## SUPPORTING INFORMATION

## Photoinduced [4+2]-Cycloaddition Reactions of Vinyldiazo

## **Compounds for the Construction of Heterocyclic and Bicyclic Rings**

Ming Bao,<sup>a</sup> Arnold R. Romero Bohórquez,<sup>a,b</sup> Hadi Arman,<sup>a</sup> and Michael P. Doyle\*<sup>a</sup>

<sup>*a*</sup> Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas, 78249, United States

<sup>b</sup> Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal (CODEIM), Parque Tecnológico Guatiguará, Universidad Industrial de Santander, A.A. 678, Piedecuesta, Colombia

E-mail: michael.doyle@utsa.edu

## **Table of Contents**

| 1. General Information                           | n                                      | S2               |
|--------------------------------------------------|----------------------------------------|------------------|
| 2. General Procedure                             | for [4+2]-Cycloaddition with α-Halohy  | ydrazones S3-    |
| S                                                | 2                                      | 0                |
| 3. General Procedure                             | for [4+2]-Cycloaddition with Cyclopent | adiene and Furan |
|                                                  |                                        | S20-S29          |
| 4. Synthetic Transfor                            | mations and NMR Analysis               | <b>S29</b> -     |
| S                                                | 3                                      | 4                |
| 5. NMR Spectra for <b>(</b>                      | Compounds 3, 6, 8, 9, 10 and 11        | S35-             |
| S                                                | 9                                      | 7                |
| 6. Single-Crystal X-ray Diffraction of 3i and 8k |                                        | <b>S98-S100</b>  |
| 7. References                                    |                                        | <b>S100</b>      |

#### **General Information:**

Unless otherwise noted, all reactions were performed in 10 mL oven-dried (120 °C) glassware under a N2 atmosphere. Solvents were dried using a JC Meyer solvent purification system. Analytical thin-layer chromatography was performed using glass plates pre-coated with 200-300 mesh silica gel impregnated with a fluorescent indicator (254 nm). Column chromatography was performed on CombiFlash® Rf200 and Rf+ purification systems using normal phase silica gel columns (300-400 mesh). Highresolution mass spectra (HRMS) were obtained on a Bruker MicroTOF-ESI mass spectrometer with an ESI resource using CsI or LTQ ESI Positive Ion Calibration Solution as the standard. Accurate masses were reported for the molecular ions  $[M+H]^+$ or [M+Na]<sup>+</sup>. Melting points were obtained uncorrected from an Electro Thermo Mel-Temp DLX 104 device. <sup>1</sup>H NMR spectra were recorded on a Bruker spectrometer (500 MHz and 300 MHz). Chemical shifts were reported in ppm downfield from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl<sub>3</sub>,  $\delta$ = 7.26). Spectra were reported as follows: chemical shift ( $\delta$  ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, comp = composite ofmagnetically non-equivalent protons, dd = doublet of doublets), coupling constants (Hz), integration and assignment. <sup>13</sup>C NMR spectra were collected on Bruker instruments (125 MHz and 75 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl<sub>3</sub>,  $\delta$  = 77.16). Enantioselectivities were determined by HPLC analysis at 25 °C using an Agilent 1260 Infinity HPLC System equipped with an G1311B quaternary pump, G1315D diode array detector, G1329B auto-sampler, G1316A thermostated column compartment and G1170A valve drive. For instrument control and data processing, Agilent OpenLAB CDS ChemStation Edition for LC & LC/MS Systems (Rev. C.01.07 [26]) software was used. Chiralpak OD-H or (R,R-Whelk-O1) columns. The vinyldiazo compound<sup>1</sup> and  $\alpha$ -chlorohydrazone<sup>2</sup> were prepared according to literature procedures.

#### General Procedure for [4+2]-Cycloaddition with α-Halohydrazones.

To a 10-mL oven-dried vial with a magnetic stirring bar,  $\alpha$ -halohydrazone **2** (0.15 mmol, 1.5 equiv.), Cs<sub>2</sub>CO<sub>3</sub> (97.7 mg, 0.3 mmol, 3.0 equiv.) in DCM (1.0 mL) was stirring over 2.0 h at room temperature, then vinyldiazo compound **1** (0.1 mmol) in DCM (1.0 mL) was added over 2.0 h to the above solution *via* a syringe pump with irradiation by 440 nm blue LED. When the reaction was complete (monitored by TLC), the reaction mixture was purified by flash column chromatography on silica gel without additional treatment (hexanes:EtOAc = 20:1 to 15:1) to give the pure cycloaddition product.



Ethyl (*E*)-2-Benzoyl-1-(*tert*-butyldimethylsilyloxy)iminomethyl-7-methyl-4phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3a). 43.1 mg, 83% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.82 (s, 1H), 7.76 (d, *J* = 7.8 Hz, 2H), 7.68 (d, *J* = 7.5 Hz, 2H), 7.48 – 7.42 (m, 1H), 7.40 – 7.34 (comp, 5H), 4.22 – 4.14 (comp, 2H), 3.92 (d, *J* = 17.3 Hz, 1H), 2.29 (d, *J* = 17.3 Hz, 1H), 1.73 (q, *J* = 6.6 Hz, 1H), 1.62 (d, *J* = 6.6 Hz, 3H), 1.24 (t, *J* = 7.0 Hz, 3H), 0.84 (s, 9H), 0.08 (s, 3H), 0.05 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 169.8, 169.2, 152.8, 150.0, 135.9, 135.0, 130.6, 130.1, 130.0, 128.6, 127.5, 126.1, 61.8, 44.2, 35.8, 34.4, 28.0, 26.2, 18.3, 14.3, 9.1, -5.1, -5.2; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>29</sub>H<sub>38</sub>N<sub>3</sub>O<sub>4</sub>Si 520.2626, found 520.2628.



Ethyl 2-Benzoyl-7-benzyl-1-(*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-4phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3b). 40.5 mg, 68% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.98 (s, 1H), 7.75 (d, *J* = 7.3 Hz, 2H), 7.66 (d, *J* = 7.3 Hz, 2H), 7.49 – 7.43 (m, 1H), 7.42 – 7.28 (comp,

9H), 7.24 – 7.21 (m, 1H), 4.22 – 4.13 (comp, 2H), 3.94 (d, J = 17.4 Hz, 1H), 3.51 – 3.47 (m, 1H), 3.38 – 3.33 (m, 1H), 2.30 (d, J = 17.4 Hz, 1H), 1.95 – 1.92 (m, 1H), 1.21 (t, J = 7.1 Hz, 3H), 0.85 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.1, 169.1, 152.0, 150.2, 140.0, 135.8, 135.0, 130.7, 130.1, 130.0, 128.8, 128.64, 128.61, 127.5, 126.5, 126.0, 62.0, 44.5, 41.7, 34.2, 29.7, 27.8, 26.2, 18.3, 14.2, -5.1, -5.2; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>35</sub>H<sub>42</sub>N<sub>3</sub>O<sub>4</sub>Si 596.2939, found 596.2939.



Ethyl 2-Benzoyl-1-(*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-7-ethyl-4-phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3c). 38.4 mg, 72% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.80 (s, 1H), 7.75 (d, *J* = 7.5 Hz, 2H), 7.68 (d, *J* = 7.8 Hz, 2H), 7.46 – 7.41 (comp, 2H), 7.40 – 7.35 (comp, 4H), 4.22 – 4.13 (comp, 2H), 3.92 (d, *J* = 17.2 Hz, 1H), 2.30 (d, *J* = 17.2 Hz, 1H), 2.09 – 2.04 (m, 1H), 1.99 – 1.93 (m, 1H), 1.61 (t, *J* = 7.5 Hz, 1H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.18 (t, *J* = 7.3 Hz, 3H), 0.84 (s, 9H), 0.08 (s, 3H), 0.05 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 169.9, 169.3, 152.8, 150.2, 135.9, 135.1, 130.6, 130.1, 130.0, 128.6, 127.5, 126.1, 61.8, 44.3, 42.9, 34.3, 28.3, 26.2, 18.3, 17.6, 14.2, 13.6, -5.1, -5.2; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>30</sub>H<sub>40</sub>N<sub>3</sub>O<sub>4</sub>Si 534.2783, found 534.2785.



Ethyl 2-Benzoyl-1-(*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-7-cyclohexyl-4phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3d). 47.0 mg, 80% yield, >20:1 dr, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.83 (s, 1H), 7.75 (d, *J* = 7.6 Hz, 2H), 7.71 (d, *J* = 7.1 Hz, 2H), 7.48 – 7.45 (m, 1H), 7.41 – 7.37 (comp, 5H), 4.20 (q, *J* = 6.9 Hz, 2H), 3.97 (d, *J* = 17.2 Hz, 1H), 2.37 (d, *J* = 12.4 Hz, 1H), 2.30 (d, *J* = 17.2 Hz, 1H), 1.98 (q, *J* = 10.9 Hz, 1H), 1.83 (d, *J* = 12.5 Hz, 1H), 1.78 – 1.69 (comp, 3H), 1.45 (d, *J* = 10.9 Hz, 1H), 1.38 – 1.30 (m, 1H), 1.27 – 1.24 (comp, 5H),

1.22 – 1.16 (comp, 2H), 0.86 (s, 9H), 0.10 (s, 3H), 0.08 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 169.8, 169.4, 152.4, 150.4, 135.9, 135.1, 130.6, 130.1, 129.9, 128.6, 127.4, 126.0, 61.8, 47.3, 44.4, 34.0, 33.2, 32.9, 32.8, 28.4, 26.4, 26.2, 26.0, 18.3, 14.3, -5.1, -5.2; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>34</sub>H<sub>46</sub>N<sub>3</sub>O<sub>4</sub>Si 588.3252, found 588.3255.



Ethyl 2-Benzoyl-7-butyl-1-(*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-4-phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3e). 39.9 mg, 71% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.81 (s, 1H), 7.74 (d, *J* = 7.4 Hz, 2H), 7.68 (d, *J* = 7.3 Hz, 2H), 7.46 – 7.41 (m, 1H), 7.43 – 7.35 (comp, 4H), 7.27 – 7.26 (m, 1H), 4.25 – 4.11 (comp, 2H), 3.92 (d, *J* = 17.2 Hz, 1H), 2.30 (d, *J* = 17.2 Hz, 1H), 2.07 – 2.01 (m, 1H), 1.96 – 1.87 (m, 1H), 1.63 (t, *J* = 7.1 Hz, 2H), 1.53 – 1.44 (m, 1H), 1.42 – 1.38 (comp, 2H), 1.26 – 1.22 (comp, 3H), 0.94 (t, *J* = 7.0 Hz, 3H), 0.84 (s, 9H), 0.07 (s, 3H), 0.05 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 169.9, 169.3, 152.6, 150.3, 135.9, 135.1, 130.6, 130.1, 130.0, 128.6, 127.5, 126.1, 61.8, 44.3, 41.4, 34.3, 31.3, 28.2, 26.2, 23.8, 22.7, 18.3, 14.3, 14.2, -5.1, -5.2; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>32</sub>H<sub>44</sub>N<sub>3</sub>O<sub>4</sub>Si 562.3096, found 562.3100.



Ethyl 2-Benzoyl-1-(*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-7-(4-fluorophenyl)-4-phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3f). 51.5 mg, 88% yield, >20:1 *dr*, white solid, mp: 100.0-102.0 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.84 (d, *J* = 7.5 Hz, 2H), 7.73 (d, *J* = 7.4 Hz, 2H), 7.66 (s, 1H), 7.60 – 7.53 (comp, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.2 Hz, 2H), 7.40 – 7.38 (comp, 3H), 7.09 – 7.06 (comp, 2H), 4.15 (d, *J* = 17.5 Hz, 1H), 4.10 – 4.05 (m, 1H), 4.00 – 3.86 (m, 1H), 2.95 (s, 1H), 2.58 (d, *J* = 17.5 Hz, 1H), 1.02 (t, *J* = 7.1 Hz, 3H), 0.82 (s, 9H), 0.06 (s, 3H), 0.04 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.2, 168.8, 162.4 (d, *J* = 246.7

Hz), 150.6, 135.8, 134.8, 131.9 (d, J = 8.1 Hz), 130.9, 130.2, 130.1, 128.7, 128.6, 127.9 (d, J = 3.1 Hz), 127.5, 126.1, 115.5 (d, J = 21.5 Hz), 62.0, 44.4, 43.3, 35.0, 27.3, 26.2, 18.3, 13.9, -5.16, -5.20; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>34</sub>H<sub>39</sub>FN<sub>3</sub>O<sub>4</sub>Si 600.2688, found 600.2691.



Ethyl 2-Benzoyl-1-(*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-4-phenyl-7-(3-(trifluoromethyl)phenyl)-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3g). 55.2 mg, 85% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 8.03 (d, *J* = 7.5 Hz, 1H), 7.85 (d, *J* = 7.4 Hz, 2H), 7.77 – 7.71 (comp, 2H), 7.64 (s, 1H), 7.62 (s, 1H), 7.60 – 7.55 (comp, 2H), 7.49 (t, *J* = 7.0 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.40 – 7.37 (comp, 3H), 4.17 (d, *J* = 17.6 Hz, 1H), 4.12 – 4.04 (m, 1H), 4.02 – 3.89 (m, 1H), 3.02 (s, 1H), 2.61 (d, *J* = 17.6 Hz, 1H), 1.00 (t, *J* = 7.1 Hz, 3H), 0.81 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.3, 168.5, 151.3, 150.2, 135.7, 134.7, 134.2, 133.3, 131.0, 130.9, 130.7, 130.2, 129.3, 128.7, 127.6, 126.8 (q, *J* = 3.4 Hz), 126.1, 125.6 (q, *J* = 272.4 Hz), 124.6 (q, *J* = 3.4 Hz), 62.2, 44.3, 43.3, 35.0, 27.2, 26.1, 18.3, 13.8, -5.18, -5.23; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>35</sub>H<sub>39</sub>F<sub>3</sub>N<sub>3</sub>O<sub>4</sub>Si 650.2656, found 650.2658.



Ethyl (*Z*)-1-Benzoyl-8-(*tert*-butyldimethylsilyloxy)imino-3-phenyl-1,4,4b,5,7,8hexahydro-4a*H*-pyrano[4',3':1,3]cyclopropa[1,2-*c*]pyridazine-4a-carboxylate

(3h). 27.9 mg, 51% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.78 (d, J = 7.9 Hz, 2H), 7.63 (d, J = 7.7 Hz, 2H), 7.50 (t, J = 7.1 Hz, 1H), 7.45 – 7.43 (comp, 2H), 7.39 – 7.33 (comp, 3H), 4.78 (d, J = 17.2 Hz, 1H), 4.64 (dd, J = 12.6, 5.9 Hz, 1H), 4.33 – 4.29 (m, 1H), 4.23 – 4.21 (m, 1H), 4.16 (d, J = 17.2 Hz, 1H), 4.08 – 4.04 (m, 1H), 3.67 (d, J = 17.9 Hz, 1H), 2.70 (d, J = 17.9 Hz, 1H), 2.16 – 2.13 (m, 1H), 1.19 (t, J = 7.0 Hz, 3H), 0.86 (s, 9H), 0.12 (s, 3H), 0.07 (s, 3H); <sup>13</sup>C NMR (125 MHz, 120)

CDCl<sub>3</sub>) (δ, ppm) 171.5, 167.5, 158.0, 150.3, 135.9, 134.6, 131.0, 130.0, 129.9, 128.7, 127.7, 126.1, 63.9, 61.8, 59.4, 44.2, 35.5, 29.3, 26.1, 26.0, 18.2, 14.2, -5.25, -5.28; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>30</sub>H<sub>38</sub>N<sub>3</sub>O<sub>5</sub>Si 548.2575, found 548.2578.



Phenethyl 2-Benzoyl-1-(*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-7-methyl-4phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3i). 35.7 mg, 60% yield, >20:1 *dr*, white solid, mp: 102.0-104.0 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.81 (s, 1H), 7.76 (d, *J* = 7.2 Hz, 2H), 7.60 (d, *J* = 7.2 Hz, 2H), 7.46 – 7.43 (m, 1H), 7.40 – 7.32 (comp, 5H), 7.29 – 7.26 (comp, 2H), 7.23 – 7.19 (comp, 3H), 4.43 – 4.24 (comp, 2H), 3.81 (d, *J* = 17.4 Hz, 1H), 2.92 (t, *J* = 6.9 Hz, 2H), 2.24 (d, *J* = 17.4 Hz, 1H), 1.68 (q, *J* = 6.6 Hz, 1H), 1.50 (d, *J* = 6.6 Hz, 3H), 0.85 (s, 9H), 0.09 (s, 3H), 0.06 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 169.8, 169.2, 152.3, 150.1, 137.5, 135.8, 135.0, 130.7, 130.1, 130.0, 128.9, 128.8, 128.6, 127.5, 126.9, 126.1, 66.2, 44.1, 35.9, 35.0, 34.2, 27.7, 26.2, 18.3, 8.9, -5.09, -5.13; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>35</sub>H<sub>42</sub>N<sub>3</sub>O<sub>4</sub>Si 596.2939, found 596.2944.



Ethyl 2-Benzoyl-1-(*E*)-1-(*tert*-butyldimethylsilyloxy)iminoethyl-4-phenyl-2,3diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3j). 37.9 mg, 73% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.74 (d, *J* = 7.6 Hz, 2H), 7.69 (d, *J* = 7.6 Hz, 2H), 7.51 – 7.47 (m, 1H), 7.43 (d, *J* = 7.3 Hz, 2H), 7.40 – 7.37 (comp, 3H), 4.13 (q, *J* = 7.0 Hz, 2H), 3.89 (d, *J* = 17.7 Hz, 1H), 2.75 (d, *J* = 6.2 Hz, 1H), 2.42 (d, *J* = 17.7 Hz, 1H), 2.03 (s, 3H), 1.27 (d, *J* = 6.2 Hz, 1H), 1.23 (t, *J* = 7.0 Hz, 3H), 0.90 (s, 9H), 0.13 (s, 3H), 0.10 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 171.2, 170.0, 157.6, 149.8, 136.0, 135.1, 133.8, 130.7, 129.9, 128.7, 127.6, 126.0, 62.0, 45.2, 30.6, 26.2, 25.8, 23.2, 18.2, 14.2, 13.9, -5.0, -5.1; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>29</sub>H<sub>38</sub>N<sub>3</sub>O<sub>4</sub>Si 520.2626, found 520.2630.



Ethyl 2-Benzoyl-1-(*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-4-(4-chlorophenyl)-7-(4-fluorophenyl)-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3k). 51.3 mg, 81% yield, >20:1 *dr*, white solid, mp: 101.0-103.0 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.80 (d, *J* = 7.4 Hz, 2H), 7.65 (s, 1H), 7.60 – 7.53 (comp, 4H), 7.52 – 7.46 (comp, 3H), 7.44 – 7.41 (comp, 2H), 7.07 (t, *J* = 8.6 Hz, 2H), 4.13 – 4.02 (comp, 2H), 3.99 – 3.91 (m, 1H), 2.94 (s, 1H), 2.58 (d, *J* = 17.7 Hz, 1H), 1.01 (t, *J* = 7.1 Hz, 3H), 0.80 (s, 9H), 0.05 (s, 3H), 0.02 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.3, 168.7, 162.4 (d, *J* = 246.7 Hz), 150.5, 149.7, 134.7 (d, *J* = 16.1 Hz), 132.1, 132.0, 131.90, 131.85, 131.0, 130.1, 127.7 (d, *J* = 2.9 Hz), 127.6 (d, *J* = 10.2 Hz), 124.5, 115.6 (d, *J* = 21.5 Hz), 62.1, 44.3, 43.2, 34.8, 27.0, 26.1, 18.3, 13.9, -5.17, -5.21; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>34</sub>H<sub>38</sub>ClFN<sub>3</sub>O<sub>4</sub>Si 634.2299, found 634.2300.



Ethyl 2-Benzoyl-4-(4-bromophenyl)-1-(*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-7-(4-fluorophenyl)-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (31). 56.2 mg, 83% yield, >20:1 *dr*, white solid, mp: 103.0-105.0 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.81 (d, *J* = 7.7 Hz, 2H), 7.65 – 7.63 (comp, 3H), 7.59 – 7.52 (comp, 2H), 7.49 (t, *J* = 7.2 Hz, 1H), 7.44 – 7.41 (comp, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.09 – 7.05 (comp, 2H), 4.13 – 4.03 (comp, 2H), 3.98 – 3.91 (m, 1H), 2.94 (s, 1H), 2.57 (d, *J* = 17.6 Hz, 1H), 1.01 (t, *J* = 7.1 Hz, 3H), 0.80 (s, 9H), 0.05 (s, 3H), 0.02 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.3, 168.8, 162.4 (d, *J* = 246.9 Hz), 150.5, 149.7, 136.2, 134.7, 134.3, 131.9 (d, *J* = 8.0 Hz), 131.0, 130.1, 129.0, 127.8 (d, *J* = 2.8 Hz), 127.6, 127.3, 115.6 (d, *J* = 21.6 Hz), 62.1, 44.3, 43.2, 34.9, 27.1, 26.1, 18.3, 13.9, -5.16, -5.21; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>34</sub>H<sub>38</sub>BrFN<sub>3</sub>O<sub>4</sub>Si 678.1794, found 678.1800.



Ethyl 2-Benzoyl-1-(*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-7-(4-fluorophenyl)-4-(*p*-tolyl)-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3m). 48.4 mg, 79% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.83 (d, *J* = 7.2 Hz, 2H), 7.67 – 7.60 (comp, 3H), 7.59 – 7.54 (comp, 2H), 7.47 (t, *J* = 7.3 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.07 (t, *J* = 8.6 Hz, 2H), 4.14 (d, *J* = 17.5 Hz, 1H), 4.09 – 4.04 (m, 1H), 3.98 – 3.92 (m, 1H), 2.95 (s, 1H), 2.52 (d, *J* = 17.5 Hz, 1H), 2.37 (s, 3H), 1.01 (t, *J* = 7.1 Hz, 3H), 0.81 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.1, 168.8, 162.4 (d, *J* = 246.5 Hz), 151.9, 150.5, 140.4, 134.8, 133.0, 131.9 (d, *J* = 8.0 Hz), 130.8, 130.2, 129.4, 127.9 (d, *J* = 2.9 Hz), 127.5, 126.1, 115.5 (d, *J* = 21.5 Hz), 62.0, 44.5, 43.4, 35.2, 27.4, 26.2, 21.5, 18.3, 13.9, -5.16, -5.20; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>35</sub>H<sub>41</sub>FN<sub>3</sub>O<sub>4</sub>Si 614.2845, found 614.2846.



Ethyl 2-Benzoyl-1-(*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-7-(4-fluorophenyl)-4-(4-(trifluoromethyl)phenyl)-2,3-diazabicyclo[4.1.0]hept-3-ene-6carboxylate (3n). 53.4 mg, 80% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.82 – 7.79 (comp, 4H), 7.67 (s, 1H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.57 – 7.55 (comp, 2H), 7.52 – 7.49 (m, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.10 – 7.06 (comp, 2H), 4.16 – 4.02 (comp, 2H), 3.98 – 3.92 (m, 1H), 2.95 (s, 1H), 2.68 (d, *J* = 17.9 Hz, 1H), 1.01 (t, *J* = 7.1 Hz, 3H), 0.81 (s, 9H), 0.04 (s, 3H), 0.02 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.6, 168.7, 162.4 (d, *J* = 246.9 Hz), 150.6, 148.3, 139.2, 134.5, 131.9 (d, *J* = 8.1 Hz), 131.6 (q, *J* = 32.6 Hz), 131.1, 130.1, 127.7, 126.2, 125.8 (d, *J* = 2.9 Hz), 125.7 (q, *J* = 3.5 Hz), 124.1 (q, *J* = 272.4 Hz), 115.6 (d, *J* = 21.5 Hz), 62.2, 44.1, 43.0, 34.6, 26.8, 26.1, 18.3, 13.9, -5.17, -5.21; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>35</sub>H<sub>38</sub>F<sub>4</sub>N<sub>3</sub>O<sub>4</sub>Si 668.2562, found 668.2562.



Ethyl 4-([1,1'-Biphenyl]-4-yl)-2-benzoyl-1-(*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-7-(4-fluorophenyl)-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (30). 47.3 mg, 70% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.85 (d, *J* = 7.8 Hz, 2H), 7.80 (d, *J* = 8.2 Hz, 2H), 7.66 (s, 1H), 7.63 – 7.56 (comp, 6H), 7.51 – 7.47 (comp, 2H), 7.46 – 7.42 (comp, 3H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.08 (t, *J* = 8.5 Hz, 2H), 4.18 (d, *J* = 17.5 Hz, 1H), 4.12 – 4.06 (m, 1H), 3.99 – 3.93 (m, 1H), 2.97 (s, 1H), 2.61 (d, *J* = 17.5 Hz, 1H), 1.02 (t, *J* = 7.1 Hz, 3H), 0.82 (s, 9H), 0.06 (s, 3H), 0.04 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.2, 168.9, 162.4 (d, *J* = 246.7 Hz), 151.0, 150.6, 142.8, 140.3, 134.7 (d, *J* = 12.2 Hz), 131.9 (d, *J* = 8.1 Hz), 130.9, 130.2, 129.0, 127.91, 127.88, 127.6, 127.4, 127.2, 127.1, 126.5, 115.6 (d, *J* = 21.5 Hz), 62.1, 44.5, 43.3 35.0, 27.3, 26.2, 18.3, 13.9, -5.1, -5.2; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>40</sub>H<sub>43</sub>FN<sub>3</sub>O<sub>4</sub>Si 676.3001, found 676.3002.



Ethyl 2-Benzoyl-1-(*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-7-(4-fluorophenyl)-4-(4-methoxyphenyl)-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3p). 47.2 mg, 75% yield, >20:1 *dr*, white solid; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.82 (d, *J* = 7.7 Hz, 2H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.63 (s, 1H), 7.60 – 7.52 (comp, 2H), 7.47 (t, *J* = 7.2 Hz, 1H), 7.41 (t, *J* = 7.5 Hz, 2H), 7.08 – 7.05 (comp, 2H), 6.90 (d, *J* = 8.2 Hz, 2H), 4.15 (d, *J* = 17.3 Hz, 1H), 4.08 – 4.03 (m, 1H), 3.98 – 3.90 (m, 1H), 3.83 (s, 3H), 2.97 (s, 1H), 2.47 (d, *J* = 17.3 Hz, 1H), 1.01 (t, *J* = 7.1 Hz, 3H), 0.81 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 169.9, 168.9, 162.4 (d, *J* = 246.5 Hz), 161.3, 152.3, 150.5, 134.9, 131.9 (d, *J* = 8.0 Hz), 130.8, 130.1, 128.3, 128.0 (d, *J* = 2.9 Hz), 127.7, 127.5, 115.5 (d, *J* = 21.5 Hz), 114.1, 62.0, 55.5, 44.8, 43.5, 35.4, 27.6, 26.2, 18.3, 13.9, -5.15, -5.19; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for

C<sub>35</sub>H<sub>41</sub>FN<sub>3</sub>O<sub>5</sub>Si 630.2794, found 630.2797.



Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyloxy)iminomethyl-2-(4-fluorobenzoyl)-7-(4-fluorophenyl)-4-phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3q). 51.2 mg, 83% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.91 – 7.88 (comp, 2H), 7.80 – 7.70 (comp, 2H), 7.64 (s, 1H), 7.57 – 7.54 (comp, 2H), 7.44 – 7.35 (comp, 3H), 7.12 – 7.05 (comp, 4H), 4.14 (d, *J* = 17.6 Hz, 1H), 4.11 – 4.05 (m, 1H), 3.99 – 3.92 (m, 1H), 2.95 (s, 1H), 2.58 (d, *J* = 17.6 Hz, 1H), 1.02 (t, *J* = 7.1 Hz, 3H), 0.80 (s, 9H), 0.04 (s, 3H), 0.02 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 169.1, 168.7, 164.4 (d, *J* = 247.9 Hz), 162.4 (d, *J* = 243.3 Hz), 151.5, 150.5, 135.7, 132.7 (d, *J* = 8.7 Hz), 131.9 (d, *J* = 8.1 Hz), 130.7 (d, *J* = 3.0 Hz), 130.2, 128.8, 127.8 (d, *J* = 2.9 Hz), 126.0, 115.6 (d, *J* = 21.5 Hz), 114.7 (d, *J* = 21.7 Hz), 62.1, 44.4, 43.2, 34.9, 27.3, 26.1, 18.3, 13.9, -5.18, -5.22; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>34</sub>H<sub>38</sub>F<sub>2</sub>N<sub>3</sub>O<sub>4</sub>Si 618.2594, found 618.2596.



Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyloxy)iminomethyl-2-(4-chlorobenzoyl)-7-(4-fluorophenyl)-4-phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3r). 53.2 mg, 84% yield, >20:1 *dr*, white solid; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.81 (d, *J* = 8.3 Hz, 2H), 7.75 – 7.69 (comp, 2H), 7.63 (s, 1H), 7.56 – 7.54 (comp, 2H), 7.41 – 7.40 (comp, 5H), 7.07 (t, *J* = 8.5 Hz, 2H), 4.15 (d, *J* = 17.6 Hz, 1H), 4.11 – 4.05 (m, 1H), 3.99 – 3.92 (m, 1H), 2.95 (s, 1H), 2.57 (d, *J* = 17.6 Hz, 1H), 1.02 (t, *J* = 7.1 Hz, 3H), 0.81 (s, 9H), 0.04 (s, 3H), 0.02 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 169.1, 168.7, 162.4 (d, *J* = 246.8 Hz), 151.8, 150.4, 137.0, 135.6, 133.1, 131.9 (d, *J* = 8.1 Hz), 131.7, 130.3, 128.8, 127.9, 127.8 (d, *J* = 2.9 Hz), 126.1, 115.6 (d, *J* = 21.6 Hz), 62.1, 44.4, 43.3, 34.9, 27.3, 26.2, 18.3, 13.9, -5.15, -5.20; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>34</sub>H<sub>38</sub>CIFN<sub>3</sub>O<sub>4</sub>Si 634.2299, found 634.2300.



Ethyl 2-(2-Bromobenzoyl)-1-(*E*)-(*tert*-butyldimethylsilyloxy)iminomethyl-7-(4fluorophenyl)-4-phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3s). 54.2 mg, 80% yield, >20:1 *dr*, white solid; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.67 (s, 1H), 7.57 – 7.54 (comp, 4H), 7.53 – 7.49 (comp, 2H), 7.42 (t, *J* = 7.4 Hz, 1H), 7.37 – 7.26 (comp, 4H), 7.08 (t, *J* = 8.4 Hz, 2H), 4.20 (d, *J* = 17.5 Hz, 1H), 4.10 – 4.04 (m, 1H), 3.99 – 3.93 (m, 1H), 3.07 (s, 1H), 2.52 (d, *J* = 17.5 Hz, 1H), 1.02 (t, *J* = 7.1 Hz, 3H), 0.86 (s, 9H), 0.15 (s, 3H), 0.14 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 168.7, 168.4, 162.4 (d, *J* = 246.9 Hz), 154.7, 150.2, 138.6, 135.6, 132.1 (d, *J* = 3.3 Hz), 132.0, 130.3 (d, *J* = 10.1 Hz), 129.3, 128.7, 128.6, 127.7 (d, *J* = 2.7 Hz), 127.2, 126.3, 120.5, 115.5 (d, *J* = 21.5 Hz), 62.1, 43.8, 43.7, 35.4, 27.9, 26.2, 18.3, 13.9, -5.00, -5.02; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>34</sub>H<sub>38</sub>BrFN<sub>3</sub>O<sub>4</sub>Si 678.1794, found 678.1794.



Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyloxy)iminomethyl-7-(4-fluorophenyl)-2-(4methoxybenzoyl)-4-phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3t). 53.5 mg, 85% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.88 (d, *J* = 8.6 Hz, 2H), 7.80 – 7.73 (comp, 2H), 7.64 (s, 1H), 7.58 – 7.55 (comp, 2H), 7.44 – 7.37 (comp, 3H), 7.06 (t, *J* = 8.5 Hz, 2H), 6.93 (d, *J* = 8.6 Hz, 2H), 4.12 (d, *J* = 17.5 Hz, 1H), 4.09 – 4.02 (m, 1H), 3.98 – 3.91 (m, 1H), 3.88 (s, 3H), 2.94 (s, 1H), 2.59 (d, *J* = 17.5 Hz, 1H), 1.01 (t, *J* = 7.1 Hz, 3H), 0.80 (s, 9H), 0.03 (s, 3H), 0.01 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 169.7, 168.9, 162.3 (d, *J* = 246.6 Hz), 161.8, 150.8, 150.7, 136.0, 132.5, 131.9 (d, *J* = 8.1 Hz), 130.0, 128.7, 128.0 (d, *J* = 2.9 Hz), 126.8, 126.1, 115.5 (d, *J* = 21.5 Hz), 112.9, 62.0, 55.5, 44.6, 43.1, 35.1, 27.2, 26.2, 18.3, 13.9, -5.18, -5.22; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>35</sub>H<sub>41</sub>FN<sub>3</sub>O<sub>4</sub>Si 630.2794, found 630.2798.



Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyloxy)iminomethyl-7-(4-fluorophenyl)-4phenyl-2-(thiophene-2-carbonyl)-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3u). 52.6 mg, 87% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 8.16 (d, *J* = 3.7 Hz, 1H), 8.03 – 7.95 (comp, 2H), 7.62 (d, *J* = 4.9 Hz, 1H), 7.57 – 7.55 (comp, 3H), 7.53 – 7.48 (comp, 3H), 7.12 (t, *J* = 4.3 Hz, 1H), 7.06 (t, *J* = 8.4 Hz, 2H), 4.31 (d, *J* = 16.9 Hz, 1H), 4.13 – 4.01 (m, 1H), 3.99 – 3.85 (m, 1H), 3.00 (s, 1H), 2.42 (d, *J* = 16.9 Hz, 1H), 0.98 (t, *J* = 7.1 Hz, 3H), 0.77 (s, 9H), -0.02 (s, 3H), -0.03 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 168.7, 162.4 (d, *J* = 246.8 Hz), 162.2, 155.7, 149.5, 135.7, 135.6, 134.6, 133.8, 131.9 (d, *J* = 8.0 Hz), 130.5, 128.9, 127.8 (d, *J* = 3.0 Hz), 126.8, 126.4, 115.5 (d, *J* = 21.6 Hz), 62.0, 45.3, 43.9, 35.2, 28.8, 26.1, 18.3, 13.9, -5.36, -5.42; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>32</sub>H<sub>37</sub>FN<sub>3</sub>O<sub>4</sub>SSi 606.2253, found 606.2255.



**6-Ethyl 2-Methyl 1-(***E***)-(***tert***-Butyldimethylsilyl)oxy)imino)methyl)-7-(4-fluorophenyl)-4-phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-2,6-dicarboxylate (3v). 47.6 mg, 86% yield, >20:1** *dr***, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (\delta, ppm) 7.85 – 7.83 (comp, 2H), 7.45 – 7.36 (comp, 6H), 7.04 (t,** *J* **= 8.6 Hz, 2H), 4.21 (d,** *J* **= 16.1 Hz, 1H), 4.07 – 3.98 (m, 1H), 3.96 – 3.88 (comp, 4H), 3.02 (s, 1H), 2.25 (d,** *J* **= 16.1 Hz, 1H), 0.97 (t,** *J* **= 7.1 Hz, 3H), 0.89 (s, 9H), 0.15 (s, 3H), 0.12 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (\delta, ppm) 168.4, 162.3 (d,** *J* **= 246.8 Hz), 159.4, 155.2, 149.5, 135.9, 131.7 (d,** *J* **= 8.0 Hz), 130.3, 128.7, 127.8 (d,** *J* **= 3.0 Hz), 126.6, 115.5 (d,** *J* **= 21.5 Hz), 62.0, 53.8, 44.1, 37.2, 30.1, 26.2, 18.4, 13.8, -5.2; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>29</sub>H<sub>37</sub>FN<sub>3</sub>O<sub>5</sub>Si 554.2481, found 554.2487.** 



Ethyl 1-(*E*)-(*tert*-Butyldimethylsilyloxy)iminomethyl-7-(4-fluorophenyl)-2,4diphenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (3w). 52.1 mg, 87% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.84 (d, *J* = 7.2 Hz, 2H), 7.74 – 7.72 (comp, 2H), 7.65 (s, 1H), 7.57 – 7.55 (comp, 2H), 7.48 (t, *J* = 7.3 Hz, 1H), 7.45 – 7.34 (comp, 5H), 7.07 (t, *J* = 8.6 Hz, 2H), 4.14 (d, *J* = 17.6 Hz, 1H), 4.11 – 4.05 (m, 1H), 3.98 – 3.92 (m, 1H), 2.95 (s, 1H), 2.58 (d, *J* = 17.6 Hz, 1H), 1.01 (t, *J* = 7.1 Hz, 3H), 0.81 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.2, 168.8, 162.4 (d, *J* = 246.7 Hz), 151.2, 150.6, 135.8, 134.8, 131.9 (d, *J* = 8.1 Hz), 130.9, 130.2, 128.7, 127.9 (d, *J* = 3.0 Hz), 127.6, 126.1, 115.5 (d, *J* = 21.5 Hz), 62.0, 44.4, 43.3, 35.0, 27.3, 26.2, 18.3, 13.9, -5.16, -5.20; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>33</sub>H<sub>39</sub>FN<sub>3</sub>O<sub>3</sub>Si 572.2739, found 572.2742.



Methyl 2-Benzoyl-4,7-diphenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (6a). 17.6 mg, 43% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.83 (d, *J* = 7.9 Hz, 2H), 7.70 – 7.63 (comp, 2H), 7.51 – 7.43 (comp, 5H), 7.36 – 7.32 (comp, 6H), 5.04 (d, *J* = 5.4 Hz, 1H), 3.41 (s, 3H), 3.41 – 3.27 (comp, 2H), 2.72 (d, *J* = 5.4 Hz, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 171.6, 170.1, 143.5, 136.6, 134.6, 134.3, 130.9, 130.3, 129.7, 129.5, 128.9, 128.7, 128.5, 127.6, 125.6, 52.1, 36.8, 36.4, 29.1, 23.6; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>26</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub> 411.1703, found 411.1707.





(6b). 33.5 mg, 79% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.87 – 7.76 (comp, 2H), 7.72 – 7.60 (comp, 2H), 7.47 – 7.31 (comp, 8H), 7.27 – 7.16 (comp, 3H), 4.11 (d, *J* = 17.2 Hz, 1H), 3.92 – 3.46 (comp, 2H), 2.92 (d, *J* = 6.3 Hz, 1H), 2.28 (d, *J* = 17.2 Hz, 1H), 1.47 (d, *J* = 6.3 Hz, 1H), 0.74 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.2, 169.6, 155.6, 136.2, 135.8, 135.1, 130.7, 130.3, 129.9, 128.8, 128.7, 127.9, 127.8, 127.5, 126.4, 61.6, 46.8, 31.9, 27.4, 23.7, 13.6; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>27</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub> 425.1860, found 425.1862.



**Ethyl 2-Benzoyl-1-(4-bromophenyl)-4-phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (6c)**. 39.2 mg, 78% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) (δ, ppm) 7.87 – 7.78 (comp, 2H), 7.69 – 7.60 (comp, 2H), 7.45 – 7.32 (comp, 8H), 7.25 – 7.18 (comp, 2H), 4.11 (d, J = 17.2 Hz, 1H), 3.84 – 3.54 (comp, 2H), 2.92 (d, J = 6.3 Hz, 1H), 2.28 (d, J = 17.2 Hz, 1H), 1.47 (d, J = 6.3 Hz, 1H), 0.74 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (δ, ppm) 170.2, 169.6, 155.5, 136.2, 135.8, 135.2, 130.7, 130.3, 129.9, 128.8, 128.7, 127.9, 127.8, 127.5, 126.4, 61.6, 46.8, 31.9, 27.4, 23.7, 13.6; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>27</sub>H<sub>24</sub>BrN<sub>2</sub>O<sub>3</sub> 503.0965, found 503.0966.



Ethyl 2-Benzoyl-4-phenyl-1-(*p*-tolyl)-2,3-diazabicyclo[4.1.0]hept-3-ene-6carboxylate (6d). 38.6 mg, 88% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.95 – 7.76 (comp, 2H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.46 – 7.38 (comp, 4H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.30 (d, *J* = 7.8 Hz, 2H), 7.04 (d, *J* = 7.8 Hz, 2H), 4.09 (d, *J* = 17.0 Hz, 1H), 3.84 – 3.71 (m, 1H), 3.71 – 3.65 (m, 1H), 2.89 (d, *J* = 6.3 Hz, 1H), 2.28 (d, *J* = 17.0 Hz, 1H), 2.27 (s, 3H), 1.45 (d, *J* = 6.3 Hz, 1H), 0.78 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.2, 169.6, 155.3, 137.4, 135.8, 135.2, 133.2, 130.6, 130.2, 129.9, 128.8, 128.6, 128.5, 127.5, 126.4, 61.5, 46.7, 31.8, 27.4, 23.7, 21.3, 13.6; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>28</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub> 439.2016, found 439.2018.



Ethyl 2-Benzoyl-1-(3-methoxyphenyl)-4-phenyl-2,3-diazabicyclo[4.1.0]hept-3ene-6-carboxylate (6e). 37.2 mg, 82% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.85 – 7.72 (comp, 3H), 7.66 (d, J = 7.4 Hz, 2H), 7.40 – 7.37 (comp, 4H), 7.33 (t, J = 7.5 Hz, 2H), 7.20 – 7.17 (m, 1H), 6.96 (t, J = 7.7 Hz, 1H), 6.70 (d, J = 8.1 Hz, 1H), 4.21 (d, J = 17.8 Hz, 1H), 3.78 – 3.71 (m, 1H), 3.66 – 3.60 (m, 1H), 3.55 (s, 3H), 2.76 (d, J = 5.8 Hz, 1H), 2.37 (d, J = 17.8 Hz, 1H), 1.42 (d, J = 5.8 Hz, 1H), 0.73 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.7, 169.5, 158.0, 150.2, 136.7, 135.6, 134.1, 130.4, 130.1, 129.6, 129.1, 128.7, 127.4, 126.1, 124.6, 119.9, 109.9, 61.3, 55.4, 42.9, 28.8, 25.72, 25.68, 13.6; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>28</sub>H<sub>27</sub>N<sub>2</sub>O<sub>4</sub> 455.1965, found 455.1967.



Ethyl 2-Benzoyl-1-(2-methoxyphenyl)-4-phenyl-2,3-diazabicyclo[4.1.0]hept-3ene-6-carboxylate (6f). 35.4 mg, 78% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) (δ, ppm) 7.87 – 7.74 (comp, 3H), 7.68 (d, J = 7.6 Hz, 2H), 7.43 – 7.40 (comp, 4H), 7.35 (t, J = 7.4 Hz, 2H), 7.21 (t, J = 7.7 Hz, 1H), 6.98 (t, J = 7.6 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 4.23 (d, J = 17.8 Hz, 1H), 3.80 – 3.74 (m, 1H), 3.69 – 3.62 (m, 1H), 3.58 (s, 3H), 2.78 (d, J = 5.7 Hz, 1H), 2.39 (d, J = 17.8 Hz, 1H), 1.45 (d, J = 5.7 Hz, 1H), 0.76 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) (δ, ppm) 170.7, 169.5, 158.0, 150.2, 136.7, 135.6, 134.1, 130.4, 130.1, 129.6, 129.1, 128.7, 127.4, 126.1, 124.6, 119.9, 109.9, 61.3, 55.4, 42.9, 28.8, 25.8, 25.7, 13.6; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>28</sub>H<sub>27</sub>N<sub>2</sub>O<sub>4</sub> 455.1965, found 455.1966.



Ethyl 2-Benzoyl-4-phenyl-1-(4-(trifluoromethyl)phenyl)-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (6g). 40.8 mg, 83% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.82 (d, *J* = 7.1 Hz, 2H), 7.65 (d, *J* = 7.6 Hz, 2H), 7.55 – 7.50 (comp, 4H), 7.47 – 7.42 (comp, 4H), 7.39 – 7.36 (comp, 2H), 4.13 (d, *J* = 17.2 Hz, 1H), 3.78 – 3.67 (comp, 2H), 2.94 (d, *J* = 6.4 Hz, 1H), 2.32 (d, *J* = 17.2 Hz, 1H), 1.53 (d, *J* = 6.4 Hz, 1H), 0.75 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 169.8, 169.7, 155.6, 140.4, 135.5, 134.7, 131.0, 130.5, 129.93, 129.91 (q, *J* = 32.5 Hz), 129.0, 128.9, 127.7, 126.4, 125.0 (q, *J* = 3.5 Hz), 124.1 (q, *J* = 272.1 Hz), 61.8, 46.3, 32.1, 27.2, 23.8, 13.6; HRMS (ESI Q-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>28</sub>H<sub>24</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub> 493.1734, found 493.1732.



Ethyl 2-Benzoyl-1-(naphthalen-2-yl)-4-phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (6h). 40.3 mg, 85% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.90 (s, 1H), 7.88 – 7.86 (comp, 2H), 7.81 – 7.68 (comp, 3H), 7.65 (d, *J* = 7.7 Hz, 2H), 7.51 (d, *J* = 8.3 Hz, 1H), 7.45 – 7.41 (comp, 6H), 7.37 – 7.34 (comp, 2H), 4.16 (d, *J* = 17.2 Hz, 1H), 3.74 – 3.60 (m, 1H), 3.60 – 3.47 (m, 1H), 3.06 (d, *J* = 6.2 Hz, 1H), 2.34 (d, *J* = 17.2 Hz, 1H), 1.56 (d, *J* = 6.2 Hz, 1H), 0.57 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.1, 169.6, 155.4, 135.8, 135.1, 133.6, 133.0, 130.7, 130.3, 129.9, 128.8, 128.3, 128.0, 127.6, 127.5, 126.5, 126.3, 126.1, 126.0, 61.5, 47.0, 32.0, 27.4, 23.9, 13.5; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>31</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub> 475.2016, found 475.2017.



Ethyl 2-Benzoyl-1-methyl-4-phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (6i). 26.1 mg, 72% yield, 2:1 *dr*, colorless oil; composite NMR signals of two diastereoisomers: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.81 – 7.71 (comp, 3H), 7.67 (d, *J* = 7.3 Hz, 2H), 7.62 – 7.59 (m, 1H), 7.49 – 7.36 (comp, 8H), 7.36 – 7.30 (m, 1H), 4.34 – 4.14 (comp, 3.5H), 3.99 (d, *J* = 16.8 Hz, 1H), 3.00 – 2.81 (m, 0.5H), 2.76 – 2.60 (m, 1H), 2.11 (d, *J* = 5.9 Hz, 1H), 2.01 – 1.95 (comp, 1.5H), 1.65 (s, 3H), 1.63 (s, 1.5H), 1.31 (t, *J* = 7.1 Hz, 1.5H), 1.27 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 171.3, 171.0, 169.6, 160.1, 159.0, 146.5, 136.7, 135.6, 135.4, 133.9, 131.0, 130.7, 130.6, 130.4, 130.0, 129.7, 128.8, 128.7, 127.6, 126.5, 125.7, 125.6, 62.3, 61.9, 61.2, 41.9, 30.4, 29.9, 28.3, 27.0, 26.5, 19.5, 18.7, 15.7, 14.4, 14.1; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub> 363.1703, found 363.1706.



Ethyl 2-Benzoyl-1-2-(*tert*-butyldimethylsilyloxy)ethyl-4-phenyl-2,3-diazabicyclo-[4.1.0]hept-3-ene-6-carboxylate (6j). 40.5 mg, 80% yield, 4:1 *dr*, colorless oil; composite NMR signals of two diastereoisomers: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.81 – 7.77 (comp, 2.4H), 7.71 (d, *J* = 7.5 Hz, 2H), 7.64 (d, *J* = 6.8 Hz, 0.5H), 7.50 – 7.45 (comp, 1.6H), 7.44 – 7.34 (comp, 6H), 4.35 – 4.12 (comp, 4H), 3.81 (t, *J* = 6.0 Hz, 0.6H), 3.66 – 3.56 (m, 1H), 3.53 – 3.48 (m, 1H), 3.36 (d, *J* = 18.1 Hz, 0.3H), 3.17 – 3.03 (m, 1H), 2.58 (d, *J* = 18.1 Hz, 0.3H), 2.16 – 2.12 (comp, 1.3H), 2.05 – 1.91 (comp, 2H), 1.87 – 1.84 (comp, 0.6H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.27 (t, *J* = 7.1 Hz, 0.7H), 0.92 (s, 2.3H), 0.75 (s, 9H), 0.08 (s, 0.7H), 0.06 (s, 0.7H), -0.11 (s, 3H), -0.16 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 171.5, 171.3, 169.2, 168.6, 158.4, 136.3, 135.7, 135.5, 134.9, 133.6, 130.7, 130.5, 130.3, 130.0, 129.8, 129.7, 128.62, 128.60, 127.6, 126.6, 125.8, 61.87, 61.85, 61.3, 59.9, 43.7, 36.3, 31.3, 29.9, 29.7, 28.7, 27.9, 26.9, 26.1, 25.3, 18.5, 18.4, 14.4, 14.3, -5.25, -5.34, -5.5; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>29</sub>H<sub>39</sub>N<sub>2</sub>O<sub>4</sub>Si 507.2674, found 507.2675.



Ethyl (2a*S*,4*S*,6a*S*,6b*S*,8a*S*,13a*S*,13b*R*)-9-Benzoyl-4-(*tert*-butyldimethylsilyloxy)-6a,8a-dimethyl-11-phenyl-1,2,2a,3,4,5,6,6a,6b,7,8,8a,9,12,12b,13,13a,13boctadecahydro-12a*H*-naphtho[2'',1'':4',5']indeno[1',2':1,3]cyclopropa[1,2*c*]pyridazine-12a-carboxylate (6k). 48.2 mg, 68% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.68 (d, *J* = 7.8 Hz, 2H), 7.63 (d, *J* = 6.9 Hz, 2H), 7.49 – 7.40 (comp, 2H), 7.39 – 7.37 (comp, 2H), 7.36 – 7.33 (comp, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.62 – 3.46 (m, 1H), 3.16 (d, *J* = 18.7 Hz, 1H), 2.63 – 2.44 (comp, 2H), 1.79 – 1.48 (comp, 9H), 1.48 – 1.38 (comp, 3H), 1.35 – 1.20 (comp, 9H), 1.05 (s, 3H), 0.97 – 0.92 (m, 1H), 0.88 (s, 9H), 0.83 (s, 3H), 0.60 – 0.55 (m, 1H), 0.05 (s, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 171.0, 169.5, 149.5, 136.3, 135.7, 130.4, 129.8, 129.7, 128.6, 127.5, 125.7, 72.2, 61.3, 55.2, 47.3, 46.5, 45.6, 45.4, 41.0, 38.7, 37.2, 36.3, 35.9, 35.1, 32.1, 32.0, 28.8, 27.3, 26.1, 22.4, 21.0, 18.4, 18.0, 14.5, 12.5, -4.4; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>44</sub>H<sub>61</sub>N<sub>2</sub>O<sub>4</sub>Si 709.4395, found 709.4396.



Ethyl (6b*S*,8a*S*,13a*S*,13b*R*)-9-Benzoyl-8a-methyl-11-phenyl-4-(trifluoromethylsulfonyloxy)-1,2,6b,7,8,8a,9,12,12b,13,13a,13b-dodecahydro-12a*H*naphtho[2'',1'':4',5']indeno[1',2':1,3]cyclopropa[1,2-*c*]pyridazine-12acarboxylate (6l). 44.5 mg, 63% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.70 (d, *J* = 7.5 Hz, 2H), 7.65 (d, *J* = 7.1 Hz, 2H), 7.48 – 7.42 (m, 1H), 7.40 – 7.35 (comp, 4H), 7.28 (d, *J* = 8.7 Hz, 1H), 7.26 (s, 1H), 7.02 (d, *J* = 8.7 Hz, 1H), 6.98 (s, 1H), 4.27 – 4.18 (comp, 2H), 3.23 (d, *J* = 18.7 Hz, 1H), 2.95 – 2.92 (comp, 2H), 2.69 (dd, *J* = 12.0, 6.0 Hz, 1H), 2.58 (d, *J* = 18.7 Hz, 1H), 2.33 (d, *J* = 11.3 Hz, 1H), 2.21 – 2.17 (m, 1H), 2.00 (d, *J* = 11.8 Hz, 1H), 1.90 (d, *J* = 11.5 Hz, 1H), 1.84 – 1.78 (m, 1H), 1.76 - 1.66 (comp, 2H), 1.65 - 1.56 (comp, 2H), 1.56 - 1.44 (comp, 2H), 1.29 (t, J = 7.0 Hz, 3H), 1.13 (s, 3H);  ${}^{13}$ C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 171.0, 169.4, 149.4, 147.7, 140.7, 139.6, 136.2, 135.6, 130.5, 129.9, 128.7, 127.5, 126.9, 125.7, 121.4, 118.3, 61.4, 46.7, 46.6, 45.6, 44.6, 41.1, 37.6, 36.4, 32.1, 29.5, 27.5, 27.1, 26.0, 22.4, 18.0, 14.4; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>38</sub>H<sub>38</sub>F<sub>3</sub>N<sub>2</sub>O<sub>6</sub>S 707.2397, found 707.2400.

# General Procedure for [4+2]-Cycloaddition with Cyclopentadiene and

#### Furan.

To a 10-mL oven-dried vial with a magnetic stirring bar, diazo compound 1 (0.1 mmol) in DCM (1.0 mL) was added over 3.0 h *via* a syringe pump to a solution of cyclopentadiene/furan (0.2 mmol, 2.0 equiv.) in the DCM (1.0 mL) at room temperature with irradiation by 440 nm blue LED. When the reaction was complete (monitored by TLC), the reaction mixture was purified by flash column chromatography on silica gel without additional treatment (hexanes:EtOAc = 20:1 to 15:1) to give the pure cycloaddition product.



Ethyl (*E*)-4-(*tert*-Butyldimethylsilyloxy)iminomethyl-3-methyltricyclo[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8a). 28.3 mg, 81% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.87 (s, 1H), 6.06 – 6.01 (m, 1H), 5.99 – 5.97 (m, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.48 – 3.46 (comp, 2H), 1.87 (d, *J* = 7.4 Hz, 1H), 1.77 (q, *J* = 6.7 Hz, 1H), 1.70 (d, *J* = 7.4 Hz, 1H), 1.30 (d, *J* = 6.7 Hz, 3H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.94 (s, 9H), 0.17 (s, 3H), 0.15 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 172.1, 154.2, 134.5, 134.3, 61.3, 60.7, 48.2, 46.9, 40.0, 39.5, 37.9, 26.4, 18.5, 14.5, 10.2, -5.1; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>32</sub>NO<sub>3</sub>Si 350.2146, found 350.2147.



Ethyl (*E*)-3-Benzyl-4-((*tert*-butyldimethylsilyloxy)iminomethyl)tricyclo[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8b). 34.9 mg, 82% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 8.00 (s, 1H), 7.24 (d, *J* = 7.4 Hz, 2H), 7.17 (t, *J* = 7.2 Hz, 1H), 7.10 (d, *J* = 7.4 Hz, 2H), 6.06 – 6.02 (m, 1H), 6.01 – 5.99 (m, 1H), 4.18 (q, *J* = 7.0 Hz, 2H), 3.54 – 3.53 (comp, 2H), 3.20 (dd, *J* = 15.4, 7.4 Hz, 1H), 3.09 (dd, *J* = 15.4, 7.4 Hz, 1H), 1.99 (t, *J* = 7.3 Hz, 1H), 1.92 (d, *J* = 7.3 Hz, 1H), 1.74 (d, *J* = 7.3 Hz, 1H), 1.25 (t, *J* = 7.0 Hz, 3H), 0.94 (s, 9H), 0.18 (s, 3H), 0.16 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 172.0, 154.0, 140.9, 134.7, 134.4, 128.5, 128.3, 126.1, 61.4, 60.9, 48.2, 47.1, 43.9, 39.9, 39.5, 30.4, 26.4, 18.5, 14.4, -5.1; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>36</sub>NO<sub>3</sub>Si 426.2459, found 426.2455.



Ethyl (*E*)-4-(*tert*-Butyldimethylsilyloxy)iminomethyl-3-ethyltricyclo[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8c). 28.7 mg, 79% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.85 (s, 1H), 6.04 – 6.01 (m, 1H), 6.01 – 5.96 (m, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.47 – 3.46 (comp, 2H), 1.87 (d, *J* = 7.3 Hz, 1H), 1.83 – 1.72 (m, 2H), 1.70 (d, *J* = 7.5 Hz, 1H), 1.65 (t, *J* = 7.5 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.94 (s, 9H), 0.86 (t, *J* = 7.3 Hz, 3H), 0.17 (s, 3H), 0.15 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 172.2, 154.4, 134.6, 134.3, 61.3, 60.7, 48.3, 46.9, 45.6, 39.6, 39.4, 26.4, 18.5, 18.1, 14.5, 13.8, -5.1; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>34</sub>NO<sub>3</sub>Si 364.2302, found 364.2296.



Ethyl (*E*)-4-(*tert*-Butyldimethylsilyloxy)iminomethyl-3-cyclohexyltricyclo-[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8d). 33.4 mg, 80% yield, >20:1 dr, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) 7.84 (s, 1H), 6.03 – 6.01 (m, 1H), 5.98 – 5.93 (m, 1H), 4.26 – 4.04 (comp, 2H), 3.48 – 3.47 (comp, 2H), 1.99 – 1.92 (m, 1H), 1.85 (d, J = 7.4Hz, 1H), 1.70 (d, J = 7.4 Hz, 1H), 1.66 – 1.62 (comp, 3H), 1.57 – 1.54 (m, 1H), 1.49 – 1.47 (comp, 2H), 1.27 – 1.24 (comp, 4H), 1.22 – 1.06 (comp, 3H), 0.93 (s, 9H), 0.91 – 0.85 (m, 1H), 0.17 (s, 3H), 0.15 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 172.3, 154.6, 134.6, 134.3, 61.3, 60.7, 50.5, 48.3, 47.0, 39.2, 39.1, 33.1, 33.0, 32.9, 26.5, 26.4, 26.1, 18.6, 14.5, -5.10, -5.12; HRMS (ESI Q-TOF) m/z:  $[M+H]^+$  Calcd for  $C_{24}H_{40}NO_3Si$  418.2772, found 418.2765.



Ethyl (*E*)-3-Butyl-4-(*tert*-butyldimethylsilyloxy)iminomethyltricyclo[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8e). 33.6 mg, 86% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.86 (s, 1H), 6.04 – 6.03 (m, 1H), 5.99 – 5.98 (m, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.48 – 3.47 (comp, 2H), 1.87 (d, *J* = 7.3 Hz, 1H), 1.80 – 1.76 (m, 1H), 1.73 – 1.64 (comp, 3H), 1.28 – 1.19 (comp, 7H), 0.94 (s, 9H), 0.85 (t, *J* = 6.9 Hz, 3H), 0.17 (s, 3H), 0.15 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 172.2, 154.5, 134.5, 134.3, 61.3, 60.7, 48.2, 46.9, 44.0, 39.6, 39.3, 31.7, 26.4, 24.4, 22.6, 18.5, 14.5, 14.2, -5.1; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>38</sub>NO<sub>3</sub>Si 392.2615, found 392.2610.



Ethyl (*E*)-4-(*tert*-Butyldimethylsilyloxy)iminomethyl-3-(4-fluorophenyl)tricyclo-[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8f). 39.5 mg, 92% yield, >20:1 *dr*, white solid, mp: 105.0-106.0 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.74 (s, 1H), 6.98 – 6.92 (comp, 4H), 6.19 (s, 1H), 6.11 (s, 1H), 4.19 – 3.91 (comp, 2H), 3.71 (s, 1H), 3.67 (s, 1H), 2.95 (s, 1H), 1.92 (d, *J* = 7.5 Hz, 1H), 1.78 (d, *J* = 7.5 Hz, 1H), 1.03 (t, *J* = 7.1 Hz, 3H), 0.93 (s, 9H), 0.18 (s, 3H), 0.16 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 171.3, 161.6 (d, *J* = 245.1 Hz), 154.6, 135.0, 134.8, 131.2 (d, *J* = 3.1 Hz), 131.0 (d, *J* = 7.9 Hz), 115.1 (d, *J* = 21.4 Hz), 61.4, 60.9, 48.2, 47.0, 46.0, 40.1, 39.3, 26.3, 18.5, 14.1, -5.11, -5.13; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>33</sub>FNO<sub>3</sub>Si 430.2208, found 430.2212.



Ethyl (*E*)-4-(*tert*-Butyldimethylsilyloxy)iminomethyl-3-(3-(trifluoromethyl)-phenyl)tricyclo[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8g). 42.2 mg, 88% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.70 (s, 1H), 7.45 (d, *J* = 7.7 Hz, 1H), 7.37 (t, *J* = 7.7 Hz, 1H), 7.27 (s, 1H), 7.21 (d, *J* = 7.6 Hz, 1H), 6.27 – 6.18 (m, 1H), 6.18 – 6.08 (m, 1H), 4.11 – 3.92 (comp, 2H), 3.74 (s, 1H), 3.70 (s, 1H), 3.02 (s, 1H), 1.94 (d, *J* = 7.5 Hz, 1H), 1.81 (d, *J* = 7.5 Hz, 1H), 1.01 (t, *J* = 7.1 Hz, 3H), 0.93 (s, 9H), 0.18 (s, 3H), 0.17 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 171.0, 154.0, 136.8, 135.2, 135.0, 132.9, 130.5 (q, *J* = 32.1 Hz), 128.6, 126.5 (q, *J* = 3.5 Hz), 124.2 (q, *J* = 272.3 Hz), 123.4 (q, *J* = 3.5 Hz), 61.5, 61.0, 48.2, 47.1, 46.1, 39.9, 39.5, 26.3, 18.5, 14.0, -5.1; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>33</sub>F<sub>3</sub>NO<sub>3</sub>Si 480.2176, found 480.2177.



Ethyl (*E*)-1-(*tert*-Butyldimethylsilyloxy)imino-1,2,3,3a,4,7-hexahydro-3b*H*-4,7methanocyclopenta[1,3]cyclopropa[1,2]benzene-3b-carboxylate (8h). 28.9 mg, 80% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 6.24 – 6.02 (m, 1H), 6.01 – 5.84 (m, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.41 (s, 1H), 3.24 (s, 1H), 2.89 – 2.71 (m, 1H), 2.52 – 2.37 (m, 1H), 2.26 (d, *J* = 7.2 Hz, 1H), 2.12 – 1.94 (comp, 2H), 1.76 (d, *J* = 7.2 Hz, 1H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.92 (s, 9H), 0.15 (s, 3H), 0.14 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 172.5, 167.9, 137.0, 132.1, 62.9, 60.8, 51.5, 49.8, 47.1, 43.8, 39.5, 30.3, 26.3, 22.5, 18.5, 14.4, -5.1, -5.2; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>32</sub>NO<sub>3</sub>Si 362.2146, found 362.2137.





(E)-8-(tert-Butyldimethylsilyloxy)imino-1,4,5,6,7,8-hexahydro-1,4-

methanocyclopropa[1,2:1,3]dibenzene-4a(4b*H*)-carboxylate (8i). 30.8 mg, 82% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 6.04 – 6.00 (m, 1H), 6.00 – 5.96 (m, 1H), 4.12 (q, *J* = 7.0 Hz, 2H), 3.35 (s, 1H), 3.22 (s, 1H), 2.74 – 2.69 (m, 1H), 2.31 – 2.17 (comp, 2H), 1.93 – 1.76 (comp, 3H), 1.73 (d, *J* = 7.1 Hz, 1H), 1.55 – 1.53 (m, 1H), 1.30 – 1.19 (comp, 4H), 0.93 (s, 9H), 0.14 (s, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 172.4, 161.1, 135.4, 133.8, 62.1, 60.6, 49.8, 48.6, 40.1, 37.7, 35.7, 26.4, 23.6, 20.9, 19.5, 18.4, 14.4, -5.0, -5.1; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>34</sub>NO<sub>3</sub>Si 376.2302, found 376.2296.



Phenethyl (*E*)-4-(*tert*-Butyldimethylsilyloxy)iminomethyl-3-methyltricyclo-[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8j). 33.2 mg, 78% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.84 (s, 1H), 7.31 – 7.28 (comp, 2H), 7.24 – 7.20 (comp, 3H), 6.04 – 5.99 (m, 1H), 5.99 – 5.95 (m, 1H), 4.41 – 4.26 (comp, 2H), 3.46 (s, 1H), 3.42 (s, 1H), 2.96 (t, *J* = 7.0 Hz, 2H), 1.81 (d, *J* = 7.3 Hz, 1H), 1.75 (q, *J* = 6.7 Hz, 1H), 1.67 (d, *J* = 7.3 Hz, 1H), 1.23 (d, *J* = 6.7 Hz, 3H), 0.95 (s, 9H), 0.18 (s, 3H), 0.16 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 172.0, 154.1, 139.0, 134.6, 134.2, 129.0, 128.6, 126.7, 65.3, 61.3, 48.1, 46.8, 40.0, 39.8, 38.0, 35.3, 26.4, 18.5, 10.1, -5.1; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>36</sub>NO<sub>3</sub>Si 426.2459, found 426.2453.



Cinnamyl 4-(*E*)-(*tert*-Butyldimethylsilyloxy)iminomethyl-3-methyltricyclo-[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8k). 34.5 mg, 79% yield, >20:1 dr, white solid, mp: 105.0-107.0 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.91 (s, 1H), 7.39 (d, *J* = 7.5 Hz, 2H), 7.34 – 7.31 (comp, 2H), 7.27 (d, *J* = 7.5 Hz, 1H), 6.65 (d, *J* = 15.9 Hz, 1H), 6.36 – 6.23 (m, 1H), 6.07 – 6.02 (m, 1H), 6.02 – 5.96 (m, 1H), 4.78 (d, *J* = 6.3 Hz, 2H), 3.52 (s, 1H), 3.50 (s, 1H), 1.91 (d, *J* = 7.3 Hz, 1H), 1.81 (q, *J* = 6.7 Hz, 1H), 1.73 (d, J = 7.3 Hz, 1H), 1.33 (d, J = 6.7 Hz, 3H), 0.93 (s, 9H), 0.17 (s, 3H), 0.15 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 171.8, 154.0, 136.4, 134.6, 134.2, 134.1, 128.7, 128.2, 126.8, 123.5, 65.4, 61.3, 48.2, 46.9, 40.0, 39.9, 38.1, 26.4, 18.5, 10.2, -5.1; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>26</sub>H<sub>36</sub>NO<sub>3</sub>Si 438.2459, found 438.2461.



(1*S*,2*R*,5*S*)-2-Isopropyl-5-methylcyclohexyl 4-(*E*)-(*tert*-Butyldimethylsilyloxy)iminomethyl-3-methyltricyclo[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8l). 36.3 mg, 79% yield, 1:1 *dr*, colorless oil; composite NMR signals of two diastereoisomers: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.86 (s, 1H), 6.08 – 6.00 (m, 1H), 6.01 – 5.94 (m, 1H), 4.77 – 4.72 (m, 1H), 3.49 – 3.44 (comp, 2H), 1.96 (d, *J* = 11.8 Hz, 1H), 1.91 – 1.82 (comp, 2H), 1.80 – 1.73 (m, 1H), 1.72 – 1.67 (comp, 3H), 1.43 – 1.39 (m, 1H), 1.33 – 1.29 (comp, 3H), 1.11 – 0.96 (m, 1H), 0.95 – 0.94 (comp, 9H), 0.92 – 0.85 (comp, 8H), 0.74 (t, *J* = 6.8 Hz, 3H), 0.17 – 0.16 (comp, 3H), 0.15 – 0.14 (comp, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 171.72, 171.69, 154.14, 154.09, 134.6, 134.5, 134.4, 134.3, 74.72, 74.69, 61.3, 61.2, 48.4, 48.3, 47.3, 47.1, 46.8, 46.7, 41.3, 41.2, 40.2, 39.7, 39.3, 37.9, 37.7, 34.4, 31.62, 31.58, 26.43, 26.38, 26.3, 26.2, 23.4, 23.2, 22.2, 21.12, 21.08, 18.54, 18.47, 16.3, 16.0, 10.3, -5.08, -5.10; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>27</sub>H<sub>46</sub>NO<sub>3</sub>Si 460.3241, found 460.3233.



Ethyl (*E*)-3-(4-Fluorophenyl)-4-((hydroxyimino)methyl)tricyclo[3.2.1.0<sup>2,4</sup>]oct-6ene-2-carboxylate (8m). 26.8 mg, 85% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.72 (s, 1H), 6.99 – 6.93 (comp, 4H), 6.34 – 6.15 (m, 1H), 6.13 – 5.98 (m, 1H), 4.16 – 3.88 (comp, 2H), 3.69 (s, 1H), 3.64 (s, 1H), 2.97 (s, 1H), 1.93 (d, J = 7.5 Hz, 1H), 1.80 (d, J = 7.5 Hz, 1H), 1.06 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 171.2, 161.7 (d, J = 245.4 Hz), 151.7, 135.1, 134.6, 131.0 (d, J = 3.4 Hz), 130.9 (d, J = 7.9 Hz), 115.2 (d, J = 21.4 Hz), 61.3, 61.1, 48.2, 46.7, 46.2, 40.2, 38.9, 14.1; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>19</sub>FNO<sub>3</sub> 316.1343, found 316.1334.



**Methyl 3-Phenyltricyclo**[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8n). 20.4 mg, 85% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.24 – 7.21 (comp, 2H), 7.16 – 7.12 (comp, 3H), 6.17 – 6.06 (m, 1H), 6.01 – 5.91 (m, 1H), 3.50 (s, 1H), 3.36 (s, 3H), 3.11 (s, 1H), 2.60 (t, *J* = 4.5 Hz, 1H), 2.53 (d, *J* = 4.5 Hz, 1H), 1.83 (d, *J* = 7.2 Hz, 1H), 1.76 (d, *J* = 7.2 Hz, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 173.4, 137.6, 133.6, 132.9, 128.9, 127.9, 126.4, 62.3, 51.5, 46.4, 43.93, 43.89, 36.2, 28.5; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>17</sub>O<sub>2</sub> 241.1223, found 241.1217.



Ethyl 4-(4-(Trifluoromethyl)phenyl)tricyclo[ $3.2.1.0^{2.4}$ ]oct-6-ene-2-carboxylate (80). 25.6 mg, 83% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.53 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 8.2 Hz, 2H), 6.19 – 6.13 (m, 1H), 6.13 – 6.05 (m, 1H), 3.98 – 3.78 (comp, 2H), 3.48 (s, 1H), 3.02 (s, 1H), 2.53 (d, J = 7.4 Hz, 1H), 2.28 – 2.27 (m, 1H), 2.00 (d, J = 6.4 Hz, 1H), 1.61 (d, J = 5.5 Hz, 1H), 0.87 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 172.4, 144.1, 135.4, 135.1, 129.0 (q, J = 3.5 Hz), 128.9, 126.2 (q, J = 272.3 Hz), 125.1 (q, J = 3.5 Hz), 63.7, 60.5, 51.7, 45.7, 42.3, 38.2, 28.7, 14.1; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>18</sub>F<sub>3</sub>O<sub>2</sub> 323.1253, found 323,1248.



**Benzyl Tricyclo**[**3.2.1.0**<sup>2,4</sup>]**oct-6-ene-2-carboxylate (8p)**. 20.2 mg, 84% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.43 – 7.28 (comp, 5H), 6.06 – 5.90 (m, 1H), 5.82 – 5.80 (m, 1H), 5.28 – 5.02 (comp, 2H), 3.36 (s, 1H), 2.92 (s, 1H), 2.20 – 2.05 (m, 1H), 1.95 (d, *J* = 7.2 Hz, 1H), 1.81 (d, *J* = 7.2 Hz, 1H), 1.77 – 1.74 (m, 1H), 1.15 (t, *J* = 4.7 Hz, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 175.6, 136.7, 133.0, 132.7, 128.6, 128.1, 127.9, 66.2, 63.9, 43.9, 43.5, 29.7, 28.9, 27.2; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>17</sub>O<sub>2</sub> 241.1223, found 241.1219.



Ethyl (*E*)-4-(*tert*-Butyldimethylsilyloxy)iminomethyl-3-(4-fluorophenyl)-8oxatricyclo[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8q). 34.5 mg, 80% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.54 (s, 1H), 7.10 – 7.08 (comp, 2H), 6.99 (t, *J* = 8.6 Hz, 2H), 6.80 – 6.70 (m, 1H), 6.61 – 6.50 (m, 1H), 5.12 (s, 1H), 5.07 (s, 1H), 4.05 – 3.99 (comp, 2H), 3.83 (s, 1H), 1.06 (t, *J* = 7.1 Hz, 3H), 0.95 (s, 9H), 0.20 (s, 3H), 0.16 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 169.1, 161.8 (d, *J* = 245.8 Hz), 152.2, 140.6, 137.2, 131.1 (d, *J* = 8.0 Hz), 129.9 (d, *J* = 3.2 Hz), 115.3 (d, *J* = 21.5 Hz), 79.8, 78.9, 61.0, 46.2, 43.5, 40.7, 26.3, 18.5, 14.1, -5.06, -5.11; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>31</sub>FNO<sub>4</sub>Si 432.2001, found 432.2002.



Ethyl (*E*)-4-(*tert*-Butyldimethylsilyloxy)iminomethyl-3-(3-(trifluoromethyl)phenyl)-8-oxatricyclo[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8r). 40.4 mg, 84% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.52 – 7.50 (comp, 2H), 7.43 (t, *J* = 7.7 Hz, 1H), 7.40 – 7.30 (comp, 2H), 6.76 (d, *J* = 5.5 Hz, 1H), 6.59 (d, *J* = 5.5 Hz, 1H), 5.14 (s, 1H), 5.10 (s, 1H), 4.01 (q, *J* = 7.1 Hz, 2H), 3.89 (s, 1H), 1.03

(t, J = 7.1 Hz, 3H), 0.95 (s, 9H), 0.20 (s, 3H), 0.17 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 168.9, 151.8, 140.4, 137.3, 135.4, 132.9, 130.8 (q, J = 32.1 Hz), 128.9, 126.5 (q, J = 3.5 Hz), 124.1 (q, J = 272.2 Hz), 123.9 (q, J = 3.6 Hz), 79.8, 78.9, 61.2, 46.1, 43.4, 40.7, 26.2, 18.5, 14.0, -5.1, -5.2; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>31</sub>F<sub>3</sub>NO<sub>4</sub>Si 482.1969, found 482.1962.



Ethyl (*E*)-3-Benzyl-4-(*tert*-butyldimethylsilyloxy)iminomethyl-8-oxatricyclo-[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8s). 34.2 mg, 80% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.85 (s, 1H), 7.33 – 7.29 (comp, 2H), 7.24 – 7.20 (comp, 3H), 6.74 (d, *J* = 5.5 Hz, 1H), 6.56 (d, *J* = 5.5 Hz, 1H), 4.95 (s, 1H), 4.92 (s, 1H), 4.29 – 4.09 (comp, 2H), 3.24 (dd, *J* = 15.1, 8.5 Hz, 1H), 3.17 (dd, *J* = 15.1, 6.8 Hz, 1H), 2.97 – 2.90 (m, 1H), 1.26 (t, *J* = 7.2 Hz, 3H), 0.97 (s, 9H), 0.20 (s, 3H), 0.18 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.0, 151.6, 148.8, 140.3, 137.6, 128.7, 128.4, 126.4, 79.6, 78.9, 61.0, 46.8, 43.0, 39.5, 29.7, 26.3, 18.5, 14.4, -5.09, -5.13; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>34</sub>NO<sub>4</sub>Si 428.2252, found 428.2248.



Ethyl (*E*)-4-(*tert*-Butyldimethylsilyloxy)iminomethyl-8-oxatricyclo[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8t). 24.6 mg, 73% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.47 (s, 1H), 6.72 (d, *J* = 5.5 Hz, 1H), 6.65 (d, *J* = 5.5 Hz, 1H), 4.92 (s, 1H), 4.87 (s, 1H), 4.13 (q, *J* = 7.0 Hz, 2H), 2.33 (d, *J* = 5.0 Hz, 1H), 1.95 (d, *J* = 5.0 Hz, 1H), 1.24 (t, *J* = 7.0 Hz, 3H), 0.93 (s, 9H), 0.17 (s, 3H), 0.15 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.7, 153.0, 139.8, 138.6, 79.3, 78.3, 61.2, 46.0, 40.9, 26.5, 26.2, 18.4, 14.4, -5.1, -5.2; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>28</sub>NO<sub>4</sub>Si 338.1782, found 338.1777.



Methyl 3-Phenyl-8-oxatricyclo[3.2.1.0<sup>2,4</sup>]oct-6-ene-2-carboxylate (8u). 19.3 mg, 80% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.33 – 7.16 (comp, 5H), 6.65 – 6.61 (comp, 2H), 5.09 (d, *J* = 1.4 Hz, 1H), 4.91 (d, *J* = 1.4 Hz, 1H), 3.67 (d, *J* = 5.0 Hz, 1H), 3.40 (s, 3H), 2.36 (d, *J* = 5.0 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.6, 138.7, 138.2, 136.0, 129.0, 128.0, 126.9, 78.3, 78.2, 51.5, 42.8, 42.6, 34.8; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>15</sub>O<sub>3</sub> 243.1016, found 243.1018.

### **Synthetic Transformations:**



*Synthesis of 9*: To a 10-mL oven-dried round-bottom flask with a magnetic stirring bar, **8n** (25.4 mg, 0.1 mmol), *m*-CPBA (35.0 mg, 0.2 mmol, 2.0 equiv.), and DCM (2.0 mL) were added in sequence. Then the reaction mixture was stirred overnight at reflux. When the reaction was complete (monitored by TLC), the reaction mixture was purified by flash column chromatography on silica gel without additional treatment (hexanes:EtOAc = 10:1) to give 23.8 mg pure product **9** as colorless oil, 88% yield, >20:1 *dr*; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.28 – 7.22 (comp, 2H), 7.21 – 7.11 (comp, 2H), 3.75 (d, *J* = 4.9 Hz, 1H), 3.33 (s, 3H), 3.26 (dd, *J* = 3.0, 1.6 Hz, 1H), 3.25 – 3.22 (m, 1H), 3.17 (dd, *J* = 3.0, 1.6 Hz, 1H), 2.78 – 2.77 (m, 1H), 2.58 (t, *J* = 4.8 Hz, 1H), 1.68 (d, *J* = 9.2 Hz, 1H), 1.32 (d, *J* = 9.2 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 172.0, 136.9, 128.8, 128.1, 126.8, 51.6, 49.8, 49.7, 41.2, 40.0, 39.6, 39.3, 37.0, 34.1; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>17</sub>O<sub>3</sub> 257.1172, found 257.1173.



*Synthesis of 10f*: To a 10-mL oven-dried round-bottom flask with a magnetic stirring bar, TBAF (31.4 mg, 1.2 equiv.) in THF was added to the solution of **3f** (46.7 mg, 0.1 mmol) in THF (1.0 mL), and the reaction mixture was stirred for 10 min at 0 °C. When the reaction was complete (monitored by TLC), the reaction mixture was purified by flash column chromatography on silica gel without additional treatment (hexanes:EtOAc = 5:1) to give deprotected products. Then, Cu(OAc)<sub>2</sub> (1.0 mg, 5.0 mol %), deprotected products, and MeCN (2.0 mL) were added in sequence, and the reaction mixture was stirred at 80 °C overnight. When the reaction was complete (monitored by TLC), the reaction mixture was purified by flash column chromatography on silica gel without additional treatment (monitored by TLC), the reaction mixture was purified by flash column chromatography on silica gel without additional treatment (monitored by TLC), the reaction mixture was purified by flash column chromatography on silica gel without additional treatment (by TLC), the reaction mixture was purified by flash column chromatography on silica gel without additional treatment (hexanes:EtOAc = 10:1) to give pure product



Ethyl 2-Benzoyl-1-cyano-7-(4-fluorophenyl)-4-phenyl-2,3-diazabicyclo[4.1.0]hept-3-ene-6-carboxylate (10f). 32.7 mg, 70% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.88 – 7.85 (comp, 2H), 7.78 – 7.65 (comp, 4H), 7.57 – 7.52 (m, 1H), 7.50 – 7.33 (comp, 5H), 7.12 (t, *J* = 8.7 Hz, 2H), 4.21 (d, *J* = 17.9 Hz, 1H), 4.15 – 3.89 (comp, 2H), 2.98 (s, 1H), 2.61 (d, *J* = 17.9 Hz, 1H), 0.96 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.3, 166.8, 162.8 (d, *J* = 247.7 Hz), 152.8, 134.7, 133.1, 131.9, 131.3 (d, *J* = 8.4 Hz), 130.9, 130.5, 129.0, 127.9, 126.9 (d, *J* = 3.1 Hz), 126.3, 115.9 (d, *J* = 21.7 Hz), 113.8, 62.9, 43.0, 36.3, 35.8, 26.5, 13.4; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>28</sub>H<sub>23</sub>FN<sub>3</sub>O<sub>3</sub> 468.1718, found 468.1719.



*Synthesis of 10q or 11*: To a 10-mL oven-dried round-bottom flask with a magnetic stirring bar, TBAF (31.4 mg, 1.2 equiv.) in THF was added to the solution of **8** (0.1 mmol) in THF (1.0 mL), and the reaction mixture was stirred for 10 min at 0 °C. When

the reaction was complete (monitored by TLC), the reaction mixture was purified by flash column chromatography on silica gel without additional treatment (hexanes:EtOAc = 5:1) to give deprotected products. Then,  $Cu(OAc)_2$  (1.0 mg, 5.0 mol %), deprotected products, and MeCN (2.0 mL) were added in sequence, and the reaction mixture was stirred at 80 °C overnight. When the reaction was complete (monitored by TLC), the reaction mixture was purified by flash column chromatography on silica gel without additional treatment (hexanes:EtOAc = 10:1) to give pure product



Ethyl 4-Cyano-3-(4-fluorophenyl)-8-oxatricyclo[3.2.1.02,4]oct-6-ene-2carboxylate (10q). 21.5 mg, 72% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.36 – 7.33 (comp, 2H), 7.04 (t, *J* = 8.6 Hz, 2H), 6.93 – 6.67 (comp, 2H), 5.21 (s, 1H), 5.11 (s, 1H), 4.00 (q, *J* = 7.1 Hz, 2H), 3.88 (s, 1H), 0.98 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 166.6, 162.4 (d, *J* = 247.2 Hz), 140.2, 137.7, 130.3 (d, *J* = 8.2 Hz), 128.5 (d, *J* = 3.2 Hz), 116.7, 115.6 (d, *J* = 21.7 Hz), 79.9, 79.2, 61.8, 48.7, 42.3, 33.4, 13.8; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>15</sub>FNO<sub>3</sub> 300.1030, found 300.1029.



Ethyl 2b-Cyano-1-methylhexahydrodicyclopropa[*cd*,*gh*]pentalene-1a(1*H*)carboxylate (11a). 18.9 mg, 81% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 4.22 – 3.91 (comp, 2H), 3.02 (q, *J* = 6.9 Hz, 1H), 2.48 (dd, *J* = 6.2, 3.8 Hz, 1H), 2.37 (dd, *J* = 6.2, 3.8 Hz, 1H), 2.32 – 2.24 (m, 1H), 2.19 (d, *J* = 13.5 Hz, 1H), 2.10 – 1.93 (comp, 2H), 1.29 – 1.21 (comp, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.9, 120.4, 60.9, 40.6, 36.7, 33.6, 33.5, 32.3, 31.0, 26.5, 26.1, 14.4, 13.5; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>13</sub>H<sub>16</sub>NO<sub>2</sub> 218.1176, found 218.1177.



Ethyl 2b-Cyano-1-(4-fluorophenyl)hexahydrodicyclopropa[*cd*,*gh*]pentalene-1a(1*H*)-carboxylate (11f). 25.7 mg, 82% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.50 – 7.41 (comp, 2H), 7.07 – 6.97 (comp, 2H), 4.33 (s, 1H), 4.17 – 4.04 (comp, 2H), 2.63 (dd, *J* = 6.3, 3.9 Hz, 1H), 2.59 – 2.53 (m, 1H), 2.50 (dd, *J* = 6.3, 3.9 Hz, 1H), 2.19 – 2.09 (m, 1H), 1.98 (t, *J* = 2.5 Hz, 1H), 1.16 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.4, 162.0 (d, *J* = 245.6 Hz), 133.1 (d, *J* = 3.2 Hz), 129.1 (d, *J* = 7.9 Hz), 120.7, 115.5 (d, *J* = 21.3 Hz), 61.3, 44.0, 40.5, 34.0, 33.7, 33.5, 32.1, 26.3, 26.0, 14.3; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>17</sub>FNO<sub>2</sub> 298.1238, found 298.1242.



Ethyl 2b-Cyano-1-(3-(trifluoromethyl)phenyl)hexahydrodicyclopropa[*cd*,*gh*]pentalene-1a(1*H*)-carboxylate (11g). 28.7 mg, 79% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.77 – 7.74 (comp, 2H), 7.59 – 7.48 (comp, 2H), 4.42 (s, 1H), 4.22 – 4.08 (comp, 1H), 2.71 – 2.67 (m, 1H), 2.64 – 2.54 (comp, 2H), 2.21 (t, *J* = 5.2 Hz, 1H), 2.03 (t, *J* = 4.2 Hz, 1H), 2.00 – 1.95 (m, 1H), 1.19 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.2, 138.5, 131.2, 129.2, 126.2 (q, *J* = 272.3 Hz), 126.0, 124.3 (q, *J* = 3.7 Hz), 120.4, 61.4, 44.5, 40.3, 34.0, 33.8, 33.5, 32.1, 26.4, 25.8, 14.2; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>17</sub>F<sub>3</sub>NO<sub>2</sub> 348.1206, found 348.1205.



Phenethyl 2b-Cyano-1-methylhexahydrodicyclopropa[*cd*,*gh*]pentalene-1a(1*H*)carboxylate (11j). 24.7 mg, 80% yield, >20:1 *dr*, colorless oil; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 7.37 – 7.28 (comp, 2H), 7.25 – 7.14 (comp, 3H), 4.38 – 4.16 (comp, 2H), 3.00 – 2.96 (m, 1H), 2.91 (t, *J* = 6.8 Hz, 2H), 2.46 (dd, *J* = 6.1, 3.8 Hz, 1H), 2.31 (dd, J = 6.3, 3.8 Hz, 1H), 2.27 – 2.20 (m, 1H), 2.17 (d, J = 13.6 Hz, 1H), 2.09 – 1.92 (comp, 1H), 1.20 (d, J = 6.9 Hz, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) ( $\delta$ , ppm) 170.8, 137.8, 129.0, 128.7, 126.8, 120.3, 65.4, 40.5, 36.6, 35.2, 33.7, 32.3, 31.0, 26.5, 26.1, 13.4; HRMS (ESI Q-TOF) m/z: [M+H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>20</sub>NO<sub>2</sub> 294.1489, found 294.1490.

# NMR Analysis of Compound 11f:



Figure S1. HMBC NMR spectra of 11f.



Figure S2. HMBC NMR spectra of 11f.


















Ph

CO<sub>2</sub>Et

3e

Мe























140 130 120 110 100 90 80 f1 (ppm) 180 170 160 





















































## 











100 90 f1 (ppm) 





S71




















170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)



S80

































## 









12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-1900 12-19000 12-1900 



## **Crystallographic Data for Compound 3i**



Figure S3. ORTEP drawing of 3i showing thermal ellipsoids at the 50% probability level.

## **Crystallographic Data for Compound 8k**



8k (CCDC: 2346068)

**Figure S4**. ORTEP drawing of **8k** showing thermal ellipsoids at the 50% probability level.

Single crystals of  $C_{26}H_{35}NO_3Si(\mathbf{8k})$  were prepared by slow evaporation of a dicholormethane/hexane solution. A suitable colorless plate-like crystal, with dimensions of 0.121 mm × 0.071 mm × 0.061 mm, was mounted in paratone oil onto a nylon loop. Single crystals of  $C_{35}H_{41}N_3O_4Si(\mathbf{3i})$  were prepared by slow evaporation of a dicholormethane/hexane solution. A suitable colorless plate-like crystal, with dimensions of 0.139 mm × 0.093 mm × 0.062 mm, was mounted in paratone oil onto a nylon loop. All data were collected at 100.0(1) K and 298(1) K for compounds 1 and 2 respectively, using a XtaLAB Synergy/ Dualflex, HyPix fitted with CuK $\alpha$  radiation ( $\lambda = 1.54184$  Å). Data collection and unit cell refinement were performed using *CrysAlisPro* software.<sup>3</sup> The total number of data were measured in the 5.0° < 20 < 153.4° and 5.4° < 20 < 153.7° for compounds (1) and (2) respectively, using  $\omega$  scans. Data processing and absorption correction, giving minimum and maximum transmission factors (0.796, 1.000 for compound (1), 0.007, 0.117 for compound (2)) were accomplished with *CrysAlisPro*<sup>3</sup> and *SCALE3 ABSPACK*,<sup>4</sup> respectively. The structure,

using Olex2,<sup>5</sup> was solved with the ShelXT<sup>6</sup> structure solution program using direct methods and refined (on  $F^2$ ) with the ShelXL<sup>7</sup> refinement package using full-matrix, least-squares techniques. All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atom positions were determined by geometry and refined by a riding model.

| Identification<br>code              | Hpd842(8k)                                         | Hpd873(3i)                                                       |
|-------------------------------------|----------------------------------------------------|------------------------------------------------------------------|
| Empirical formula                   | C <sub>26</sub> H <sub>35</sub> NO <sub>3</sub> Si | C <sub>35</sub> H <sub>41</sub> N <sub>3</sub> O <sub>4</sub> Si |
| Formula weight                      | 437.64                                             | 595.80                                                           |
| Crystal system                      | Triclinic                                          | Triclinic                                                        |
| Space group                         | P-1                                                | P-1                                                              |
| <i>a</i> (Å)                        | 6.0332(1)                                          | 14.0714(2)                                                       |
| <i>b</i> (Å)                        | 11.3990(3)                                         | 14.8588(2)                                                       |
| <i>c</i> (Å)                        | 17.7451(3)                                         | 16.3784(2)                                                       |
| α (°)                               | 84.659 (2)                                         | 90.572(1)                                                        |
| β (°)                               | 88.405(2)                                          | 92.785(1)                                                        |
| γ (°)                               | 83.737(2)                                          | 107.376(1)                                                       |
| Volume (Å <sup>3</sup> )            | 1207.63(4)                                         | 3263.25(8)                                                       |
| Z                                   | 2                                                  | 4                                                                |
| ρ (calc.)                           | 1.204                                              | 1.213                                                            |
| λ                                   | 1.54184                                            | 1.54184                                                          |
| Temp. (K)                           | 100.0(1)                                           | 100.0(1)                                                         |
| F(000)                              | 472                                                | 1272                                                             |
| μ (mm <sup>-1</sup> )               | 1.062                                              | 0.966                                                            |
| $T_{min}, T_{max}$                  | 0.796, 1.000                                       | 0.007, 0.117                                                     |
| 2θ <sub>range</sub> (°)             | 5.0 to 153.4                                       | 5.4, 153.7                                                       |
| Reflections collected               | 22726                                              | 60696                                                            |
| Independent                         | 4794                                               | 23211                                                            |
| reflections                         | [R(int) = 0.0373]                                  | [R(int) = 0.1006]                                                |
| Completeness                        | 99.9%                                              | 99.8%                                                            |
| Data / restraints / parameters      | 4794 / 0 / 286                                     | 23211 / 0 / 788                                                  |
| Observed data<br>$[I > 2\sigma(I)]$ | 4388                                               | 20241                                                            |
| $wR(F^2 \text{ all data})$          | 0.0924                                             | 0.1432                                                           |
| R(F  obsd data)                     | 0.0341                                             | 0.0669                                                           |

Table S1: Crystallographic data and structure refinement for Compounds 8k and 3i

| Goodness-of-fit<br>on <i>F</i> <sup>2</sup>         | 0.992        | 1.002        |
|-----------------------------------------------------|--------------|--------------|
| largest diff. peak<br>and hole (e Å <sup>-3</sup> ) | 0.29 / -0.30 | 0.90 / -0.57 |

$$wR_{2} = \{ \Sigma [w(F_{0}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}] \}^{1/2}$$
$$R_{1} = \Sigma ||F_{0}| - |F_{c}|| / \Sigma |F_{0}|$$

## **References**:

1. (a) M. Bao, L. De Angeles, M. S. Rada, M. Baird, H. Arman, D. Wherritt and M. P.

Doyle, Chem. Catal., 2023, 3, 100770; (b) H. Zheng, K. Wang, I. Faghihi, W. P. Griffith,

H. Arman and M. P. Doyle, ACS Catal., 2021, 11, 9869-9874.

2. Y. Deng, C. Pei, H. Arman, K. Dong, X. Xu and M. P. Doyle, *Org. Lett.*, 2016, **18**, 5884-5887.

3. CrysAlisPro 1.171.40.63a (Rigaku Oxford Diffraction, 2019)

4. SCALE3 ABSPACK -An Oxford Diffraction program(1.0.4,gui:1.0.3) (C) 2005 Oxford Diffraction Ltd.

5. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann,

J. Appl. Cryst., 2009, 42, 339-341.

6. G. M. Sheldrick, Acta Cryst., 2015, A71, 3.

7. G. M. Sheldrick, Acta Cryst., 2008, A64, 112.