.4403; Found 989.4419.

6_{DL}: Yield = 79%. Rf = 0.53 (1:1 iHex/Acetone). ¹H NMR (500 MHz with cryoprobe, acetone- d_6 , 298 K): δ (ppm) = 10.44 (d, *J* = 7.7 Hz, 1H); 8.56 (s, 1H); 8.45 (s, 1H); 8.16 – 8.11 (m, 2H); 7.76 – 7.72 (m, 1H); 7.57 – 7.53 (m, 2H); 7.50 – 7.46 (m, 2H); 7.36 (dq, *J* = 8.5 Hz, *J* = 3.2 Hz, 4H); 7.30 – 7.25 (m, 2H); 7.23 – 7.19 (m, 1H); 6.87 – 6.82 (m, 4H); 6.26 (d, *J* = 4.3 Hz, 1H); 4.65 (dt, *J* = 6.4 Hz, *J* = 5.1 Hz, 1H); 4.60 (t, *J* = 4.7 Hz, 1H); 4.46 (dd, *J* = 7.8 Hz, *J* = 4.9 Hz, 1H); 4.44 – 4.33 (m, 3H); 4.27 – 4.23 (m, 1H); 4.22 (d, *J* = 6.4 Hz, 1H); 3.90 (s, 3H); 3.77 (d, *J* = 1.9 Hz, 6H); 3.51 (s, 3H); 3.46 (dd, *J* = 4.4 Hz, *J* = 1.5 Hz, 2H); 3.09 (t, *J* = 6.4 Hz, 2H); 2.28 (pd, *J* = 6.9 Hz, 3H); 0.84 (d, *J* = 7.0 Hz, *J* = 5.9 Hz, 1H); 1.00 (dd, *J* = 11.5 Hz, *J* = 6.9 Hz, 6H); 0.89 (d, *J* = 6.9 Hz, 3H); 0.84 (d, *J* = 6.8 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, acetone- d_6 , 298 K): δ (ppm) = 172.3; 159.6; 159.6; 156.4; 154.1; 153.1; 151.0; 147.7; 147.4; 146.1; 141.8; 136.8; 136.7; 131.1; 131.0; 131.0; 129.0; 128.6; 127.6; 124.2; 123.5; 113.9; 87.6; 87.1; 85.1; 83.7; 70.6; 65.2; 64.4; 61.2; 58.8; 58.3; 55.5; 35.3; 35.0; 31.9; 31.4; 20.1; 19.5; 18.3; 18.1. FTIR v_{max} (cm⁻¹): 2960 (w); 2930 (w); 1670 (m); 1576 (m); 1507 (s); 1464 (m); 1345 (m); 1250 (m); 1177 (m); 1033 (m). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₅₂H₆₁O₁₂N₈ 989.4403; Found 989.4421.

6_{DD}: Yield = 75%. Rf = 0.53 (1:1 iHex/Acetone). ¹H NMR (500 MHz with cryoprobe, acetone- d_6 , 298 K): δ (ppm) = 10.79 (d, *J* = 8.0 Hz, 1H); 8.54 (s, 1H); 8.45 (s, 1H); 8.21 – 8.15 (m, 2H); 7.63 – 7.57 (m, 2H); 7.51 – 7.45 (m, 3H); 7.36 (dq, *J* = 8.6 Hz, *J* = 3.2 Hz, 4H); 7.31 – 7.24 (m, 2H); 7.24 – 7.17 (m, 1H); 6.89 – 6.81 (m, 4H); 6.26 (d, *J* = 4.2 Hz, 1H); 4.66 (dt, *J* = 6.4 Hz, *J* = 5.2 Hz, 1H); 4.60 (t, *J* = 4.6 Hz, 1H); 4.50 – 4.44 (m, 1H); 4.43 (q, *J* = 6.6 Hz, 2H); 4.36 (dd, *J* = 8.3 Hz, *J* = 5.8 Hz, 1H); 4.28 – 4.22 (m, 1H); 4.22 (d, *J* = 6.5 Hz, 1H); 3.93 (s, 3H); 3.77 (d, *J* = 1.4 Hz, 6H); 3.52 (s, 3H); 3.51 – 3.42 (m, 2H); 3.15 (t, *J* = 6.5 Hz, 2H); 2.25 (pd, *J* = 6.9 Hz, *J* = 5.2 Hz, 1H); 2.13 – 2.06 (m, 1H); 1.00 (d, *J* = 6.9 Hz, 6H); 0.87 (d, *J* = 6.9 Hz, 3H); 0.85 (d, *J* = 6.9 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, acetone- d_6 , 298 K): δ (ppm) = 172.3; 172.1; 170.9; 159.6; 156.3; 154.0; 153.1; 150.8; 147.7; 147.4; 146.1; 141.7; 136.8; 136.7; 131.1; 131.0; 131.0; 129.0; 128.6; 127.6; 124.3; 123.4; 113.9; 87.6; 87.1; 85.0; 83.7; 70.6; 65.2; 64.4; 60.9; 60.5; 58.8; 58.5; 55.5; 35.3; 35.0; 31.8; 31.3; 20.8; 20.0; 19.4; 18.3; 18.3; 14.5. FTIR v_{max} (cm⁻¹): 2962 (w); 2932 (w); 1670 (m); 1576 (m); 1509 (s); 1464 (m); 1345 (m); 1250 (m); 1177 (m); 1033 (m). HRMS (ESI) *m/z*: [M+H]* Calcd for C₅₂H₆₁O₁₂N₈ 989.4403; Found 989.4426.

General procedure for the synthesis of compound 7: Compound **6** (1 equiv.) was added to a dry-oven round-bottom flask and dissolved in dry CH_2CI_2 . The solution was stirred under Argon atmosphere at 0°C. DIPEA (4 equiv.) was added dropwise. Finally, 2-cyanoethyl *N*,*N*-diisopropylchlorophosphoramidite (2.5 equiv.) was added dropwise. The reaction was stirred at r.t. for 3 h. After that, the reaction was stopped and diluted with CH_2CI_2 . The crude was washed with aqueous saturated NaHCO₃ and the organic layer was separated. The crude was further extracted with CH_2CI_2 . The combined organic layers were dried (Na_2SO_4), filtered and concentrated. The crude was purified by silica gel column chromatography (eluent containing 0.1% pyridine). The products were isolated as a mixture of diastereoisomers as a white foam. Finally, the product was lyophilized from benzene.

7_{LD}: Yield = 70%. Rf = 0.34; 0.25 (2:3 iHex/EtOAc). ³¹P{¹H} NMR (202 MHz with cryoprobe, acetone-d₆, 298 K): δ (ppm) = 150.3; 149.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₆₁H₇₈O₁₃N₁₀P 1189.5481; Found 1189.5517.

7_{DL}: Yield = 51%. Rf = 0.40; 0.30 (2:3 iHex/EtOAc). ³¹P{¹H} NMR (202 MHz with cryoprobe, acetone-d₆, 298 K): δ (ppm) = 150.3; 149.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₆₁H₇₈O₁₃N₁₀P 1189.5481; Found 1189.5523.

7_{DD}: Yield = 56%. Rf = 0.38; 0.28 (2:3 iHex/EtOAc). ³¹P{¹H} NMR (202 MHz with cryoprobe, acetone-d₆, 298 K): δ (ppm) = 150.3; 149.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₆₁H₇₈O₁₃N₁₀P 1189.5481; Found 1189.5506.

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

2.2 Amino acid-modified methyl N⁶-carbamoyl deoxy adenosine phosphoramidites

Scheme S2. Synthesis of amino acid-modified methyl N⁶-carbamoyl deoxy adenosine phosphoramidites.

General procedure for the synthesis of compound 8: 2'-Deoxyadenosine (1 equiv.) was dissolved in dry pyridine and acetic anhydride (5 equiv.) was added dropwise. The reaction mixture was stirred for 2 h, then cooled down to 0°C and quenched with water. The volatiles were evaporated, and the residue was re-dissolved in CH_2Cl_2 and washed with aqueous saturated NaHCO₃. The aqueous phase was extracted twice with CH_2Cl_2 , and the combined organic layers were dried (Na_2SO_4), filtered and concentrated. The crude was purified by silica gel column chromatography, followed by recrystallization from EtOH.

8: Yield = 58%. Rf = 0.38 (9:1 EtOAc/MeOH). ¹H NMR (500 MHz with cryoprobe, DMSO- d_6 , 298 K): δ (ppm) = 8.34 (s, 1H); 8.15 (s, 1H); 7.34 (s, 2H); 6.37 (dd, J = 8.1 Hz, J = 6.2 Hz, 1H); 5.40 (dt, J = 6.4 Hz, J = 2.5 Hz, 1H); 4.32 (dd, J = 10.8 Hz, J = 3.8 Hz, 1H); 4.26 – 4.18 (m, 2H); 3.17 (ddd, J = 14.4 Hz, J = 8.2 Hz, J = 6.5 Hz, 1H); 2.56 – 2.51 (m, 1H); 2.09 (s, 3H); 2.01 (s, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, DMSO- d_6 , 298 K): δ (ppm) = 170.4; 170.3; 156.3; 152.9; 149.4; 139.8; 119.5; 83.8; 81.8; 74.6; 63.8; 35.4; 21.0; 20.8. FTIR v_{max} (cm⁻¹): 3306 (w); 3155 (w); 1733 (s); 1668 (s); 1602 (m); 1573 (m); 1507 (w); 1470 (m); 1362 (m); 1260 (m); 1156 (m); 1070 (m); 1041 (s); 975 (m); 939 (m); 906 (m); 857 (m); 837 (m); 799 (w); 748 (w); 691 (m); 649 (m); 638 (s). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₈O₅N₅ 336.1302; Found 336.1303.

General procedure for the synthesis of compound 9: Step 1. Compound **8** (1 equiv.) and 1-*N*-methyl-3-phenoxycarbonylimidazolium chloride (2 equiv.) were added to an oven dried round-bottom flask and kept under vacuum for 15 min. After that, dry CH_2Cl_2 was added under nitrogen atmosphere and the reaction was stirred at r.t. for 5 h. Step 2. Onpe-protected amino acid **16**•HCl (2 equiv.) was added to an oven dried flask and suspended in dry CH_2Cl_2 , followed by the addition of Et_3N (2 equiv.). The suspension was added dropwise to the reaction mixture. The reaction was stirred at r.t. under nitrogen atmosphere for 20 h. After that, the reaction was quenched with aqueous saturated NaHCO₃. The organic layer was separated and the crude was further extracted with CH_2Cl_2 . The combined organic layers were dried (Na₂SO₄), filtered and concentrated. The crude was purified by silica gel column chromatography affording the product as a white foam.

9_L: Yield = 83%. Rf = 0.45 (10:0.5 EtOAc/MeOH). ¹H NMR (500 MHz with cryoprobe, DMSO- d_6 , 298 K): δ (ppm) = 10.01 (s, 1H); 9.82 (d, *J* = 8.0 Hz, 1H); 8.65 (s, 1H); 8.56 (s, 1H); 8.18 – 7.92 (m, 2H); 7.64 – 7.44 (m, 2H); 6.47 (dd, *J* = 7.8 Hz, *J* = 6.3 Hz, 1H); 5.43 (dt, *J* = 6.5 Hz, *J* = 2.7 Hz, 1H); 4.44 (dt, *J* = 11.1 Hz, *J* = 6.3 Hz, 1H); 4.39 – 4.19 (m, 4H); 3.19 (ddd, *J* = 14.3 Hz, *J* = 8.0 Hz, *J* = 6.5 Hz, 1H); 3.06 (t, *J* = 6.4 Hz, 2H); 2.60 (ddd, *J* = 14.2 Hz, *J* = 6.3 Hz, *J* = 2.7 Hz, 1H); 2.10 (s, 3H); 2.00 (s, 3H); 0.90 (d, *J* = 6.8 Hz, 3H); 0.85 (d, *J* = 6.8 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, DMSO- d_6 , 298 K): δ (ppm) = 171.5; 170.3; 170.2; 153.6; 150.9; 150.4; 150.4; 146.6; 146.3; 142.7; 130.3; 123.4; 120.7; 84.1; 82.1; 74.4; 64.4; 63.7; 58.4; 35.7; 34.2; 30.3; 20.9; 20.7; 19.2; 17.9. FTIR v_{max} (cm⁻¹): 2964 (w); 1737 (m); 1697 (m); 1609 (w); 1585 (m); 1517 (s); 1467 (m); 1345 (s); 1222 (s); 1107 (m); 1018 (m); 941 (m); 856 (m); 797 (w); 747 (w); 696 (m); 646 (m). HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₈H₃₄O₁₀N₇ 628.2362; Found 628.2357.

9_D: Yield = 93%. Rf = 0.45 (10:0.5 EtOAc/MeOH). ¹H NMR (500 MHz with cryoprobe, DMSO-*d*₆, 298 K): δ (ppm) = 10.01 (s, 1H); 9.83 (d, *J* = 8.1 Hz, 1H); 8.67 (s, 1H); 8.55 (s, 1H); 8.07 – 7.94 (m, 2H); 7.63 – 7.41 (m, 2H); 6.47 (dd, *J* = 7.9 Hz, *J* = 6.3 Hz, 1H); 5.43 (dt, *J* = 6.5 Hz, *J* = 2.5 Hz, 1H); 4.44 (dt, *J* = 11.0 Hz, *J* = 6.2 Hz, 1H); 4.40 – 4.20 (m, 5H); 3.16 (ddd, *J* = 14.3 Hz, *J* = 8.0 Hz, *J* = 6.5 Hz, 1H); 3.09 – 3.03 (m, 2H); 2.61 (ddd, *J* = 14.2 Hz, *J* = 6.3 Hz, *J* = 2.7 Hz, 1H); 2.10 (s, 3H); 2.00 (s, 3H); 0.90 (d, *J* = 6.8 Hz, 3H); 0.87 (s, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, DMSO-*d*₆, 298 K): δ (ppm) = 171.5; 170.3; 170.2; 153.6; 150.9; 150.4; 150.3; 146.6; 146.3; 142.4; 130.3; 123.3; 120.6; 83.8; 82.0; 74.4; 64.3; 63.7; 58.4; 35.8; 34.2; 30.3; 20.9; 20.7; 19.2; 17.9. FTIR *v*_{max} (cm⁻¹): 2964 (w); 1737 (m); 1697 (m); 1609 (w); 1585 (m); 1517 (s); 1467 (m); 1345 (s); 1222 (s); 1107 (m); 1018 (m); 941 (m); 856 (m); 797 (w); 747 (w); 696 (m); 646 (m). HRMS (ESI) *m/z*: [M+H]* Calcd for C₂₈H₃₄O₁₀N₇ 628.2362; Found 628.2358.

General procedure for the synthesis of compound 10: Compound **9** (1 equiv.) was dissolved in dry DMF under N_2 atmosphere. The solution was cooled to 0°C and NaH (1.05 equiv.) was added. The mixture was stirred at r.t. for 1 h. Then, Mel (1.05 equiv.) was added dropwise and the reaction was stirred for 1 h. The reaction mixture was diluted with EtOAc and washed with water. The combined organic layers were dried (Na_2SO_4), filtered and concentrated. The crude was purified by silica gel column chromatography affording the product as a white foam.

10₁: Yield = 81%. Rf = 0.50 (5:1 EtOAc/iHex). ¹H NMR (500 MHz with cryoprobe, DMSO- d_{67} , 298 K): δ (ppm) = 10.76 (d, J = 7.5 Hz, 1H); 8.68 (s, 1H); 8.59 (s, 1H); 8.08 – 8.01 (m, 2H); 7.53 – 7.48 (m, 2H); 6.50 (dd, J = 7.9 Hz, J = 6.3 Hz, 1H); 5.42 (dq, J = 7.0 Hz, J = 2.3 Hz, 1H); 4.38 – 4.27 (m, 4H); 4.26 – 4.20 (m, 2H); 3.79 (s, 3H); 3.18 – 3.10 (m, 1H); 3.05 (t, J = 6.3 Hz, 2H); 2.61 (dddd, J = 14.2 Hz, J = 6.4 Hz, J = 2.8 Hz, J = 1.3 Hz, 2H); 2.11 (s, 3H); 2.01 (s, 3H); 0.89 (d, J = 6.8 Hz, 3H); 0.85 (d, J = 6.9 Hz, 3H). ¹³C¹H} NMR (125 MHz with cryoprobe, DMSO- d_{67} , 298 K): δ (ppm) = 171.6; 170.4; 170.3; 155.3; 152.5; 152.0; 150.0; 141.7; 130.3; 123.4; 122.1; 83.9; 82.1; 74.5; 63.8; 59.5; 52.1; 35.7; 34.4; 34.2; 30.2; 21.0; 20.7; 19.4; 18.1. FTIR v_{max} (cm⁻¹): 1735 (m); 1682 (m); 1572 (m); 1517 (s); 1465 (m); 1345 (s); 1218 (s); 1182 (s); 1106 (m); 1049 (m); 1018 (m); 942 (m); 856 (m); 797 (m); 747 (m); 698 (m); 646 (m). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₃₆O₁₀N₇ 642.2518; Found 642.2515.

10_p: Yield = 66%. Rf = 0.53 (5:1 EtOAc/iHex). ¹H NMR (500 MHz with cryoprobe, DMSO- d_6 , 298 K): δ (ppm) = 10.75 (d, J = 7.7 Hz, 1H); 8.68 (s, 1H); 8.58 (s, 1H); 8.06 – 7.98 (m, 2H); 7.53 – 7.45 (m, 2H); 6.50 (dd, J = 7.9 Hz, J = 6.2 Hz, 1H); 5.42 (dt, J = 6.5 Hz, J = 2.6 Hz, 1H); 4.46 – 4.27 (m, 5H); 4.27 – 4.20 (m, 2H); 3.79 (s, 3H); 3.13 (ddd, J = 14.4 Hz, J = 8.1 Hz, J = 6.5 Hz, 1H); 3.05 (t, J = 6.3 Hz, 2H); 2.62 (ddd, J = 14.2 Hz, J = 6.3 Hz, J = 2.7 Hz, 1H); 2.11 (s, 3H); 2.01 (s, 3H); 0.90 (d, J = 6.8 Hz, 3H); 0.86 (d, J = 6.8 Hz, 3H). ¹³C¹H} NMR (125 MHz with cryoprobe, DMSO- d_6 , 298 K): δ (ppm) = 171.5; 170.3; 170.3; 155.3; 152.5; 152.1; 150.0; 146.7; 146.3; 141.6; 130.3; 123.3; 122.0; 83.7; 82.0; 74.4; 64.2; 63.7; 59.5; 35.8; 34.4; 34.2; 30.2; 20.9; 20.7; 19.3; 18.1. FTIR v_{max} (cm⁻¹): 2964 (w); 1737 (m); 1685 (m); 1517 (s); 1467 (m); 1345 (s); 1221 (s); 1184 (m); 1107 (m); 1018 (m); 941 (m); 856 (m); 797 (w); 747 (m); 696 (m); 646 (m). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₃₆O₁₀N₇ 642.2518; Found 642.2515.

General procedure for the synthesis of compound 11: Compound **10** (1 equiv.) was diluted with 7 N NH₃/MeOH and stirred at r.t. for 2 h. Then, the reaction mixture was concentrated and the crude was purified by silica gel column chromatography.

11_L: Yield = 83%. Rf = 0.46 (10:0.75 CH₂Cl₂/MeOH). ¹H NMR (500 MHz with cryoprobe, DMSO- d_6 , 298 K): δ (ppm) = 9.92 (s, 1H); 8.63 (s, 1H); 8.56 (s, 1H); 8.11 – 8.01 (m, 2H); 7.56 – 7.45 (m, 2H); 6.47 (dd, J = 7.8 Hz, J = 6.3 Hz, 1H); 5.49 – 5.39 (m, 1H); 4.44 (dt, J = 11.0 Hz, J = 6.3 Hz, 1H); 4.39 – 4.20 (m, 5H); 3.19 (ddd, J = 14.3 Hz, J = 7.8 Hz, J = 6.5 Hz, 1H); 3.07 (t, J = 6.4 Hz, 2H); 2.65 – 2.56 (m, 1H); 2.10 (s, 4H); 2.00 (s, 3H); 0.90 (d, J = 6.8 Hz, 3H); 0.86 (d, J = 6.8 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, DMSO- d_6 , 298 K): δ (ppm) = 171.5; 170.3; 170.2; 153.6; 150.9; 150.4; 146.6; 146.3; 142.6; 130.3; 123.4; 120.7; 84.1; 82.0; 74.4; 64.4; 63.7; 58.4; 35.6; 34.2; 30.2; 20.9; 20.7; 19.3; 17.9. FTIR v_{max} (cm⁻¹): 1735 (w); 1678 (w); 1572 (m); 1516 (s); 1465 (m); 1343 (s); 1261 (m); 1182 (m); 1050 (m); 1017 (m); 941 (m); 856 (m); 796 (m); 747 (m); 696 (m); 646 (m). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₃₂O₈N₇ 558.2307; Found 558.2321.

11_D: Yield = 80%. Rf = 0.47 (10:0.75 CH₂Cl₂/MeOH). ¹H NMR (500 MHz with cryoprobe, DMSO- d_6 , 298 K): δ (ppm) = 10.80 (d, J = 7.5 Hz, 1H); 8.70 (s, 1H); 8.56 (s, 1H); 8.04 – 7.96 (m, 2H); 7.54 – 7.45 (m, 2H); 6.47 (t, J = 6.7 Hz, 1H); 5.39 (d, J = 4.2 Hz, 1H); 5.03 (t, J = 5.5 Hz, 1H); 4.47 – 4.30 (m, 3H); 4.23 (dd, J = 7.6 Hz, J = 4.9 Hz, 1H); 3.90 (td, J = 4.4 Hz, J = 3.0 Hz, 1H); 3.79 (s, 3H); 3.62 (dt, J = 11.7 Hz, J = 5.0 Hz, 1H); 3.54 (ddd, J = 11.7 Hz, J = 5.6 Hz, J = 4.4 Hz, 1H); 3.05 (t, J = 6.3 Hz, 2H); 2.71 (ddd, J = 13.1 Hz, J = 7.2 Hz, J = 5.9 Hz, 1H); 2.38 (ddd, J = 13.3 Hz, J = 6.3 Hz, J = 3.6 Hz, 1H); 2.09 (pd, J = 6.8 Hz, J = 5.0 Hz, 1H); 0.89 (d, J = 6.9 Hz, 3H); 0.85 (d, J = 6.9 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, DMSO- d_6 , 298 K): δ (ppm) = 171.8; 155.4; 152.6; 150.1; 147.0; 146.5; 141.8; 130.6; 123.6; 122.1; 88.4; 84.0; 71.0; 64.5; 61.9; 59.8; 34.6; 34.4; 30.5; 19.7; 18.4. FTIR v_{max} (cm⁻¹): 1735 (w); 1678 (w); 1572 (m); 1516 (s); 1465 (m); 1421 (m); 1343 (s); 1263 (m); 1184 (m); 1050 (m); 1017 (m); 941 (m); 856 (m); 796 (m); 747 (m); 696 (m); 646 (m). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₃₂O₈N₇ 558.2307; Found 558.2321.

General procedure for the synthesis of compound 12: Compound **11** (1 equiv.) was dissolved in dry pyridine and stirred under nitrogen atmosphere at r.t. 4,4-Dimethoxytrityl chloride (1.5 equiv.) was added in two portions and the reaction was stirred at r.t. overnight. After that, the crude was concentrated and purified by silica gel column chromatography (eluent containing 0.1% pyridine) affording the product as a colourless foam.

12_L: Yield = 68%. Rf = 0.39 (10:0.5 CH₂Cl₂/MeOH). ¹H NMR (500 MHz with cryoprobe, DMSO-*d*₆, 298 K): δ (ppm) = 10.80 (d, *J* = 7.6 Hz, 1H); 8.52 (d, *J* = 36.5 Hz, 2H); 8.04 (d, *J* = 8.3 Hz, 2H); 7.50 (d, *J* = 8.2 Hz, 2H); 7.32 (d, *J* = 7.6 Hz, 2H); 7.26 – 7.12 (m, 7H); 6.78 (dd, *J* = 19.0 Hz, *J* = 8.4 Hz, 4H); 6.49 (t, *J* = 6.4 Hz, 1H); 5.42 (s, 1H); 4.56 – 4.20 (m, 4H); 4.06 (t, *J* = 4.6 Hz, 1H); 3.80 (s, 3H); 3.69 (d, *J* = 6.6 Hz, 6H); 3.26 – 3.14 (m, 2H); 3.05 (t, *J* = 6.4 Hz, 2H); 2.91 (dt, *J* = 13.0 Hz, *J* = 6.1 Hz, 1H); 2.41 (dt, *J* = 12.7 Hz, *J* = 5.9 Hz, 1H); 2.10 (dq, *J* = 13.6 Hz, *J* = 6.6 Hz, 1H); 0.90 (d, *J* = 6.8 Hz, 3H); 0.86 (d, *J* = 7.2 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, DMSO-*d*₆, 298 K): δ (ppm) = 171.5; 158.2; 155.3; 152.4; 151.9; 149.6; 146.6; 146.3; 145.1; 141.9; 135.7; 130.2; 129.8; 127.8; 126.7; 123.3; 122.1; 113.2; 86.3; 85.6; 84.1; 70.8; 64.3; 59.4; 55.1; 55.0; 34.3; 34.2; 30.2; 19.3; 18.0. FTIR v_{max} (cm⁻¹): 2966 (w); 1731 (w); 1685 (w); 1606 (w); 1575 (s); 1518 (s); 1510 (s); 1464 (m); 1421 (w); 1391 (w); 1345 (s); 1299 (m); 1250 (s); 1218 (m); 1178 (s); 1151 (m); 1109 (m); 1073 (m); 1060 (m); 1033 (s); 1005 (m); 977 (m); 952 (m); 902 (w); 852 (w); 827 (m); 797 (m); 768 (m); 748 (m); 728 (m); 699 (m); 649 (m). HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₄₆H₅₀O₁₀N₇ 860.3614; Found 860.3643.

12_D: Yield = 60%. Rf = 0.46 (10:0.75 CH₂Cl₂/MeOH). ¹H NMR (500 MHz with cryoprobe, DMSO-*d*₆, 298 K): δ (ppm) = 10.80 (d, *J* = 7.5 Hz, 1H); 8.58 (s, 1H); 8.51 (s, 1H); 8.07 – 8.00 (m, 2H); 7.54 – 7.46 (m, 2H); 7.34 – 7.27 (m, 2H); 7.27 – 7.11 (m, 11H); 6.83 – 6.71 (m, 4H); 6.49 (t, *J* = 6.2 Hz, 1H); 5.44 (d, *J* = 4.6 Hz, 1H); 4.52 – 4.39 (m, 2H); 4.35 (dt, *J* = 11.0 Hz, *J* = 6.1 Hz, 1H); 4.23 (dd, *J* = 7.6 Hz, *J* = 4.9 Hz, 1H); 4.02 (dt, *J* = 6.0 Hz, *J* = 4.1 Hz, 1H); 3.78 (s, 3H); 3.69 (d, *J* = 5.9 Hz, 6H); 3.17 (h, *J* = 6.1 Hz, 2H); 3.05 (t, *J* = 6.3 Hz, 2H); 2.92 – 2.83 (m, 1H); 2.41 (ddd, *J* = 13.4 Hz, *J* = 6.9 Hz, *J* = 5.1 Hz, 1H); 2.29 (s, 2H); 2.09 (pd, *J* = 6.9 Hz, *J* = 4.9 Hz, 1H); 0.87 (dd, *J* = 17.3 Hz, *J* = 6.8 Hz, 6H). ¹³C{¹H} NMR (125 MHz with cryoprobe, DMSO-*d*₆, 298 K): δ (ppm) = 171.6; 158.2; 155.3; 152.4; 149.8; 146.8; 145.11; 141.8; 137.6; 135.7; 130.3; 129.8; 129.1; 128.4; 127.8; 126.8; 125.6; 123.4; 122.1; 113.2; 86.2; 85.6; 83.8; 70.7; 64.3; 59.5; 55.2; 34.4; 30.2; 21.3; 19.4; 18.1. FTIR v_{max} (cm⁻¹): 1735 (m); 1606 (m); 1465 (m); 1345 (s); 1300 (m); 1248 (s); 1217 (s); 1175 (s); 1028 (s); 1028 (m); 944 (m); 856 (m); 827 (m); 797 (m); 748 (m); 698 (m); 648 (m). HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₄₆H₅₀O₁₀N₇ 860.3614; Found 860.3637.

General procedure for the synthesis of compound 13: Compound **12** (1 equiv.) was added to a dry-oven flask and dissolved in dry CH_2Cl_2 . The solution was stirred under Argon atmosphere at 0°C. DIPEA (4 equiv.) was added dropwise. Finally, 2cyanoethyl *N*,*N*-diisopropylchlorophosphoramidite (2.5 equiv.) was added dropwise. The reaction was stirred at r.t. for 3 h. After that, the reaction was stopped and diluted with CH_2Cl_2 . The crude was washed with aqueous saturated NaHCO₃ and the organic layer was separated. The crude was further extracted with CH_2Cl_2 . The combined organic layers were dried (Na_2SO_4), filtered and concentrated. The crude was purified by silica gel column chromatography (eluent containing 0.1% pyridine). The products were isolated as a mixture of diastereoisomers as a white foam. Finally, the product was lyophilized from benzene.

13₁: Yield = 70%. Rf = 0.70 (1:5 iHex/EtOAc). ³¹P{¹H} NMR (202 MHz with cryoprobe, acetone- d_6 , 298 K): δ (ppm) = 148.3; 148.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₅₅H₆₇N₉O₁₁P 1060.4692; Found 1060.4742.

13_D: Yield = 81%. Rf = 0.70 (1:5 iHex/EtOAc). ³¹P{¹H} NMR (202 MHz with cryoprobe, acetone- d_6 , 298 K): δ (ppm) = 150.3; 149.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₅₅H₆₇N₉O₁₁P 1060.4692; Found 1060.4751.

2.3 Npe-protected amino acids

Scheme S3. Synthesis of Onpe-protected amino acids 16•HCl.

Compounds $\mathbf{14}_{L}$, $\mathbf{14}_{D}$ are commercially available.

The Boc- and Onpe-protected amino acids 15_L and 15_D and their corresponding Onpe-deprotected derivatives $16_L \bullet HCI$ and $16_D \bullet HCI$ were synthesized following a procedure previously reported in the literature.^{2,3}

General procedure for the synthesis of peptides: Compound 16_L or 16_D were dissolved in dry CH_2Cl_2 and compound 14_L or 14_D was added. The mixture was stirred at 0°C in an ice bath. 2-(1*H*-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-hexafluorophosphat (HBTU) and disopropylethylamine (DIPEA) were added and the reaction was stirred at r.t. for another 2 h. The reaction was quenched with aqueous saturated NH_4Cl and extracted with CH_2Cl_2 . The combined organic layers were dried (MgSO₄), filtered and concentrated. The crude was purified by silica gel column chromatography affording the product as a white solid.

15_{LD}: Yield = 84%. Rf = 0.30 (7:3 iHex/EtOAc). ¹H NMR (500 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 8.19 – 8.14 (m, 2H); 7.41 – 7.36 (m, 2H); 6.47 (d, *J* = 8.7 Hz, 1H); 5.03 – 4.98 (m, 1H); 4.48 (dd, *J* = 8.7 Hz, *J* = 4.9 Hz, 1H); 4.41 – 4.36 (m, 2H); 3.96 (t, *J* = 7.1 Hz, 1H); 3.06 (t, *J* = 6.9 Hz, 2H); 2.19 (pd, *J* = 6.9 Hz, *J* = 5.4 Hz, 1H); 2.08 (pd, *J* = 6.9 Hz, *J* = 4.9 Hz, 1H); 1.43 (s, 9H); 0.96 (d, *J* = 6.8 Hz, 3H); 0.88 (dd, *J* = 6.9 Hz, *J* = 6.0 Hz, 6H); 0.79 (d, *J* = 6.9 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 171.8; 171.7; 147.1; 145.4; 129.9; 123.9; 64.7; 57.1; 34.9; 31.1; 30.7; 28.4; 19.5; 19.1; 17.7. FTIR v_{max} (cm⁻¹): 3314 (w); 2972 (w); 1729 (m); 1656 (m); 1519 (s); 1347 (s); 1246 (m); 1163 (m). HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₃H₃₅O₇N₃Na 488.2367; Found 488.2377.

15_{DL}: Yield = 87%. Rf = 0.31 (7:3 iHex/EtOAc). ¹H NMR (500 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 8.17 – 8.14 (m, 2H); 7.39 – 7.36 (m, 2H); 6.42 (d, *J* = 8.6 Hz, 1H); 5.05 (d, *J* = 8.8 Hz, 1H); 4.46 (dd, *J* = 8.6 Hz, *J* = 5.0 Hz, 1H); 4.38 (ddt, *J* = 11.0 Hz, *J* = 6.8 Hz, *J* = 4.3 Hz, 2H); 3.88 (dd, *J* = 8.8 Hz, *J* = 6.5 Hz, 1H); 3.06 (t, *J* = 6.9 Hz, 2H); 2.14 – 2.04 (m, 2H); 1.42 (s, 9H); 0.91 (dd, *J* = 11.2 Hz, *J* = 6.8 Hz, 6H); 0.85 (d, *J* = 6.9 Hz, 3H); 0.79 (d, *J* = 6.9 Hz, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 171.8; 171.7; 147.0; 145.4; 129.8; 123.9; 64.7; 57.1; 34.9; 31.1; 30.6; 28.4; 19.4; 19.0; 17.7. FTIR v_{max} (cm⁻): 3318 (w); 2972 (w); 1727 (m); 1656 (m); 1518 (s); 1347 (s); 1246 (m). HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₃H₃₅O₇N₃Na 488.2367; Found 488.2377.

15_{DD}: Yield = 83%. Rf = 0.30 (7:3 iHex/EtOAc). ¹H NMR (500 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 8.17 – 8.14 (m, 2H); 7.39 – 7.36 (m, 2H); 6.42 (d, *J* = 8.6 Hz, 1H); 5.05 (d, *J* = 8.8 Hz, 1H); 4.46 (dd, *J* = 8.6 Hz, *J* = 5.0 Hz, 1H); 4.38 (ddt, *J* = 11.0 Hz, *J* = 6.8 Hz, *J* = 4.3 Hz, 2H); 3.88 (dd, *J* = 8.8 Hz, *J* = 6.5 Hz, 1H); 3.09 – 3.02 (m, 2H); 2.14 – 2.04 (m, 2H); 1.42 (s, 9H); 0.91 (dd, *J* = 11.2 Hz, *J* = 6.8 Hz, 6H); 0.85 (d, *J* = 6.9 Hz, 3H); 0.79 (d, *J* = 6.9 Hz, 3H). ¹³C{¹H</sup> NMR (125 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 171.8; 171.7; 147.0; 145.4; 129.8; 123.9; 64.7; 57.1; 34.9; 31.1; 30.6; 28.4; 19.4; 19.0; 17.7. FTIR ν_{max} (cm⁻¹): 3305 (w); 2966 (w); 1743 (m); 1651 (m); 1518 (s); 1345 (s); 1247 (m); 1161 (s). HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₃H₃₅O₇N₃Na 488.2367; Found 488.2377.

General procedure for the synthesis of compound 16: Compound **10** (1 equiv.) was dissolved in 4 M HCl/1,4-dioxane at 0°C. The reaction was stirred at 0°C for 5 min and at r.t. for 1 h. After that, the crude was concentrated under reduced pressure. The crude was triturated with Et_2O and filtered. The white precipitate was washed with additional Et_2O . Finally, the product was dried under high vacuum.

16_{LD}: Yield = 99%. ¹H NMR (500 MHz with cryoprobe, DMSO-d₆, 298 K): δ (ppm) = 8.80 (d, J = 8.3 Hz, 1H); 8.28 (s, 3H); 8.21 – 8.13 (m, 2H); 7.63 – 7.55 (m, 2H); 4.44 – 4.30 (m, 2H); 4.18 (dd, J = 8.3 Hz, J = 6.1 Hz, 1H); 3.78 (d, J = 5.2 Hz, 1H); 3.09 (t, J = 6.4 Hz, 2H); 2.14 (pd, J = 6.9 Hz, J = 5.2 Hz, 1H); 1.97 (h, J = 6.8 Hz, 1H); 0.95 (d, J = 6.9 Hz, 3H); 0.92 (d, J = 6.9 Hz, 3H); 0.78 (dd, J = 6.8 Hz, J = 1.5 Hz, 6H). ¹³C{¹H} NMR (125 MHz with cryoprobe, DMSO-d₆, 298 K): δ (ppm) = 171.0; 168.4; 146.5; 146.3; 130.3; 123.4; 64.4; 57.6; 57.1; 34.0; 29.9; 29.9; 18.9; 18.5; 18.0; 17.4. FTIR v_{max} (cm⁻¹): 3206 (w); 2968 (w); 1720 (w); 1680 (m); 1519 (s); 1464 (m); 1347 (s); 1223 (m); 856 (m). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₂₈O₅N₃ 366.2023; Found 366.2029.

16_{DL}: Yield = 99%. ¹H NMR (500 MHz with cryoprobe, DMSO-d₆, 298 K): δ (ppm) = 8.79 (d, *J* = 8.3 Hz, 1H); 8.25 (s, 3H); 8.20 – 8.15 (m, 2H); 7.61 – 7.56 (m, 2H); 4.43 – 4.30 (m, 2H); 4.18 (dd, *J* = 8.2 Hz, *J* = 6.1 Hz, 1H); 3.77 (s, 1H); 3.09 (t, *J* = 6.4 Hz, 2H); 2.13 (pd, *J* = 6.9 Hz, *J* = 5.1 Hz, 1H); 1.96 (dq, *J* = 13.5 Hz, *J* = 6.8 Hz, 1H); 0.95 (d, *J* = 6.9 Hz, 3H); 0.91 (d, *J* = 6.9 Hz, 3H); 0.78 (d, *J* = 6.8 Hz, 6H). ¹³C{¹H} NMR (125 MHz with cryoprobe, DMSO-d₆, 298 K): δ (ppm) = 171.0; 168.4; 146.5; 146.3; 130.4; 123.5; 64.4; 57.6; 57.2; 34.0; 30.0; 29.9; 18.9; 18.5; 18.0; 17.4. FTIR v_{max} (cm⁻¹): 3206 (w); 2966 (w); 1733 (m); 1677 (m); 1518 (s); 1464 (m); 1344 (s); 1275 (m); 856 (m). HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₈H₂₈O₅N₃ 366.2023; Found 366.2029.

16_{DD}: Yield = 99%. ¹H NMR (500 MHz with cryoprobe, DMSO-d₆, 298 K): δ (ppm) = 8.66 (d, J = 7.4 Hz, 1H); 8.26 (s, 3H); 8.18 – 8.14 (m, 2H); 7.59 – 7.55 (m, 2H); 4.41 – 4.31 (m, 2H); 4.13 (dd, J = 7.4 Hz, J = 5.7 Hz, 1H); 3.78 (d, J = 5.6 Hz, 1H); 3.06 (t, J = 6.4 Hz, 2H); 2.09 – 1.95 (m, 2H); 0.91 (d, J = 2.0 Hz, 3H); 0.90 (d, J = 2.0 Hz, 3H); 0.82 (t, J = 6.5 Hz, 6H). ¹³C{¹H} NMR (125 MHz with cryoprobe, DMSO-d₆, 298 K): δ (ppm) = 170.8; 168.4; 146.5; 146.3; 130.3; 123.4; 64.2; 57.8; 56.7; 34.0; 29.9; 29.6; 18.8; 18.2; 18.0; 17.7. FTIR v_{max} (cm⁻¹): 3185 (w); 2966 (w); 1746 (m); 1660 (m); 1520 (s); 1447 (m); 1345 (s); 1187 (m); 1142 (m); 852 (m). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₂₈O₅N₃ 366.2023; Found 366.2033.

2.4 5-Methylaminomethyl uridine phosphoramidite

Figure S1. 5-methylaminomethyl uridine phosphoramidite 17.

Compound 17 was synthesized following a procedure previously reported in the literature.²

2.5 5-Aminomethyl thymidine phosphoramidite

Scheme S4. Synthesis of 5-aminomethyl thymidine phosphoramidite.

General procedure for the synthesis of compound 19: Thymidine **18** (1 equiv.) was dissolved in dry pyridine, then acetic anhydride (3 equiv.) was added slowly. The mixture was stirred at r.t. for 2 h, then quenched with CH_2Cl_2 , diluted with EtOAc and washed with water. The aqueous phase was extracted twice with EtOAc, then the combined organic layers were dried (Na₂SO₄), filtered and concentrated. The crude was purified by silica gel column chromatography.

19: Yield = 96%. Rf = 0.70 (10:0.5 CH₂Cl₂/MeOH). ¹H NMR (500 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 9.83 (d, *J* = 30.5 Hz, 1H); 7.25 (d, *J* = 1.6 Hz, 1H); 6.30 (ddd, *J* = 8.1 Hz, *J* = 5.6 Hz, *J* = 2.1 Hz, 1H); 5.18 (dq, *J* = 6.8 Hz, *J* = 2.2 Hz, 1H); 4.36 – 4.27 (m, 2H); 4.21 (dt, *J* = 4.0 Hz, *J* = 2.8 Hz, 1H); 2.46 – 2.40 (m, 1H); 2.18 – 2.10 (m, 1H); 2.09 (d, *J* = 2.8 Hz, 3H); 2.07 (d, *J* = 2.9 Hz, 3H); 1.92 – 1.87 (m, 3H). ¹³C{¹H} NMR (125 MHz with cryoprobe, CDCl₃, 298 K): δ (ppm) = 170.5; 170.3; 163.9; 150.6; 134.6; 111.6; 84.8; 82.1; 74.2; 63.9; 37.5; 20.9; 20.9; 12.7. FTIR v_{max} (cm⁻¹): 1747 (m); 1731 (m); 1700 (m); 1662 (s); 1474 (w); 1376 (m); 1243 (s); 1120 (s); 1093 (m); 1060 (m); 1027 (s); 951 (w); 883 (w); 865 (m); 763 (w); 629 (w). HRMS (ESI) *m/z*: [M+H]* Calcd for C₁₄H₁₉N₂O₇ 327.1187; Found 327.1191.

General procedure for the synthesis of compound 20: Compound **19** (1 equiv.) was suspended in dry benzene and degassed. *N*-Bromosuccinimide (1.2 equiv.) was added, the mixture was degassed again and heated to 70°C. Then, AIBN (0.5 equiv.) was added. The reaction mixture was stirred for 2 h, then another portion of AIBN (0.25 equiv.) was added. The reaction mixture was concentrated, the crude was dissolved in dry DMF under N₂ and NaN₃ (1 equiv.) was added. The reaction was stirred at r.t. for 20 h, then the reaction mixture was diluted with water. The aqueous phase was extracted with EtOAc, then the combined organic layers were dried (Na₂SO₄), filtered and concentrated. The crude was purified by silica gel column chromatography.

20: Yield = 73%. Rf = 0.35 (1:3 iHex/EtOAc). ¹H NMR (500 MHz with cryoprobe, DMSO- d_6 , 298 K): δ (ppm) = 11.63 (s, 1H); 7.82 (s, 1H); 6.16 (dd, *J* = 8.0 Hz, *J* = 6.2 Hz, 1H); 5.20 (dt, *J* = 6.4 Hz, *J* = 2.9 Hz, 1H); 4.24 (dd, *J* = 4.8 Hz, *J* = 3.4 Hz, 2H); 4.18 (td, *J* = 4.8 Hz, *J* = 2.9 Hz, 1H); 4.10 (s, 2H); 2.43 (ddd, *J* = 14.6 Hz, *J* = 8.1 Hz, *J* = 6.8 Hz, 1H); 2.34 (ddd, *J* = 14.4 Hz, *J* = 6.3 Hz, *J* = 2.8 Hz, 1H); 2.05 (d, *J* = 9.1 Hz, 6H). ¹³C{¹H} NMR (125 MHz with cryoprobe, DMSO- d_6 , 298 K): δ (ppm) = 170.4; 170.3; 163.0; 150.4; 139.8; 109.1; 84.8; 81.5; 74.1; 63.9; 46.9; 36.0; 20.9; 20.7. FTIR v_{max} (cm⁻¹): 2106 (w); 1681 (s); 1602 (w); 1464 (m); 1366 (m); 1224 (s); 1100 (m); 685 (w); 603 (w). HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₁₄H₁₆N₅O₇ 366.1055; Found 366.1056.

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

General procedure for the synthesis of compound 21: Step 1. Compound **20** (1 equiv.) was dissolved in THF/H₂O mixture (10:1) and PPh₃ (1.5 equiv.). was added. The reaction was stirred for 3 h, then the volatiles were evaporated and the crude was used for the next step without further purification. Step 2. The crude (1 equiv.) was dissolved in dioxane/water mixture (1:1) and TeocOSu (1.1 equiv.) was added, followed by TEA (1.5 equiv.). The reaction mixture was stirred at r.t. for 20 h. After that, the crude was diluted with EtOAc, washed with water, dried (Na₂SO₄), filtered and concentrated. The crude was purified by silica gel column chromatography.

21: Yield = 92%. Rf = 0.25 (3:7 iHex/EtOAc). ¹H NMR (500 MHz with cryoprobe, DMSO- d_{6} , 298 K): δ (ppm) = 11.47 (s, 1H); 7.51 (s, 1H); 7.28 – 7.09 (m, 1H); 6.17 (t, *J* = 7.1 Hz, 1H); 5.19 (dt, *J* = 5.9 Hz, *J* = 2.9 Hz, 1H); 4.25 – 4.15 (m, 3H); 4.02 (dt, *J* = 9.0 Hz, *J* = 3.8 Hz, 2H); 3.82 (d, *J* = 5.6 Hz, 2H); 2.37 – 2.28 (m, 2H); 2.07 (d, *J* = 5.2 Hz, 6H); 0.94 – 0.85 (m, 2H); 0.00 (s, 9H). ¹³C{¹H} NMR (125 MHz with cryoprobe, DMSO- d_{6} , 298 K): δ (ppm) = 170.4; 170.2; 162.9; 156.6; 150.4; 137.3; 111.7; 84.6; 81.5; 74.2; 63.9; 61.9; 36.9; 36.2; 20.9; 20.8; 17.6; -1.3. FTIR v_{max} (cm⁻¹): 1672 (s); 1467 (w); 1376 (w); 1221 (s); 1135 (w); 1100 (m); 1059 (m); 1026 (m); 951 (w); 860 (m); 834 (m); 763 (w); 694 (w); 603 (w). HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₂₀H₃₀N₃O₉Si 484.1757; Found 484.1760.

General procedure for the synthesis of compound 22: Compound **21** was dissolved in aq. NH₄OH and stirred at r.t. for 3 h. The reaction mixture was extracted with EtOAc, the organic layers were washed with water, then with aq. NH₄Cl solution, then dried (Na₂SO₄), filtered and concentrated. The crude was purified by silica gel column chromatography to afford the product as a white solid.

22: Yield = 82%. Rf = 0.38 (10:1 CH₂Cl₂/MeOH). ¹H NMR (500 MHz with cryoprobe, DMSO-*d*₆, 298 K): δ (ppm) = 11.36 (s, 1H); 7.65 (s, 1H); 7.13 (t, *J* = 5.6 Hz, 1H); 6.16 (dd, *J* = 7.5 Hz, *J* = 6.1 Hz, 1H); 5.25 (d, *J* = 4.2 Hz, 1H); 4.90 (t, *J* = 5.3 Hz, 1H); 4.22 (dq, *J* = 6.5 Hz, *J* = 3.1 Hz, 1H); 4.09 – 3.95 (m, 2H); 3.78 (dd, *J* = 8.2 Hz, *J* = 4.4 Hz, 3H); 3.57 – 3.49 (m, 2H); 2.14 – 1.96 (m, 2H); 0.91 (dd, *J* = 9.4 Hz, *J* = 7.4 Hz, 2H); 0.01 (s, 9H). ¹³C{¹H} NMR (125 MHz with cryoprobe, DMSO-*d*₆, 298 K): δ (ppm) = 162.9; 156.5; 150.5; 137.7; 111.2; 87.6; 84.3; 70.8; 61.9; 61.8; 37.0; 17.6; -1.2. FTIR *v*_{max} (cm⁻¹): 2953 (w); 1673 (s); 1468 (m); 1247 (s); 1092 (m); 1049 (m); 941 (m); 833 (s); 761 (m); 694 (m). HRMS (ESI) *m/z*: [M-H]⁻ Calcd for C₁₆H₂₆N₃O₇Si 400.1546; Found 400.1548.

Compound 23 was synthesized following a procedure described above for compound 6 (Section 2.1).

23: Yield = 99%. Rf = 0.44 (1:2.5 iHex/EtOAc). ¹H NMR (500 MHz with cryoprobe, DMSO- d_6 , 298 K): δ (ppm) = 11.44 (s, 1H); 8.58 – 8.56 (m, 2H); 7.77 (tt, J = 7.6 Hz, J = 1.8 Hz, 1H); 7.42 – 7.34 (m, 4H); 7.33 – 7.24 (m, 6H); 7.24 – 7.18 (m, 1H); 6.91 – 6.85 (m, 4H); 6.16 (t, J = 6.6 Hz, 1H); 5.33 (d, J = 4.7 Hz, 1H); 4.22 (p, J = 5.1 Hz, 1H); 3.99 – 3.93 (m, 2H); 3.87 (q, J = 4.3 Hz, 1H); 3.73 (s, 6H); 3.59 (dd, J = 5.2 Hz, J = 2.5 Hz, 2H); 3.20 (qd, J = 10.4 Hz, J = 4.5 Hz, 2H); 2.17 (t, J = 6.0 Hz, 2H); 0.86 (td, J = 8.0 Hz, J = 3.4 Hz, 2H); -0.01 (s, 9H). ¹³C{¹H</sup> NMR (125 MHz with cryoprobe, DMSO- d_6 , 298 K): δ (ppm) = 162.9; 158.3; 156.3; 150.4; 149.8; 145.0; 138.3; 136.3; 135.8; 135.6; 129.9; 128.0; 127.9; 126.9; 124.1; 113.4; 110.9; 85.9; 85.6; 84.4; 70.5; 64.0; 61.7; 55.2; 17.6; -1.3. FTIR v_{max} (cm⁻¹): 2951 (w); 1649 (s); 1608 (w); 1507 (m); 1464 (m); 1247 (s); 1175 (m); 1090 (m); 1031 (s); 967 (w); 827 (s); 791 (m); 754 (m); 727 (w); 701 (s). HRMS (ESI) m/z: [M-H]⁻ Calcd for C₃₇H₄₄N₃O₉Si 702.2852; Found 702.2860.

11.44 11.44 12.45 12

Compound 24 was synthesized following a procedure describe above for compound 7 (Section 2.1).

24: Yield = 78%. Rf = 0.53 (1:1 iHex/EtOAc). ³¹P{¹H} NMR (202 MHz with cryoprobe, acetone- d_6 , 298 K): δ (ppm) = 148.3; 148.2. HRMS (ESI) m/z: [M+CI]⁻ Calcd for C₄₆H₆₂N₅O₁₀PSiCl 938.3698; Found 938.3699.

3. General information and instruments for oligonucleotides

Synthesis and purification of oligonucleotides

Phosphoramidites of 2'-O-Me ribonucleosides (2'-OMe-Bz-A-CE, 2'-OMe-Dmf-G-CE, 2'-OMe-Ac-C-CE and 2'-OMe-U-CE) and deoxyribonucleosides (Bz-dA-CE, Dmf-dG-CE, Ac-dC-CE, T-CE) were purchased from LinkTech and Sigma-Aldrich. Oligonucleotides (ONs) were synthesized on a 1 μ mol scale using RNA SynBaseTM CPG 1000/110 and High Load Glen UnySupportTM as solid supports using an RNA automated synthesizer (Applied Biosystems 394 DNA/RNA Synthesizer) with a standard phosphoramidite chemistry. ONs were synthesized in DMT-OFF mode using DCA as a deblocking agent in CH₂Cl₂, BTT or Activator 42[®] as activator in MeCN, Ac₂O as capping reagent in pyridine/THF and I₂ as oxidizer in pyridine/H₂O.

Deprotection of Onpe and teoc groups

For the deprotection of the *para*-nitrophenylethyl (Onpe) group in ONs containing amino acid-modified carbamoyl adenosine nucleosides, the solid support beads were suspended in a 9:1 THF/DBU solution mixture (1 mL) and incubated at r.t. for 2 h.⁴ After that, the supernatant was removed, and the beads were washed with THF (3×1 mL).

For the deprotection of the 2-(trimethylsilyl)ethoxycarbonyl (teoc) group in ONs containing 5-methylaminomethyl uridine nucleosides, the solid support beads were suspended in a saturated solution of ZnBr₂ in 1:1 MeNO₂/IPA (1 mL) and incubated at r.t. overnight.⁵ After that, the supernatant was removed and the beads were washed with 0.1 M EDTA in water (1 mL) and water (1 mL).

Coupling of amino acids to ONs anchored to the solid support beads

The solid support beads (1 μ mol) in an Eppendorf tube were washed with dry DMF (0.3 mL). In a separate Eppendorf tube, Boc-protected L- or D-Valine, DMTMM•BF4 (100 μ mol) as activator and dry DIPEA (200 μ mol) were dissolved in dry DMF (0.6 mL). Subsequently, the amino acid solution was added to the solid support beads and the reaction was incubated in an orbital shaker at r.t. for 1 h. The suspension was centrifuged and the supernatant was removed. The solid support beads were washed with dry DMF (2×0.3 mL) and dry MeCN (2×0.3 mL). Finally, the beads were dried using a SpeedVac concentrator.

For the deprotection of the *tert*-butyloxycarbonyl (Boc) group in ONs after the coupling of a Boc-protected amino acid or peptide, the solid support beads were suspended in a 1:1 TFA/CH₂Cl₂ solution mixture (0.5 mL) and incubated for 5 min at r.t.⁶ After that, the supernatant was removed and the solid support beads were washed with CH₂Cl₂ (2×0.5 mL).

Cleavage from beads and precipitation of the synthesized ON

The solid support beads were suspended in a 1:1 aqueous solution mixture (0.6 mL) of 30% NH₄OH and 40% MeNH₂. The suspension was heated at 65°C (8 min for SynBaseTM CPG 1000/110 and 60 min for High Load Glen UnySupportTM). The ONs containing dipeptide-modified carbamoyl adenosine derivatives were cleaved from the solid support beads using a 30% NH₄OH aqueous solution (0.6 mL) at r.t. overnight. Subsequently, the supernatant was collected, and the beads were washed with water (2×0.3 mL). The combined aqueous solutions were concentrated under reduced pressure using a SpeedVac concentrator. After that, the crude was dissolved in DMSO (100 μ L) and the ON was precipitated by adding 3 M NaOAc in water (25 μ L) and *n*-butanol (1 mL). The mixture was kept at -80°C for 2 h and centrifuged at 4°C for 1 h. The supernatant was removed, and the white precipitate was lyophilized.

Purification of the synthesized ON by HPLC and desalting

The crude was purified by semi-preparative HPLC (1260 Infinity II Manual Preparative LC System from Agilent equipped with a G7114A detector) using a reverse-phase (RP) VP 250/10 Nucleodur 100-5 C18ec column from Macherey-Nagel (buffer A: 0.1 M AcOH/Et₃N pH 7 in H₂O and buffer B: 0.1 M AcOH/Et₃N pH 7 in 20:80 H₂O/MeCN; Gradient: 0-25% of B in 45 min; Flow rate = 5 mL·min⁻¹). The purified ON was analyzed by RP-HPLC (1260 Infinity II LC System from Agilent equipped with a G7165A detector) using an EC 250/4 Nucleodur 100-3 C18ec from Macherey-Nagel (Gradient: 0-30% of B in 45 min; Flow rate = 1 mL·min⁻¹). Finally, the purified ON was desalted using a C18 RP-cartridge from Waters.

Determination of the concentration and the mass of the synthesized ON

The absorbance of the synthesized ON in H_2O solution was measured using an IMPLEN NanoPhotometer[®] N60/N50 at 260 nm. The extinction coefficient of the ON was calculated using the OligoAnalyzer Version 3.0 from Integrated DNA Technologies. For ONs incorporating non-canonical bases, the extinction coefficients were assumed to be identical to those containing only canonical counterparts.

The synthesized ON (2-3 μ L) was desalted on a 0.025 μ m VSWP filter (Millipore), co-crystallized in a 3-hydroxypicolinic acid matrix (HPA, 1 μ L) and analyzed by matrix-assisted laser desorption/ionization – time-of-flight (MALDI-ToF) mass spectrometry (negative mode).

4. Synthesized oligonucleotides using a DNA/RNA automated synthesizer

4.1 Donor strands containing amino acid-modified methyl N⁶-carbamoyl adenosine at the 5'-end

Table S1. HPLC retention times (0-40% of B in 45 min) and MALDI-ToF mass spectrometric analysis (negative mode) of donor strands **ON1**_{R1} containing a Val- or Val-Val-modified N^6 -carbamoyl adenosine at the 5'-end. Subscript $_{L}$ stands for the L-Val enantiomer and subscript $_{D}$ stands for the D-Val enantiomer.

Sequence	Donor strand	t _R (min)	<i>m/z</i> calcd. for [<i>M</i> -H] [.]	found
	ON1_L; R¹ = $m^6 v_L^6 A_m$	27.8	2417.5	2417.2
	ON1 _D ; R ¹ = $m^6 v_D^6 A_m$	28.9	2417.5	2417.0
	ON1 _{LL} ; $R^1 = m^6 v_L v_L^6 A_m$	30.1	2516.5	2516.5
5'- R *(AUCGCU) _m -3'	ON1 _{LD} ; R ¹ = $m^6 v_L v_D^6 A_m$	31.0	2516.5	2516.3
	ON1_{DL}; $R^1 = m^6 v_D v_L^6 A_m$	32.8	2516.5	2516.2
	ON1 _{DD} ; R ¹ = $m^6 v_D v_D^6 A_m$	33.9	2516.5	2516.4

4.2 Acceptor strands containing 5-methylaminomethyl uridine at the 3'-end

Table S2. HPLC retention times (0-40% of B in 45 min) and MALDI-ToF mass spectrometric analysis (negative mode) of acceptor strands ON2_{R2} containing a methylaminomethyl uridine at the 3'-end.

Sequence	Acceptor strand	t _R (min)	<i>m/z</i> calcd. for [<i>M</i> -H] ⁻	found
	ON2_L; R² = v _L -mnm ⁵ U _m	24.8	3785.4	3786.0
5-(GUACAGCGAU) _m n 5	$ON2_{D}$; $R^2 = v_{D}$ -mnm ⁵ U_{m}	24.7	3785.4	3788.7

4.3 Donor strands containing amino acid-modified methyl N⁶-carbamoyl deoxy adenosine at the 5'-end

Table S3. HPLC retention times (0-40% of B in 45 min) and MALDI-ToF mass spectrometric analysis (negative mode) of donor strands dON1_{R1} containing an L- or D-Val-modified N⁶-carbamoyl deoxy adenosine at the 5'-end.

Sequence	Donor strand	t _R (min)	<i>m/z</i> calcd. for [<i>M</i> -H] ⁻	found
	$dON1_L$; $R^1 = m^6 v_L^6 dA$	24.5	2236.6	2236.3
5 - K -0(AICGCI)-5	$dON1_D$; $R^1 = m^6 v_D^6 dA$	23.2	2236.6	2236.2

4.4 Acceptor strands containing 5-aminomethyl thymidine at the 3'-end

Table S4: HPLC retention times (0-40% of B in 45 min) and MALDI-ToF mass spectrometric analysis (negative mode) of acceptor strands dON2_{R2} containing an aminomethyl thymidine at the 3'-end.

Sequence	Acceptor strand	t _R (min)	<i>m</i> /z calcd. for [<i>M</i> -H] ⁻	found
	dON2 _L ; R ² = v _L -nm ⁵ dT	19.3	3470.4	3469.1
5-0(GTACAGCGAT)K3	dON2 _D ; R ² = ν _D -nm ⁵ dT	19.2	3470.4	3469.8

5. Peptide coupling reactions between donor and acceptor oligonucleotides

Stock solutions of MES buffer pH 6 (400 mM), NaCl (1 M) and activator (500 mM) were prepared in water. Subsequently, equimolar amounts of (d)ON1_{R1} and (d)ON2_{R2} (3-5 nmol) were annealed at 95°C for 4 min in water containing NaCl (half of the volume required for the reaction). Finally, buffer, NaCl, activator solutions and water were added to the ON solution and the reaction was incubated in a ThermoMixer at 25°C for 2 h. The concentration of the components in the reaction mixture was: 50 μ M of (d)ON1_{R1}, 50 μ M of (d)ON2_{R2}, 100 mM of buffer, 100 mM of NaCl and 50 mM of EDC/Sulfo-NHS.

Scheme S5. Peptide coupling reactions between oligonucleotides (d) $ON1_{R1}$ and (d) $ON2_{R2}$ to give hairpin (d) $ON3_{R1R2}$.

The peptide coupling reactions were only performed to isolate and characterize the products by HPLC (t_R) and mass spectrometry (m/z). The isolated products were used as references for the analyses of the pair-wise competitive reactions. In this respect, the reaction yields are not given.

Table S5. HPLC retention times (0-40% of B in 45 min) and MALDI-ToF mass spectrometric analysis (negative mode) of isolated hairpin products (d)ON3_{R1R2}.

Donor strand	Acceptor strand	Hairpin strand	t _R (min)	<i>m/z</i> calcd. for [<i>M</i> -H] ⁻	found
ON1_L; R¹ = m ⁶ v _L ⁶ A _m	ON2_L; R² = v _L -mnm ⁵ U _m	ON3 _{LL}	32.2	6186.9	6186.1
ON1_D; R¹ = m⁶v_D⁶A_m	ON2_L ; $\mathbf{R}^2 = \mathbf{v}_L \cdot \mathbf{mnm}^5 \mathbf{U}_m$	ON3 _{DL}	33.6	6186.9	6187.3
ON1_{LL}; R¹ = $m^6 v_L v_L^6 A_m$	ON2_L; R² = v _L -mnm ⁵ U _m	ON3 _{LLL}	34.0	6285.9	6286.7
ON1 _{LL} ; $\mathbf{R}^1 = m^6 v_L v_L^6 A_m$	ON2_D; R² = v_D -mnm ⁵ U _m	ON3 _{LLD}	36.1	6285.9	6285.6
ON1 _{LD} ; R ¹ = m ⁶ v _L v _D ⁶ A _m	ON2_L; R² = v_L -mnm ⁵ U _m	ON3 _{LDL}	35.5	6285.9	6285.9
ON1 _{LD} ; $\mathbf{R}^{1} = m^{6} v_{L} v_{D}^{6} A_{m}$	ON2_D; R² = v_D -mnm ⁵ U _m	ON3 _{LDD}	33.5	6285.9	6286.2
ON1_{DL}; R¹ = $m^6 v_D v_L^6 A_m$	ON2_L; R² = v _L -mnm ⁵ U _m	ON3 _{DLL}	34.6	6285.9	6286.9
ON1_{DL}; R¹ = $m^6 v_D v_L^6 A_m$	ON2_D; R² = v_D -mnm ⁵ U _m	ON3 _{DLD}	35.5	6285.9	6285.7
ON1 _{DD} ; R ¹ = m ⁶ v _D v _D ⁶ A _m	ON2_L; R² = v _L -mnm ⁵ U _m	ON3 _{DDL}	34.5	6285.9	6287.0
ON1 _{DD} ; R ¹ = m ⁶ v _D v _D ⁶ A _m	ON2 _D ; $\mathbf{R}^2 = \mathbf{v}_D - \mathbf{mnm}^5 \mathbf{U}_m$	ON3 _{DDD}	35.3	6285.9	6286.4
dON1_L; R1 = m ⁶ v _L ⁶ dA	dON2 _L ; R ² = ν _L -nm ⁵ dT	dON3	22.1	5689.0	5689.7
dON1_D; R¹ = m⁶v_D⁶dA	dON2 _L ; R ² = ν _L -nm ⁵ dT	dON3 _{DL}	25.1	5689.0	5689.2
$dON1_L; R^1 = m^6 v_L^6 dA$	$dON2_{D}$; $R^{2} = v_{D}$ -nm ⁵ dT	dON3 _{LD}	24.3	5689.0	5689.0
$dON1_D$; $R^1 = m^6 v_D^6 dA$	$dON2_{D}$; $R^2 = v_{D}$ -nm ⁵ dT	dON3 _{DD}	23.6	5689.0	5688.8
ON1 _{cal} ; $\mathbf{R}^1 = \mathbf{m}^6 \mathbf{g}^6 \mathbf{A}_m$	ON2_{cal}; R² = mnm₅U _m	ON3 _{cal}	26.8	6045.7	6044.8

6. Calibration curve hairpin

Hairpin oligonucleotide $ON3_{cal}$ or acceptor oligonucleotide $ON2_L$ was used for the development of a HPLC calibration curve. A stock solution of $ON3_{cal}$ or $ON2_L$ was prepared in water (100 µM). Separate standard solutions containing 1.2; 1.0; 0.8; 0.6; 0.4; 0.2 and 0.1 nmol of $ON3_{cal}$ or $ON2_L$ were prepared in a final volume of 20 µL. The standard solutions were injected in an analytical HPLC equipped with a C18 column (buffer A: 0.1 M AcOH/Et₃N pH 7 in H₂O and buffer B: 0.1 M AcOH/Et₃N pH 7 in 20:80 H₂O/MeCN; Gradient: 0-40% of B in 45 min; Flow rate = 1 mL·min⁻¹). The absorbance was monitored at 260 nm and the areas of the chromatographic peaks were determined by integration of the HPL-chromatograms. The plot of the chromatographic area (a.u.) versus the amount (nmol) of the oligonucleotide followed a linear relationship.

Figure S2. Chromatographic area (a.u.) vs. amount (nmol) of ON3_{cal}. Line shows the fit of the data to a linear regression equation. Error bars are standard deviations from two independent experiments.

Figure S3. Chromatographic area (a.u.) vs. amount (nmol) of ON2_L. Line shows the fit of the data to a linear regression equation. Error bars are standard deviations from two independent experiments.

Table S6. Calibration curve (y = mx + n) obtained by HPLC analysis of ON3_{cal} and ON2_L and calculated extinction coefficients of ON1_{cal}, ON2_{cal}, ON3_{cal} and ON2_L

Strand	Slope, m (nmol ⁻¹)	Intercept, n	r²	ε (M⁻¹·cm⁻¹)
ON1 _{cal} ^a	-	-	-	68800
ON2 _{cal} ^a	-	-	-	113400
ON3 _{cal} ^b	9142.5	149.4	0.99	159182
ON2L	6428.6	- 89.8	1.0	113400

The extinction coefficients were calculated using: ^a the OligoAnalyzer Version 3.0 from Integrated DNA Technologies and ^b an hypochromicity value of h = 0.827 for the section of the hairpin forming base pairs as reported in the literature.⁷

7. Cleavage reaction of hairpin products

A stock solution of acetate buffer pH 4 (400 mM) and NaCl (1 M) were prepared in water. Subsequently, **ON3**_{R1R2} was mixed with buffer, NaCl, and water and the reaction mixture was incubated at 90°C for 20 h. The concentration of the components in the reaction mixture was: 50μ M of **ON3**_{R1R2}, 100 mM of buffer, 100 mM of NaCl.

Scheme S6: Cleavage reactions of hairpin products $ON3_{R1R2}$ to give $ON2_{R1R2}$, c-ON2_{R1R2} and ON4.

The hairpin cleavage reactions were only performed to isolate and characterize the products by HPLC (t_R) and mass spectrometry (m/z). The isolated products were used as references for the analyses of the pair-wise competitive reactions. In this respect, the reaction yields are not given.

Table 57. HPLC retention times (0-40% of B in 45 min) and MALDI-ToF mass spectrometric analysis (negative mode) of isolated cleavage products ON2_{R1R2}, c-ON2_{R1R2} and ON4.

Acceptor strand	t _R (min)	<i>m/z</i> calcd. for [<i>M</i> -H] ⁻	found
ON2 _{LL}	25.9	3884.4	3885.3
c-ON2 _{LL}	30.0	3910.3	3911.3
ON2 _{DL}	28.0	3884.4	3885.6
c-ON2 _{DL}	30.0	3910.3	3910.6
ON2 _{LLL}	27.6	3983.4	3984.5
c-ON2 _{LLL}	34.0	4009.4	4011.5
ON2 _{LDL}	31.4	3983.4	3983.9
c-ON2 _{LDL}	32.8	4009.4	4012.3
ON2 _{DLL}	28.7	3983.4	3985.0
c-ON2 _{DLL}	34.3	4009.4	4011.0
ON2 _{DDL}	28.7	3983.4	3984.3
c-ON2 _{DDL}	34.3	4009.4	4010.4
ON4	26.0	2274.3	2272.6

8. Competitive coupling and cleavage reactions (one-pot)

Figure S4. a) Coupling and cleavage reactions between acceptor and donor strands. Reaction conditions: (1) Coupling: EDC/Sulfo-NHS, MES buffer pH 6, NaCl, r.t., 2 h; (2) Cleavage: acetate buffer pH 4, NaCl, 90 °C, 48 h. HPL-chromatograms of the b) coupling reaction of $ON1_{R1}$ and $ON2_{R2}$ to yield $ON3_{R1R2}$ and of the c) cleavage reaction of $ON3_{R1R2}$ to yield $ON3_{R1R2}$ and of the c) cleavage reaction of $ON3_{R1R2}$ to yield $ON3_{R1R2}$ and $ON4_{R1}$.

$$ON1_{L} + ON1_{D} + ON2_{L} \longrightarrow ON3_{LL} (+ ON3_{DL}) \longrightarrow ON2_{LL} + c-ON2_{LL} (+ ON2_{DL} + c-ON2_{DL}) + ON4$$

$$ON1_{L} + ON1_{D} \longrightarrow ON3_{LLL} (+ ON3_{DLL}) \longrightarrow ON3_{LLL} (+ ON3_{DLL}) \longrightarrow ON2_{LLL} + c-ON2_{LLL} + ON4$$

$$ON1_{L} + ON1_{D} \longrightarrow ON3_{LLL} (+ ON3_{DLL}) \longrightarrow ON3_{LLL} (+ ON3_{DLL}) \longrightarrow ON3_{LLL} (+ ON3_{DL}) \longrightarrow ON3_{LLL} (+ ON3_{DL}) + ON4$$

Scheme S7. Schematic representation of the one-pot coupling/cleavage cycle.

The one-pot reactions were carried out using 20 nmol of $ON2_L$ as starting material. An equimolar solution of 20 nmol $ON1_L$ and $ON1_D$ was prepared and the coupling reaction was carried out as described in Section 5. After each coupling step, the crude mixture was filtered using an Amicon[®] ultra centrifugal filter (3 kDa nominal molecular weight cut-off) to remove the unreacted activator and to exchange the buffer solution. Then, the cleavage reaction was performed as described in Section 7, although the reaction time was extended to 48 h to optimize the yield. After each step, 20 µL of the reaction mixture was analysed by HPLC.

Figure S5: HPL-chromatograms of the crude reaction mixtures of the one-pot reaction and MALDI-ToF spectra of the isolated products; a) first coupling; b) first cleavage; c) second coupling and d) second cleavage.

Step	Activator	рН	т (°С)	Time (h)	Yield (%)	LL vs. DL ratio
Coupling 1	EDC/Sulfo-NHS	6	25	2	58%	94:6
Cleavage 1	-	4	90	48	42% (over two steps)	98:2
Coupling 2	EDC/Sulfo-NHS	6	25	2	3% (over three steps)	n.d.
Cleavage 2	-	4	90	48	1% (over four steps)	n.d.

Table S8: Results obtained in one-pot coupling and cleavage cycle.

9. Pair-wise competitive peptide coupling reactions between donor and acceptor oligonucleotides containing dipeptides

EDC/Sulfo-NHS as activator

The peptide coupling reactions were carried out under identical conditions to those described in Section 5 using EDC/Sulfo-NHS as activator. An equimolar solution of $ON1_x$ and $ON1_y$ was prepared in water and analyzed by HPLC. The 1:1 solution mixture of donor strands, $ON1_x$ and $ON1_y$, was used to perform the coupling reactions with 1 equiv. of acceptor strand, $ON2_L$ or $ON2_D$.

_x and _y can be either _LL, _LD, _DL, or _DD, but _x \neq _y

Scheme S8. Pair-wise competitive peptide coupling reactions of $ON1_x$ and $ON1_y$ with $ON2_L$ or $ON2_D$.

Figure S6. HPL-chromatograms of the crude reaction mixtures for the pair-wise competitive peptide coupling reactions of $ON2_L$ with equimolar amounts of: a) $ON1_{LL}$ and $ON1_{Dc}$; c) $ON1_{LL}$ and $ON1_{Dc}$

Table S9. Results obtained in the pair-wise competitive peptide coupling reactions of $ON2_{L}$ and $ON2_{D}$ with equimolar amounts of $ON1_{X}$ and $ON1_{Y}$ (x and y can be either LL/ LD/ DL, or DD, but $x \neq y$) using EDC/Sulfo-NHS as activator (average of two experiments). Errors were determined to be lower than 10%.

Acceptor strand	Donor strands	Overall yield (%)	ON3 _{XL} /ON3 _{YL} ratio
	$ON1_{LL} + ON1_{LD}$	56	59:41
	$ON1_{LL} + ON1_{DL}$	48	81:19
ON2L	$ON1_{LL} + ON1_{DD}$	50	n.d.
	$ON1_{LD} + ON1_{DD}$	48	62:38
	$ON1_{DL} + ON1_{DD}$	25	n.d.
Acceptor strand	Donor strands	Overall yield (%)	ON3 _{XD} /ON3 _{YD} ratio
Acceptor strand	Donor strands ON1 _{LL} + ON1 _{LD}	Overall yield (%)	ON3 _{xD} /ON3 _{YD} ratio
Acceptor strand	Donor strands ON1 _{LL} + ON1 _{LD} ON1 _{LL} + ON1 _{DL}	Overall yield (%) 50 30	ON3_{xD}/ON3_{vD} ratio 50:50 80:20
Acceptor strand	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Overall yield (%) 50 30 37	ON3_{xD}/ON3_{vD} ratio 50:50 80:20 66:34
Acceptor strand	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Overall yield (%) 50 30 37 34	ON3_{x0}/ON3_{YD} ratio 50:50 80:20 66:34 64:36

n.d. = not determined (due to peak overlap)

Competitive reactions between two acceptor strands with one donor strand

The peptide coupling reactions were carried out under identical conditions to those described in Section 5 using EDC/Sulfo-NHS as activator. An equimolar solution of $ON2_L$ and $ON2_D$ was prepared in water and analyzed by HPLC. The 1:1 solution mixture of acceptor strands, $ON2_L$ and $ON2_D$, was used to perform the coupling reactions with 1 equiv. of donor strand, $ON1_{LL}$, $ON1_{LD}$, $ON1_{LD}$ or $ON1_{DD}$.

$$\begin{array}{c} \text{ON1}_{X} + \text{ON2}_{L} + \text{ON2}_{D} & \xrightarrow{\text{EDC/Sulfo-NHS}} \text{ON3}_{XL} + \text{ON3}_{XD} \\ & \xrightarrow{\text{X can be either } LL, \ LD, \ DL, \ OT \ DD} \end{array}$$

Scheme S9. Pair-wise competitive peptide coupling reactions between ON2_L and ON2_D with ON1_{LD} ON1_{LD}, ON1_{DL} or ON1_{DD}.

Figure S7. HPL-chromatograms of the crude reaction mixtures for the pair-wise competitive peptide coupling reactions of equimolar amounts of ON2_L and ON2_D with a) ON1_{LD}; c) ON1_{DL} and d) ON1_{DD}. Reactions performed with EDC/Sulfo-NHS (2 h).

Table S10. Results obtained in the pair-wise competitive peptide coupling reactions of equimolar amounts of ON2_L and ON2_D with ON1_{LD}, ON1_{LD}

Acceptor strands	Donor strand	Overall yield (%)	$ON3_{xL}/ON3_{xD}$ ratio
	ON1 _{IL}	54	66:34
	ON1 _{LD}	40	62:38
UNZL + UNZD	ON1 _{DL}	n.d.	n.d.
	ON1 _{DD}	27	29:71

n.d. = not determined (due to overlap with impurity)

10. Pair-wise competitive peptide coupling reactions between donor and acceptor deoxy oligonucleotides

The competitive peptide coupling reactions of an equimolar mixture of $dON1_L$ and $dON1_D$ with $dON2_L$ or $dON2_D$ were carried out under identical conditions to those described in Section 5 using EDC/Sulfo-NHS as activator.

$$dON1_{L} + dON1_{D} + dON2_{L} \xrightarrow{EDC/Sulfo-NHS} dON3_{LL} + dON3_{DL}$$

$$dON1_{L} + dON1_{D} + dON2_{D} \xrightarrow{EDC/Sulfo-NHS} dON3_{LD} + dON3_{DD}$$

 $Scheme \ S10. \ Pair-wise \ competitive \ peptide \ coupling \ reactions \ between \ dON1_L \ and \ dON1_D \ with \ dON2_L \ or \ dON2_D.$

Figure S8: HPL-chromatograms of the crude reaction mixtures for the pair-wise competitive peptide coupling reactions of a) dON2_L and b) dON2_D with equimolar amounts of dON1_L and dON1_D. Reactions performed with EDC/Sulfo-NHS (2 h).

Table S11: Results obtained in the pair-wise competitive peptide coupling reactions of $dON2_{L}$ and $dON2_{D}$ with equimolar amounts of $dON1_{L}$ and $dON1_{D}$ using EDC/Sulfo-NHS as activator (average of two experiments). Errors were determined to be lower than 10%.

Acceptor strand	Donor strands	Overall yield (%)	$dON3_{LL}/dON3_{DL}$ ratio
dON2L	$dON1_L + dON1_D$	24	85:15
Acceptor strand	Donor strands	Overall yield (%)	$dON3_{LD}/dON3_{DD}$ ratio

11. Circular dichroism measurements

The circular dichroism (CD) spectra were measured on a Jasco J-810 spectropolarimeter using 5 mm cuvettes in the spectral range from 220 nm to 310 nm and are the average of three measurements. For the experiments we prepared aqueous solutions with the following concentrations: $[ON] = 5 \mu M$, [NaCI] = 150 mM, [MES buffer] = 10 mM. The oligonucleotides were annealed by heating to 95°C for 4 min and, subsequently, by cooling down slowly to 5°C before the circular dichroism measurement.

The experiments were conducted with a) an annealed duplex of $ON1_L$ and $ON2_L$, b) with the annealed hairpin $ON3_{LL}$ and with c) an annealed duplex of canonical strands ON5 and ON6.

ON5: 5'-(AAUCGCU)_m-3' and ON6 3'-(UUAGCGACAUG)_m-5' (with 2'OMe nucleotides)

Figure S9: Circular dichroism (CD) spectra of a) annealed duplex of ON1_L and ON2_L b) annealed hairpin of ON3_L and c) annealed duplex of canonical strands ON5 and ON6.

12. References

- 1. G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, Organometallics, 2010, **29**, 2176-2179.
- F. Müller, L. Escobar, F. Xu, E. Węgrzyn, M. Nainytė, T. Amatov, C. Y. Chan, A. Pichler and T. Carell, *Nature*, 2022, 605, 279-284.
- M. Nainytė, F. Müller, G. Ganazzoli, C.-Y. Chan, A. Crisp, D. Globisch and T. Carell, Chem. Eur. J., 2020, 26, 14856-14860.
- 4. F. Himmelsbach, B. S. Schulz, T. Trichtinger, R. Charubala and W. Pfleiderer, *Tetrahedron*, 1984, 40, 59-72.
- 5. F. Ferreira and F. Morvan, *Nucleosides, Nucleotides Nucleic Acids*, 2005, **24**, 1009-1013.
- 6. A. V. Tataurov, Y. You and R. Owczarzy, *Biophys. Chem.*, 2008, **133**, 66-70.