Supplementary information

Directional Growth and Reconstruction of Ultrafine Uranium Oxide Nanorods within Single-Walled Carbon Nanotubes

Luyao Zhang^a, Kun Wang^a, Xin Zhao^a, Guoping Yang^b, Yulong Jiang^a, Feng Yang^{*a}

^aDepartment of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China ^bJiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, China *Email: yangf3@sustech.edu.cn

Figure S1. Electron beam intensity sequence with 0.01 nA increments (a) and 0.1 nA increments (b) STEM images of in-situ observation of U_4O_9 within SWCNTs.

Figure S2. The contrast-modified HAADF-STEM and HRTEM images of $U_4O_9@SWCNT$ with tube wall visible. The tube wall is marked by yellow arrows.

Figure S3. The atomic model of the U₄O₉ unit cell (ICSD: 40259, space group $F\overline{4}3m$), with U in bule and O in purple.

Figure S4. Quantitative analysis of U_4O_9 thickness. HAADF-STEM images and corresponding ADF intensity profiles of atom columns marked in STEM images.

Figure S5. a-d, Ex-situ HAADF-STEM images of U_4O_9 nanorods confined in SWCNT prepared by annealing at 600 °C in tube furnace. e, Statistics of growth directions of U_4O_9 nanorods along the SWCNT axis based on STEM image analysis.

Figure S6. The nucleation process at a low magnification.

Figure S7. a-f, Time-sequential HRTEM images of the growth process of U_4O_9 nanorods in SWCNTs stimulated by TEM e-beam. The atomic structure of U_4O_9 (with O atoms invisible) is superimposed in (f).

Figure S8. The nucleation process of U₄O₉ on outer surface of SWCNTs. Electron beam intensity: 0.06~0.07 nA.

Figure S9. a-c, The corresponding shear strain maps (ε_{xy}) from Geometric phase analysis (GPA) of the U₄O₉ nanorods in Figure 3c-e, and the color variation from black to yellow indicates the variation of shear strain values from -1 to 1.

Figure S10. More HAADF-STEM images of U_4O_9 nanorods with bent lattice plane. The dashed curves serve as guides to the eyes only.

Figure S11. Lattice planes with vacant U column (marked by arrows) in the body of U_4O_9 nanorods.

Figure S12. Lattice planes without vacant U column in the body of U₄O₉ nanorods.

Figure S13. Stability of U₄O₉ nanorods under the STEM e-beam irradiation.

Figure S14. Time-sequential HAADF-STEM images of reconstruction process of U_4O_9 nanorod.