High density information storage through isotope ratio encoding

Petra Sőregi,^{a,b} Márton Zwillinger,^a Lajos Vágó,^c Márton Csékei,^{*a} and Andras Kotschy^{*a}

^aServier Research Institute of Medicinal Chemistry Záhony utca 7, 1031 Budapest, Hungary ^bHevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary ^cKastély u. 49/A, 2045 Törökbálint, Hungary

Table of Contents

1.	Tables a	and Figures	S2								
2	Calculat	ions	S5								
3	General information										
4	Experim	ental data									
4	.1 Gene	eral procedures	S7								
	4.1.1	General procedure 1: Hydroxy-bromo exchange	S7								
	4.1.2	General procedure 2A: Sonogashira coupling with methyl propargyl ether	S7								
	4.1.3	General procedure 2B: Sonogashira coupling with silyl protected alkynes	S7								
	4.1.4	General procedure 3: NO ₂ to NH ₂ group reduction	S8								
	4.1.5	General procedure 4A: Hydrogenation reaction	S8								
	4.1.6	General procedure 4B: Deuteration reaction	S8								
	4.1.7	General procedure 5A: Acylation reaction	S8								
	4.1.8	General procedure 5B: Deuteroacylation reaction	S8								
	4.1.9	General procedure 6: Methyl ester hydrolysis	S9								
4	.2 Synth	netic procedure and analytical data of the newly synthesized compounds in this work	S9								
4	.3 NMR	spectra of newly synthesized compounds	S50								
4	.4 HR-N	IS measurements and evaluation of the 1a-1y series	S136								
	4.4.1	Conditions for HRMS measurements	S136								
	4.4.2	HR-MS measurements of 1a-1y	S137								
4	.5 HR-N	IS measurements of prepared mixtures	S144								
4	.6 Amid	e coupling: procedure, HRMS measurements	S153								

1. Tables

	Q1	Q^2	Q ³	Q^4	Q ⁵	Q^6	Q ⁷			Q1	Q ²	Q^3	Q ⁴	Q ⁵	Q^6	Q ⁷
1b			1						1m			1	8		3	
1c					1		1		1n				8	1	3	1
1d			1		1		1		1o		6		8			
1d*						3			1p		6	1	8			
1e			1			3			1q		6		8	1		1
1f					1	3	1		1r		6		8		3	
1g		6							1s		6	1	8		3	
1h		6	1						1t		6		8	1	3	1
1i		6			1		1		1u		6	1	8	1	3	1
1i*				8					1v	4	6		8		3	
1j		6				3			1w	4	6	1	8		3	
1k		6	1			3			1x	4	6		8	1	3	1
11		6			1	3	1	-	1y	4	6	1	8	1	3	1

Table S1. Selected combination of deuterated building blocks to achieve desired deuteration levels.

	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15	D16	D17	D18	D19	D20	D21	D22	D23	D24
1a	100.0																								
1b	3.9	96.1																							
1c	0.5	4.7	90.8	2.3	1.6																				
1d	0.4	1.3	15.5	82.8																					
1d*	0.4	4.7	29.8	65.1																					
1e	0.2	0.4	1.9	18.5	79.0																				
1f	0.1	0	0.2	1.7	16.1	80.2	1.6	0.2																	
1g	0	0	0	0	0.1	0.8	99.1																		
1h	0.1	0.5	0.1	0.1	0.1	0.1	4.0	94.9																	
1i	0	0	0.2	0	0	0.1	0.2	3.0	94.6	1.8															
1i*	0	0	0	0.2	0.2	0.7	7.0	20.4	62.5	8.0	0.9	0.2													
1j	0.1	0.1	0.0	0.1	0.1	0.1	0.3	2.4	20.2	76.6															
1k	0	0	0	0	0	0.1	0	0.5	4.2	25.4	69.9														
11	0	0	0	0	0	0	0.1	0.1	0.8	5.2	28.0	64.6	1.0	0.2	0.1										
1m	0	0	0	0	0	0.1	0.1	0.2	0.6	2.6	10.9	32.7	48.2	3.6	0.8	0.2	0.1								
1n	0.1	0.1	0.1	0.2	0.1	0.1	0	0.1	0.3	0.4	2.4	11.1	33.3	48.6	2.5	0.6	0.1								
10	0	0	0	0	0.2	0	0	0	0.2	0.3	0.6	3.2	6.1	15.2	67.9	5.0	1.1	0.2	0.1						
1p	0	0	0	0	0	0	0	0	0.1	0.1	0.1	0.3	1.0	5.4	20.1	61.8	8.1	2.3	0.5	0.2	0.1				
1q	0	0	0	0	0	0	0	0	0	0	0	0.2	0.2	0.3	2.1	15.6	73.9	5.8	1.6	0.2	0.1				
1r	0	0	0	0	0	0	0	0.1	0	0.1	0.1	0.2	0.2	0.5	1.4	7.2	27.2	58.5	3.5	0.8	0.2	0.1			
1s	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0.1	0.4	1.7	7.9	25.4	54.3	7.4	1.9	0.4	0.2	0.1	
1t	0	0	0	0	0	0	0	0.1	0.1	0.1	0	0.1	0	0.1	0.1	0.2	0.8	4.5	22.0	67.8	3.0	0.8	0.1	0.1	
1u	0	0	0	0	0	0	0	0.1	0.1	0.1	0	0.1	0	0	0.1	0.3	0.5	1.4	6.9	28.2	60.0	1.5	0.5	0.2	0.1
1v	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0.1	0.2	0.6	1.1	2.1	9.5	32.1	53.5	0.3	0.3	0.1
1w	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0	0	0	0	0.1	0.2	1.1	6.3	28.0	64.2		
1x	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.1	0.1	0.3	1.7	9.0	33.2	55.5	
1y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1	0.3	1.5	7.8	30.6	59.8

 Table S2. The isotopologue composition of 1a-y calculated from Table S4 and Table S5.

Table S3. M1-M35 prepared mixtures and their calculated NDPs.

mixture	Composition	Closest analogue and NDP based on calculated MS fingerprints	NDP of calculated and measured MS fingerprint	Closest analogue and NDP based on measured MS fingerprint				
M1	1i (0.9) – 1n (0.1)	M2 0.9982	M1 1.0000	M2 0.9983				
M2	1i (0.9) – 1m (0.1)	M1 0.9982	M2 1.0000	M1 0.9982				
М3	1a (0.9) – 1n (0.1)	M4 0.9983	M3 0.9997	M4 0.9984				
M4	1a (0.9) – 1m (0.1)	M3 0.9983	M4 0.9998	M3 0.9985				
M5	1g (0.8) -1h (0.1)- 1n (0.1)	M6 0.9981	M5 0.9998	M6 0.9983				
M6	1g (0.8) -1h (0.1) - 1m (0.1)	M5 0.9981	M6 0.9995	M5 0.9979				
M7	1a (0.8) -1b (0.1)- 1n (0.1)	M8 0.9981	M7 0.9987	M8 0.9980				
M8	1a (0.8) -1b (0.1) - 1m (0.1)	M7 0.9981	M8 0.9991	M7 0.9976				
M9	1d (0.1) -1l (0.5)- 1m (0.4)	M10 0.9975	M9 0.9998	M10 0.9975				
M10	1d (0.1) -1l (0.5)- 1m (0.3)- 1n (0.1)	M9 0.9975	M10 0.9996	M9 0.9968				
M11	1a (0.1)- 1g (0.7)- 1I (0.1)- 1n (0.1)	M12 0.9974	M11 0.9998	M12 0.9971				
M12	1a (0.1)- 1g (0.7)- 1I (0.1)- 1m (0.1)	M11 0.9974	M12 0.9999	M11 0.9976				
M13	1a (0.6) − 1b (0.2) − 1n (0.1) − 1u (0.1)	M14 0.9971	M13 0.9986	M14 0.9961				
M14	1a (0.6) − 1b (0.2) − 1m (0.1) − 1u (0.1)	M13 0.9971	M14 0.9978	1a (0.7) − 1b (0.1) − 1m (0.1) − 1u (0.1) 0.9958				
M15	1I (0.9)- 1n (0.1)	M16 0.9981	M15 0.9999	M16 0.9984				
M16	1I (0.9)- 1m (0.1)	M15 0.9981	M16 1.0000	M15 0.9979				
M17	1g (0.9)- 1n (0.1)	M18 0.9983	M17 0.9996	M18 0.9984				
M18	1g (0.9)- 1m (0.1)	M17 0.9983	M18 0.9998	M17 0.9982				
M19	1g (0.9)- 1l (0.1)	M18 0.9981	M19 0.9996	M18 0.9982				
M20	1g (0.8) -1f (0.1)- 1n (0.1)	M21 0.9980	M20 0.9998	M21 0.9981				
M21	1g (0.8) -1f (0.1)- 1m (0.1)	M20 0.9980	M21 0.9997	M20 0.9980				
M22	1a (0.9) – 1I (0.1)	M4 0.9981	M22 0.9997	M4 0.9983				
M23	1b (0.9) – 1n (0.1)	M24 0.9982	M23 0.9997	M24 0.9981				
M24	1b (0.9) – 1m (0.1)	M23 0.9982	M24 0.9998	M23 0.9978				
M25	1c (0.9) − 1n (0.1)	M26 0.9981	M25 0.9998	M26 0.9982				
M26	1c (0.9) – 1m (0.1)	M25 0.9981	M26 0.9998	M25 0.9982				
M27	1h (0.9) – 1n (0.1)	M28 0.9982	M27 0.9995	M28 0.9980				
M28	1h (0.9) – 1m (0.1)	M27 0.9982	M28 0.9997	M27 0.9980				
M29	1h (0.7)- 1n (0.1)- 1u (0.1)- 1x (0.1)	M30 0.9972	M29 0.9999	M30 0.9969				
M30	1h (0.7)- 1m (0.1)- 1u (0.1)- 1x (0.1)	M29 0.9972	M30 0.9998	M29 0.9970				
M31	1a (0.1) − 1i (0.7) − 1k (0.1) − 1m (0.1)	M32 0.9973	M31 0.9986	1a (0.1) − 1i (0.7) − 1k (0.1) − 1l (0.1) 0.9960				
M32	1a (0.1) − 1i (0.7) − 1k (0.1) − 1n (0.1)	M31 0.9973	M32 0.9988	M31 0.9965				
M33	1b (0.7) − 1m (0.1) − 1v (0.1) − 1y (0.1)	M34 0.9972	M33 0.9980	1b (0.6) − 1m (0.1) − 1v (0.1) − 1y (0.2) 0.9951				
M34	1b (0.7) – 1n (0.1) – 1v (0.1) – 1y (0.1)	M33 0.9972	M34 0.9983	1b (0.6) – 1n (0.1) – 1v (0.2) – 1y (0.2) 0.9953				
M35	1a (0.1)- 1b (0.1)- 1e (0.1)- 1i (0.1)- 1i (0.1)- 1n (0.1)- 1r (0.1)- 1s (0.1)- 1v (0.1)- 1y (0.1)	nd	M35 0.9923	1a (0.1)- 1b (0.1)- 1e (0.1)- 1i (0.1)- 1i (0.1)- 1m (0.1)- 1r (0.1)- 1s (0.1)- 1v (0.1)- 1y (0.1) 0.9792				

2 Calculations

The program and data input files referenced below are available at https://github.com/VagoLali/isotopeRatioEncoding

Isotopologue distribution of components 1a-y

The composition of **1a-y** were deconvoluted from their measured mass spectra manually by sequential subtraction of the underlying patterns using the theoretical spectra of D_0 - D_{24} compounds as elements of the combination. The theoretical spectra of the D_0 - D_{24} compounds were calculated using enviPat from Eawag3 available at the <u>https://envipat.eawag.ch/website</u>.

Theoretical spectra of mixtures

The theoretical spectra of each mixture in a study were calculated and stored by the attached python code ("isotopic_decomposition.py", called "software" from now on). A theoretical spectrum of a given mixture was calculated as a linear combination of the theoretical spectra corresponding to its elements (D₀-D₂₄), weighed by the respective ratios of elements present in the mixture.

For example the mixture 1a(0.2) - 1b(0.8) contains C1=0.2×1.00+0.8×0.039=0.2312 part D₀ compound and C2=0.2×0.00+0.8×0.961=0.7688 part D₁ compound, whose theoretical spectra should be combined with the above obtained coefficients (C1, C2).

Similarity of mass spectra

Normalized dot product (also known as spectral contrast angle or cosine similarity) is a commonly used function to measure the similarity between two mass spectra. Normalized dot product (NDP) for mass spectra \boldsymbol{A} and \boldsymbol{B} , consisting of \boldsymbol{k} peaks is given as following:

$$NDP_{A,B} = \frac{\sum_{i=1}^{k} I_{A,i} \cdot I_{B,i}}{\sqrt{\sum_{i=1}^{k} I_{A,i}^2 \cdot \sum_{i=1}^{k} I_{B,i}^2}}$$

Where:

 $I_{A,i}$ describes the relative intensity of the *i*th peak in spectrum of **A** $I_{B,i}$ describes the relative intensity of the *i*th peak in spectrum of **B**

NDP values range from 0-1, where the higher score corresponds to higher similarity.

Distribution of similarities within a mixing system

The software performs pairwise comparison of theoretical mass spectra *via* NDP function across all the mixtures within a mixing system. The number of pairs having NDP values in certain ranges (bins) is recorded to create an NDP distribution, which is a useful descriptor of coding quality. The software also reports on the pairs with NDP values over a user defined threshold level as an output to allow further analysis. Pair(s) with the highest NDP value within a mixing system is/are also reported along with the corresponding NDPs.

Spectrum searching

The software allows for spectrum similarity searching within the library of theoretical spectra in a mixing system, based on pairwise comparison *via* NDP function. The best 5 hits with the respective NDP values are reported as an output.

3 General information

All reagents obtained from commercial sources were used without further purification. Anhydrous solvents were obtained from commercial sources and used without further drying. Nitrogen gas dried on a column of Drierite® was used as inert atmosphere. In hydrogenation reactions H_2/D_2 pressure was provided with a balloon. D_2 gas was obtained directly from a D₂ cylinder (D₂ content: 99.96%). The reactions were monitored using LC-MS and GC-MS instruments. Analytical LC-MS: Agilent HP1200 LC with Agilent 6140 guadrupole MS, operating in positive or negative ion electrospray ionisation mode. Molecular weight scan range was 100 to 1350 m/z. Parallel UV detection was done at 210 nm and 254 nm. Samples were supplied as a 1 mM solution in MeCN with 2 µL loop injection, unless stated otherwise, LC-MS analyses were performed on two instruments, one of which was operated with basic, and the other with acidic eluents. Basic LC-MS: Gemini-NX, 3 µm, C18, 50 mm × 3.00 mm i.d. column at 23°C, at a flow rate of 1 mL min⁻¹ using 5 mM ag. NH₄HCO₃ solution and MeCN as eluents. Acidic LC-MS: ZORBAX Eclipse XDB-C18, 1.8 µm, 50 mm × 4.6 mm i.d. column at 40°C, at a flow rate of 1 mL min⁻¹ using water and MeCN as eluents, both containing 0.07 V/V% TFA. Combination gas chromatography and low-resolution mass spectrometry were performed on Agilent 6850 gas chromatograph and Agilent 5975C mass spectrometer using 15 m × 0.25 mm column with 0.25 µm HP-5MS coating and helium as carrier gas. Ion source: El⁺, 70 eV, 230°C, quadrupole: 150°C, interface: 300°C. Flash chromatography was performed on ISCO CombiFlash Rf 200i or ISCO CombiFlash Torrent[®] with pre-packed silica-gel cartridges (RediSep[®]Rf Gold High Performance). Preparative HPLC purifications were performed on an ISCO CombiFlash EZ Prep system with a Gemini-NX[®] 10 µm C18, 250 mm × 50 mm column running at a flow rate of 118 mL min⁻¹ with UV diode array detection. ¹H NMR, and proton-decoupled ¹³C NMR measurements were performed on Bruker Avance III 500 MHz spectrometer and Bruker Avance III 400 MHz spectrometer, using DMSO-d₆ as solvent. ¹H and ¹³C NMR data are in the form of delta values, given in part per million (ppm), using the residual peak of the solvent as internal standard (DMSO-d₆: 2.50 ppm (¹H) / 39.5 ppm (¹³C)). Splitting patterns are designated as: s (singlet), d (doublet), t (triplet), m (multiplet), br s (broad singlet), dd (doublet of doublets), dt (doublet of triplets). Solvent peaks are marked with a "▼" sign on the spectra, type of solvent is indicated by "*" if other than water or the deuterated solvent on the spectra. For all intermediates, the ¹³C NMR spectrum is only given for the nondeuterated molecules as no significant change in the chemical shift can be observed when deuterated analogues are measured, the presence of deuterium atoms causes only the disappearance of corresponding peaks. For all final compounds (**1a-y**), both ¹H and ¹³C NMR spectra are given. In some cases, due to tautomers or amide rotamers two sets of signals appear in the spectra. LC-HRMS were determined on an Agilent 1290 Infinity II - Agilent 6545 LC-QTOF, ion source temperature 200°C, ESI +/-, ionization voltage: +/-4.5 kV. InfinityLab Poroshell 120 SB-C18, 2.1 mm, 1.9 µm column. Mass resolution: min. 10000. GC-HRMS were determined on Agilent 7890B gas chromatograph and AccuTOF GCX mass spectrometer using 15 m × 0.25 mm column with 0.25 µm HP-5MS coating and helium as carrier gas. Ion source: FI, 37V, interface: 320°C. Approximatively 0.01 mg mL⁻¹ stock solutions of **1a-y** were prepared in propionitrile with an accuracy of 1% in 100 mL measuring flasks. Mixtures were prepared by measuring the individual components into a vial using Sartorius Tacta mechanical 1-channel pipettes and the volume was adjusted to 1 mL using acetonitrile. Chemical names were generated by BioviaDraw 2021.

4 Experimental data

4.1 General procedures

4.1.1 General procedure 1: Hydroxy-bromo exchange

A pear-shaped flask equipped with a magnetic stirring bar was filled with **4-hydroxy-quinoline derivative** (1.0 equiv.) and was dissolved in 1,2-dichloroethane (5.00 mL/mmol), then phosphoryl bromide (2.00 equiv.) was added in one portion. The reaction mixture was stirred at 80°C until complete conversion was observed (usually 50 – 120 minutes). The reaction mixture was diluted with DCM, water was added, and the pH was set to neutral with 25% aq. NaOH solution, then the mixture was filtered through a pad of celite. The organic phase was separated from the filtrate and washed with water, dried over Na₂SO₄, filtered and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using heptane and DCM as eluents.

4.1.2 General procedure 2A: Sonogashira coupling with methyl propargyl ether

A pear-shaped flask equipped with a magnetic stirring bar was filled with **4,6-dibromo-quinoline derivative** (1.0 equiv.) and copper(I) iodide (0.2 equiv.). The flask was evacuated then back-filled with N₂ (repeated 3 times), then dry, degassed 1,4-dioxane (7.5 mL/mmol), 3-methoxyprop-1-yne (3.0 equiv.) and *N*-isopropylpropan-2-amine (15.0 equiv.) were added at room temperature while stirring. The reaction mixture was heated to 60° C and bis(di-*tert*-butyl(4-dimethylaminophenyl) phosphine) dichloropalladium(II) (0.05 equiv.) was added at this temperature. Then it was stirred at 60°C until complete conversion was observed (usually 0.5 – 3 hours). Then the mixture was diluted with DCM, washed twice with 5% aq. citric acid solution and once with sat. aq. NaHCO₃ solution. The combined aqueous phase was back-extracted twice with DCM. The combined organic phase was dried over Na₂SO₄, filtered and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using heptane, DCM and MeOH as eluents.

4.1.3 General procedure 2B: Sonogashira coupling with silyl protected alkynes

A pear-shaped flask equipped with a magnetic stirring bar was filled with the **acetylene derivative** (6.0 equiv.), 2methyltetrahydrofuran (7.5 mL/mmol) and tetrabutylammonium fluoride trihydrate (6.0 equiv.) and the reaction mixture was stirred at room temperature until complete conversion was observed (usually 18 hours). Then sat. aq. NH₄Cl solution was added, and the phases were separated. The organic phase was washed twice with sat. aq. NH₄Cl solution, then the combined aqueous phase was back-extracted twice with 2-methyltetrahydrofuran. The combined organic phase was dried over Na₂SO₄ and filtered. The filtrate was transferred into a pear-shaped flask, then **4,6-dibromo-quinoline derivative** (1.0 equiv.), copper(I) iodide (0.2 equiv.), bis(di-*tert*-butyl(4-dimethylaminophenyl) phosphine) dichloropalladium(II) (0.05 equiv.), and *N*-isopropylpropan-2-amine (15.0 equiv.) were added. The flask was evacuated then backfilled with N₂ (repeated 3 times), then the reaction mixture was heated to 60°C and stirred at this temperature until complete conversion was observed (usually 1 hour). Then EtOAc was added, and the resulting solution was washed twice with 5% aq. citric acid solution and once with sat. aq. NaHCO₃ solution. The combined aqueous phase was backextracted twice with EtOAc. The combined organic phase was dried over Na₂SO₄, filtered and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using heptane, DCM and MeOH as eluents.

4.1.4 General procedure 3: NO₂ to NH₂ group reduction

A pear-shaped flask equipped with a magnetic stirring bar was filled with **8-nitro-quinoline** derivative (1.0 equiv.), iron (10.0 equiv.), acetic acid (10.0 equiv.) and ethanol (40 mL/mmol, 70% aq. solution). The reaction mixture was stirred at 50°C until complete conversion was observed (usually 2 hours). Then it was cooled to room temperature and the pH was set to 8 with 25 m/m% aq. ammonia solution. The insoluble material was removed by filtration through a pad of celite, then the filtrate was extracted twice with DCM. The organic phase was dried over Na₂SO₄, filtered and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using heptane, DCM and MeOH as eluents.

4.1.5 General procedure 4A: Hydrogenation reaction

A pear-shaped flask equipped with a stirring bar was filled with **alkynyl quinoline** derivative (1.0 equiv.) and 10 m/m% Pd/C (0.1 g/g quinoline derivative). The flask was evacuated then back-filled with N₂ (repeated 3 times), then DCM (50 mL/g), MeOH (50 mL/g) and *N*,*N*-diethylethanamine (10 mL/g) were added. The headspace of the vial was filled with N₂ and evacuated (repeated twice), then filled with hydrogen gas (1 atm) and the reaction mixture was stirred at room temperature until complete conversion was observed (usually 3 – 18 hours). Then it was filtered through a pad of celite and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using heptane, DCM and MeOH as eluents.

4.1.6 General procedure 4B: Deuteration reaction

A pear-shaped flask equipped with a magnetic stirring bar was filled with **alkynyl quinoline** derivative (1.0 equiv.) and 10 m/m% Pd/C (0.1 g/g quinoline derivative). Then the flask was evacuated then backfilled with N₂ (repeated 3 times), then MeOD (25 mL/g) was added. The mixture was sonicated in an ultrasonic bath for 15 minutes, then it was concentrated *in vacuo*. The MeOD addition, sonication and concentration process was repeated 5 times. Then MeOD (50 mL/g quinoline derivative) was added. The headspace of the flask was filled with N₂ and evacuated (repeated twice), then filled with deuterium gas (1 atm) and the reaction mixture was stirred at room temperature until complete conversion was observed (usually 2 – 18 hours). Then it was filtered through a pad of celite and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using heptane, DCM and MeOH as eluents.

4.1.7 General procedure 5A: Acylation reaction

A pear-shaped flask equipped with a magnetic stirring bar was filled with **8-amino-quinoline** derivative (1.0 equiv.), DCM (30 mL/mmol) and *N*,*N*-diethylethanamine (5 equiv.). The mixture was cooled to 0°C and acetyl chloride (3 equiv.) was added, then the mixture was allowed to warm to room temperature and stirred until complete conversion was observed (usually 1 hour). Then it was washed with water, 1 M aq. HCl solution, sat. aq. NaHCO₃ solution, then dried over Na₂SO₄, filtered and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using heptane, DCM and MeOH as eluents.

4.1.8 General procedure 5B: Deuteroacylation reaction

A pear-shaped flask equipped with a magnetic stirring bar was filled with **8-amino-quinoline** derivative (1.0 equiv.), *N*,*N*-dimethylpyridin-4-amine (0.2 equiv.), pyridine (10 equiv.), and EtOAc (20 mL/mmol). Then (2,2,2-trideuterioacetyl) 2,2,2-trideuterioacetate (3 equiv.) was added and the mixture was stirred at 50°C until complete conversion was observed

(usually 18 hours). Then it was washed with water, 1 M aq. citric acid solution, sat. aq. NaHCO₃ solution, dried over Na₂SO₄, filtered and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using DCM and MeOH as eluents.

4.1.9 General procedure 6: Methyl ester hydrolysis

A pear-shaped flask equipped with a magnetic stirring bar was filled with **methyl quinoline-2-carboxylate** derivative (1.0 equiv.) and was dissolved in 1,4-dioxane (100 mL/g). A solution of lithium hydroxide monohydrate (10 equiv.) in water (50 mL/g) was added and the reaction mixture was stirred at room temperature until complete conversion was ob served (usually 1 hour). Then the excess lithium hydroxide was quenched by 1 M aq. HCl solution. Then the reaction mixture was diluted with DCM. The pH of the aqueous phase was set to ~5 with 1 M aq. citric acid solution, then the organic phase was separated and washed with 1 M aq. citric acid solution and brine. Then it was dried over Na₂SO₄, filtered and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using heptane, DCM and MeOH as eluents. Then the product was further purified by RP-HPLC using 1% aq. HCOOH solution and MeCN as eluents.

4.2 Synthetic procedure and analytical data of the newly synthesized compounds in this work

tert-butyl-diphenyl-(3-tetrahydropyran-2-yloxyprop-1-ynyl)silane (15)

In a 1000 mL pear-shaped flask equipped with a magnetic stirring bar and a thermometer, 25.00 mL **2-prop-2-ynoxytetrahydropyran** (1.0 equiv., 177.8 mmol.) was dissolved in 178 mL dry, degassed tetrahydrofuran (1 mL/mmol 2-prop-2-ynoxytetrahydropyran) and the mixture was cooled to -78°C under N₂ atmosphere. A solution of 75 mL *n*-butyllithium (1.05 equiv., 186.7 mmol, 2.5 mol/L in hexanes) was added to the mixture dropwise, and the mixture was warmed to room temperature.

Then it was stirred for 90 minutes and was cooled to –30°C again. Then 47.74 mL *tert*-butyl-chloro-diphenyl-silane (1.05 equiv., 186.7 mmol) was added to the mixture dropwise and was warmed to room temperature and stirred overnight. Then the mixture was quenched by 50 mL 1 M aq. HCl solution, extracted with 150 mL EtOAc three times. The combined organic phase was washed with 50 mL brine, dried over Na₂SO₄, filtered and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using heptane and DCM as eluents to afford 51.28 g *tert*-butyl-diphenyl-(3-tetrahydropyran-2-yloxyprop-1-ynyl)silane (8) (135.5 mmol, 76%) as a colourless oil.

¹H NMR (400 MHz, [D₆]DMSO): δ 7.77-7.70 (m, 4H, Ar-H), 7.49-7.40 (m, 6H, Ar-H), 4.88 (t, *J* = 3.0 Hz, 1H, CH), 4.44 (dt, *J* = 16.6 Hz, *J* = 10.2 Hz, 2H, CH₂), 3.82-3.74 (m, 1H, CH₂), 3.50-3.41 (m, 2H, CH₂), 1.79-1.62 (m, 2H, CH₂), 1.57-1.40 (m, 4H, CH₂), 1.02 (s, 9H, CH₃). ¹³C NMR (100 MHz, [D₆]DMSO): δ 135.1, 132.3, 129.9, 128.1, 107.2, 96.4, 85.1, 61.5, 54.4, 29.9, 26.8, 24.9, 18.9, 18.0. HRMS (GC-FI): *m/z* [M⁺] calcd for C₂₄H₃₀O₂Si: 378.2015; found: 378.2011.

3-[*tert*-butyl(diphenyl)silyl]prop-2-yn-1-ol (8)

To a 1000 mL pear-shaped flask equipped with a magnetic stirring bar 50.00 g *tert*-butyl-diphenyl-(3tetrahydropyran-2-yloxyprop-1-ynyl)silane (1.0 equiv., 132.1 mmol), 264 mL methanol (2 mL/mmol *tert*-butyl-diphenyl-(3-tetrahydropyran-2-yloxyprop-1-ynyl)silane) and 227 mg 4-methylbenzenesulfonic acid (0.01 equiv., 1.321 mmol) were added and the mixture was stirred at room temperature for 1 hour. Then the reaction mixture was diluted with 200 mL EtOAc, washed with brine, dried over Na₂SO₄, filtered

and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using heptane and EtOAc as eluents to afford 33.72 g **3-[***tert***-butyl(diphenyl)silyl]prop-2-yn-1-ol** (91% purity, 104.2 mmol, 79%) as a white solid.

¹H NMR (400 MHz, [D₆]DMSO): δ 7.80-7.71 (m, 4H, Ar-H), 7.49-7.38 (m, 6H, Ar-H), 5.44 (t, *J* = 6.0 Hz, 1H, OH), 4.27 (d, *J* = 6.0 Hz, 2H, CH₂), 1.02 (s, 9H, CH₃). ¹³C NMR (100 MHz, [D₆]DMSO): δ 135.2, 132.6, 129.8, 128.0, 111.2, 82.4, 49.7, 26.8, 18.0. HRMS (GC-FI): *m/z* [M+H]⁺ calcd for C₁₉H₂₂OSi: 294.1440; found: 294.1444.

tert-butyl-(3-methoxyprop-1-ynyl)-diphenyl-silane (16)

TBDPS

A 100 mL pear-shaped flask equipped with a magnetic stirring bar was filled with 3.846 g **3-[***tert***-butyl(diphenyl)silyl]prop-2-yn-1-ol** (91% purity, 1.0 equiv., 6.180 mmol), dissolved in 15.5 mL dry, degassed tetrahydrofuran (2.5 mL/mmol 3-[*tert*-butyl(diphenyl)silyl]prop-2-yn-1-ol) and 0.462 mL iodomethane (1.2 equiv., 7.716 mmol), then 309 mg sodium hydride (60% dispersion in mineral

oil,1.25 equiv., 7.73 mmol) was added in portions. The reaction mixture was stirred at room temperature for 1 hour. Then the excess sodium hydride was quenched with 5 mL 1 M HCl, then 50 mL EtOAc was added and the phases were separated. Then the organic phase was washed with 25 mL brine solution, dried over Na₂SO₄, filtered and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using DCM and MeOH as eluents to afford 1.756 g *tert*-butyl-(3-methoxyprop-1-ynyl)-diphenyl-silane (5.692 mmol, 92%) as a colourless oil. ¹H NMR (400 MHz, [D₆]DMSO): δ 7.78-7.73 (m, 4H, Ar-H), 7.49-7.39 (m, 6H, Ar-H), 4.31 (s, 2H, CH₂), 3.37 (s, 3H, OCH₃), 1.03 (s, 9H, CH₃). ¹³C NMR (100 MHz, [D₆]DMSO): δ 135.1, 132.3, 129.9, 128.0, 107.0, 85.5, 59.7, 57.0, 26.8, 18.0. HRMS (ESI): *m*/*z* [M+NH₄]⁺ calcd for C₂₀H₂₄OSi: 326.1935; found: 326.1927.

tert-butyl-diphenyl-[3-(trideuteriomethoxy)prop-1-ynyl]silane (17)

A 500 mL pear-shaped flask equipped with a magnetic stirring bar was filled with 21.98 g **3-[tert-butyl(diphenyl)silyl]prop-2-yn-1-ol** (91% purity, 67.91 mmol, 1 equiv.), dissolved in 170 mL dry, degassed tetrahydrofuran (2.5 mL/mmol 3-[*tert*-butyl(diphenyl)silyl]prop-2-yn-1-ol) and 5.072 mL trideuterio(iodo)methane (81.49 mmol, 1.2 equiv.), then 3.395 g sodium hydride (60% dispersion in mineral oil, 84.89 mmol, 1.25 equiv.) was added in portions. The reaction mixture was stirred at room temperature for 1 hour. Then the excess sodium hydride was guenched with 50 mL 1 M HCl, then

500 ml EtOAc was added. Then the phases were separated, and the organic phase was washed with 150 mL brine, dried over Na₂SO₄, filtered and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using heptane and EtOAc as eluents to afford 19.24 g *tert*-butyl-diphenyl-[3-(trideuteriomethoxy)prop-1-ynyl]silane (61.75 mmol, 91%) as a colourless oil.

¹H NMR (400 MHz, [D₆]DMSO): δ 7.79-7.72 (m, 4H, Ar-H), 7.49-7.39 (m, 6H, Ar-H), 4.31 (s, 2H, CH₂), 1.03 (s, 9H, CH₃). ¹³C NMR (100 MHz, [D₆]DMSO): δ 135.1, 132.3, 129.9, 128.0, 107.1, 85.4, 59.6, 26.8, 18.0. HRMS (ESI): m/z [M+NH₄]⁺ calcd for C₂₀D₃H₂₁OSi: 329.2123; found: 329.2116.

3-[tert-butyl(diphenyl)silyl]prop-2-ynoic acid (18)

In a 1000 mL pear-shaped flask 20.00 g **3-[***tert***-butyl(diphenyl)silyl]prop-2-yn-1-ol** (90% purity, 1.0 equiv., 61.12 mmol) was dissolved in 611 mL acetone (10 mL/mmol **3-[***tert***-butyl(diphenyl)silyl]prop-2-yn-1-ol**). Then the reaction mixture was cooled to 0°C and 73.2 mL trioxochromium, sulfuric acid (1:1) (1.67 M, 2 equiv., 122.2 mmol, freshly prepared: 12.5 g CrO₃

was dissolved in a mixture of 13 mL of cc. H₂SO₄ and 62 mL water) was added dropwise to the solution. A green precipitate was formed. The reaction mixture was allowed to warm to room temperature and stirred at this temperature for 1 hour. Then the reaction mixture was concentrated *in vacuo*, the residue was extracted with 3 × 100 mL EtOAc, the combined organic phase was washed with water and brine, dried over Na₂SO₄, filtered and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using heptane and EtOAc as eluents to afford 13.77 g **3-[***tert***-butyl(diphenyl)silyl]prop-2-ynoic acid** (44.64 mmol, 73%) as an off-white solid.

¹H NMR (500 MHz, [D₆]DMSO): δ 14.20 (br s, 1H, COOH), 7.77-7.69 (m, 4H, Ar-H), 7.53-7.44 (m, 6H, Ar-H), 1.05 (s, 9H, CH₃). ¹³C NMR (125 MHz, [D₆]DMSO): δ 153.4, 135.1, 130.8, 130.4, 128.3, 100.2, 86.2, 59.8, 26.6, 20.8, 18.1. HRMS (ESI): *m/z* [M-H]⁻ calcd for C₁₉H₁₉O₂Si: 307.1160; found: 307.1159.

methyl 3-[tert-butyl(diphenyl)silyl]prop-2-ynoate (19)

A 1000 mL pear-shaped flask equipped with magnetic stirring bar was filled with 12.00 g **3-[***tert***-butyl(diphenyl)silyl]prop-2-ynoic acid** (1.0 equiv., 38.91 mmol) dissolved in 389 mL dichloromethane (10 mL/mmol 3-[*tert*-butyl(diphenyl)silyl]prop-2-ynoic acid) and methanol (10 mL/mmol 3-[*tert*-butyl(diphenyl)silyl]prop-2-ynoic acid). Without closing the flask, 39 mL

diazomethyl(trimethyl)silane (2.0 M in hexanes, 2.0 equiv., 77.8 mmol) was added slowly, while the flask was cooled in an ice bath. Then the reaction mixture was stirred at this temperature for 1 hour. Then the excess diazomethyl(trimethyl)silane was quenched by adding glacial acetic acid until the gas evolution stopped. Then the reaction mixture was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using heptane, DCM and MeOH as eluents to afford 11.79 g **methyl 3-[***tert***-butyl(diphenyl)silyl]prop-2-ynoate** (36.55 mmol, 94%) as a white, crystalline solid.

¹H NMR (500 MHz, [D₆]DMSO): δ 7.74-7.69 (m, 4H, Ar-H), 7.54-7.44 (m, 6H, Ar-H), 3.79 (s, 3H, C(O)OCH₃), 1.05 (s, 9H, CH₃). ¹³C NMR (125 MHz, [D₆]DMSO): δ 152.4, 135.1, 130.5, 130.4, 128.4, 98.4, 88.4, 53.3, 26.6, 18.1. HRMS (GC-FI): *m/z* [M⁺] calcd for C₂₀H₂₂O₂Si: 322.1389; found: 322.1387.

3-[tert-butyl(diphenyl)silyl]-1,1-dideuterio-prop-2-yn-1-ol (9)

To a 1000 mL pear-shaped flask equipped with a magnetic stirring bar 10.00 g **methyl 3-[***tert***-butyl(diphenyl)silyl]prop-2-ynoate** (1.0 equiv., 31.00 mmol) and 620 mL dry, degassed THF (20 ml/mmol methyl 3-[*tert*-butyl(diphenyl)silyl]prop-2-ynoate) were measured, then the mixture was cooled to –78°C. At this temperature 13.40 g lithium aluminum deuteride (1.2 equiv., 37.20 mmol) was added to the mixture in portions during a 10-minute period, then the reaction mixture was

stirred at -78°C for 10 minutes (Low temperature and proper dilution is necessary to avoid by-product formation). Then the reaction mixture was warmed to -30°C and 14 mL water was added slowly, then 14 mL 15% aq. NaOH solution and 42 mL water were added. The reaction mixture was warmed to room temperature, MgSO₄ was added and stirred for 30 minutes, then filtered and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using heptane and EtOAc as eluents to afford 6.872 g **3-[***tert***-butyl(diphenyl)silyl]-1,1-dideuterio-**

prop-2-yn-1-ol (23.17 mmol, 75%) as a colourless oil.

¹H NMR (500 MHz, [D₆]DMSO): δ 7.77-7.73 (m, 4H, Ar-H), 7.46-7.41 (m, 6H, Ar-H), 5.39 (s, 1H, OH), 1.02 (s, 9H, CH₃). ¹³C NMR (125 MHz, [D₆]DMSO): δ 135.1, 132.6, 129.8, 127.9, 111.2, 82.4, 26.8, 18.0. HRMS (GC-FI): m/z [M+] calcd for C₁₉D₂H₂₀OSi: 296.1565; found: 296.1565.

tert-butyl-[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-diphenyl-silane (20)

A 250 mL pear-shaped flask equipped with a magnetic stirring bar was filled with 6.000 g **3**-[*tert*-butyl(diphenyl)silyl]-1,1-dideuterio-prop-2-yn-1-ol (1.0 equiv., 20.24 mmol), dissolved in 51 mL dry, degassed tetrahydrofuran (2.5 mL/mmol 3-[*tert*-butyl(diphenyl)silyl]-1,1dideuterio-prop-2-yn-1-ol) and 1.51 mL trideuterio(iodo)methane (1.2 equiv., 24.29 mmol), then 1.012 g sodium hydride (60% dispersion in mineral oil, 1.25 equiv., 25.30 mmol) was

added in portions. The reaction mixture was stirred at room temperature for 1 hour until. Then the excess sodium hydride was quenched with 10 mL 1 M HCl, then 100 mL EtOAc was added and the phases were separated. Then the organic phase was washed with 25 mL brine, dried over Na₂SO₄, filtered and the filtrate was concentrated *in vacuo*. Then the crude product was purified via flash chromatography using heptane and EtOAc as eluents to afford 4.650 g *tert*-butyl-[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-diphenyl-silane (14.54 mmol, 72%) as a colourless oil.

¹H NMR (400 MHz, [D₆]DMSO): δ 7.78-7.73 (m, 4H, Ar-H), 7.49-7.42 (m, 6H, Ar-H), 1.03 (s, 9H, CH₃). ¹³C NMR (100 MHz, [D₆]DMSO): δ 135.1, 132.3, 129.9, 128.0, 85.4, 26.8, 18.0. HRMS (ESI): m/z [M+NH₄]⁺ calcd for C₂₀D₅H₁₉OSi: 331.2254; found: 331.2250.

methyl 4,6-dibromo-8-nitro-quinoline-2-carboxylate (4a)

Using **General Procedure 1** and 20.75 g **methyl 6-bromo-4-hydroxy-8-nitroquinoline-2-carboxylate** (83% purity, 1.0 equiv., 63.44 mmol prepared as described by Zwillinger *et al.*^[1]), 16.42 g **methyl 4,6-dibromo-8-nitro-quinoline-2-carboxylate** was obtained as a pale yellow solid (42.10 mmol, 66%).

¹H NMR (500 MHz, [D₆]DMSO): δ 8.84 (d, *J*= 1.9 Hz, 1H, Ar-H), 8.58 (d, *J*= 1.9 Hz, 1H, Ar-H), 8.56 (s, 1H, Ar-H), 3.96 (s, 3H, CH₃). ¹³C NMR (125 MHz, [D₆]DMSO): δ 163.3, 149.3, 148.9, 137.2, 134.0, 131.8, 129.8, 128.1, 127.3, 122.3, 53.3. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₁H₆Br₂N₂O₄: 388.8767; found: 388.8760.

¹ M. Zwillinger, P. S. Reddy, B. Wicher, P. K. Mandal, M. Csékei, L. Fisher, A. Kotschy, I. Huc, *Chem. Eur. J.* 2020, **26**, *72*, 17366-17370.

dimethyl (Z)-2-(4-bromo-2-nitro-anilino)-3-deuterio-but-2-enedioate (2b)

A 500 mL, pear-shaped flask equipped with a magnetic stirring bar was filled with 25.00 g **4-bromo-2-nitro-aniline** (1.0 equiv., 115.2 mmol),115 mL dry, degassed DCM and 25 mL D₂O. The mixture was stirred vigorously for 10 minutes. The organic layer was separated and stirred for 10 minutes with a fresh portion of 25 mL D₂O. The organic phase was separated, dried over Na₂SO₄, filtered and the filtrate was concentrated *in vacuo*. The

content of the flask was transferred into a 250 mL three-necked round-bottom flask and 46.8 mL dry, degassed MeOD was added. The flask was fitted with a reflux condenser and a dropping funnel containing 21.2 mL **dimethyl but-2-ynedioate** (1.5 equiv., 172 mmol). The mixture was heated to 60°C and the dimethyl but-2-ynedioate was added slowly. After 48 hours of stirring 70% conversion was reached (no further conversion could be reached by longer reaction times). Then the mixture was cooled to 0°C while stirring vigorously. The formed crystals were filtered under dry N₂ atmosphere on a G3 frit and washed twice with 20 mL ice-cold MeOD, then dried *in vacuo* to yield 25.83 g **dimethyl (Z)-2-(4-bromo-2-nitro-anilino)-3-deuterio-but-2-enedioate** (71.95 mmol, 62%) as yellow crystals.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.81 (s, 1H, NH), 8.30 (d, *J*= 2.4 Hz, 1H, Ar-H), 7.82 (dd, *J* = 8.8 Hz, *J*= 2.3 Hz, 1H, Ar-H), 6.89 (d, *J* = 8.8 Hz, 1H, Ar-H), 3.74 (s, 3H, C(O)OCH₃), 3.73 (s, 1H, C(O)OCH₃). ¹³C NMR (125 MHz, [D₆]DMSO): δ 167.6, 163.2, 143.1, 138.3, 137.7, 135.2, 128.1, 123.3, 113.6, 102.3, 53.5, 51.9. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₂DH₁₀BrN₂O₆: 359.9936, found: 359.9921.

methyl 6-bromo-3-deuterio-4-hydroxy-8-nitro-quinoline-2-carboxylate (3b)

A 500 mL pear-shaped flask equipped with a magnetic stirring bar was filled with dry N_2 , 143.9 g **di-phosphorus pentaoxide** (12.2 equiv., 1014 mmol), closed with a rubber septum and 18.34 mL **deuterated water** (12.2 equiv., 1014 mmol) was slowly added while the flask was cooled in an ice bath. After the excessive heat evolution ceased, the mixture was heated to 250°C for 2 hours (until it became homogeneous), then cooled to 150°C.

Then 30.00 g **dimethyl (Z)-2-(4-bromo-2-nitro-anilino)-3-deuterio-but-2-enedioate** (1.0 equiv., 83.07 mmol) was added while stirring vigorously. The reaction mixture was stirred at 150°C for 5 h. Then the reaction mixture was cooled to room temperature and leached by sonication with 500 mL water. The pH was set to 7–8 by adding 25% aq. NaOH solution while stirring. Ice was added to keep the temperature below 30°C. The crude product was filtered and washed with 50 mL cold water then dried on air to afford 17.01 g **methyl 6-bromo-3-deuterio-4-hydroxy-8-nitro-quinoline-2-carboxylate** (72% purity, 37.33 mmol, 45%) as brown crystals.

¹H NMR (500 MHz, [D₆]DMSO): δ 8.61 (br s, 1H, OH), 8.56/7.79 (d, *J* = 1.6 Hz, 1H, Ar-H), 7.71/7.47 (d/dd, *J* = 8.7 Hz, *J* = 1.9 Hz, 1H, Ar-H), 3.94/3.93 (s/s, 3H, C(O)OCH₃) (Presence of tautomers!). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₁DH₆BrN₂O₅: 327.9674; found: 326.9674.

methyl 4,6-dibromo-3-deuterio-8-nitro-quinoline-2-carboxylate (4b)

Using General Procedure 1 and 17.00 g methyl 6-bromo-3-deuterio-4-hydroxy-8nitro-quinoline-2-carboxylate (72% purity, 1.0 equiv., 37.31 mmol), 7.689 g methyl 4,6dibromo-3-deuterio-8-nitro-quinoline-2-carboxylate was obtained as a pale yellow solid (19.67 mmol, 53%).

¹H NMR (500 MHz, [D₆]DMSO): δ 8.84 (d, *J*= 2.0 Hz, 1H, Ar-H), 8.58 (d, *J* = 2.0 Hz, 1H,

Ar-H), 3.96 (s, 3H, C(O)OCH₃). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₁DH₅Br₂N₂O₄: 389.8830; found: 389.8829.

4-bromo-2,3,5-trideuterio-6-nitro-aniline (5)

A 1000 mL pear-shaped flask equipped with a magnetic stirring bar was filled with 30.50 g **2,3,4,5tetradeuterio-6-nitro-aniline** (1.0 equiv., 214.6 mmol, prepared as described by Zwillinger *et al.*^[2]) and 215 mL acetic acid (1 mL/mmol **2,3,4,5-tetradeuterio-6-nitro-aniline**), heated to 50°C, then 38.19 g *N*-bromo succinimide (1.00 equiv., 214.6 mmol) was added during a 45 minute period. Then the reaction mixture was heated for further 45 minutes. Then it was poured onto 1000 mL ice-cold

water, filtered, and washed with 3×100 mL ice-cold water. The filtered crystals were dried *in vacuo* to give 47.21 g **4bromo-2,3,5-trideuterio-6-nitro-aniline** (210.4 mmol, 98%) as an orange solid.

¹H NMR (500 MHz, [D₆]DMSO): δ 7.58 (s, 2H, NH₂). ¹³C NMR (125 MHz, [D₆]DMSO): δ 145.3, 130.5, 104.8. HRMS (EI): *m/z* [M+] calcd for C₆D₃H₂BrN₂O₂: 218.9723; found: 218.9718.

dimethyl (Z)-2-(4-bromo-2,3,5-trideuterio-6-nitro-anilino)but-2-enedioate (6a)

A 500 mL, 3-necked round-bottom flask equipped with a magnetic stirring bar was filled with 35.00 g **4-bromo-2-nitro-aniline** (1.0 equiv., 159.1 mmol) and 79.5 mL dry, degassed MeOH. The flask was fitted with a reflux condenser and a dropping funnel containing 24.4 mL **dimethyl but-2-ynedioate** (1.25 equiv., 199 mmol). The mixture was heated to 60°C and the dimethyl but-2-ynedioate was added slowly. After 8 days

of stirring 76% conversion was reached (no further conversion could be reached by longer reaction times). Then the mixture was cooled to 0°C while stirring vigorously. The formed crystals were filtered on a G3 frit and washed twice with 30 mL ice-cold MeOH, then dried *in vacuo* to yield 39.46 g **dimethyl (***Z***)-2-(4-bromo-2,3,5-trideuterio-6-nitro-anilino)but-2-enedioate** (106.8 mmol, 67%) as yellow crystals.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.82 (s, 1H, NH), 5.84 (s, 1H, CH), 3,74 (s, 3H, C(O)OCH₃), 3.73 (s, 3H, C(O)OCH₃). ¹³C NMR (125 MHz, [D₆]DMSO): δ 167.6, 163.2, 143.2, 138.2, 135.1, 113.4, 102.3, 53.5, 51.9. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₂D₃H₈BrN₂O₆: 362.0062, found: 362.0064.

methyl 6-bromo-5,7-dideuterio-4-hydroxy-8-nitro-quinoline-2-carboxylate (7a)

A 500 mL pear-shaped flask equipped with a magnetic stirring bar was filled with dry N_2 , 95.63 g di-phosphorus pentaoxide (12.2 equiv., 673.8 mmol), closed with a rubber septum and 12.14 mL water (12.2 equiv., 673.8 mmol) was slowly added while the flask was cooled in an ice bath. After the excessive heat evolution ceased, the mixture was heated to 250°C for 2 hours (until it became homogeneous), then cooled to 150°C. Then 20.00 g

dimethyl (*Z*)-2-(4-bromo-2,3,5-trideuterio-6-nitro-anilino)but-2-enedioate (1.0 equiv., 55.23 mmol) was added while stirring vigorously. The reaction mixture was stirred at 150°C for 5 hours. Then the reaction mixture was cooled to room temperature and leached by sonication with 500 mL water. The pH was set to 7–8 by adding 25% aq. NaOH solution while stirring. Ice was added to keep the temperature below 30°C. The crude product was filtered and washed with 50 mL cold water then dried on air to afford 13.31 g methyl 6-bromo-5,7-dideuterio-4-hydroxy-8-nitro-quinoline-2-carboxylate (81% purity, 32.87 mmol, 59%) as brown crystals.

¹H NMR (400 MHz, [D₆]DMSO): δ 7.06 (br s, 1H, Ar-H), 3.94 (s, 3H, C(O)OCH₃). HRMS (ESI): *m*/z [M+H]⁺ calcd for

^[2] M. Zwillinger, L. Fischer, G. Sályi, S. Szabó, M. Csékei, I. Huc, A. Kotschy, J Am Chem Soc 2022, 144, 19078–19088.

methyl 4,6-dibromo-5,7-dideuterio-8-nitro-quinoline-2-carboxylate (4c)

Using General Procedure 1 and 6.500 g methyl 6-bromo-5,7-dideuterio-4-hydroxy-8-nitro-quinoline-2-carboxylate (81% purity, 12.46 mmol, 1.0 equiv.), 2.474 g methyl 4,6-dibromo-5,7-dideuterio-8-nitro-quinoline-2-carboxylate was obtained as a pale yellow solid (6.310 mmol, 49%).

¹H NMR (500 MHz, [D₆]DMSO): δ 8.56 (s, 1H, Ar-H), 3.95 (s, 3H, C(O)OCH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₁D₂H₄Br₂N₂O₄: 390.8893; found: 390.8894.

dimethyl (Z)-2-(4-bromo-2,3,5-trideuterio-6-nitro-anilino)-3-deuterio-but-2-enedioate (6b)

A 500 mL, pear-shaped flask equipped with a magnetic stirring bar was filled with 20.00 g **4-bromo-2,3,5-trideuterio-6-nitro-aniline** (1.0 equiv., 91.34 mmol), 90 mL dry, degassed DCM and 25 mL D₂O. The mixture was stirred vigorously for 10 minutes. The organic layer was separated and stirred for 10 minutes with a fresh portion of 33 mL D₂O. The organic phase was separated, dried over Na₂SO₄, filtered and the filtrate was

concentrated *in vacuo*. The content of the flask was transferred into a 250 mL three-necked round-bottom flask and 36.95 mL dry, degassed MeOD was added. The flask was fitted with a reflux condenser and a dropping funnel containing 36.95 mL **dimethyl but-2-ynedioate** (1.5 equiv., 135.9 mmol). The mixture was heated to 60°C and the dimethyl but-2-ynedioate was added slowly. After 48 hours of stirring 80% conversion was reached (no further conversion could be reached by longer reaction times). Then the mixture was cooled to 0°C while stirring vigorously. The formed crystals were filtered under dry N₂ atmosphere on a G3 frit and washed twice with 20 mL ice-cold MeOD, then dried *in vacuo* to yield 24.69 g **dimethyl (Z)-2-(4-bromo-2,3,5-trideuterio-6-nitro-anilino)-3-deuterio-but-2-enedioate** (68.19 mmol, 75%) as yellow crystals.

¹H NMR (400 MHz, [D₆]DMSO): δ 10.82 (s, 1H, NH/ND), 3,74 (s, 3H, CH₃), 3.73 (s, 3H, CH₃). ¹³C NMR (100 MHz, [D₆]DMSO): δ 167.5, 163.2, 142.9, 138.1, 135.0, 113.4, 53.5, 51.9. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₂D₄H₇BrN₂O₆: 363.0124, found: 363.0127.

methyl 6-bromo-3,5,7-trideuterio-4-hydroxy-8-nitro-quinoline-2-carboxylate (7b)

A 250 mL pear-shaped flask equipped with a magnetic stirring bar was filled with dry N_2 , 4.026 g **di-phosphorus pentaoxide** (12.2 equiv., 201.0 mmol), closed with a rubber septum and 12.4 mL **deuterated water** (12.2 equiv., 201.0 mmol) was slowly added while the flask was cooled in an ice bath. After the excessive heat evolution ceased, the mixture was heated to 250°C for 2 hours (until it became homogeneous), then cooled to 150°C

and 6.000 g **dimethyl** (*Z*)-2-(4-bromo-2,3,5-trideuterio-6-nitro-anilino)-3-deuterio-but-2-enedioate (1.0 equiv, 16.48 mmol) was added while stirring vigorously. The reaction mixture was stirred at 150°C for 5 h. Then the reaction mixture was cooled to room temperature and leached by sonication with 500 mL water. The pH was set to 7-8 by adding 25% aq. NaOH solution while stirring. Ice was added to keep the temperature below 30°C. The crude product was filtered and washed with 50 mL cold water then dried on air to afford 4.722 g methyl 6-bromo-3,5,7-trideuterio-4-hydroxy-8-nitro-quinoline-2-carboxylate (79% purity, 11.30 mmol, 69%) as brown crystals.

¹H NMR (400 MHz, [D₆]DMSO): δ 3.95 (s, 3H, C(O)OCH₃). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₁D₃H₄BrN₂O₅: 329.9799;

found: 329.9796.

methyl 4,6-dibromo-3,5,7-trideuterio-8-nitro-quinoline-2-carboxylate (4d)

Using General Procedure 1 and 4.700 g methyl 6-bromo-3,5,7-trideuterio-4-hydroxy-8-nitro-quinoline-2-carboxylate (79% purity, 11.28 mmol, 1.0 equiv.), 3.121 g methyl 4,6-dibromo-3,5,7-trideuterio-8-nitro-quinoline-2-carboxylate was obtained as pale yellow crystals (7.040 mmol, 70%).

¹H NMR (400 MHz, [D₆]DMSO): δ 3.96 (s, 3H, C(O)OCH₃). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₁D₃H₃Br₂N₂O₄: 391.8955; found: 391.8956.

methyl 4,6-bis(3-methoxyprop-1-ynyl)-8-nitro-quinoline-2-carboxylate (11a)

Using General Procedure 2A and 2.000 g methyl 4,6-dibromo-8-nitroquinoline-2-carboxylate (5.128 mmol, 1.0 equiv.), 1.571 g methyl 4,6-bis(3methoxyprop-1-ynyl)-8-nitro-quinoline-2-carboxylate was obtained as pale brown crystals (4.266 mmol, 83%).

¹H NMR (500 MHz, [D₆]DMSO): δ 8.58 (d, J = 1.8 Hz, 1H, Ar-H), 8.46 (d, J = 1.8 Hz, 1H, Ar-H), 8.29 (s, 1H, Ar-H), 4.59 (s, 2H, CH₂), 4.45 (s, 2H, CH₂), 3.95 (s, 3H, C(O)OCH₃), 3.44 (s, 3H, OCH₃), 3.39 (s, 3H, C(O)OCH₃). ¹³C NMR (125 MHz, [D₆]DMSO): δ 163.8, 149.6, 148.9, 137.3, 131.3, 130.2, 128.5, 126.7,

125.6, 122.4, 99.6, 91.2, 83.5, 79.9, 59.7, 59.5, 57.5, 57.3, 53.2. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₉H₁₆N₂O₆: 369.1081; found: 369.1084.

methyl 3-deuterio-4,6-bis(3-methoxyprop-1-ynyl)-8-nitro-quinoline-2-carboxylate (11b)

Using General Procedure 2A and 4,500 g methyl 4,6-dibromo-3-deuterio-8nitro-quinoline-2-carboxylate (11.51 mmol, 1.0 equiv.), 2.106 g methyl 3deuterio-4,6-bis(3-methoxyprop-1-ynyl)-8-nitro-quinoline-2-carboxylate was obtained as pale brown crystals (5.702 mmol, 50%).

¹H NMR (400 MHz, [D₆]DMSO): δ 8.60 (d, *J* = 1.8 Hz, 1H, Ar-H), 8.47 (d, *J* = 1.8 Hz, 1H, Ar-H), 4.60 (s, 2H, CH₂), 4.45 (s, 2H, CH₂), 3.95 (s, 3H, C(O)OCH₃), 3.44 (s, 3H, OCH₃), 3.39 (s, 3H, OCH₃). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₉DH₁₅N₂O₆: 370.1144; found: 370.1145

methyl 5,7-dideuterio-4,6-bis(3-methoxyprop-1-ynyl)-8-nitro-quinoline-2-carboxylate (11c)

Using General Procedure 2A and 1.600 g methyl 4,6-dibromo-5,7dideuterio-8-nitro-quinoline-2-carboxylate (4.082 mmol, 1.0 equiv.), 1.127 g methyl 5,7-dideuterio-4,6-bis(3-methoxyprop-1-ynyl)-8-nitro-quinoline-2carboxylate was obtained as pale brown crystals (3.043 mmol, 74%).

¹H NMR (400 MHz, [D₆]DMSO): δ 8.29 (s, 1H, Ar-H), 4.59 (s, 2H, CH₂), 4.45 (s, 2H, CH₂), 3.95 (s, 3H, C(O)OCH₃), 3.44 (s, 3H, OCH₃), 3.39 (s, 3H, OCH₃). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₉D₂H₁₄N₂O₆: 371.1207; found: 371.1210.

methyl 3,5,7-trideuterio-4,6-bis(3-methoxyprop-1-ynyl)-8-nitro-quinoline-2-carboxylate (11d)

Using General Procedure 2A and 900 mg methyl 4,6-dibromo-3,5,7trideuterio-8-nitro-quinoline-2-carboxylate (2.29 mmol, 1.0 equiv.), 402 mg methyl 3,5,7-trideuterio-4,6-bis(3-methoxyprop-1-ynyl)-8-nitro-quinoline-2-carboxylate was obtained as pale brown crystals (91% purity, 0.985 mmol, 43%).

¹H NMR (500 MHz, [D₆]DMSO): δ 4.60 (s, 2H, CH₂), 4.45 (s, 2H, CH₂), 3.96 (s, 3H, C(O)OCH₃), 3.44 (s, 3H, OCH₃), 3.39 (s, 3H, OCH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₃H₁₃N₂O₆: 372.1269; found: 372.1273.

methyl 8-nitro-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (11e)

Using General Procedure 2B and 4.000 g methyl 4,6-dibromo-8-nitroquinoline-2-carboxylate (10.26 mmol, 1.0 equiv.), and 18.99 g *tert*-butyldiphenyl-[3-(trideuteriomethoxy)prop-1-ynyl]silane (61.54 mmol, 6.0 equiv.), 2.367 g methyl 8-nitro-4,6-bis[3-(trideuteriomethoxy)prop-1ynyl]quinoline-2-carboxylate was obtained as pale brown crystals (92% purity, 5.816 mmol, 57%).

¹H NMR (500 MHz, [D₆]DMSO): δ 8.58 (d, *J* = 1.8 Hz, 1H, Ar-H), 8.44 (d, *J* = 1.8 Hz, 1H, Ar-H), 8.27 (s, 1H, Ar-H), 4.59 (s, 2H, CH₂), 4.44 (s, 2H, CH₂), 3.95 (s, 3H, C(O)OCH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₆H₁₀N₂O₆:

375.1458; found: 375.1460.

methyl 3-deuterio-8-nitro-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (11f)

Using General Procedure 2B and 2.700 g methyl 4,6-dibromo-3-deuterio-8-nitro-quinoline-2-carboxylate (6.906 mmol, 1.0 equiv.) and 12.91 g *tert*butyl-diphenyl-[3-(trideuteriomethoxy)prop-1-ynyl]silane (41.43 mmol, 6.0 equiv.), 2.866 g methyl 3-deuterio-8-nitro-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate was obtained as pale brown crystals (81% purity, 6.190 mmol, 90%).

¹H NMR (400 MHz, [D₆]DMSO): δ 8.57 (d, *J* = 1.8 Hz, 1H, Ar-H), 8.44 (d, *J* = 1.8 Hz, 1H, Ar-H), 4.59 (s, 2H, CH₂), 4.44 (s, 2H, CH₂), 3.95 (s, 3H, C(O)OCH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₇H₉N₂O₆: 376.1520;

found: 376.1521.

methyl 5,7-dideuterio-8-nitro-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (11g)

Using General Procedure 2B and 2.000 g methyl 4,6-dibromo-5,7dideuterio-8-nitro-quinoline-2-carboxylate (5.102 mmol, 1.0 equiv.) and 9.536 g *tert*-butyl-diphenyl-[3-(trideuteriomethoxy)prop-1-ynyl]silane (30.61 mmol, 6.0 equiv.), 1.628 g methyl 5,7-dideuterio-8-nitro-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate was obtained as pale brown crystals (89% purity, 3.852 mmol, 75%).

¹H NMR (400 MHz, [D₆]DMSO): δ 8.30 (s, 1H, Ar-H), 4.59 (s, 2H, CH₂), 4.45 (s, 2H, CH₂), 3.95 (s, 3H, C(O)OCH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₈H₈N₂O₆: 377.1583; found: 377.1583.

methyl 3,5,7-trideuterio-8-nitro-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (11h)

Using General Procedure 2B and 3.000 g methyl 4,6-dibromo-3,5,7trideuterio-8-nitro-quinoline-2-carboxylate (7.634 mmol, 1.0 equiv.) and 14.27 g *tert*-butyl-diphenyl-[3-(trideuteriomethoxy)prop-1-ynyl]silane (45.80 mmol, 6.0 equiv.), 2.459 g methyl 3,5,7-trideuterio-8-nitro-4,6bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate was obtained as pale brown crystals (94% purity, 5.228 mmol, 80%). ¹H NMR (400 MHz, [D₆]DMSO): δ 4.59 (s, 2H, CH₂), 4.45 (s, 2H, CH₂), 3.95 (s, 3H, C(O)OCH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₉H₇N₂O₆:

methyl 4,6-bis[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-8-nitro-quinoline-2-carboxylate (11i)

378.1646; found: 378.1648.

Using General Procedure 2B and 250 mg methyl 4,6-dibromo-8-nitroquinoline-2-carboxylate (0.641 mmol, 1.0 equiv.), and 1.206 g *tert*-butyl-[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-diphenyl-silane (3.846 mmol, 6.0 equiv.), 228 mg methyl 4,6-bis[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-8-nitro-quinoline-2-carboxylate was obtained as pale brown crystals (96% purity, 0.577 mmol, 90%). ¹H NMR (500 MHz, [D₆]DMSO): δ 8.60 (d, *J* = 1.8 Hz, 1H, Ar-H), 8.47 (d, *J*

= 1.8 Hz, 1H, Ar-H), 8.30 (s, 1H, Ar-H), 3.95 (s, 3H, C(O)OCH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₁₀H₆N₂O₆: 379.1709; found: 379.1711.

methyl 3-deuterio-4,6-bis[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-8-nitro-quinoline-2-carboxylate (11j)

Using General Procedure 2B and 250 mg methyl 4,6-dibromo-3-deuterio-8-nitro-quinoline-2-carboxylate (0.639 mmol, 1.0 equiv.), and 1.203 g tertbutyl-[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-diphenylsilane (3.836 mmol, 6.0 equiv.), 225 mg methyl 3-deuterio-4,6-bis[3,3dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-8-nitro-quinoline-2carboxylate was obtained as pale brown crystals (91% purity, 0.540 mmol, 84%). ¹H NMR (500 MHz, [D₆]DMSO): δ 8.59 (d, *J* = 1.8 Hz, 1H, Ar-H), 8.48 (d, *J* = 1.8 Hz, 1H, Ar-H), 3.96 (s, 3H, C(O)OCH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₁₁H₅N₂O₆: 380.1772; found: 380.1775.

methyl 5,7-dideuterio-4,6-bis[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-8-nitro-quinoline-2-carboxylate

(11k)

Using General Procedure 2B and 250 mg methyl 4,6-dibromo-5,7dideuterio-8-nitro-quinoline-2-carboxylate (0.638 mmol, 1.0 equiv.), and 1.200 g *tert*-butyl-[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]diphenyl-silane (3.827 mmol, 6.0 equiv.), 236 mg methyl 5,7-dideuterio-4,6-bis[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-8-nitroquinoline-2-carboxylate was obtained as pale brown crystals (91% purity,

0.5335 mmol, 84%).

¹H NMR (500 MHz, [D₆]DMSO): 8.30 (s, 1H), 3.96 (s, 3H, C(O)OCH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₁₂H₄N₂O₆: 381.1834; found: 381.1835.

methyl 3,5,7-trideuterio-4,6-bis[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-8-nitro-quinoline-2-

carboxylate (11I)

Using General Procedure 2B and 250 mg methyl 4,6-dibromo-3,5,7trideuterio-8-nitro-quinoline-2-carboxylate (0.636 mmol, 1.0 equiv.), and 1.197 g *tert*-butyl-[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]diphenyl-silane (3.817 mmol, 6.0 equiv.), 187 mg methyl 3,5,7-trideuterio-4,6-bis[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-8-nitroquinoline-2-carboxylate was obtained as a pale brown crystals (85% purity, 0.417 mmol, 66%).

¹H NMR (500 MHz, [D₆]DMSO): δ 3.96 (s, 3H, C(O)OCH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₁₃H₁₃N₂O₆: 382.1897; found: 382.1900.

methyl 8-amino-4,6-bis(3-methoxyprop-1-ynyl)quinoline-2-carboxylate (21)

Using General Procedure 3 and 500 mg methyl 4,6-bis(3-methoxyprop-1ynyl)-8-nitro-quinoline-2-carboxylate (1.36 mmol, 1.0 equiv.), 491 mg methyl 8-amino-4,6-bis(3-methoxyprop-1-ynyl)quinoline-2-carboxylate was obtained as a yellow oil (90% purity, 1.31 mmol, 96%).

¹H NMR (500 MHz, [D₆]DMSO): δ 8.07 (s, 1H, Ar-H), 7.34 (d, *J* = 1.7 Hz, 1H, Ar-H), 6.96 (d, *J* = 1.7 Hz, 1H, Ar-H), 6.39 (s, 2H, NH₂), 4.54 (s, 2H, CH₂), 4.38 (s, 2H, CH₂), 3.94 (s, 3H, C(O)OCH₃), 3.41 (s, 3H, OCH₃), 3.36 (s, 3H, OCH₃). ¹³C NMR (125 MHz, [D₆]DMSO): δ 164.5, 147.2, 143.9, 136.0, 128.7, 128.5,

124.4, 124.2, 113.4, 111.3, 96.9, 87.6, 86.1, 81.1, 59.6, 59.5, 57.3, 57.1, 52.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₈N₂O₄: 339.1339; found: 339.1340.

methyl 8-amino-3-deuterio-4,6-bis(3-methoxyprop-1-ynyl)quinoline-2-carboxylate (22)

Using General Procedure 3 and 762 mg methyl 3-deuterio-4,6-bis(3-methoxyprop-1-ynyl)-8-nitro-quinoline-2-carboxylate (2.06 mmol, 1.0 equiv.), 652 mg methyl 8-amino-3-deuterio-4,6-bis(3-methoxyprop-1-ynyl)quinoline-2-carboxylate was obtained as a yellow oil (91% purity, 1.75 mmol, 85%).

¹H NMR (400 MHz, [D₆]DMSO): δ 7.34 (d, *J* = 1.7 Hz, 1H, Ar-H), 6.96 (d, *J* = 1.7 Hz, 1H, Ar-H), 6.38 (s, 2H, NH₂), 4.54 (s, 2H, CH₂), 4.38 (s, 2H, CH₂), 3.94 (s, 3H, C(O)OCH₃), 3.42 (s, 3H, OCH₃), 3.36 (s, 3H, OCH₃). HRMS (ESI): *m/z*

 $[M+H]^+$ calcd for $C_{19}DH_{17}N_2O_4$: 340.1402; found: 340.1402.

methyl 8-amino-3,5,7-trideuterio-4,6-bis(3-methoxyprop-1-ynyl)quinoline-2-carboxylate (23)

Using General Procedure 3 and 390 mg methyl 3,5,7-trideuterio-4,6-bis(3methoxyprop-1-ynyl)-8-nitro-quinoline-2-carboxylate (91% purity, 0.9556 mmol, 1.0 equiv.), 466 mg methyl 8-amino-3,5,7-trideuterio-4,6-bis(3methoxyprop-1-ynyl)quinoline-2-carboxylate was obtained as a yellow oil (49% purity, 0.6688 mmol, 70%).

¹H NMR (500 MHz, [D₆]DMSO): δ 6.37 (s, 2H, NH₂), 4.54 (s, 2H, CH₂), 4.38 (s, 2H, CH₂), 3.95 (s, 3H, C(O)OCH₃), 3.42 (s, 3H, OCH₃), 3.36 (s, 3H, OCH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₃H₁₅N₂O₄: 342.1528; found: 342.1526. methyl 8-amino-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (24)

Using General Procedure 3 and 2.300 g methyl 8-nitro-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (92% purity, 5.652 mmol, 1.0 equiv.), 1.562 g methyl 8-amino-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate was obtained as a yellow oil (93% purity, 4.218 mmol, 75%).

¹H NMR (400 MHz, [D₆]DMSO): δ 8.07 (s, 1H, Ar-H), 7.34 (d, *J* = 1.7 Hz, 1H, Ar-H), 6.96 (d, *J* = 1.7 Hz, 1H, Ar-H), 6.39 (s, 2H, NH₂), 4.54 (s, 2H, CH₂), 4.38 (s, 2H, CH₂), 3.94 (s, 3H, C(O)OCH₃). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₉D₆H₁₂N₂O₄: 345.1716; found: 345.1719.

methyl 8-amino-3-deuterio-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (25)

Using General Procedure 3 and 1.500 g methyl 3-deuterio-8-nitro-4,6bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (81% purity, 3.237 mmol, 1.0 equiv.), 1.016 g methyl 8-amino-3-deuterio-4,6bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate was obtained as a yellow oil (91% purity, 2.677 mmol, 83%). ¹H NMR (400 MHz, [D₆]DMSO): δ 7.34 (d, *J* = 1.7 Hz, 1H, Ar-H), 6.96 (d, *J* = 1.7 Hz, 1H, Ar-H), 6.38 (s, 2H, NH₂), 4.54 (s, 2H, CH₂), 4.38 (s, 2H, CH₂), 3.94 (s, 3H, C(O)OCH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₇H₁₁N₂O₄:

methyl 8-amino-5,7-dideuterio-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (26)

346.1779; found: 346.1784.

Using General Procedure 3 and 1.500 g methyl 5,7-dideuterio-8-nitro-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (89% purity, 3.547 mmol, 1.0 equiv.), 1.102 g methyl 8-amino-5,7dideuterio-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2carboxylate was obtained as a yellow oil (90% purity, 2.863 mmol, 81%). ¹H NMR (400 MHz, [D₆]DMSO): δ 8.08 (s, 1H, Ar-H), 6.38 (s, 2H, NH₂), 4.54 (s, 2H, CH₂), 4.38 (s, 2H, CH₂), 3.94 (s, 3H, C(O)OCH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₈H₁₀N₂O₄: 347.1841; found: 347.1842.

methyl 8-amino-4,6-bis(3-methoxypropyl)quinoline-2-carboxylate (12a)

Using General Procedure 4A and 609 mg methyl 4,6-bis(3-methoxyprop-1ynyl)-8-nitro-quinoline-2-carboxylate (1.65 mmol, 1.0 equiv.), 522 mg methyl 8-amino-4,6-bis(3-methoxypropyl)quinoline-2-carboxylate was obtained as a yellow oil (1.51 mmol, 91%).

¹H NMR (500 MHz, [D₆]DMSO): δ 7.86 (s, 1H, Ar-H), 7.04 (d, *J* = 1.6 Hz, 1H, Ar-H), 6.80 (d, *J* = 1.6 Hz, 1H, Ar-H), 6.03 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃),

3.38 (t, *J* = 6.3 Hz, 2H, CH₂O), 3.35 (t, *J* = 6.3 Hz, 2H, CH₂O), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 3.05 (t, *J* = 7.6 Hz, 2H, CH₂), 2.69 (t, *J* = 7.6 Hz, 2H, CH₂) 1.93-1.81 (m, 4H, CH₂). ¹³C NMR (125 MHz, [D₆]DMSO): δ 165.5, 148.2,

146.5, 144.0, 142.6, 135.6, 128.8, 120.4, 109.9, 108.3, 71.2, 71.1, 57.87, 57.86, 52.4, 32.7, 30.7, 29.2, 28.3. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉H₂₆N₂O₄: 347.1965; found: 347.1967.

methyl 8-amino-3-deuterio-4,6-bis(3-methoxypropyl)quinoline-2-carboxylate (12b)

Using General Procedure 4A and 1.000 g methyl 3-deuterio-4,6-bis(3methoxyprop-1-ynyl)-8-nitro-quinoline-2-carboxylate (3.472 mmol, 1.0 equiv.), 696 mg methyl 8-amino-3-deuterio-4,6-bis(3methoxypropyl)quinoline-2-carboxylate was obtained as a yellow oil (87% purity, 1.74 mmol, 64%).

¹H NMR (400 MHz, [D₆]DMSO): δ 7.05 (d, *J* = 1.5 Hz, 1H, Ar-H), 6.80 (d, *J* = 1.5 Hz, 1H, Ar-H), 6.03 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃), 3.39 (t, *J* = 6.3 Hz, 2H, CH₂O), 3.35 (t, *J* = 6.3 Hz, 2H, CH₂O), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 3.09-3.02 (m, 2H, CH₂), 2.69 (t, *J* = 7.9 Hz, 2H, CH₂) 1.95-1.81 (m, 4H, CH₂). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉DH₂₅N₂O₄: 348.2028; found: 348.2030.

methyl 8-amino-5,7-dideuterio-4,6-bis(3-methoxypropyl)quinoline-2-carboxylate (12c)

Using General Procedure 4A and 500 mg methyl 5,7-dideuterio-4,6-bis(3methoxyprop-1-ynyl)-8-nitro-quinoline-2-carboxylate (1.35 mmol, 1.0 equiv.), 370 mg methyl 8-amino-5,7-dideuterio-4,6-bis(3methoxypropyl)quinoline-2-carboxylate was obtained as a yellow oil (1.06 mmol, 79%).

¹H NMR (400 MHz, [D₆]DMSO): δ 7.85 (s, 1H, Ar-H), 6.03 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃), 3.38 (t, J = 6.5 Hz, 2H, CH₂O), 3.35 (t, J = 6.5 Hz, 2H, CH₂O), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 3.05 (t, J = 7.4 Hz, 2H, CH₂), 2.69 (t, J = 7.4 Hz, 2H, CH₂) 1.93-1.81 (m, 4H, CH₂). HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉D₂H₂₄N₂O₄: 349.2091; found: 349.2095.

methyl 8-amino-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (12d)

Using General Procedure 4A and 700 mg methyl 8-amino-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (93% purity, 1.89 mmol, 1.0 equiv.), 654 mg methyl 8-amino-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (93% purity, 1.73 mmol, 91%).

¹H NMR (400 MHz, [D₆]DMSO): δ 7.86 (s, 1H, Ar-H), 7.04 (d, J = 1.6 Hz, 1H, Ar-H), 6.80 (d, J = 1.6 Hz, 1H, Ar-H), 6.04 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃), 3.38 (t, J = 6.3 Hz, 2H, CH₂O), 3.35 (t, J = 6.3 Hz, 2H, CH₂O), 3. 05 (t, J = 7.6 Hz, 2H, CH₂), 2.69 (t, J = 7.6 Hz, 2H, CH₂) 1.94-1.81 (m, 4H, CH₂). HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉D₆H₂₀N₂O₄: 353.2342; found: 353.2346.

methyl 8-amino-3-deuterio-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (12e)

Using General Procedure 4A and 600 mg methyl 8-amino-3-deuterio-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (91% purity, 1.58 mmol, 1.0 equiv.), 599 mg methyl 8-amino-3-deuterio-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (87% purity, 1.47 mmol, 93%).

¹H NMR (400 MHz, [D₆]DMSO): δ 7.05 (d, J = 1.6 Hz, 1H, Ar-H), 6.80 (d, J = 1.6 Hz, 1H, Ar-H), 6.03 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃), 3.38 (t, J = 6.3 Hz, 2H, CH₂O), 3.35 (t, J = 6.3 Hz, 2H, CH₂O), 3. 05 (t, J = 7.6 Hz, 2H, CH₂), 2.69 (t, J = 7.6 Hz, 2H, CH₂) 1.95-1.81 (m, 4H, CH₂). HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉D₇H₁₉N₂O₄: 354.2405; found: 354.2406.

methyl 8-amino-5,7-dideuterio-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (12f)

Using General Procedure 4A and 650 mg methyl 8-amino-5,7-dideuterio-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (90% purity, 1.689 mmol, 1.0 equiv.), 636 mg methyl 8-amino-5,7-dideuterio-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (84% purity, 1.51 mmol, 89%).
¹H NMR (400 MHz, [D₆]DMSO): δ 7.85 (s, 1H, Ar-H), 6.02 (s, 2H, NH₂),

3.92 (s, 3H, C(O)OCH₃), 3.38 (t, *J* = 6.3 Hz, 2H, CH₂O), 3.35 (t, *J* = 6.3 Hz, 2H, CH₂O), 3. 05 (t, *J* = 7.5 Hz, 2H, CH₂), 2.69 (t, *J* = 7.5 Hz, 2H, CH₂) 1.94-1.81 (m, 4H, CH₂). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₉D₈H₁₈N₂O₄: 355.2467; found: 355.2470.

methyl 8-amino-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)quinoline-2-carboxylate (27)

Using General Procedure 4B and 600 mg methyl 8-amino-4,6-bis(3methoxyprop-1-ynyl)quinoline-2-carboxylate (88% purity, 1.56 mmol, 1.0 equiv.), 323 mg methyl 8-amino-4,6-bis(1,1,2,2-tetradeuterio-3-methoxypropyl)quinoline-2-carboxylate was obtained as a yellow oil (87% purity, 0.793 mmol, 51%).

¹H NMR (400 MHz, [D₆]DMSO): δ 7.86 (s, 1H, Ar-H), 7.04 (s, 1H, Ar-H), 6.80 (s, 1H, Ar-H), 6.02 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃), 3.37 (s, 2H, CH₂O), 3.33 (s, 2H, CH₂O), 3.25 (s, 3H, OCH₃), 3.24 (s, 3H, OCH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₈H₁₈N₂O₄: 355.2467; found: 355.2469.

methyl 8-amino-3-deuterio-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)quinoline-2-carboxylate (28)

Using General Procedure 4B and 490 mg methyl 8-amino-3-deuterio-4,6bis(3-methoxyprop-1-ynyl)quinoline-2-carboxylate (91% purity, 1.31 mmol, 1.0 equiv.), 450 mg methyl 8-amino-3-deuterio-4,6-bis(1,1,2,2tetradeuterio-3-methoxy-propyl)quinoline-2-carboxylate was obtained as a yellow oil (91% purity, 1.15 mmol, 88%).

¹H NMR (400 MHz, [D₆]DMSO): 7.05 (d, *J* = 1.6 Hz, 1H, Ar-H), 6.80 (d, *J* = 1.6 Hz, 1H, Ar-H), 6.01 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃), 3.37 (s, 2H, CH₂O),

3.34 (s, 2H, CH₂O), 3.25 (s, 3H, OCH₃), 3.24 (s, 3H, OCH₃). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₉D₉H₁₇N₂O₄: 356.2530; found:356.2530.

methyl 8-amino-5,7-dideuterio-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)quinoline-2-carboxylate (12g)

Using General Procedure 4B and 400 mg methyl 5,7-dideuterio-4,6-bis(3methoxyprop-1-ynyl)-8-nitro-quinoline-2-carboxylate (1.08 mmol, 1.0 equiv.), 321 mg methyl 8-amino-5,7-dideuterio-4,6-bis(1,1,2,2tetradeuterio-3-methoxy-propyl)quinoline-2-carboxylate was obtained as a yellow oil (94% purity, 0.821 mmol, 76%).

¹H NMR (400 MHz, [D₆]DMSO): δ 7.86 (s, 1H, Ar-H), 6.02 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃), 3.37 (s, 2H, CH₂O), 3.34 (s, 2H, CH₂O), 3.25 (s, 3H, OCH₃), 3.24 (s, 3H, OCH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₁₀H₁₆N₂O₄: 357.2593; found: 357.2599.

methyl 8-amino-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (12h)

Using General Procedure 4B and 406 mg methyl 8-amino-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (93% purity, 1.10 mmol, 1.0 equiv.), 401 mg methyl 8-amino-4,6-bis[1,1,2,2tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (88% purity, 0.979 mmol, 89%).

¹H NMR (500 MHz, [D₆]DMSO): δ 7.86 (s, 1H, Ar-H), 7.04 (d, *J* = 1.5 Hz, 1H, Ar-H), 6.80 (d, *J* = 1.5 Hz, 1H, Ar-H), 6.03 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃), 3.37 (s, 2H, CH₂O), 3.33 (s, 2H, CH₂O). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₁₄H₁₂N₂O₄: 361.2844; found: 361.2845.

methyl 8-amino-3-deuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (12i)

Using General Procedure 4B and 490 mg methyl 8-amino-3-deuterio-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (81% purity, 1.14 mmol, 1.0 equiv.), 472 mg methyl 8-amino-3-deuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (80% purity, 1.05 mmol, 92%).
¹H NMR (400 MHz, [D₆]DMSO): δ 7.04 (d, J = 1.4 Hz, 1H, Ar-H), 6.80 (d, J

= 1.4 Hz, 1H, Ar-H), 6.03 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃), 3.37 (s, 2H, CH₂O), 3.34 (s, 2H, CH₂O). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₉D₁₅H₁₁N₂O₄: 362.2907; found: 362.2911.

methyl 8-amino-5,7-dideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2carboxylate (12j)

Using General Procedure 4B and 160 mg methyl 8-amino-5,7dideuterio-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2carboxylate (90% purity, 0.416 mmol, 1.0 equiv.), 158 mg methyl 8amino-5,7-dideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-

(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (88% purity, 0.384 mmol, 92%).

¹H NMR (500 MHz, [D₆]DMSO): δ 7.86 (s, 1H, Ar-H), 6.02 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃), 3.37 (s, 2H, CH₂O), 3.34 (s, 2H, CH₂O). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₁₆H₁₀N₂O₄: 363.2970; found: 363.2969.

8-amino-3,5,7-trideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-

carboxylate (12k)

methyl

Using General Procedure 4B and 532 mg methyl 3,5,7-trideuterio-8nitro-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2carboxylate (94% purity, 1.33 mmol, 1.0 equiv.), 421 mg methyl 8-amino-3,5,7-trideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-

(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (93% purity, 1.08 mmol, 81%).

¹H NMR (400 MHz, [D₆]DMSO): δ 6.02 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃), 3.37 (s, 2H, CH₂O), 3.34 (s, 2H, CH₂O). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₉D₁₇H₉N₂O₄: 364.3032; found: 364.3035.

methyl 8-amino-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (12l)

Using General Procedure 4B and 210 mg methyl 4,6-bis[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-8-nitro-quinoline-2-carboxylate
(96% purity, 0.534 mmol, 1.0 equiv.), 321 mg methyl 8-amino-4,6bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (55% purity, 0.484 mmol, 91%).
¹H NMR (500 MHz, [D₆]DMSO): δ 7.86 (s, 1H, Ar-H), 7.04 (d, J = 1.7 Hz,

1H, Ar-H), 6.80 (d, J = 1.7 Hz, 1H, Ar-H), 6.03 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃). HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉D₁₈H₈N₂O₄: 365.3095; found: 365.3096.

methyl 8-amino-3-deuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]quinoline-2carboxylate (12m)

Using General Procedure 4B and 225 mg methyl 3-deuterio-4,6-bis[3,3dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-8-nitro-quinoline-2carboxylate (91% purity, 0.540 mmol, 1.0 equiv.), 301 mg methyl 8-amino-3-deuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-

(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (52% purity, 0.428 mmol, 79%).

¹H NMR (500 MHz, [D₆]DMSO): δ 7.04 (d, J = 1.7 Hz, 1H, Ar-H), 6.80 (d, J

= 1.7 Hz, 1H, Ar-H), 6.03 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃). HRMS (ESI):

m/z [M+H]⁺ calcd for C₁₉D₁₉H₇N₂O₄: 366.3158; found: 366.3158.

methyl 8-amino-5,7-dideuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-

carboxylate (12n)

Using General Procedure 4B and 212 mg methyl 5,7-dideuterio-4,6bis[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-8-nitroquinoline-2-carboxylate (91% purity, 0.509 mmol, 1.0 equiv.), 300 mg methyl 8-amino-5,7-dideuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (70% purity, 0.438 mmol, 86%).

¹H NMR (500 MHz, [D₆]DMSO): δ 7.86 (s, 1H, Ar-H), 6.02 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₉D₂₀H₆N₂O₄:

367.3221; found: 367.3222.

methyl 8-amino-3,5,7-trideuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]quinoline-2carboxylate (120)

Using General Procedure 4B and 180 mg methyl 3,5,7-trideuterio-4,6bis[3,3-dideuterio-3-(trideuteriomethoxy)prop-1-ynyl]-8-nitroquinoline-2-carboxylate (85% purity, 0.401 mmol, 1.0 equiv.), 230 mg methyl 8-amino-3,5,7-trideuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (61% purity, 0.382 mmol, 95%).

¹H NMR (500 MHz, [D₆]DMSO): δ 6.02 (s, 2H, NH₂), 3.92 (s, 3H, C(O)OCH₃). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₉D₂₁H₅N₂O₄: 368.3283; found:

368.3284.

methyl 8-acetamido-4,6-bis(3-methoxypropyl)quinoline-2-carboxylate (13a)

Using General Procedure 5A and 696 mg methyl 8-amino-4,6-bis(3methoxypropyl)quinoline-2-carboxylate (2.01 mmol, 1.0 equiv.), 758 mg methyl 8-acetamido-4,6-bis(3-methoxypropyl)quinoline-2-carboxylate was obtained as a yellow oil (1.91 mmol, 95%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.85 (s, 1H, NH), 8.55 (d, *J* = 1.5 Hz, 1H, Ar-H), 7.98 (s, 1H, Ar-H), 7.64 (d, *J* = 1.5 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.39 (t, *J* = 6.2 Hz, 2H, CH₂), 3.37 (t, *J* = 6.2 Hz, 2H, CH₂), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 3.15 (t, *J* = 7.7 Hz, 2H, CH₂), 2.83 (t, *J* = 7.7 Hz, 2H, CH₂),

2.28 (s, 3H, C(O)CH₃), 1.97-1.85 (m, 4H, CH₂). ¹³C NMR (125 MHz, [D₆]DMSO): δ 168.6, 165.1, 149.7, 144.5, 143.3, 136.2, 135.5, 128.0, 121.0, 118.0, 116.0, 70.97, 70.95, 57.89, 57.88, 52.7, 32.8, 30.7, 29.4, 28.1, 24.8. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₁H₂₈N₂O₅: 389.2071; found: 389.2070.

methyl 8-acetamido-3-deuterio-4,6-bis(3-methoxypropyl)quinoline-2-carboxylate (13b)

Using General Procedure 5A and 690 mg methyl 8-amino-3-deuterio-4,6bis(3-methoxypropyl)quinoline-2-carboxylate (87% purity, 1.73 mmol, 1.0 equiv.), 567 mg methyl 8-acetamido-3-deuterio-4,6-bis(3methoxypropyl)quinoline-2-carboxylate was obtained as a yellow oil (1.46 mmol, 84%).

¹H NMR (400 MHz, [D₆]DMSO): δ 9.87 (s, 1H, NH), 8.56 (d, *J* = 1.4 Hz, 1H, Ar-H), 7.64 (d, *J* = 1.4 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.39 (t, *J* = 6.3 Hz, 2H, CH₂), 3.37 (t, *J* = 6.3 Hz, 2H, CH₂), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃),

3.16 (t, *J* = 7.4 Hz, 2H, CH₂), 2.83 (t, *J* = 7.4 Hz, 2H, CH₂), 2.28 (s, 3H, C(O)CH₃), 1.97-1.85 (m, 4H, CH₂). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁DH₂₇N₂O₅: 390.2134; found: 390.2135.

methyl 8-acetamido-5,7-dideuterio-4,6-bis(3-methoxypropyl)quinoline-2-carboxylate (13c)

Using General Procedure 5A and 180 mg methyl 8-amino-5,7-dideuterio-4,6-bis(3-methoxypropyl)quinoline-2-carboxylate (0.517 mmol, 1.0 equiv.), 176 mg methyl 8-acetamido-5,7-dideuterio-4,6-bis(3methoxypropyl)quinoline-2-carboxylate was obtained as a yellow oil (0.451 mmol, 87%).

¹H NMR (400 MHz, [D₆]DMSO): δ 9.85 (s, 1H, NH), 7.98 (s, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.39 (t, *J* = 6.1 Hz, 2H, CH₂), 3.37 (t, *J* = 6.1 Hz, 2H, CH₂), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 3.15 (t, *J* = 7.7 Hz, 2H, CH₂), 2.83 (t, *J*

= 7.7 Hz, 2H, CH₂), 2.28 (s, 3H, C(O)CH₃), 1.97-1.85 (m, 4H, CH₂). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁D₂H₂₆N₂O₅: 391.2197; found: 3891.2200.

methyl 8-acetamido-3,5,7-trideuterio-4,6-bis(3-methoxyprop-1-ynyl)quinoline-2-carboxylate (29)

Using General Procedure 5A and 380 mg methyl 8-amino-3,5,7-trideuterio-4,6-bis(3-methoxyprop-1-ynyl)quinoline-2-carboxylate (49% purity, 0.545 mmol, 1.0 equiv.), 415 mg methyl 8-acetamido-3,5,7-trideuterio-4,6-bis(3methoxyprop-1-ynyl)quinoline-2-carboxylate was obtained as a yellow oil (41% purity, 0.444 mmol, 81%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.91 (s, 1H, NH), 4.58 (s, 2H, CH₂), 4.43 (s, 2H, CH₂), 3.99 (s, 3H, C(O)OCH₃), 3.43 (s, 3H, OCH₃), 3.38 (s, 3H, OCH₃), 2.31 (s, 3H, C(O)CH₃). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.2, 164.2, 146.1, 137.0, 136.0, 129.6, 127.9, 123.4, 98.4, 89.2, 85.3, 80.4, 59.6, 59.5, 57.4, 57.2, 53.1,

24.7. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁D₃H₁₇N₂O₅: 384.1633; found: 384.1637.

methyl 4,6-bis(3-methoxyprop-1-ynyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylate (30)

Using General Procedure 5B and 280 mg methyl 8-amino-4,6-bis(3methoxyprop-1-ynyl)quinoline-2-carboxylate (94% purity, 0.778 mmol, 1.0 equiv.), 270 mg methyl 4,6-bis(3-methoxyprop-1-ynyl)-8-[(2,2,2trideuterioacetyl)amino]quinoline-2-carboxylate (86% purity, 0.606 mmol, 78%) as a yellow solid.

¹H NMR (500 MHz, [D₆]DMSO): δ 9.87 (s, 1H, NH), 8.66 (d, *J* = 1.7 Hz, 1H, Ar-H), 8.18 (s, 1H, Ar-H), 7.89 (d, J = 1.7 Hz, 1H, Ar-H), 4.57 (s, 2H, CH₂), 4.43 (s, 2H, CH₂), 3.99 (s, 3H, C(O)OCH₃), 3.43 (s, 3H, OCH₃), 3.38 (s, 3H, OCH₃). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.3, 164.2, 146.1, 136.9, 136.1, 129.7, 127.9, 124.6, 123.6, 121.6, 119.5, 98.4, 89.2, 85.4, 80.5, 59.6, 59.5, 57.4, 57.2, 53.1. HRMS

(ESI): m/z [M+H]⁺ calcd for C₂₁D₃H₁₇N₂O₅: 384.1633; found: 384.1634.

methyl 4,6-bis(3-methoxypropyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylate (31)

Using General Procedure 4A and 250 mg methyl 4,6-bis(3-methoxyprop-1ynyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylate (86% purity, 0.561 mmol, 1.0 equiv.), 195 mg methyl 4,6-bis(3-methoxypropyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylate was obtained as a yellow oil (85% purity, 0.423 mmol, 76%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.56 (d, *J* = 1.3 Hz, 1H, Ar-H), 7.99 (s, 1H, Ar-H), 7.65 (d, *J* = 1.3 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃),

3.40 (t, *J* = 6.1 Hz, 2H, CH₂), 3.37 (t, *J* = 6.1 Hz, 2H, CH₂), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 3.16 (t, *J* = 7.6 Hz, 2H, CH₂), 2.84 (t, *J* = 7.6 Hz, 2H, CH₂), 1.96-1.85 (m, 4H, CH₂). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁D₃H₂₅N₂O₅: 392.2259; found: 392.2260.

[Note: The efficiency of the deuteroacylation reaction can be enhanced by following a modified procedure of 5B:

A 25 mL pear-shaped flask equipped with a magnetic stirring bar was filled with 50 mg **methyl 8-amino-4,6-bis(3-methoxyprop-1-ynyl)quinoline-2-carboxylate** (1.0 equiv., 0.144 mmol). The flask was evacuated then backfilled with N₂ (repeated 3x), then 3 mL MeOD (513 equiv., 73.8 mmol) was added. The mixture was stirred at rt for 1 h, then was concentrated *in vacuo*. This was repeated 5 times. Then 3.53 mg *N*,*N*-dimethylpyridin-4-amine (0.2 equiv., 0.0289 mmol), 0.117 mL pyridine (10 equiv., 1.44 mmol), and 2.89 mL EtOAc (20 mL/mmol) were added. Then 0.418 mL (2,2,2-trideuterioacetyl) 2,2,2-trideuterioacetate (3 equiv., 0.433 mmol) was added and the mixture was stirred at 50°C for 18 hours. Then it was washed with water, 1 M aq. citric acid solution, sat. aq. NaHCO₃ solution, dried over Na₂SO₄, filtered and the filtrate was concentrated *in vacuo*. Then the crude product was purified *via* flash chromatography using DCM and MeOH as eluents to afford 57 mg **methyl 4,6-bis(3-methoxypropyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylate** (67% purity, 0.0976 mmol, 68%) as a yellow oil.

Figure S1. HRMS of the product obtained in the two procedures: 93%D incorporation/position \rightarrow 96%.

methyl 8-acetamido-3,5,7-trideuterio-4,6-bis(3-methoxypropyl)quinoline-2-carboxylate (13d)

Using General Procedure 4A and 400 mg methyl 8-acetamido-3,5,7trideuterio-4,6-bis(3-methoxyprop-1-ynyl)quinoline-2-carboxylate (41% purity, 0.428 mmol, 1.0 equiv.), 180 mg methyl 8-acetamido-3,5,7-trideuterio-4,6-bis(3-methoxypropyl)quinoline-2-carboxylate was obtained as a yellow oil (63% purity, 0.290 mmol, 68%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 3.97 (s, 3H, C(O)OCH₃),

3.40 (t, *J* = 6.2 Hz, 2H, CH₂), 3.37 (t, *J* = 6.2 Hz, 2H, CH₂), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 3.17 (t, *J* = 7.7 Hz, 2H, CH₂), 2.83 (t, *J* = 7.7 Hz, 2H, CH₂), 2.28 (s, 3H, C(O)CH₃), 1.97-1.85 (m, 4H, CH₂). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁D₃H₂₅N₂O₅: 392.2259; found: 392.2261.

methyl 3-deuterio-4,6-bis(3-methoxypropyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylate (13e)

Using General Procedure 5B and 380 mg methyl 8-amino-3-deuterio-4,6bis(3-methoxypropyl)quinoline-2-carboxylate (51% purity, 0.558 mmol, 1.0 equiv.), 301 mg methyl 3-deuterio-4,6-bis(3-methoxypropyl)-8-[(2,2,2trideuterioacetyl)amino]quinoline-2-carboxylate was obtained as a yellow oil (65% purity, 0.499 mmol, 89%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.56 (d, *J* = 1.2 Hz, 1H, Ar-H), 7.65 (d, *J* = 1.2 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.40 (t, *J* = 6.2 Hz, 2H, CH₂), 3.37 (t, *J* = 6.2 Hz, 2H, CH₂), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 3.16 (t, *J* = 7.7 Hz, 2H, CH₂), 2.84 (t, *J* = 7.7 Hz, 2H, CH₂), 1.97-1.85 (m, 4H,

CH₂). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁D₄H₂₄N₂O₅: 393.2322; found: 393.2324.

methyl 5,7-dideuterio-4,6-bis(3-methoxypropyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylate (13f)

Using General Procedure 5B and 228 mg methyl 8-amino-5,7-dideuterio-4,6-bis(3-methoxypropyl)quinoline-2-carboxylate (0.581 mmol, 1.0 equiv.), 240 mg methyl 5,7-dideuterio-4,6-bis(3-methoxypropyl)-8-[(2,2,2trideuterioacetyl)amino]quinoline-2-carboxylate was obtained as a yellow oil (87% purity, 0.531 mmol, 91%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.00 (s, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.40 (t, *J* = 6.2 Hz, 2H, CH₂), 3.37 (t, *J* = 6.2 Hz, 2H, CH₂), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 3.17 (t, *J* = 7.6 Hz, 2H, CH₂), 2.84 (t, *J* = 7.6 Hz, 2H, CH₂), 1.97-1.85 (m, 4H, CH₂). HRMS (ESI): *m/z* [M+H]⁺ calcd for

 $C_{21}D_5H_{23}N_2O_5$: 394.2385; found: 394.2386.

methyl 8-acetamido-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (32)

Using General Procedure 5A and 300 mg methyl 8-amino-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (84% purity, 0.732 mmol, 1.0 equiv), 344 mg methyl 8-acetamido-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate was obtained as a yellow solid (67% purity, 0.597 mmol, 82%).

¹H NMR (400 MHz, [D₆]DMSO): δ 9.92 (s, 1H, NH), 8.69 (d, *J* = 1.5 Hz, 1H, Ar-H), 8.22 (s, 1H, Ar-H), 7.94 (d, *J* = 1.5 Hz, 1H, Ar-H), 4.57 (s, 2H, CH₂), 4.43 (s, 2H, CH₂), 3.99 (s, 3H, C(O)OCH₃), 2.31 (s, 3H, C(O)CH₃). ¹³C NMR (100 MHz, [D₆]DMSO): δ 169.2, 164.3, 146.2, 137.0, 136.2, 129.7, 128.0, 124.6, 123.6, 121.6, 119.6, 98.4, 89.2, 85.3, 80.5, 59.5, 59.4, 53.1, 24.7. HRMS (ESI):

m/z [M+H]⁺ calcd for C₂₁D₆H₁₄N₂O₅: 387.1822; found: 387.1826.

methyl 8-acetamido-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (13g)

Using General Procedure 5A and 300 mg methyl 8-amino-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (93% purity, 0.792 mmol, 1.0 equiv.), 301 mg methyl 8-acetamido-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (92% purity, 0.720 mmol, 89%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.85 (s, 1H, NH), 8.55 (d, *J* = 1.5 Hz, 1H, Ar-H), 7.99 (s, 1H, Ar-H), 7.65 (d, *J* = 1.5 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.39 (t, *J* = 6.2 Hz, 2H, CH₂), 3.37 (t, *J* = 6.2 Hz, 2H, CH₂), 3.16 (t, *J* = 7.7 Hz, 2H, CH₂), 2.83 (t, *J* = 7.7 Hz, 2H, CH₂), 2.28 (s, 3H, C(O)CH₃), 1.97-1.85 (m, 4H, CH₂). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁D₆H₂₂N₂O₅:

395.2448; found: 395.2449.

methyl 8-acetamido-3-deuterio-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (13h)

Using General Procedure 5A and 300 mg methyl 8-amino-3-deuterio-4,6bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (87% purity, 0.7383 mmol, 1.0 equiv.), 302 mg methyl 8-acetamido-3-deuterio-4,6bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (90% purity, 0.687 mmol, 93%).

¹H NMR (400 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.55 (d, *J* = 1.2 Hz, 1H, Ar-H), 7.65 (d, *J* = 1.2 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.39 (t, *J* = 6.2 Hz, 2H, CH₂), 3.37 (t, *J* = 6.2 Hz, 2H, CH₂), 3.16 (t, *J* = 7.7 Hz, 2H, CH₂), 2.83 (t, *J* = 7.7 Hz, 2H, CH₂), 2.28 (s, 3H, C(O)CH₃), 1.97-1.85 (m, 4H, CH₂).

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁D₇H₂₁N₂O₅: 396.2510; found: 396.2509.

methyl 8-acetamido-3-deuterio-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (33)

Using General Procedure 5A and 330 mg methyl 8-amino-3-deuterio-4,6bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (82% purity, 0.721 mmol, 1.0 equiv.), 433 mg methyl 8-acetamido-3-deuterio-4,6bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (57% purity, 0.637 mmol, 88%) as yellow solid.

¹H NMR (400 MHz, [D₆]DMSO): δ 9.87 (s, 1H, NH), 8.65 (d, *J* = 1.7 Hz, 1H, Ar-H), 7.87 (d, J = 1.7 Hz, 1H, Ar-H), 4.57 (s, 2H, CH₂), 4.42 (s, 2H, CH₂), 3.99 (s, 3H, C(O)OCH₃), 2.31 (s, 3H, C(O)CH₃). ¹³C NMR (100 MHz, [D₆]DMSO): δ 169.2, 164.2, 146.0, 136.9, 136.1, 129.6, 127.9, 123.6, 121.6, 119.4, 98.4, 89.2, 85.3, 80.4, 59.5, 59.4, 53.1, 24.7. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for

 $C_{21}D_7H_{13}N_2O_5$: 388.1884; found: 388.1884.

methyl 8-acetamido-5,7-dideuterio-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (34)

Using General Procedure 5A and 300 mg methyl 8-amino-5,7-dideuterio-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (72% purity, 0.624 mmol, 1.0 equiv.), 300 mg methyl 8-acetamido-5,7-dideuterio-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (69% purity, 0.533 mmol, 85%) as yellow solid.

¹H NMR (400 MHz, [D₆]DMSO): δ 9.87 (s, 1H, NH), 8.17 (s, 1H, Ar-H), 4.57 (s, 2H, CH₂), 4.42 (s, 2H, CH₂), 3.99 (s, 3H, C(O)OCH₃), 2.31 (s, 3H, C(O)CH₃). ¹³C NMR (100 MHz, [D₆]DMSO): δ 169.2, 164.2, 146.1, 136.9, 136.0, 129.7, 127.8, 124.6, 123.4, 98.4, 89.3, 85.3, 80.5, 59.5, 59.4, 53.1, 24.7. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁D₈H₁₂N₂O₅: 389.1947; found: 389.1948. methyl 8-acetamido-5,7-dideuterio-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (13i)

Using General Procedure 5A and 270 mg methyl 8-amino-5,7-dideuterio-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (84% purity, 0.640 mmol, 1.0 equiv.), 256 mg methyl 8-acetamido-5,7dideuterio-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-

carboxylate was obtained as a yellow oil (87% purity, 0.562 mmol, 88%). ¹H NMR (400 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.00 (s, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.39 (t, J = 6.4 Hz, 2H, CH₂), 3.37 (t, J = 6.4 Hz, 2H, CH₂), 3.16 (t, J = 7.7 Hz, 2H, CH₂), 2.83 (t, J = 7.7 Hz, 2H, CH₂), 2.28 (s, 3H, C(O)CH₃), 1.97-1.85 (m, 4H, CH₂). HRMS (ESI): m/z [M+H]⁺ calcd for

 $C_{21}D_8H_{20}N_2O_5$: 397.2573; found: 397.2573.

methyl 8-acetamido-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)quinoline-2-carboxylate (35)

Using General Procedure 5A and 284 mg methyl 8-amino-4,6-bis(1,1,2,2tetradeuterio-3-methoxy-propyl)quinoline-2-carboxylate (88% purity, 0.705 mmol, 1.0 equiv.), 271 mg methyl 8-acetamido-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)quinoline-2-carboxylate was obtained as a yellow oil (94% purity, 0.643 mmol, 91%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.55 (d, *J* = 1.5 Hz, 1H, Ar-H), 7.99 (s, 1H, Ar-H), 7.64 (d, *J* = 1.5 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.38 (s, 2H, CH₂), 3.36 (s, 2H, CH₂), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃),

2.28 (s, 3H, C(O)CH₃). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁D₈H₂₀N₂O₅: 397.2573; found: 397.2577.

methyl 8-[(2,2,2-trideuterioacetyl)amino]-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (13j)

Using General Procedure 5B and 300 mg methyl 8-amino-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (93% purity, 0.792 mmol, 1.0 equiv.), 303 mg methyl 8-[(2,2,2-trideuterioacetyl)amino]-4,6bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (92% purity, 0.701 mmol, 89%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.56 (d, J = 1.2 Hz, 1H, Ar-H), 8.00 (s, 1H, Ar-H), 7.66 (d, J = 1.2 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.39 (t, J = 6.1 Hz, 2H, CH₂), 3.37 (t, J = 6.1 Hz, 2H, CH₂), 3.1 (t, J = 7.3 Hz, 2H, CH₂), 2.83 (t, J = 7.3 Hz, 2H, CH₂), 1.97-1.85 (m, 4H, CH₂). HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁D₉H₁₉N₂O₅: 398.2636; found:

398.2637.

methyl 8-acetamido-3-deuterio-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)quinoline-2-carboxylate (36)

Using General Procedure 5A and 350 mg methyl 8-amino-3-deuterio-4,6bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)quinoline-2-carboxylate (91% purity, 0.896 mmol, 1.0 equiv.), 372 mg methyl 8-acetamido-3-deuterio-4,6bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)quinoline-2-carboxylate was obtained as a yellow oil (92% purity, 0.861 mmol, 96%).

¹H NMR (400 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.56 (d, *J* = 1.4 Hz, 1H, Ar-H), 7.65 (d, *J* = 1.4 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.38 (s, 2H, CH₂), 3.36 (s, 2H, CH₂), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 2.28 (s, 3H, C(O)CH₃). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₁D₉H₁₉N₂O₅: 398.2636; found:

398.2637.

methyl 3-deuterio-8-[(2,2,2-trideuterioacetyl)amino]-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2carboxylate (37)

Using General Procedure 5B and 300 mg methyl 8-amino-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (87% purity, 0.756 mmol, 1.0 equiv.), 198 mg methyl 3-deuterio-8-[(2,2,2trideuterioacetyl)amino]-4,6-bis[3-(trideuteriomethoxy)prop-1-

ynyl]quinoline-2-carboxylate was obtained as a yellow solid (79% purity, 0.401 mmol, 53%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.87 (s, 1H, NH), 8.66 (d, *J* = 1.7 Hz, 1H, Ar-H), 7.88 (d, J = 1.7 Hz, 1H, Ar-H), 4.57 (s, 2H, CH₂), 4.42 (s, 2H, CH₂), 3.99 (s, 3H, C(O)OCH₃). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.3, 164.2, 146.0, 136.9, 136.1, 129.6, 127.9, 123.6, 121.6, 119.4, 98.4, 89.2, 85.3, 80.4, 59.5, 59.4, 53.1. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₁D₁₀H₁₀N₂O₅: 391.2073; found:

391.2073.

methyl 3-deuterio-8-[(2,2,2-trideuterioacetyl)amino]-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2carboxylate (13k)

Using General Procedure 5B and 210 mg methyl 8-amino-3-deuterio-4,6bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (87% purity, 0.517 mmol, 1.0 equiv.), 214 mg methyl 3-deuterio-8-[(2,2,2trideuterioacetyl)amino]-4,6-bis[3-

(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (82% purity, 0.440 mmol, 85%).

¹H NMR (400 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.56 (d, *J* = 1.2 Hz, 1H, Ar-H), 7.65 (d, *J* = 1.2 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.39 (t, *J* = 6.3 Hz, 2H, CH₂), 3.37 (t, *J* = 6.3 Hz, 2H, CH₂), 3.10 (t, *J* = 7.8 Hz, 2H, CH₂), 2.83 (t, *J* = 7.8 Hz, 2H, CH₂), 1.97-1.85 (m, 4H, CH₂). HRMS (ESI): *m/z*

 $[M+H]^+$ calcd for C₂₁D₁₀H₁₈N₂O₅: 399.2699; found: 399.2701.

methyl 5,7-dideuterio-8-[(2,2,2-trideuterioacetyl)amino]-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (13l)

Using General Procedure 5B and 161 mg methyl 8-amino-5,7-dideuterio-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (84% purity, 0.382 mmol, 1.0 equiv.), 172 mg methyl 5,7-dideuterio-8-[(2,2,2trideuterioacetyl)amino]-4,6-bis[3-

(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (77% purity, 0.332 mmol, 87%).

¹H NMR (400 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.00 (s, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.39 (t, *J* = 6.2 Hz, 2H, CH₂), 3.37 (t, *J* = 6.2 Hz, 2H, CH₂), 3.15 (t, *J* = 7.7 Hz, 2H, CH₂), 2.83 (t, *J* = 7.7 Hz, 2H, CH₂), 1.97-1.85 (m, 4H, CH₂). HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₁D₁₁H₁₇N₂O₅: 400.2761;

found: 400.2761.

methyl 3-deuterio-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylate (13m)

Using General Procedure 5B and 165 mg methyl 8-amino-3-deuterio-4,6bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)quinoline-2-carboxylate (82% purity, 0.381 mmol, 1.0 equiv.), 167 mg methyl 3-deuterio-4,6-bis(1,1,2,2tetradeuterio-3-methoxy-propyl)-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylate was obtained as a yellow oil (81% purity, 0.338 mmol, 89%).

¹H NMR (400 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.56 (d, *J* = 1.6 Hz, 1H, Ar-H), 7.65 (d, *J* = 1.6 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.38 (s, 2H, CH₂), 3.36 (s, 2H, CH₂), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃). HRMS (ESI): *m/z*

 $[M+H]^+$ calcd for $C_{21}D_{12}H_{16}N_2O_5$: 401.2824; found: 401.2822.

methyl

trideuterioacetyl)amino]quinoline-2-carboxylate (13n)

found: 402.2886.

5,7-dideuterio-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)-8-[(2,2,2oxylate (13n)

Using General Procedure 5B and 175 mg methyl 8-amino-5,7-dideuterio-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)quinoline-2-carboxylate (79% purity, 0.388 mmol, 1.0 equiv.), 188 mg methyl 5,7-dideuterio-4,6bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylate was obtained as a yellow oil (70% purity, 0.328 mmol, 85%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.00 (s, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.38 (s, 2H, CH₂), 3.36 (s, 2H, CH₂), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁D₁₃H₁₅N₂O₅: 402.2887;

methyl 8-acetamido-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (130)

Using General Procedure 4B and 320 mg methyl 8-acetamido-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2-carboxylate (67% purity, 0.555 mmol, 1.0 equiv.), 203 mg methyl 8-acetamido-4,6-bis[1,1,2,2tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (87% purity, 0.439 mmol, 79%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.55 (d, J = 1.6 Hz, 1H, Ar-H), 8.00 (s, 1H, Ar-H), 7.66 (d, J = 1.6 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.38 (s, 2H, CH₂), 3.36 (s, 2H, CH₂), 2.28 (s, 3H, C(O)CH₃). HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁D₁₄H₁₄N₂O₅: 403.2950; found:

403.2951.

methyl

carboxylate (13p)

Using General Procedure 4B and 300 mg methyl 8-acetamido-3deuterio-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2carboxylate (57% purity, 0.441 mmol, 1.0 equiv.), 202 mg methyl 8acetamido-3-deuterio-4,6-bis[1,1,2,2-tetradeuterio-3-

8-acetamido-3-deuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-

(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a yellow oil (65% purity, 0.325 mmol, 74%).

¹H NMR (400 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.55 (d, *J* = 1.7 Hz, 1H, Ar-H), 7.65 (d, *J* = 1.7 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.38 (s, 2H, CH₂), 3.36 (s, 2H, CH₂), 2.28 (s, 3H, C(O)CH₃). HRMS (ESI): *m*/*z* [M+H]⁺

calcd for $C_{21}D_{15}H_{13}N_2O_5$: 404.3012; found: 404.3014.

methyl 8-acetamido-5,7-dideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2carboxylate (13q)

yellow oil (74% purity, 0.340 mmol, 68%).

Using General Procedure 4B and 280 mg methyl 8-acetamido-5,7dideuterio-4,6-bis[3-(trideuteriomethoxy)prop-1-ynyl]quinoline-2carboxylate (69% purity, 0.497 mmol, 1.0 equiv.), 186 mg methyl 8acetamido-5,7-dideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate was obtained as a

¹H NMR (400 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 7.99 (s, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.38 (s, 2H, CH₂), 3.36 (s, 2H, CH₂), 2.28 (s, 3H, C(O)CH₃). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁D₁₆H₁₂N₂O₅: 405.3075;

found: 405.3080.

methyl 4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2carboxylate (13r)

Using General Procedure 5B and 114 mg methyl 8-amino-4,6-bis[1,1,2,2tetradeuterio-3-(trideuteriomethoxy)propyl]guinoline-2-carboxylate (88% purity, 0.227 mmol, 1.0 equiv.), 94 mg methyl 4,6-bis[1,1,2,2tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylate was obtained as a yellow oil (89% purity, 0.206 mmol, 74%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.56 (d, *J* = 1.5 Hz, 1H, Ar-H), 8.00 (s, 1H, Ar-H), 7.66 (d, J = 1.5 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.38 (s, 2H, CH₂), 3.36 (s, 2H, CH₂). HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁D₁₇H₁₁N₂O₅: 406.3138; found: 406.3138.

methyl 3-deuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2trideuterioacetyl)amino]quinoline-2-carboxylate (13s)

Using General Procedure 4B and 100 mg methyl 3-deuterio-8-[(2,2,2trideuterioacetyl)amino]-4,6-bis[3-(trideuteriomethoxy)prop-1ynyl]guinoline-2-carboxylate (79% purity, 0.497 mmol, 1.0 equiv.), 98 mg methyl 3-deuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylate was obtained as a yellow oil (81% purity, 0.340 mmol, 97%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.86 (s, 1H, NH), 8.55 (d, *J* = 1.7 Hz, 1H, Ar-H), 7.64 (d, J = 1.7 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.38 (s, 2H, CH₂), 3.35 (s, 2H, CH₂). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁D₁₈H₁₀N₂O₅:

407.3201; found: 407.3202.

methyl

5,7-dideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2trideuterioacetyl)amino]quinoline-2-carboxylate (13t)

Using General Procedure 5B and 150 mg methyl 8-amino-5,7-dideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2carboxylate (88% purity, 0.364 mmol, 1.0 equiv.), 190 mg methyl 5,7dideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylate was obtained as a yellow oil (70% purity, 0.326 mmol, 90%).

¹H NMR (400 MHz, [D₆]DMSO): δ 9.87 (s, 1H, NH), 8.00 (s, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃), 3.38 (s, 2H, CH₂), 3.36 (s, 2H, CH₂). HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁D₁₉H₉N₂O₅: 408.3264; found: 408.3262.
methyl

trideuterioacetyl)amino]quinoline-2-carboxylate (13u)

Using General Procedure 5B and 175 mg methyl 8-amino-3,5,7trideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (80% purity, 0.385 mmol, 1.0 equiv.), 152 mg methyl 3,5,7-trideuterio-4,6-bis[1,1,2,2tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2trideuterioacetyl)amino]quinoline-2-carboxylate was obtained as a yellow oil (92% purity, 0.342 mmol, 89%).

¹H NMR (400 MHz, [D₆]DMSO): δ 9.87 (s, 1H, NH), 3.97 (s, 3H, C(O)OCH₃), 3.38 (s, 2H, CH₂), 3.36 (s, 2H, CH₂). HRMS (ESI): m/z [M+H]⁺ calcd for $C_{21}D_{20}H_8N_2O_5$: 409.3326; found: 409.3327.

4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-

methyl

trideuterioacetyl)amino]quinoline-2-carboxylate (13v)

Using General Procedure 5B and 320 mg methyl 8-amino-4,6bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]quinoline-2carboxylate (55% purity, 0.483 mmol, 1.0 equiv.), 299 mg methyl 4,6bis[1.1.2.2.3.3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylate was obtained as a yellow oil (63% purity, 0.460 mmol, 95%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.87 (s, 1H, NH), 8.56 (d, *J* = 1.7 Hz, 1H, Ar-H), 8.00 (s, 1H, Ar-H), 7.66 (d, J = 1.7 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁D₂₁H₇N₂O₅: 410.3389; found: 410.3391.

methyl

3-deuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2trideuterioacetyl)amino]quinoline-2-carboxylate (13w)

Using General Procedure 5B and 290 mg methyl 8-amino-3-deuterio-4,6bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]quinoline-2carboxylate (52% purity, 0.413 mmol, 1.0 equiv.), 274 mg methyl 3deuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-

(trideuteriomethoxy)propyl]-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylate was obtained as a yellow oil (51% purity, 0.340 mmol, 82%).

¹H NMR (500 MHz, [D₆]DMSO): δ 9.87 (s, 1H, NH), 8.56 (d, J = 1.6 Hz, 1H, Ar-H), 7.66 (d, J = 1.6 Hz, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃). HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₁D₂₂H₆N₂O₅: 411.3452; found: 411.3450.

methyl

5,7-dideuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylate (13x)

Using General Procedure 5B and 230 mg methyl 8-amino-5,7-dideuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-

(trideuteriomethoxy)propyl]quinoline-2-carboxylate (70% purity, 0.439 mmol, 1.0 equiv.), 222 mg methyl 5,7-dideuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylate was obtained as a yellow oil (70% purity, 0.378 mmol, 86%).

¹H NMR (500 MHz, [D₆]DMSO): 9.87 (s, 1H, NH), 8.00 (s, 1H, Ar-H), 3.97 (s, 3H, C(O)OCH₃). HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁D₂₃H₅N₂O₅: 412.3515; found: 412.3516.

methyl 3,5,7-trideuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylate (13y)

Using General Procedure 5B and 220 mg methyl 8-amino-3,5,7trideuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (61% purity, 0.365 mmol, 1.0 equiv.), 197 mg methyl 3,5,7-trideuterio-4,6-bis[1,1,2,2,3,3-

hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylate was obtained as a yellow oil (62% purity, 0.296 mmol, 81%).

¹H NMR (500 MHz, [D₆]DMSO): 9.86 (s, 1H, NH), 3.97 (s, 3H, C(O)OCH₃). HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁D₂₄H₄N₂O₅: 413.3577; found: 413.3578.

8-acetamido-4,6-bis(3-methoxypropyl)quinoline-2-carboxylic acid (1a)

Using General Procedure 6 and 1.200 g methyl 8-amino-4,6-bis(3methoxypropyl)quinoline-2-carboxylate (3.089 mmol, 1.0 equiv.), 1.130 g 8acetamido-4,6-bis(3-methoxypropyl)quinoline-2-carboxylic acid was obtained as a yellow oil (2.976 mmol, 96%).

HPLC-UV purity: 98.6%.

¹H NMR (500 MHz, [D₆]DMSO): δ 13.24 (br s, 1H, COOH), 10.46 (s, 1H, NH), 8.70 (d, *J* = 1.4 Hz, 1H, Ar-H), 8.02 (s, 1H, Ar-H), 7.64 (d, *J* = 1.4 Hz, 1H, Ar-H), 3.39 (t, *J* = 6.3 Hz, 2H, CH₂), 3.36 (t, *J* = 6.3 Hz, 2H, CH₂), 3.26 (s, 3H, OCH₃),

3.25 (s, 3H, OCH₃), 3.15 (t, *J* = 7.6 Hz, 2H, CH₂), 2.83 (t, *J* = 7.6 Hz, 2H, CH₂), 2.32 (s, 3H, C(O)CH₃), 1.97-1.84 (m, 4H, CH₂). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.3, 165.5, 150.1, 144.1, 143.4, 136.0, 135.6, 128.3, 120.1, 118.3, 116.0, 70.98, 70.97, 57.91, 57.90, 32.8, 30.7, 29.4, 28.2, 24.8. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₀H₂₆N₂O₅: 375.1914; found: 375.1916.

8-acetamido-3-deuterio-4,6-bis(3-methoxypropyl)quinoline-2-carboxylic acid (1b)

Using General Procedure 6 and 550 mg methyl 8-acetamido-3-deuterio-4,6bis(3-methoxypropyl)quinoline-2-carboxylate (1.412 mmol, 1.0 equiv.), 294 mg 8-acetamido-3-deuterio-4,6-bis(3-methoxypropyl)quinoline-2-carboxylic acid was obtained as a yellow oil (0.763 mmol, 54%).

HPLC-UV purity: 97.4%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.42 (s, 1H, NH), 8.56 (d, *J* = 1.4 Hz, 1H, Ar-H), 7.54 (d, *J* = 1.4 Hz, 1H, Ar-H), 3.38 (t, *J* = 6.3 Hz, 2H, CH₂), 3.36 (t, *J* = 6.3 Hz, 2H, CH₂), 3.25 (s, 6H, OCH₃), 3.07 (t, *J* = 7.6 Hz, 2H, CH₂), 2.80 (t, *J* = 7.6

Hz, 2H, CH₂), 2.28 (s, 3H, C(O)CH₃), 1.97-1.84 (m, 4H, CH₂). ¹³C NMR (125 MHz, [D₆]DMSO): δ 168.9, 167.8, 151.3, 147.9, 141.3, 135.7, 127.0, 116.9, 115.7, 71.06, 71.03, 57.90, 57.89, 32.8, 30.8, 29.4, 28.0, 24.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀DH₂₅N₂O₅: 376.1977; found: 376.1977.

8-acetamido-5,7-dideuterio-4,6-bis(3-methoxypropyl)quinoline-2-carboxylic acid (1c)

Using General Procedure 6 and 170 mg methyl 8-acetamido-5,7-dideuterio-4,6-bis(3-methoxypropyl)quinoline-2-carboxylate (0.436 mmol, 1.0 equiv.), 130 mg 8-acetamido-5,7-dideuterio-4,6-bis(3-methoxypropyl)quinoline-2carboxylic acid was obtained as a yellow oil (0.339 mmol, 78%). HPLC-UV purity: 98.2%.

¹H NMR (500 MHz, [D₆]DMSO): δ 13.28 (br s, 1H, COOH), 10.47 (s, 1H, NH), 8.04 (s, 1H, Ar-H), 3.39 (t, *J* = 6.3 Hz, 2H, CH₂), 3.37 (t, *J* = 6.3 Hz, 2H, CH₂), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 3.17 (t, *J* = 7.6 Hz, 2H, CH₂), 2.83 (t, *J* =

7.6 Hz, 2H, CH₂), 2.32 (s, 3H, C(O)CH₃), 1.97-1.84 (m, 4H, CH₂). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.2, 165.5, 150.1, 144.1, 143.2, 135.9, 135.6, 128.2, 120.1, 70.98, 70.96, 57.92, 57.90, 32.7, 30.7, 29.4, 28.2, 24.8. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₀D₂H₂₄N₂O₅: 377.2040; found: 377.2042.

8-acetamido-3,5,7-trideuterio-4,6-bis(3-methoxypropyl)quinoline-2-carboxylic acid (1d)

Using General Procedure 6 and 165 mg methyl 8-acetamido-3,5,7-trideuterio-4,6-bis(3-methoxypropyl)quinoline-2-carboxylate (63% purity, 0.266 mmol, 1.0 equiv.), 31 mg 8-acetamido-3,5,7-trideuterio-4,6-bis(3methoxypropyl)quinoline-2-carboxylic acid was obtained as a yellow oil (0.082 mmol, 31%).

HPLC-UV purity: 99.6%.

¹H NMR (500 MHz, [D₆]DMSO): δ 13.27 (br s, 1H, COOH), 10.47 (s, 1H, NH), 3.39 (t, *J* = 6.3 Hz, 2H, CH₂), 3.37 (t, *J* = 6.3 Hz, 2H, CH₂), 3.26 (s, 3H, OCH₃),

3.25 (s, 3H, OCH₃), 3.16 (t, J = 7.6 Hz, 2H, CH₂), 2.83 (t, J = 7.6 Hz, 2H, CH₂), 2.32 (s, 3H, C(O)CH₃), 1.97-1.84 (m, 4H, CH₂). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.2, 165.6, 150.0, 144.2, 143.2, 135.9, 135.6, 128.2, 70.98, 70.97, 57.92, 57.90, 32.7, 30.7, 29.3, 28.2, 24.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀D₃H₂₃N₂O₅: 378.2103; found: 378.2106.

4,6-bis(3-methoxypropyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylic acid (1d*)

Using General Procedure 6 and 338 mg methyl 4,6-bis(3-methoxypropyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylate (74% purity, 0.639 mmol, 1.0 equiv.), 242 mg 4,6-bis(3-methoxypropyl)-8-[(2,2,2trideuterioacetyl)amino]quinoline-2-carboxylic acid was obtained as a yellow oil (0.616 mmol, 96%).

HPLC-UV purity: 96.4%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.50 (s, 1H, NH), 8.64 (s, 1H, Ar-H), 7.96 (s, 1H, Ar-H), 7.59 (d, J = 1.2 Hz, 1H, Ar-H), 3.38 (t, J = 6.1 Hz, 2H, CH₂), 3.37 (t, J = 6.1 Hz, 2H, CH₂), 3.26 (s, 3H, OCH₃), 3.25 (s, 3H, OCH₃), 3.11 (t, J = 7.8 Hz, 2H, CH₂), 2.83 (t, J = 7.6 Hz, 2H, CH₂), 1.94-1.85 (m, 4H, CH₂). ¹³C

NMR (125 MHz, [D₆]DMSO): δ 169.1, 166.8, 149.0, 142.4, 135.9, 135.6, 127.6, 120.6, 117.6, 115.8, 71.0, 57.88, 57.86, 32.8, 30.8, 29.4, 28.1, 24.8. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₀D₃H₂₃N₂O₅: 378.2103; found: 378.2111.

3-deuterio-4,6-bis(3-methoxypropyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylic acid (1e)

Using General Procedure 6 and 246 mg (65% purity, 0.408 mmol, 1.0 equiv.) methyl 3-deuterio-4,6-bis(3-methoxypropyl)-8-[(2,2,2trideuterioacetyl)amino]quinoline-2-carboxylate, 49 mg 3-deuterio-4,6bis(3-methoxypropyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2carboxylic acid was obtained as a yellow oil (0.130 mmol, 32%). HPLC-UV purity: 99.4%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.51 (s, 1H, NH), 8.67 (d, *J* = 1.4 Hz, 1H, Ar-H), 7.62 (d, *J* = 1.4 Hz, 1H, Ar-H), 3.39 (t, *J* = 6.3 Hz, 2H, CH₂), 3.37 (t, *J* = 6.3 Hz, 2H, CH₂), 3.25 (s, 6H, OCH₃), 3.07 (t, *J* = 7.6 Hz, 2H, CH₂), 2.83 (t, *J* = 7.6 Hz, 2H, CH₂), 1.97-1.84 (m, 4H, CH₂). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.3,

166.0, 149.6, 145.4, 143.0, 136.0, 135.6, 128.0, 118.0, 115.9, 70.99, 70.98, 57.91, 57.90, 32.8, 30.8, 29.3, 28.1. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₀D₄H₂₂N₂O₅: 379.2166; found: 379.2166.

5,7-dideuterio-4,6-bis(3-methoxypropyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylic acid (1f)

Using General Procedure 6 and 232 mg methyl 5,7-dideuterio-4,6-bis(3-methoxypropyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylate (87% purity, 0.512 mmol, 1.0 equiv.), 89 mg 5,7-dideuterio-4,6-bis(3-methoxypropyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylic acid was obtained as a yellow oil (99.9% purity, 0.235 mmol, 46%).
HPLC-UV purity: 99.9%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.50 (s, 1H, NH), 7.98 (s, 1H, Ar-H), 3.39 (t, J = 6.3 Hz, 2H, CH₂), 3.37 (t, J = 6.3 Hz, 2H, CH₂), 3.25 (br s, 6H, OCH₃), 3.13 (t, J = 7.6 Hz, 2H, CH₂), 2.82 (t, J = 7.6 Hz, 2H, CH₂), 1.97-1.84 (m, 4H, CH₂). ¹³C

NMR (125 MHz, [D₆]DMSO): δ 169.3, 166.2, 149.5, 145.9, 142.7, 135.9, 135.6, 127.9, 120.3, 71.00, 70.99, 57.92, 57.90, 32.7, 30.7, 29.4, 28.2. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₀D₅H₂₁N₂O₅: 380.2228; found: 380.2228.

8-acetamido-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid (1g)

Using General Procedure 6 and 296 mg methyl 8-acetamido-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (92% purity, 0.691 mmol, 1.0 equiv.), 93 mg 8-acetamido-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid was obtained as a yellow oil (98.2% purity, 0.244 mmol, 35%). HPLC-UV purity: 98.2%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.47 (s, 1H, NH), 8.63 (s, 1H, Ar-H), 7.95 (s, 1H, Ar-H), 7.59 (s, 1H, Ar-H), 3.38 (t, *J* = 6.3 Hz, 2H, CH₂), 3.36 (t, *J* = 6.3 Hz, 2H, CH₂), 3.11 (t, *J* = 7.2 Hz, 2H, CH₂), 2.81 (t, *J* = 7.2 Hz, 2H, CH₂), 2.30

(s, 3H, C(O)CH₃), 1.97-1.84 (m, 4H, CH₂). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.1, 166.8, 149.0, 142.3, 135.9, 135.7, 127.6, 120.6, 117.6, 115.8, 70.90, 70.89, 32.8, 30.8, 29.4, 28.2, 24.8. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₀D₆H₂₀N₂O₅: 381.2291; found: 381.2292.

8-acetamido-3-deuterio-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid (1h)

Using General Procedure 6 and 260 mg methyl 8-acetamido-3-deuterio-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (90% purity, 0.661 mmol, 1.0 equiv.), 65 mg 8-acetamido-3-deuterio-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid was obtained as a yellow oil (99.3% purity, 0.170 mmol, 26%).

HPLC-UV purity: 99.3%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.47 (s, 1H, NH), 8.73 (d, *J* = 1.3 Hz, 1H, Ar-H), 7.62 (d, *J* = 1.3 Hz, 1H, Ar-H), 3.38 (t, *J* = 6.3 Hz, 2H, CH₂), 3.37 (t, *J* = 6.3 Hz, 2H, CH₂), 3.14 (t, *J* = 7.2 Hz, 2H, CH₂), 2.82 (t, *J* = 7.2 Hz, 2H, CH₂), 2.31 (s, 3H, C(O)CH₃), 1.97-1.84 (m, 4H, CH₂). ¹³C NMR (125 MHz,

 $\label{eq:basic} \begin{array}{l} [D_6] DMSO): \ \delta \ 169.2, \ 166.3, \ 149.3, \ 142.7, \ 136.0, \ 135.6, \ 127.9, \ 117.8, \ 115.9, \ 70.89, \ 70.87, \ 32.8, \ 30.8, \ 29.4, \ 28.1, \ 24.8. \\ \\ HRMS \ (ESI): \ \emph{m/z} \ [M+H]^+ \ calcd \ for \ C_{20} D_7 H_{19} N_2 O_5: \ 382.2354; \ found: \ 382.2355. \end{array}$

8-acetamido-5,7-dideuterio-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid (1i)

Using General Procedure 6 and 250 mg methyl 8-acetamido-5,7dideuterio-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (87% purity, 0.548 mmol, 1.0 equiv.), 60 mg 8-acetamido-5,7-dideuterio-4,6bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid was obtained as a yellow oil (98.2% purity, 0.154 mmol, 28%). HPLC-UV purity: 98.2%. ¹H NMR (500 MHz, [D₆]DMSO): δ 10.49 (s, 1H, NH), 8.00 (s, 1H, Ar-H), 3.39 (t, J = 6.3 Hz, 2H, CH₂), 3.36 (t, J = 6.3 Hz, 2H, CH₂), 3.14 (t, J = 7.2 Hz, 2H, CH₂), 2.82 (t, J = 7.2 Hz, 2H, CH₂), 2.31 (s, 3H, C(O)CH₃), 1.97-1.84 (m, 4H, CH₂). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.2, 166.0, 149.6, 142.8, 135.9, 135.6, 128.0, 120.3, 70.88, 70.87, 32.7, 30.7, 29.4, 28.2, 24.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀D₈H₁₈N₂O₅: 383.2417; found: 383.2418.

8-acetamido-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)quinoline-2-carboxylic acid (1i*)

Using General Procedure 6 and 268 mg methyl 8-acetamido-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-

propyl)quinoline-2-carboxylate (94% purity, 0.712 mmol, 1.0 equiv.), 53 mg 8-acetamido-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)quinoline-2-carboxylic acid was obtained as a yellow oil (0.139 mmol, 19%).
HPLC-UV purity: 99.6%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.47 (s, 1H, NH), 8.59 (d, *J* = 1.4 Hz, 1H, Ar-H), 7.90 (s, 1H, Ar-H), 7.56 (d, *J* = 1.4 Hz, 1H, Ar-H), 3.36 (s, 2H, CH₂), 3.35 (s, 2H, CH₂), 3.252 (s, 3H, OCH₃), 3.251 (s, 3H, OCH₃), 2.29 (s, 3H, C(O)CH₃). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.0, 167.3, 148.4, 141.7, 135.8, 135.7, 127.3,

120.9, 117.2, 115.7, 70.90, 70.89, 57.92, 57.90, 24.8. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₀D₈H₁₈N₂O₅: 383.2417; found: 383.2414.

8-[(2,2,2-trideuterioacetyl)amino]-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid (1j)

Using General Procedure 6 and 185 mg methyl 8-[(2,2,2trideuterioacetyl)amino]-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (92% purity, 0.423 mmol, 1.0 equiv.), 41 mg 8-[(2,2,2trideuterioacetyl)amino]-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid was obtained as a yellow oil (94.9% purity, 0.102 mmol, 24%).

HPLC-UV purity: 94.9%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.49 (s, 1H, NH), 8.68 (d, *J* = 1.1 Hz, 1H, Ar-H), 8.00 (s, 1H, Ar-H), 7.63 (d, *J* = 1.1 Hz, 1H, Ar-H), 3.39 (t, *J* = 6.3 Hz, 2H, CH₂), 3.36 (t, *J* = 6.3 Hz, 2H, CH₂), 3.14 (t, *J* = 7.2 Hz, 2H, CH₂), 2.83 (t, *J* = 6.3 Hz, 2H, CH₂), 3.14 (t, *J* = 7.2 Hz, 2H, CH₂), 2.83 (t, *J* = 6.3 Hz, 2H, CH₂), 3.14 (t, *J* = 7.2 Hz, 2H, CH₂), 2.83 (t, *J* = 6.3 Hz, 2H, CH₂), 3.14 (t, *J* = 7.2 Hz, 2H, CH₂), 2.83 (t, *J* = 6.3 Hz, 2H, CH₂), 3.14 (t, *J* = 7.2 Hz, 2H, CH₂), 2.83 (t, *J* = 6.3 Hz, 2H, CH₂), 3.14 (t, *J* = 7.2 Hz, 2H, CH₂), 2.83 (t, *J* = 6.3 Hz, 2H, CH₂), 3.14 (t, *J* = 7.2 Hz, 2H, CH₂), 2.83 (t, *J* = 6.3 Hz, 2H, CH₂), 3.14 (t, *J* = 7.2 Hz, 2H, CH₂), 3.14 (t, J = 7.2 Hz, CH

J = 7.2 Hz, 2H, CH₂), 1.97-1.84 (m, 4H, CH₂). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.3, 166.0, 149.7, 143.0, 136.0, 135.6, 128.0, 120.3, 118.0, 115.9, 70.89, 70.87, 32.8, 30.8, 29.4, 28.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀D₉H₁₇N₂O₅: 384.2479; found: 384.2483.

3-deuterio-8-[(2,2,2-trideuterioacetyl)amino]-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid (1k)

Using General Procedure 6 and 200 mg methyl 3-deuterio-8-[(2,2,2trideuterioacetyl)amino]-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (82% purity, 0.412 mmol, 1.0 equiv.), 119 mg 3-deuterio-8-[(2,2,2-trideuterioacetyl)amino]-4,6-bis[3-

(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid was obtained as a yellow oil (97.2% purity, 0.300 mmol, 73%).

HPLC-UV purity: 97.2%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.48 (s, 1H, NH), 8.63 (d, *J* = 1.3 Hz, 1H, Ar-H), 7.59 (d, *J* = 1.3 Hz, 1H, Ar-H), 3.38 (t, *J* = 6.3 Hz, 2H, CH₂), 3.36 (t, *J* = 6.3 Hz, 2H, CH₂), 3.11 (t, *J* = 7.2 Hz, 2H, CH₂), 2.82 (t, *J* = 7.2 Hz, 2H, CH₂),

1.97-1.84 (m, 4H, CH₂). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.2, 166.8, 148.9, 147.7, 142.3, 135.9, 135.7, 127,6, 117.5, 115.8, 70.90, 70.89, 32.8, 30.8, 29.4, 28.1. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₀D₁₀H₁₆N₂O₅: 385.2542; found: 384.2483.

5,7-dideuterio-8-[(2,2,2-trideuterioacetyl)amino]-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid (1)

Using General Procedure 6 and 170 mg methyl 5,7-dideuterio-8-[(2,2,2trideuterioacetyl)amino]-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylate (77% purity, 0.328 mmol, 1.0 equiv.), 45 mg 5,7-dideuterio-8-[(2,2,2-trideuterioacetyl)amino]-4,6-bis[3-

(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid was obtained as a yellow oil (93.3% purity, 0.109 mmol, 33%).

HPLC-UV purity: 93.3%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.47 (s, 1H, NH), 7.97 (s, 1H, Ar-H), 3.39 (t, *J* = 6.3 Hz, 2H, CH₂), 3.36 (t, *J* = 6.3 Hz, 2H, CH₂), 3.13 (t, *J* = 7.2 Hz, 2H, CH₂), 2.82 (t, *J* = 7.2 Hz, 2H, CH₂), 1.97-1.84 (m, 4H, CH₂). ¹³C NMR (125)

MHz, [D₆]DMSO): δ 169.2, 166.6, 149.1, 147.1, 142.4, 135.9, 135.7, 127.7, 120.5, 70.90, 70.89, 32.7, 30.8, 29.4, 28.2. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀D₁₁H₁₅N₂O₅: 386.2605; found: 386.2606.

3-deuterio-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2carboxylic acid (1m)

Using General Procedure 6 and 160 mg methyl 3-deuterio-4,6-bis(1,1,2,2tetradeuterio-3-methoxy-propyl)-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylate (81% purity, 0.324 mmol, 1.0 equiv.), 57 mg 3-deuterio-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylic acid was obtained as a yellow oil (96.2% purity, 0.142 mmol, 33%).

HPLC-UV purity: 96.2%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.46 (s, 1H, NH), 8.64 (d, *J* = 1.7 Hz, 1H, Ar-H), 7.59 (d, *J* = 1.7 Hz, 1H, Ar-H), 3.37 (s, 2H, CH₂), 3.35 (s, 2H, CH₂), 3.25 (br

s, 6H, OCH₃). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.2, 166.5, 149.1, 142.5, 135.9, 135.6, 127.8, 117.7, 115.8, 70.87, 70.86, 57.92, 57.91. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₀D₁₂H₁₄N₂O₅: 387.2668; found: 387.2666.

5,7-dideuterio-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylic acid (1n)

Using General Procedure 6 and 170 mg methyl 5,7-dideuterio-4,6-bis(1,1,2,2tetradeuterio-3-methoxy-propyl)-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylate (70% purity, 0.296 mmol, 1.0 equiv.), 53 mg 5,7-dideuterio-4,6-bis(1,1,2,2-tetradeuterio-3-methoxy-propyl)-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylic acid was obtained as a yellow oil (93.9% purity, 0.129 mmol, 43%).

HPLC-UV purity: 93.9%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.50 (s, 1H, NH), 7.97 (s, 1H, Ar-H), 3.37 (s, 2H, CH₂), 3.35 (s, 2H, CH₂), 3.25 (br s, 6H, OCH₃). ¹³C NMR (125 MHz,

8-acetamido-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid (10)

Using General Procedure 6 and 200 mg methyl 8-acetamido-4,6bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2carboxylate (87% purity, 0.432 mmol, 1.0 equiv.), 51 mg 8-acetamido-4,6bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-

carboxylic acid was obtained as a yellow oil (99.7% purity, 0.131 mmol, 47%).

HPLC-UV purity: 99.7%.

¹H NMR (500 MHz, [D₆]DMSO): δ 13.36 (br s, 1H, COOH), 10.48 (s, 1H, NH), 8.70 (d, *J* = 1.7 Hz, 1H, Ar-H), 8.02 (s, 1H, Ar-H), 7.64 (d, *J* = 1.7 Hz, 1H, Ar-

H), 3.37 (s, 2H, CH₂), 3.35 (s, 2H, CH₂), 2.32 (s, 3H, C(O)CH₃). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.3, 165.6, 150.0, 144.4, 143.2, 136.0, 135.6, 128.3, 120.2, 118.2, 116.0, 70.73, 70.72, 24.8. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₀D₁₄H₁₂N₂O₅: 389.2793; found: 389.2972.

8-acetamido-3-deuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid (1p)

Using General Procedure 6 and 195 mg methyl 8-acetamido-3-deuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2carboxylate (65% purity, 0.314 mmol, 1.0 equiv.), 66 mg 8-acetamido-3deuterio-4,6-bis[1,1,2,2-tetradeuterio-3-

(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid was obtained as a yellow oil (99.5% purity, 0.169 mmol, 54%).

HPLC-UV purity: 99.5%.

¹H NMR (500 MHz, [D₆]DMSO): δ 13.32 (br s, 1H, COOH), 10.47 (s, 1H, NH), 8.70 (d, *J* = 1.6 Hz, 1H, Ar-H), 7.64 (d, *J* = 1.6 Hz, 1H, Ar-H), 3.38 (s, 2H, CH₂),

3.35 (s, 2H, CH₂), 2.32 (s, 3H, C(O)CH₃). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.3, 165.6, 150.0, 144.2, 143.3, 136.0, 135.6, 128.3, 118.2, 116.0, 70.73, 70.72, 24.8. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₀D₁₅H₁₁N₂O₅: 390.2856; found: 390.2856.

8-acetamido-5,7-dideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid (1q)

Using General Procedure 6 and 180 mg methyl 8-acetamido-5,7dideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-

(trideuteriomethoxy)propyl]quinoline-2-carboxylate (74% purity, 0.329 mmol, 1.0 equiv.), 74 mg 8-acetamido-5,7-dideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid was obtained as a yellow oil (98.7% purity, 0.190 mmol, 58%). HPLC-UV purity: 98.7%.

¹H NMR (500 MHz, [D₆]DMSO): δ 13.33 (br s, 1H, COOH), 10.47 (s, 1H, NH), 8.03 (s, 1H, Ar-H), 3.38 (s, 2H, CH₂), 3.35 (s, 2H, CH₂), 2.32 (s, 3H, C(O)CH₃).

¹³C NMR (125 MHz, [D₆]DMSO): δ 169.2, 165.6, 150.1, 144.2, 143.1, 135.9, 135.6, 128.2, 120.2, 70.73, 70.72, 24.8. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀D₁₆H₁₀N₂O₅: 391.2919; found: 391.2919.

4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2carboxylic acid (1r)

Using General Procedure 6 and 90 mg methyl 4,6-bis[1,1,2,2tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2trideuterioacetyl)amino]quinoline-2-carboxylate (89% purity, 0.198 mmol, 1.0 equiv.), 40 mg 4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylic acid was obtained as a yellow oil (99.8% purity, 0.102 mmol, 41%).

HPLC-UV purity: 99.8%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.51 (s, 1H, NH), 8.64 (d, *J* = 1.5 Hz, 1H, Ar-H), 7.95 (s, 1H, Ar-H), 7.58 (d, *J* = 1.5 Hz, 1H, Ar-H), 3.37 (s, 2H, CH₂),

3.35 (s, 2H, CH₂). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.2, 166.7, 149.0, 147.4, 142.4, 135.9, 135.7, 127.7, 120.6, 117.6, 115.8, 70.76, 70.75. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₀D₁₇H₉N₂O₅: 392.2982; found: 392.2981.

3-deuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylic acid (1s)

Using General Procedure 6 and 90 mg methyl 3-deuterio-4,6-bis[1,1,2,2tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2trideuterioacetyl)amino]quinoline-2-carboxylate (81% purity, 0.179 mmol, 1.0 equiv.), 34 mg 3-deuterio-4,6-bis[1,1,2,2-tetradeuterio-3-

(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylic acid was obtained as a yellow oil (98.9% purity, 0.087 mmol, 48%).

HPLC-UV purity: 98.9%.

¹H NMR (500 MHz, [D₆]DMSO): δ 13.35 (br s, 1H, COOH), 10.47 (s, 1H, NH), 8.70 (d, *J* = 1.6 Hz, 1H, Ar-H), 7.63 (d, *J* = 1.6 Hz, 1H, Ar-H), 3.37 (s, 2H, CH₂),

3.35 (s, 2H, CH₂). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.3, 165.6, 149.9, 144.2, 143.3, 136.0, 135.6, 128.3, 118.2, 116.0, 70.73, 70.72. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₀D₁₈H₈N₂O₅: 393.3044; found: 393.3044.

5,7-dideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylic acid (1t)

Using General Procedure 6 and 170 mg methyl 5,7-dideuterio-4,6bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2trideuterioacetyl)amino]quinoline-2-carboxylate (70% purity, 0.292 mmol, 1.0 equiv.), 31 mg 5,7-dideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylic acid was obtained as a yellow oil (99.2% purity, 0.079 mmol, 27%).

HPLC-UV purity: 99.2%.

 1H NMR (500 MHz, [D_6]DMSO): δ 10.47 (s, 1H, NH), 8.04 (s, 1H, Ar-H), 3.38 (s, 2H, CH_2), 3.35 (s, 2H, CH_2). ^{13}C NMR (125 MHz, [D_6]DMSO): δ 169.3,

166.2, 149.5, 145.9, 142.6, 135.9, 135.6, 127.9, 120.4, 70.75, 70.74. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀D₁₉H₇N₂O₅: 394.3107; found: 394.3107.

3,5,7-trideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylic acid (1u)

Using General Procedure 6 and 90 mg methyl 3,5,7-trideuterio-4,6bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2trideuterioacetyl)amino]quinoline-2-carboxylate (92% purity, 0.203 mmol, 1.0 equiv.), 17 mg 3,5,7-trideuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylic acid was obtained as a yellow oil (95.9% purity, 0.041 mmol, 19%).

HPLC-UV purity: 95.9%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.49 (s, 1H, NH), 3.38 (s, 2H, CH₂), 3.35 (s, 2H, CH₂). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.3, 165.8, 149.8, 144.7,

143.0, 135.9, 135.6, 128.1, 70.74, 70.72. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₀D₂₀H₆N₂O₅: 395.3170; found: 395.3171.

4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2carboxylic acid (1v)

Using General Procedure 6 and 190 mg methyl 4,6-bis[1,1,2,2,3,3hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylate (63% purity, 0.292 mmol,
1.0 equiv.), 30 mg 4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline2-carboxylic acid was obtained as a yellow oil (98.9% purity, 0.075 mmol, 25%).

HPLC-UV purity: 98.9%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.52 (s, 1H, NH), 8.66 (d, *J* = 1.5 Hz, 1H,

D Ar-H), 7.98 (s, 1H, Ar-H), 7.61 (d, J = 1.5 Hz, 1H, Ar-H). ¹³C NMR (125 MHz, [D₆]DMSO): δ 169.3, 166.2, 149.5, 145.9, 142.8, 136.0, 135.6, 128.0, 120.4, 117.9, 115.9. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀D₂₁H₅N₂O₅: 396.3230; found: 396.3233.

3-deuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylic acid (1w)

Using General Procedure 6 and 250 mg methyl 3-deuterio-4,6bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2trideuterioacetyl)amino]quinoline-2-carboxylate (51% purity, 0.311 mmol, 1.0 equiv.), 30 mg 3-deuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylic acid was obtained as a yellow oil (95.2% purity, 0.072 mmol, 21%).

HPLC-UV purity: 95.2%.

¹H NMR (500 MHz, [D₆]DMSO): δ 10.53 (s, 1H, NH), 8.66 (d, J = 1.6 Hz, 1H, Ar-H), 7.60 (d, J = 1.6 Hz, 1H, Ar-H). ¹³C NMR (125 MHz, [D₆]DMSO): δ

169.2, 166.3, 149.3, 146.2, 142.7, 136.0, 135.6, 127.9, 117.8, 115.9. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₀D₂₂H₄N₂O₅: 397.3295; found: 397.3297.

5,7-dideuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylic acid (1x)

Using General Procedure 6 and 200 mg methyl 5,7-dideuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylate (70% purity, 0.340 mmol, 1.0 equiv.), 41 mg 5,7-dideuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylic acid was obtained as a yellow oil (99.5% purity, 0.103 mmol, 30%).

HPLC-UV purity: 99.5%.

 1H NMR (500 MHz, [D_6]DMSO): δ 10.51 (s, 1H, NH), 7.97 (s, 1H, Ar-H). ^{13}C NMR (125 MHz, [D_6]DMSO): δ 169.2, 166.3, 149.4, 146.3, 142.5, 135.9, 135.6,

127.8, 120.4. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₀D₂₃H₃N₂O₅: 398.3358; found: 398.3359.

3,5,7-trideuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-

trideuterioacetyl)amino]quinoline-2-carboxylic acid (1y)

Using General Procedure 6 and 170 mg methyl 3,5,7-trideuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylate (62% purity, 0.256 mmol, 1.0 equiv.), 40 mg 3,5,7-trideuterio-4,6-bis[1,1,2,2,3,3-hexadeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylic acid was obtained as a yellow oil (99.2% purity, 0.099 mmol, 39%).

HPLC-UV purity: 99.2%.

 ^1H NMR (500 MHz, [D_6]DMSO): δ 10.54 (s, 1H, NH). ^{13}C NMR (125 MHz, [D_6]DMSO): δ 169.2, 166.3, 149.3, 146.2, 142.5, 135.9, 135.6, 127.8. HRMS

(ESI): $m/z [M+H]^+$ calcd for C₂₀D₂₄H₂N₂O₅: 399.3421; found: 399.3419.

8-acetamido-N-benzyl-4,6-bis(3-methoxypropyl)quinoline-2-carboxamide (14)

A 20 mL, screw-cap vial equipped with a magnetic stirring bar was filled with 40.00 mg **8-acetamido-4,6-bis(3methoxypropyl)quinoline-2-carboxylic acid** (1.0 equiv., 0.1068 mmol), 61.4 mg benzotriazol-1-yloxytris(dimethylamino)phosphonium, hexafluorophosphate (1:1) (1.3 equiv., 0.1389 mmol), and 37 µL DIPEA (2.0 equiv., 0.2137 mmol) and 3.21 mL dry, degassed DCM. The mixture was stirred at RT for 30 min,

then 20.99 mg **1-naphthylmethanamine** (2.0 equiv., 0.2137 mmol) was added and the reaction mixture was stirred for further 30 min, until full conversion was observed. The mixture was concentrated *in vacuo*. Then the crude product was purified *via* RP-HPLC using 1% aq. HCOOH solution and MeCN as eluents to yield 42 mg **8-acetamido-N-benzyl-4,6-bis(3-methoxypropyl)quinoline-2-carboxamide** (0.0818 mmol, 77%) as white crystals.

¹H NMR (500 MHz, [D6]DMSO): δ 10.32 (s, 1H, NH), 10.07 (t, *J* = 6.2 Hz, 1H, NH), 8.63 (d, *J* = 1.5 Hz, 1H, Ar-H), 8.32 (d, *J* = 8.3 Hz, 1H, Ar-H), 8.09 (s, 1H, Ar-H), 7.97 (dd, *J* = 1.1 Hz, 8.0 Hz, 1H, Ar-H), 7.86 (d, *J* = 8.0 Hz, 1H, Ar-H), 7.65 (d, *J* = 1.5 Hz, 1H, Ar-H), 7.63-7.47 (m, 4H, Ar-H), 5.10 (d, *J* = 6.3 Hz, 2H, CH2), 3.41 (t, *J* = 6.2 Hz, 2H, CH2), 3.37 (t, *J* = 6.2 Hz, 2H, CH2), 3.27 (s, 3H, CH3), 3.25 (s, 3H, CH3), 3.17 (t, *J* = 7.9 Hz, 2H, CH2), 2.83 (t, *J* = 7.9 Hz, 2H, CH2), 2.29 (s, 3H, CH3), 1.98-1.86 (m, 4H, CH2). ¹³C NMR (125 MHz, [D6]DMSO): δ 169.1, 164.2, 149.7, 147.1, 142.3, 135.7, 135.5, 134.5, 133.3, 130.8, 128.6, 128.0, 127.5, 126.3, 125.8, 125.5, 125.1, 123.5, 119.0, 118.5, 116.1, 71.03, 71.00, 57.9, 40.5, 32.7, 30.7, 29.4, 28.3, 24.7. HRMS (ESI): *m/z* [M+H]⁺ calcd for C₃₁H₃₅N₃O₄: 514.2700; found: 514.2705.

4.3 NMR spectra of newly synthesized compounds

S55

S68

S80

S82

S133

4.4 HRMS measurements and evaluation of the 1a-1y series

4.4.1 Conditions for HRMS measurements

To establish the optimal conditions for code reading by MS we prepared a dilution series of **1a** in acetonitrile, determined their signal range, and based on the results we settled on injecting 2 μ L of 0.001 mg/mL solutions for measuring MS fingerprints. Approximatively 0.01 mg/mL stock solutions of **1a-y** were prepared in propionitrile with an accuracy of 1%. Mixtures were prepared by measuring the individual components (**1a-y**) into a vial using Sartorius Tacta mechanical 1-channel pipettes and the volume was adjusted to 1 mL using acetonitrile. To measure the MS fingerprints of the mixtures 2 μ L aliquots were injected onto an Agilent 1290 Infinity II- Agilent 6545 LC-QTOF instrument having an InfinityLab Poroshell 120 SB-C18, 2.1 mm, 1.9 μ m column. In case of the HRMS measurements of the **1a-y** components and all the mixtures prepared from them, 3 parallel measurements were carried out and the given peak areas and compositions are based on their average value and the presented HRMS spectra is picked from these three.

Scheme S1. Base peak areas of different concentrations of **1a** solutions.

Scheme S2. Linearity range and the chosen concentration of **1a** based on the base peak areas of different concentrations.

Scheme S3. Using the default **SNR calculation** algorithms of Agilent MassHunter Qualitative Analysis Navigator B.08.00 software, S/N ratios for the peaks at m/z=375 were calculated and plotted for all test concentrations, **S/N = 2978** for the chosen concentration.

The **mass spectrometric resolution** for component **1a** was determined by Agilent MassHunter Qualitative Analysis Navigator B.08.00 software as following: R=FWHM(m)/m=375.1919/0.01089=34442, where FWHM is the full width at half-maximum of the peak at m/z=375.

Scheme S4. The mass spectrum and mass spectrometric resolution of component 1a.

4.4.2 HRMS measurements of 1a-1y

Table S4. Peak areas of [M+H]⁺ masses of 1a-1n in HRMS spectra.

	375	376	377	378	379	380	381	382	383	384	385	386	387	387	388	389	390	391	392	393	394	395	396 3	397 3	398 3	899 4	100 4	01 40	2 403
1a	12183502	2588672	379695	54738	8815	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
1b	308270	7715764	1525722	230616	28477	11426	2425	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
1c	34430	316839	6001977	1521312	351269	35050	7577	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
1d	33481	105411	1194206	6544837	1446278	229395	34733	7281	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
1d*	44561	482690	3117322	7282973	1453339	225659	35433	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
1e	18981	31548	153234	1442444	6355013	1279306	195240	30965	13717	16985	2913	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
1f	5755	2498	18678	131811	1254782	6388419	1560822	258997	39284	6729	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
1g	0	0	0	0	8791	57806	7063192	1414392	214811	25394	4146	3329	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
1h	12052	50134	21178	11312	12375	16253	370214	8715353	1734241	255292	40383	10715	3531	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
1i	0	0	14150	4337	1676	11009	22017	256851	7875917	1951934	307488	46776	11604	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
1i*	0	0	0	73268	128579	346478	3234491	9898324	30335310	10380938	2242771	413956	60728	28485	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
1j	6352	12613	0	8949	13045	10069	26722	232121	1935038	7572049	1506356	234308	36114	10350	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0
1k	0	0	0	0	0	8736	7040	48565	442214	2719791	7833517	1523571	232052	33304	15247	9077	0	0	0	0	0	0	0	0	0	0	0	0 0	0
11	0	0	0	0	0	0	6727	16995	90247	580927	3169468	7715336	1816218	305261	46102	9895	1991	0	0	0	0	0	0	0	0	0	0	0 0	0
1m	0	0	0	0	0	9109	10873	21644	72918	311911	1309867	3999031	6360185	1792287	386758	75725	22801	9467	7499	0	0	0	0	0	0	0	0	0 0	0
1n	10007	11012	7733	21430	14859	11620	4328	14864	31741	48226	265272	1242951	3816624	6004982	1577038	315666	54758	12006	4199	0	0	0	0	0	0	0	0	0 0	0

Table S5. Peak areas of [M+H]⁺ masses of 1o-1y in HRMS spectra.

	375	3763	377	378	379	380	381	382	383	384	385	386	387	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403
10	0	0	0	0	0	0	0	1928	11631	17257	36559	189677	388961	951709	4080967	1203976	267413	51971	14109	0	0	0	0	0	0	0	0	0	0	0
1p	0	0	0	0	0	0	0	1795	3918	4081	5020	16456	60685	331856	1268097	3951129	1363593	383484	90638	27959	9308	0	0	0	0	0	0	0	0	0
1q	0	0	0	0	0	0	0	0	0	2330	1022	8228	13046	17259	111980	827362	3988013	1198235	288722	56517	10380	0	0	0	0	0	0	0	0	0
1r	0	0	0	0	0	0	1349	6390	1583	10982	12565	16995	22111	46865	136569	700774	2678874	6020256	1656637	347330	68322	21654	5059	0	0	0	0	0	0	0
1s	0	0	0	0	0	0	0	0	0	0	585	5051	3019	4834	21725	88018	404140	1332696	2952178	1016348	275663	65218	18968	9553	0	0	0	0	0	0
1t	0	0	0	0	0	0	0	10473	9636	17343	3195	11980	5207	11713	16688	33243	106463	586927	2902354	9184089	2436117	505988	84207	23612	9457	0	0	0	0	0
1u	0	0	0	0	0	0	3663	7769	16981	13666	4918	12332	7436	0	6263	28898	61053	158591	776037	3203584	7168041	1750129	327384	60534	18510	15082	5820	0	0	0
1v	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15893	24984	72936	154894	286059	1212018	4153256	7408865	1663991	283901	45870	18282	11776	5431	0	0
1w	0	0	0	0	0	0	0	0	0	0	0	0	9224	0	0	6225	6107	15024	30960	152165	853176	3853787	9264283	2054228	339112	55594	14794	4833	0	0
1x	0	0	0	0	0	0	0	0	0	0	0	0	2560	0	1667	2924	7724	11452	16576	45204	215692	1153470	4355993	7830804	1575881	252986	37684	9034	5985	0
1y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7317	34476	156368	816646	3264754	6747591	1336144	205007	32433	12609	3246

Figure S2. HRMS of compounds 1b-z

S142

S143

4.5 HRMS measurements of prepared mixtures

Table S6. Peak areas of [M+H]⁺ masses of the most similar mixtures (NDP>0.9980) in HRMS spectra.

	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402
M1	2614	8066	0	0	1460	0	13655	150605	4564957	1138053	201739	99025	210008	308058	90636	20886	6059	4268	0	0	0	0	0	0	0	0	0	0
M2	9662	1535	0	0	0	0	18979	161499	4719606	1215590	252921	228267	306045	93553	24995	7282	0	0	0	0	0	0	0	0	0	0	0	0
М3	5264792	1094150	172700	29221	2315	1653	1096	5342	8618	10626	16725	61696	176783	267295	77073	20366	0	0	0	0	0	0	0	0	0	0	0	0
M4	4679549	997209	153026	25284	3415	1076	0	3892	14964	14896	57048	165325	251669	83312	21539	4212	0	0	0	0	0	0	0	0	0	0	0	0
M5	0	0	0	0	0	12949	903288	296270	57570	10049	7640	15887	40157	56626	17233	6683	0	0	0	0	0	0	0	0	0	0	0	0
M6	0	0	0	0	0	47308	4360468	1378959	237916	46269	64913	177236	258484	82296	22352	2421	0	0	0	0	0	0	0	0	0	0	0	0
M7	4703738	1386545	242878	32711	5832	0	0	8216	11287	12123	19128	62291	174448	262346	77285	17344	0	0	0	0	0	0	0	0	0	0	0	0
M8	4783050	1446059	242889	40613	6585	0	2838	8057	13525	22848	68132	194740	297726	89633	29338	12341	0	0	0	0	0	0	0	0	0	0	0	0
M15	0	0	0	0	0	0	0	3565	37558	228072	1278448	3089850	921215	375301	86794	19250	2389	0	0	0	0	0	0	0	0	0	0	0
M16	0	0	0	0	0	0	0	9055	37273	256886	1393682	3380166	1057756	206448	35633	10975	0	0	0	0	0	0	0	0	0	0	0	0
M17	0	0	0	0	5160	47503	4663849	948835	144113	25534	22068	60410	160647	240007	69528	15089	4707	0	0	0	0	0	0	0	0	0	0	0
M18	0	0	0	0	6015	45438	4501339	928886	146049	30369	66847	171253	259187	78102	19043	4870	0	0	0	0	0	0	0	0	0	0	0	0
M19	0	0	0	0	0	47052	4684135	950589	151369	46127	140629	310650	85025	20164	0	0	0	0	0	0	0	0	0	0	0	0	0	0
M20	0	0	0	11055	92803	471557	4414499	912694	137355	24948	19509	61426	173773	263396	79480	15511	0	0	0	0	0	0	0	0	0	0	0	0
M21	0	0	0	13134	89210	442349	4310275	887976	133882	36368	59427	165893	241845	75233	26455	6599	0	0	0	0	0	0	0	0	0	0	0	0
M22	5333470	1106010	167196	24327	4920	0	1455	9246	13465	32945	162064	361437	100846	21386	2570	0	0	0	0	0	0	0	0	0	0	0	0	0
M23	155512	3619425	757272	118579	16271	0	2383	11712	12981	7223	14598	59331	163622	243255	70890	16175	0	0	0	0	0	0	0	0	0	0	0	0
M24	169405	3883098	815736	128659	16679	0	1473	13884	13240	19978	61512	179873	288213	83680	24197	5883	0	0	0	0	0	0	0	0	0	0	0	0
M25	37451	298310	5587049	1431126	234429	34589	13941	15332	21072	13243	20233	77595	220492	336446	98837	22991	5557	2127	0	0	0	0	0	0	0	0	0	0
M26	35784	295755	5542123	1390963	230094	35051	11814	21089	25308	25577	68983	209624	305125	100164	26662	9491	0	0	0	0	0	0	0	0	0	0	0	0
M27	4163	4536	0	4584	7482	5423	231841	5204724	1053976	155923	40942	76539	206216	308864	92887	22920	6966	2692	0	0	0	0	0	0	0	0	0	0
M28	7994	3569	6492	1569	1772	10384	221325	5076650	1031399	169956	91769	204284	307044	93548	24043	9805	1334	0	0	0	0	0	0	0	0	0	0	0
Table S7. Peak areas of [M+H]⁺ masses of the prepared ternary, quaternary mixtures (NDP>0.9970), a 10-membered mixture and M36A-C quaternary mixtures in HRMS spectra.

	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402
M9	20315	32935	220402	1077434	263449	47661	16138	20468	107752	536665	2732394	6832446	4297863	1152964	246177	53562	27755	3450	0	0	0	0	0	0	0	0	0	0
M10	43813	34540	209497	1027329	259837	58812	23148	24919	93161	525303	2658340	6592066	4118049	1660568	407549	89924	22609	7818	4622	0	0	0	0	0	0	0	0	0
M11	1140014	252167	46276	0	0	106686	8792539	1915861	335390	115721	402716	939998	643102	673447	193572	39342	12598	0	0	0	0	0	0	0	0	0	0	0
M12	1108048	263370	44028	0	0	99827	8489559	1918922	320583	148576	526014	1256268	886604	266207	63083	20687	10620	0	0	0	0	0	0	0	0	0	0	0
M13	8066877	3577747	679227	105758	19046	6659	9528	24651	9426	11206	46475	156081	456233	699754	208887	50879	37738	20294	103717	383089	810786	235720	190863	70273	24168	9102	4594	0
M14	8075019	3784415	695954	111564	23147	2982	38797	21690	15559	45304	166570	462072	705732	232218	60156	23934	34661	34797	99726	382452	814349	239861	190996	89019	30018	7478	0	0
M29	0	0	0	0	3981	3747	362013	7620366	1683557	262352	63424	156529	431056	673611	191225	45895	19805	18473	98292	362031	761567	336143	478682	757510	184477	34892	17849	0
M30	0	0	0	0	0	8388	349079	7446736	1624249	281099	177999	426912	638754	210392	48364	23126	10755	27615	95689	358244	739716	322249	454612	750362	176853	34200	0	0
M31	681948	182046	35477	0	0	0	14732	143526	4010877	1332015	795555	380654	403181	128626	26774	9115	9546	729	0	0	0	0	0	0	0	0	0	0
M32	691532	191817	37603	4149	0	0	14313	146743	4014930	1308394	714751	228059	270036	370192	110886	23583	10136	0	0	0	0	0	0	0	0	0	0	0
M33	166325	3532126	822250	126282	20651	0	0	0	6839	21900	83609	239507	356244	111607	27210	2382	14755	9102	21954	80212	248854	435578	179654	227667	499296	117048	19597	0
M34	168245	3581997	807414	139629	21912	0	0	0	0	0	24809	83175	240215	354911	105655	28015	15086	11916	31735	85644	254159	442280	177881	235525	481375	105607	24220	3150
M35	3021378	2777505	638218	574894	1819332	449538	115691	120494	2466816	907844	1159488	2499056	1635250	1745836	570638	404586	1095486	2555795	2419330	1142540	1318229	1950460	851614	1197607	2053454	489484	125088	57849
M36A	0	4682	132272	658965	157790	28131	7447	26488	653864	182985	62129	107334	293495	435033	124157	27701	17388	47140	206264	571801	174335	42909	1447	0	0	0	0	0
M36B	3715	39553	216876	476527	106835	21558	2501	28437	596577	172664	55538	95531	267909	411728	119293	33699	17503	40648	183244	517841	155268	41110	5485	0	0	0	0	0
M36C	0	11723	120649	606225	152545	32478	35892	140508	408905	160222	56961	98527	278684	429068	120757	25215	14560	39929	189723	536244	165230	37198	4855	0	0	0	0	0
M36D	12648	38393	220356	474928	112391	23228	38896	141797	410586	158531	54694	98499	268068	386800	117422	23946	15844	39677	197529	520297	153842	35751	4371	0	0	0	0	0

Figure S3. HRMS of mixtures M1-M36D

S147

S150

S151

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 Counts vs. Macs-to-Charge (m/z)

391

-to-Charge (m/z)

392 393 394 395 396

0.65

0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0

4.6 Amide coupling: procedure, HRMS measurements

Synthesis of deuterated 8-acetamido-N-benzyl-4,6-bis(3-methoxypropyl)quinoline-2-carboxamide mixture for HRMS analysis

A 20 mL, screw-cap vial equipped with a magnetic stirring bar was filled with a mixture of 11.60 mg 8-acetamido-4,6-bis(3-methoxypropyl)quinoline-2carboxylic acid (0.28 equiv., 0.0310 mmol), 9.92 mg 8-acetamido-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid (0.24 equiv., 0.0261 mmol), 10.16 mg 3-deuterio-8-[(2,2,2-trideuterioacetyl)amino]-4,6-bis[3-(trideuteriomethoxy)propyl]quinoline-2-carboxylic acid (0.24 equiv., 0.0264 mmol), 10.12 mg 3-deuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylic acid (0.24 equiv., 0.0264 mmol), 10.12 mg 3-deuterio-4,6-bis[1,1,2,2-tetradeuterio-3-(trideuteriomethoxy)propyl]-8-[(2,2,2-trideuterioacetyl)amino]quinoline-2-carboxylic acid (0.24 equiv., 0.0258 mmol) (M37), 62.8 mg benzotriazol-1-yloxy-tris(dimethylamino)phosphonium, hexafluorophosphate (1:1) (1.3 equiv., 0.142 mmol), and 38 µL DIPEA (2.0 equiv., 0.2187 mmol) and 3.29 mL dry, degassed DCM. The mixture was stirred at RT for 30 min, then 21.5 mg 1-naphthylmethanamine (2.0 equiv., 0.2187 mmol) was added and the reaction mixture was stirred for further 30 min, until full conversion was observed. The mixture was concentrated *in vacuo*. Then the crude product was purified *via* RP-HPLC using 1% aq. HCOOH solution and MeCN as eluents to yield 28 mg differently deuterated mixture of 8-acetamido-*N*-benzyl-4,6-bis(3-methoxypropyl)quinoline-2-carboxamide.(M38)

Table S8. Peak areas of [M+H]⁺ masses of the measured carboxamide mixture (M37) in HRMS spectra

	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397
integrate area	18129928	4041777	644526	114025	57289	165453	13711766	3165833	1218057	4138079	11032209	2491994	434549	100996	95435	313792	1337414	4212976	9006071	3243952	969887	260191	0
integrate ratio	0.2298	0.0512	0.0082	0.0014	0.0007	0.0021	0.1738	0.0401	0.0154	0.0525	0.1398	0.0316	0.0055	0.0013	0.0012	0.0040	0.0170	0.0534	0.1142	0.0411	0.0123	0.0033	0

Table S9. Peak integrate ratios of [M+H]⁺ masses of the calculated and measured amine in HRMS spectra

	158	159	160	161		
Calculated	0 8834	0 1101	0.0063	0.0002		
integrate ratio	0.0001	00	0.0000	0.0001		
Measured	0 8821	0 1089	0 0082	0 0007		
integrate ratio	0.0021	0.1000	0.0002	0.0001		

	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536
calculated integrate ratio	0.1959	0.0679	0.0142	0.0027	0.0009	0.0019	0.1484	0.0525	0.0188	0.0468	0.1249	0.0421	0.0092	0.0020	0.0012	0.0035	0.0149	0.0474	0.1032	0.0476	0.0158	0.0045	0
measured integrate area	28909460	11141681	2293640	444756	136901	2564232	23058821	8660401	2998798	7426119	19972260	6918664	1512908	354659	297538	609663	2300787	7266433	15978770	7426798	2500198	733353	0
measured integrate ratio	0.1912	0.0737	0.0152	0.0029	0.0009	0.0017	0.1525	0.0573	0.0198	0.0491	0.1321	0.0458	0.0100	0.0023	0.0020	0.0040	0.0152	0.0481	0.1057	0.0491	0.0165	0.0049	0.0000

Table S10. Peak areas and integral ratios of [M+H]⁺ masses of the calculated and measured adduct mixture (M38) in HRMS spectra

Calculated NDP for similarity between calculated and measured adduct mixture: 0.99934.

Figure S4. HRMS of compounds M37-M38

