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1. Machine Learning Workflow 

The Fe-catalyzed ethylene oligomerization machine learning model was designed and optimized following a workflow 

(Figure S1) that consisted of four main steps: 

1) Collection of experimental data. 

2) Feature design, generation, and selection. 

3) Model training and validation. 

4) Evaluation of machine learning algorithms and features. 

Steps 2 to 4 are repeated until the accuracy of the machine learning model is maximized with the chosen data set from 

step 1. Details regarding each step are provided below in subsections.  

 

Figure S1. Workflow for experimentally-based Fe-catalyzed ethylene oligomerization machine learning model. 
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1.1 Experimental data and machine learning data set 

All Fe-based ethylene oligomerization catalysts (Figure S2) and their corresponding K values were collected from 

litereature as sited in the main text of the manuscript. The selected Fe catalysts mainly consist of four types of ligand 

motifs, including the pyridine-bisimine, the phenanthroline, the iminopyridine, and the -diimine ligands. 

 

Figure S2. Fe-based ethylene oligomerization catalyst data set. Catalysts are organized based on ligand type, from top to bottom, 
include the pyridine-bisimine, the phenanthroline, the iminopyridine, and the -diimine ligands. 



S4 
 

The catalyst data was is stored as a Comma Separated Values (CSV) file that was accessed by the Scikit-Learn1 python 

library, and consisted of the following entries: 

1) 2-dimensional (2D) catalyst structures stored in the Simplified Molecular-Input Line-Entry System (SMILES) 

format. 

2) The experimental K(C12/C10) value for each structure; K(C14/C12) values were converted to K(C12/C10) values 

when applicable. 

3) Reaction conditions reported along with each K value for each catalyst. Reaction conditions are used as 

chemical features in the machine learning model. 

4) 2D molecular feature values generated based on 2D structures. 

 

1.2 Features 

More than 1500 different 2D molecular features were generated using programs MordRed2 and RDKit3 for the catalyst 

data set. To increase model efficiency, redundant and unrelated features in the machine learning model were removed 

following four steps:  

1) A feature was removed if non-numerical value is generated for any structure within the machine learning data 

set. This step removed around 400 features. 

2) A feature was removed if its corresponding normalized feature importance determined from random forest 

model was lower than 0.005. Additional 1100 features were removed based on this criterion.  

3) A feature was removed if it had high correlation with another feature and if the feature had lower importance. 

We considered two features highly correlated with each other if the standard correlation coefficient were 

larger than 0.83. This step removed an additional 6 features.  

4) 20 2D features were kept in the model after steps 1 to 3. We then manually selected combinations of features 

to increase model accuracy based on computed averaged RMSE value. Thirteen additional features were 

removed, most of which has normalized feature importance lower than 0.015. A correlation heatmap of the 

final included features is shown in Figure S3. 

 

Figure S3. Correlation heatmap of the 14 features used in the machine learning models. The standard correlation coefficient 
measures the strength and the direction of the linear relationship between two features: a correlation of 0 indicates no linear 
relationship, a correlation coefficient of 1 indicates a perfect positive correlation, while a correlation coefficient of -1 indicates a 
perfect negative correlation.  

1.3 Model training and results evaluation 

With the exception of the graph neural network, all machine learning models were trained against experimental K values 

and selected features via the Scikit-Learn4 Python library. The GNN model was trained using the Spektral Python library. 

To train a machine learning model, the data set is first randomly divided into training (80% of the data set) and testing 

(20%) sets. Ten machine learning algorithms (Figure 4 of the main text) were trained using the training set; the accuracy 

of each algorithm was then evaluated using the testing set. This process was repeated 100 times, each with randomly 

chosen training and testing sets to avoid overfitting an algorithm to the data set. Overfitted machine learning model, 

though give high accuracy for the given testing set, often generate poor prediction for new structures outside the 



S5 
 

original data set. Feature importance is generated after model training and is used for feature selection as mentioned 

in the section 1.2 above. 
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2. Connective Steric Factors (CSF) 

The determination of length_Cn, width_Cn, depth_Cn (n = 2, 3, 4, 5, or 6) for a given Fe catalyst is described here using 

several examples.  

We first consider complex 49 which has one ligand arm (Figure S4a and Figure S2) which is constituted of one aryl 

group. Since a methyl (–Me) group occupies the C2 position of the substituted aryl group (Figure S4a), we define features 

length_C2, width_C2, and depth_C2 to be respectively the length, width, and depth of a methylbenzene molecule 

(Figure S4b and c). Similarly, length_C4, width_C4, and depth_C4 are defined as respectively the length, width, and 

depth of a bromobenzene molecule because a bromo group is at the C4 position of phenyl arm. Since the C6 position is 

also occupied by a methyl group (Figure S4(a)), features length_C6, width_C6, and depth_C6 are the same as length_C2, 

width_C2, and depth_C2, respectively. For C positions (C3 and C5) where there are no substitution groups, the 

dimension of a benzene molecule is used. 

Note, to determine the bulkiness for the Cn position (n = 2, 3, 4, 5, or 6) of a ligand arm, we use the dimensions of a 

substituted benzene molecule, instead of the substitute group alone. This is done to ensure the measured length_Cn 

always follow the general direction of the phenyl–substitute bond (Figure S4a). To measure the dimensions of 

substituted benzene molecule, geometry optimizations were performed for the molecule using the PM75 semiempirical 

method as implemented in MOPAC6 package. Among all the Fe catalysts contained in the data set, there are thirteen 

different substitution groups that appeared on the aryl group of ligands (Figure S5). Their corresponding dimensions are 

predetermined and tabulated for the easy calculation of length_Cn, width_Cn, depth_Cn (n = 2, 3, 4, 5, 6) for all the Fe 

catalysts.  

 

Figure S4. (a) Complex 49; (b) Molecules used for every C position of the phenyl ring to determine the steric bulkiness; (c) 
Illustrations of the length (length_C2), width (width_C2), and depth (depth_C2) of a methylbenzene molecule. (The length is the 
maximum distance between any pair of atoms in the molecule; the width is the maximum distance in the plane perpendicular to 
the length direction between any pair of atoms; the depth is the maximum distance between any two atoms on the line 
perpendicular to the plane of the length and width dimensions.) 

For complexes where there are more than one ligand arm (e.g. complex 1, Figure S2), length_Cn, width_Cn, and 

depth_Cn (n = 2, 3, 4, 5, or 6) were determined via two steps: (1) for each arm i (i = 1, 2, or 3), length_C𝑛
𝑖 , width_C𝑛

𝑖 , and 

depth_C𝑛
𝑖  are first determined; (2) length_Cn is defined as the sum of length_C𝑛

𝑖  (i = 1, 2, or 3); width_Cn and depth_Cn 

are defined in the similar manner. For complexes with cyclohexyl arms (complexes 94 to 96, Figure S2), the dimension 

of a cyclohexane molecule in the chair conformation is used to determine length_Cn, width_Cn, and depth_Cn.  
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Figure S5. Fourteen molecules used for generating the characteristic size of substitution groups on the polydentate ligand arms. 
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3. Distribution of Errors for RF Models 

 
Figure S6. Plot of distribution of errors for the RF model trained without reaction condition features across 100 models.  
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4. Details of Multi-Layer Perceptron Model 

A multi-layer perceptron model, a feedforward artificial neural network, was also trained to predict K values using the 
same descriptors as other models. This model used one hidden layer with 100 nodes. Adding more layers and/or nodes did not 
yield a significant improvement. The logistic activation function significantly outperformed the rectified linear unit (relu) 
activation function. For all other hyperparameters, we used the default values for scikit-learn’s MLPRegressor. The performance 
of this model averaged over 100 training runs is summarized in the table below. 

 

Table S1. Table of performance metrics for the MLP model 

metric value 

MAE 0.100 ± 0.002 

RMSE 0.124 ± 0.003 

R2 0.11 ± 0.04 
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5. K Values Prediction when a Catalyst Class was Excluded 

A RF model was trained using all available data, except the pyridine bisimine catalysts. These were excluded to see how well the 

model can predict the K value of an unseen category of ligands. This model only utilized features based on the structure of the 

catalyst. The result was significant errors for most pyridine bisimine catalysts. Randomly including three pyridine bisimine 

catalysts in the training data while excluding the rest noticeably improved the predictions for the pyridine bisimine catalysts 

that were excluded from the training data.  

 

Figure S7. K value predictions vs experiment for pyridine bisimine (red), which were excluded from the training data, and all other 
catalysts (black).  

 

Figure S8. K value predictions vs experiment for pyridine bisimine excluded from the training data (red), pyridine bisimine 
included in the training data (blue), and all other training data (black).  
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6. K Value Prediction for Catalysts with Methyl, Ethyl, Isopropyl Groups 

 

Figure S9. Effect of substitution groups methyl (–Me), ethyl (–Et), and isopropyl (–iPr) on Fe-based ethylene oligomerization 
catalysts performances. The machine learning predicted K(C12/C10) values (orange) are compared with experimental 
measurements (blue). 
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