Supporting Information

Photocatalytic deuterocarboxylation of alkynes with oxalate

Pei Xu,[†] Hao-Qiang Jiang,[†] Hui Xu,[†] Sai Wang, Hui-Xian Jiang, Song-Lei Zhu, Long Yin,* Dong Guo,* Xu Zhu*

Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University 209 Tongshan Road, Xuzhou 221004, China

Email: longyin@xzhmu.edu.cn; guo@xzhmu.edu.cn; xuzhu@xzhmu.edu.cn

Table of Contents

1. General information	S2
2. Optimization of the reaction conditions	S2
3. Synthesis of substrates	S5
4. Derivatives	S17
5. The application of the reaction	S31
5.1 TMS-protected alkynes	S31
5.2 Synthesis of the deuterated analogue of nandrolone phenylpropiona	i te S32
6. Control experiments	S34
6.1 Unactivated alkynes	S34
6.2 Under CO ₂ atmosphere with H ₂ O	S35
6.3 TEMPO trapping experiment	S36
6.4 Cinnamic acid experiment	S37
6.5 Stern-Volmer fluorescence quenching analysis	S38
7. References	S39
8. NMR spectra	S40

1. General information

¹H NMR (400 MHz) spectra, ¹³C NMR (100 MHz) spectra, and ¹⁹F NMR (376 MHz) spectra were recorded on a JEOL ECZ400 (400 MHz) spectrometers in CDCl₃, CD₃OD or DMSO-*d*₆. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, t = triplet of doublet, ddd = doublet of doublet of doublet, sep = septet, m = multiplet, br = broad. Flash column chromatography was performed using Nuo Tai silica gel (Size: 200-300) with distilled solvents. High Resolution mass spectra were obtained from the Xuzhou Medical University Mass Spectral facility: Agilent G6550A Q-TOF (ESI).

All reactions were set up on the bench top and conducted under carbon dioxide or nitrogen atmosphere while subject to irradiation from blue LEDs (Xuzhou Aijia Electronic Technology Co., Ltd, AC220V, 45 W, λ max = 450 nm). The material of the irradiation vessel is borosilicate glass. The distance from the light source to the irradiation vessel is 2 cm. Reagents, solvents, and photocatalysts were purchased from various vendors and used as received, unless stated otherwise. Thin-layer chromatography (TLC) was performed on 0.2-0.3 mm SiliCycle silica gel F-254 plates.

2. Optimization of the reaction conditions

General procedure A:

An oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with the substrate (0.2 mmol), (nBu_4N)₂C₂O₄ (3.0 equiv or 4.0 equiv or 6.0 equiv), 4DPAIPN (3.2 mg, 0.004 mmol, 2 mol%). The tube was filled with nitrogen. Then D₂O (15.0 equiv or 30.0 equiv) and anhydrous DMF (2 mL) were added. Finally, the Schlenk tube was placed under the 45 W blue LED (wavelength: 450 nm) at the distance of 3-4 cm and stirred at room temperature for 8-57 hours. After completion of the reaction, the reaction mixture was diluted with water (30 mL) and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with water and brine before dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by

silica gel flash chromatography (petroleum ether/ EtOAc $10/1 \sim 2/1$) to give the pure desired product.

	H He 1a He (x eq) ₂ C ₂ O ₄ + D ₂ O ─ si uiv.) (y equiv.) ^N	PC (z r olvent (2 n N ₂ , r.t., 450	nol%) nL), time,) nm LED	1e	β 2a	ОН	
Entry	PC (mol%)	Oxalate (equiv.)	D ₂ O (equiv.)	Solvent (anhydrous)	Time (h)	Yield (%) ^a	D conten α	<u>t (%)</u> of 2a β
1	Tris(2-phenylpyridine)iridium(III) (1)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (5)	28	DMF	12	68	80	75
2	lr[df(CF ₃)ppy] ₂ (dtbby)PF ₆ (1)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (5)	28	DMF	12	65	86	69
3	4CzIPN (1)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (5)	28	DMF	12	0		
4	4DPAIPN (1)	$(nBu_4N)_2C_2O_4(5)$	28	DMF	12	80	90	95
5	EosinB (1)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (5)	28	DMF	12	0		
6	-	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (5)	28	DMF	12	0		
7	4DPAIPN (0.5)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (5)	28	DMF	12	81	87	93
8	4DPAIPN (2)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (5)	28	DMF	12	89	85	93
9	4DPAIPN (2)	(NH ₄) ₂ C ₂ O ₄ (5)	28	DMF	12	0		
10	4DPAIPN (2)	Na ₂ C ₂ O ₄ (5)	28	DMF	12	0		
11	4DPAIPN (2)	H ₂ C ₂ O ₄ (5)	28	DMF	12	0		
12	4DPAIPN (2)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (2)	28	DMF	12	50	89	95
13	4DPAIPN (2)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (3)	28	DMF	12	91	88	94
14	4DPAIPN (2)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (3)	5	DMF	12	21	65	76
15	4DPAIPN (2)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (3)	8	DMF	12	91	75	86
16	4DPAIPN (2)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (3)	10	DMF	12	99	82	89
17	4DPAIPN (2)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (3)	15	DMF	12	91	86	94
18	4DPAIPN (2)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (3)	20	DMF	12	94	85	92
19	4DPAIPN (2)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (3)	30	DMF	12	92	88	94
20	4DPAIPN (2)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (3)	15	DMSO	12	85	82	78
21	4DPAIPN (2)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (3)	15	DMA	12	96	85	89
22	4DPAIPN (2)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (3)	15	THF	12	83	83	89
23	4DPAIPN (2)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (3)	15	DMF	4	72	86	93
24	4DPAIPN (2)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (3)	15	DMF	8	91(85) ^b	89	94
25	4DPAIPN (2)	(<i>n</i> Bu ₄ N) ₂ C ₂ O ₄ (3)	15	DMF	8	0 ^c	89	94

Table S1A. Screening table of the alkyne with oxalate.

^[a]Yields were determined by ¹HNMR using 1, 2-dichloroethane as an internal standard. ^[b]Isolated yield. ^[c] In dark.

Large scale reaction procedure:

An oven-dried Schlenk tube (100 mL) containing a stirring bar was charged with the substrate (0.44 mL, 4 mmol, 1.0 equiv), $(nBu_4N)_2C_2O_4$ (6.88 g, 12 mmol, 3.0 equiv), 4DPAFIPN (63.8 mg, 0.08 mmol, 2 mol%). The tube was filled with nitrogen gas. Then D₂O (1.09 mL, 60 mmol, 15.0 equiv) and anhydrous DMF (2 mL) were added. Finally, the Schlenk tube was placed under the 45 W blue LED (wavelength: 450 nm) at the distance of 3-4 cm and stirred at room temperature for 12 hours. After completion of the reaction, the reaction mixture was diluted with water (60 mL) and extracted with EtOAc (3 x 60 mL). The combined organic layers were washed with water and brine before dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (petroleum ether/ EtOAc 5/1) to give the pure desired product.

Figure S1. Standard setup for large scale reaction.

3. Synthesis of substrates

The scope of various alkynes and dienes.

Figure S2. The scope of various alkynes.

Substrates 1a, 1b, 1c, 1d, 1f, 1g, 1h, 1i, 1o, 1p, 1aa, 1ac, 1ad, 1am, 1ao, and 1ap were purchased from commercial sources.

General procedure A: substrates 1e, 1j-1n were synthesized following the reported procedures in the literature.^[1]

To a 50 mL round-bottom flask was added aryl halides **S1** (5.0 mmol), Pd(PPh₃)Cl₂ (351.0 mg, 0.25 mmol, 0.05 equiv) and CuI (190.5 mg, 0.5 mmol, 0.1 equiv), then add DMF (20 mL), triethylamine (2.1 mL, 15.0 mmol, 4.0 equiv) and trimethylsilylacetylene **S2** (0.9 mL, 6.5 mmol, 1.3 equiv) was added under nitrogen atmosphere. The resulting solution was stirred at room temperature for 12 hours, extracted with DCM (40 mL x 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on a silica gel using petroleum ether or petroleum ether and EtOAc (100:1-50:1, v/v) as the eluent to give corresponding intermediates **S3**.

To a 50 mL round-bottom flask was added the solution of corresponding intermediates S3 (2.0 mmol) in MeOH or MeOH/THF (1:1) (15 mL). The mixture was stirred at room temperature and K₂CO₃ (552.8 mg, 4.0 mmol, 2.0 equiv) was added. The resulting solution was stirred at room temperature for 8-24 hours, solvent was removed under reduced pressure and extracted with EtOAc (20 mL x3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on a silica gel using petroleum ether or petroleum ether and EtOAc (100:1-50:1, v/v) as the eluent to give product 1e, 1j-1n.

General procedure B: substrates 1q and 1r were synthesized following the reported procedures in the literature.^[2]

$$R^{1}OH + R^{2}OH + COH DCC (2.0 equiv) ODMAP (0.1 equiv) ODMAP$$

To a 50 mL round-bottom flask was added substituted alcohol S4 (3.0 mmol), alkyne acid S5 (3.6 mmol, 1.2 equiv), DCC (1.24 g, 6.0 mmol, 2.0 equiv) and DMAP (36.7 mg, 0.3 mmol, 0.1 equiv) then add dry DCM (15 mL). The resulting solution was stirred at room temperature for 9 hours, extracted with DCM (20 mL x 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on a silica gel using petroleum ether and EtOAc (100:1-50:1, v/v) as the eluent to give product 1q, 1r.

General procedure C: substrates 1ab, 1ae-1an were synthesized following the reported procedures in the literature.^[1]

$$R^{2} + R^{1}I \xrightarrow{Pd(PPh_{3})_{2}Cl_{2} (5mol\%) \\ Cul (10mol\%) \\ Et_{3}N (4.0 equiv) \\ DMF, N_{2}, r.t. - 50 \ ^{\circ}C \\ R^{1} \\ R^{1} \\ R^{2} \\ R^{1} \\ I \\ R^{2} \\ R^{2} \\ R^{1} \\ R^{2} \\ R^$$

To a 50 mL round-bottom flask was added aryl alkynes **S6** (3.0 mmol), aryl iodide **S7** (3.6 mmol, 1.2 equiv), Pd(PPh₃)Cl₂ (105.3 mg, 0.15 mmol, 0.05 equiv) and CuI (57.1 mg, 0.3 mmol, 0.1 equiv), then add DMF (15 mL), triethylamine (1.7 mL, 12.0 mmol, 4.0 equiv) under nitrogen atmosphere. The resulting solution was stirred at room temperature for 12 hours, extracted with DCM (20 mL x 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on a silica gel using petroleum ether or petroleum ether and EtOAc (100:1-50:1, v/v) as the eluent to give product **1ab**, **1ae-1an**.

General procedure D: substrates **1k** were synthesized following the reported procedures in the literature.^[3]

To an oven-dried 50 mL round-bottom flask was added 2-iodoaniline **S8** (10.0 mmol) in dry MeCN (25 mL) under nitrogen atmosphere, CsF (3.03 g, 20.0 mmol, 2.0 equiv), stirred at room temperature for 1 hour, then add 2-(Trimethylsilyl)phenyl trifluoromethanesulfonate (2.7 mL, 11.2 mmol, 1.12 equiv). The resulting solution was stirred at room temperature for 24 hours, extracted with EtOAc (40 mL x 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on a silica gel using petroleum ether and EtOAc (100:1-50:1, v/v) as the eluent to give corresponding intermediates **S10**, then through general procedure A to give product **1k**.

General Procedure E: substrates **1j** were synthesized following the reported procedures in the literature.^[4]

To a 50 mL round-bottom flask was added 2-iodoaniline **S8** (10.0 mmol), Pd(PPh₃)Cl₂ (351.0 mg, 0.5 mmol, 0.05 equiv) and CuI (190.5 mg, 1 mmol, 0.1 equiv), then add trimethylsilylacetylene **S2** (1.8 mL, 13 mmol, 1.3 equiv), dry DMF (25 mL), triethylamine (5.6 mL, 40.0 mmol, 4.0 equiv) under nitrogen atmosphere. The resulting solution was stirred at room temperature for 24 hours, then extracted with DCM (40 mL x 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on a silica gel using petroleum ether and EtOAc (100:1-10:1, v/v) as the eluent to give corresponding intermediates **S11**.

To a 50 mL round-bottom flask was added the solution of corresponding intermediates **S11** (5.0 mmol), benzaldehyde (0.6 mL, 6.0 mmol, 1.2 equiv) in HOAc

(15 mL). The mixture was stirred at 0 °C and NaBH₄ (0.38 g, 6.0 mmol, 2.0 equiv) was added. The resulting solution was stirred at room temperature for 3 hours, followed by the addition of NaOH (1M, 10 mL) to quench excess acetic acid, extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on a silica gel using petroleum ether or petroleum ether and EtOAc (100:1-50:1, v/v) as the eluent to give corresponding intermediates **S12**.

To a 50 mL round-bottom flask was added the solution of corresponding intermediates **S12** (5.0 mmol) in MeOH (15 mL). The mixture was stirred at room temperature, and K₂CO₃ (1.4 g, 10.0 mmol, 2.0 equiv) was added. The resulting solution was stirred at room temperature for 12 hours and solvent was removed under reduced pressure and extracted with EtOAc (3 x 40 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography on a silica gel using petroleum ether or petroleum ether and EtOAc (100:1-50:1, v/v) as the eluent to give corresponding compounds **1**j.

General procedure F: substrates **1n** were synthesized following the reported procedures in the literature.^[5]

To an oven-dried 50 mL round-bottom flask was added NaH (0.24 g, 6.5 mmol, 1.3 equiv, 60% dispersion in mineral oil,) under nitrogen atmosphere, then dropwise add 5-iodo-1*H*-indole **S13** (1.2 g, 5.0 mmol, 1.0 equiv) in THF (10 mL) at 0 °C. The mixture was stirred at 0 °C for 10 min, iodomethane (1.3 mL, 20.0 mmol, 4.0 equiv) was added. After 4 h, the reaction mixture was cooled to 0 °C, quenched with water (10 mL), extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was

purified by flash chromatography on a silica gel using petroleum ether or petroleum ether and EtOAc (50:1-10:1, v/v) as the eluent to give corresponding intermediates **S14**.

To a 50 mL round-bottom flask was added 5-iodo-1-methyl-1*H*-indole **S15** (5.0 mmol), Pd(PPh₃)Cl₂ (351.0 mg, 0.25 mmol, 0.05 equiv) and CuI (190.5 mg, 0.5 mmol, 0.1 equiv), then add DMF (20 mL), triethylamine (2.1 mL, 15.0 mmol, 4.0 equiv) under nitrogen atmosphere. The mixture was stirred at room temperature and trimethylsilylacetylene **S2** (0.9 mL, 6.5 mmol, 1.3 equiv) was added slowly under nitrogen atmosphere. The resulting solution was stirred at 80 °C for 24 hours, extracted with DCM (40 mL x 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on a silica gel using petroleum ether or petroleum ether and EtOAc (10:1-5:1, v/v) as the eluent to give corresponding intermediates **S15**.

To a 25 mL round-bottom flask was added 1-methyl-5-((trimethylsilyl)ethynyl)-1*H*indole **S15** (2.2 mmol) dissolved in THF (7 mL), then add TBAF (3.5 mL, 3.5 mmol, 3.6 equiv). The mixture was stirred at room temperature for 20 hours. The reaction extracted with EtOAc (20 mL x 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on a silica gel using petroleum ether or petroleum ether and EtOAc (50:1, v/v) as the eluent to give product **1n**.

General procedure G: substrates 4 and 5 were synthesized following the reported procedures in the literature.^[1]

To a 50 mL round-bottom flask was added aryl iodide **S16** (5.0 mmol), Pd(PPh₃)Cl₂ (175.5 mg, 0.25 mmol, 0.05 equiv) and CuI (95.2 mg, 0.5 mmol, 0.1 equiv), then add trimethylsilylacetylene **S2** (0.91 mL, 6.5 mmol, 1.3 equiv), dry DMF (15 mL), triethylamine (1 mL, 7.5 mmol, 4.0 equiv) under nitrogen atmosphere. The resulting

solution was stirred at room temperature for 24 hours, then extracted with DCM (40 mL x 3). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on a silica gel using petroleum ether and EtOAc (100:1-10:1, v/v) as the eluent to give product **4**, **5**.

General procedure H: Synthesis of tetrabutylammonium oxalate

To a 50 mL round-bottom flask was added oxalic acid (10 mmol) and tetrabutylammonium hydroxide hydrate (1:1 molar ratio). The mixture was stirred at room temperature for 5 hours before remove the solvent under reduced pressure to give the desired product as white solid in quantitative yield.

2-ethynyl-1,3,5-trimethylbenzene (1e): Prepared according to general procedure A from 2-iodo-1,3,5-trimethylbenzene and trimethylsilylacetylene. The spectra matched with reported literature.^[6]

¹H NMR (400 MHz, CDCl₃) δ 7.05 (s, 2H), 3.64 (s, 1H), 2.60 (s, 6H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 138.2, 127.7, 119.1, 84.7, 81.5, 21.4, 21.0.

√HBn

N-benzyl-2-ethynylaniline (1j): Prepared according to general procedure E from 2iodoaniline and trimethylsilylacetylene. The spectra matched with reported literature.^[4] **1H NMR (400 MHz, CDCl₃)** δ 7.60 – 7.51 (m, J = 2.4 Hz, 5H), 7.490 – 7.454 (m, 1H), 7.36 (t, J = 7.2 Hz, 1H), 6.83 (t, J = 6.4 Hz, 1H), 6.76 (d, J = 7.6 Hz, 1H), 5.29 (s, 1H), 4.60 (s, 2H), 3.59 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ149.4, 139.0, 132.8, 130.5, 128.8, 127.3, 127.2, 116.5, 110.0, 106.3, 83.2, 80.9, 47.7.

2-ethynyl-N-phenylaniline (1k): Prepared according to general procedure D from 2-

iodoaniline and trimethylsilylacetylene. The spectra matched with reported literature.^[3] ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.41 (m, 1H), 7.36 – 7.29 (m, 2H), 7.23 – 7.16 (m, 4H), 7.06 – 7.01 (m, 1H), 6.80 – 6.76 (m, 1H), 6.46 (brs, 1H), 3.46 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 139.9, 131.6, 128.4, 127.9, 121.2, 118.9, 117.5, 111.8, 107.4, 82.3, 79.1.

3-ethynylthiophene (11): Prepared according to general procedure A from 3bromothiophene and trimethylsilylacetylene. The spectra matched with reported literature.^[7]

¹**H NMR (400 MHz, CDCl₃)** δ 7.52 (dd, J = 3.6, 1.2 Hz, 1H), 7.28 – 7.26 (m, 1H), 7.15 (dd, J = 5.2, 1.2 Hz, 1H), 3.04 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ130.2, 130.1, 125.4, 121.5, 78.9, 77.0.

5-ethynyl-1*H***-indole (1m):** Prepared according to general procedure A from 5-iodo-1*H*-indole and trimethylsilylacetylene. The spectra matched with reported literature.^[8] **¹H NMR (400 MHz, CDCl₃)** δ 8.21 (brs, 1H), 7.83 (s, 1H), 7.33 (s, 2H), 7.23 (d, *J* = 3.2 Hz, 1H), 6.55 (s, 1H), 2.99 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 135.7, 127.7, 126.0, 125.3(9), 125.3(6), 113.1, 111.3, 102.9, 85.5, 74.9.

Mé

5-ethynyl-1-methyl-1*H***-indole (1n):** Prepared according to general procedure F from 5-iodo-1-methyl-1*H***-indole, iodomethane and trimethylsilylacetylene.** The spectra matched with reported literature.^[9]

¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.35 (dd, J = 8.4, 1.6 Hz, 1H), 7.27 – 7.25 (m, 1H), 7.07 (d, J = 3.2 Hz, 1H), 6.47 (d, J = 2.8 Hz, 1H), 3.79 (s, 3H), 3.00 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 136.7, 130.0, 128.3, 125.6, 112.7, 109.4, 100.4, 85.6, 74.7, 33.1.

(2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl 3-ethynylbenzoate (1q): Prepared according to general procedure B from (1*S*,2*R*,5*S*)-2-isopropyl-5-methylcyclohexan-1-ol and 3-ethynylbenzoic acid.

¹**H NMR (400 MHz, CDCl₃)** δ 8.15 (s, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 4.94 (t, J = 10.6 Hz, 1H), 3.13 (s, 1H), 2.11 (d, J = 12.0 Hz, 1H), 1.96 – 1.91 (m, 1H), 1.73 (d, J = 12.0 Hz, 2H), 1.56 (s, 2H), 1.18 – 1.06 (m, 2H), 0.94 – 0.91 (m, 7H), 0.79 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.3, 136.1, 133.2, 131.2, 129.9, 128.5, 122.6, 82.8, 78.2, 75.2, 47.3, 41.0, 34.4, 31.5, 26.5, 23.6, 22.1, 20.9, 16.5.

HRMS (ESI-TOF): m/z Calcd. For C₁₉H₂₄O₂Na: (M+Na)⁺ 307.1669. Found: 307.1679.

(1*S*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4-ethynylbenzoate (1r): Prepared according to general procedure B from L(-)-borneol and 4-ethynyl-benzoic acid. The spectra matched with reported literature.^[2]

¹**H NMR (400 MHz, CDCl₃)** δ 8.15 (s, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.43 – 7.39 (m, 1H), 5.01 – 4.89 (t, J = 10.4 Hz, 1H), 3.13 (s, 1H), 2.11 (d, J = 12.0 Hz, 1H), 1.96 – 1.92 (m, 1H), 1.73 (d, J = 12.0 Hz, 2H), 1.19 – 1.04 (m, 2H), 0.94 – 0.90 (m, 6H), 0.79 (d, J = 4.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ166.2, 132.1, 130.9, 129.5, 126.7, 83.0, 80.9, 80.1, 49.2, 48.0, 45.0, 37.0, 28.2, 27.5, 19.8, 19.0, 13.7.

(cyclohexylethynyl)benzene (1ab): Prepared according to general procedure C from cyclohexylacetylene and iodobenzene. The spectra matched with reported literature.^[10] ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.32 (m, 2H), 7.24 – 7.16 (m, 3H), 2.59 – 2.52 (m, 1H), 1.88 – 1.81 (m, 2H), 1.76 – 1.68 (m, 2H), 1.57 – 1.43 (m, 3H), 1.36 – 1.23 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 131.3, 127.8, 127.1, 124.0, 94.0, 80.5, 32.5, 29.4, 25.7, 24.6.

4-(hex-1-yn-1-yl)-1,1'-biphenyl (1ae): Prepared according to general procedure C

from 1-hexyne and 4-iodobiphenyl. The spectra matched with reported literature.^[11] ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.6 Hz, 2H), 7.48 – 7.43 (m, 4H), 7.37 (t, J = 7.2 Hz, 2H), 7.30 – 7.26 (m, 1H), 2.44 (t, J = 7.2 Hz, 2H), 1.66 – 1.58 (m, 2H), 1.55 – 1.45 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ140.5, 140.2, 132.0, 128.9, 127.5, 127.0, 126.9, 123.2, 91.2, 80.6, 30.9, 22.1, 19.3, 13.8.

4-(3,3-dimethylbut-1-yn-1-yl)-1,1'-biphenyl (1af): Prepared according to general procedure C from 3,3-dimethyl-1-butyne and 4-iodobiphenyl. The spectra matched with reported literature.^[10]

¹**H NMR (400 MHz, CDCl₃)** δ 7.51 (d, J = 7.2 Hz, 2H), 7.44 (m, 4H), 7.40 – 7.32 (m, 2H), 7.30 – 7.24 (m, 1H), 1.32 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ140.6, 140.2, 132.1, 128.9, 127.5, 127.0, 126.9, 123.2, 99.3, 79.1, 31.2, 28.1.

4-(4-phenylbut-1-yn-1-yl)-1,1'-biphenyl (1ag): Prepared according to general procedure C from 4-phenyl-1-butyne and 4-iodobiphenyl. The spectra matched with reported literature.^[12]

¹**H NMR (400 MHz, CDCl₃)** δ 7.49 (d, J = 7.6 Hz, 2H), 7.46 – 7.38 (m, 4H), 7.33 (t, J = 8.0 Hz, 2H), 7.22 (m, 6H), 2.86 (t, J = 7.6 Hz, 2H), 2.63 (t, J = 7.6 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ140.7, 140.4, 140.3, 132.0, 128.8, 128.6, 128.4, 127.5, 127.0, 126.9, 126.4, 122.9, 90.4, 81.4, 35.2, 21.8.

7-([1,1'-biphenyl]-4-yl)hept-6-yn-1-ol (1ah): Prepared according to general procedure C from 5-hexyn-1-ol and 4-iodobiphenyl.

¹**H NMR (400 MHz, CDCl₃)** δ 7.58 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H), 7.49 – 7.40 (m, 4H), 7.34 (t, J = 7.2 Hz, 1H), 3.69 (t, J = 6.4 Hz, 2H), 2.46 (t, J = 6.8 Hz, 2H), 1.69 – 1.61 (m, 4H), 1.60 – 1.52 (m, 2H), 1.26 (brs, 1H).

¹³C NMR (100 MHz, CDCl₃) *δ*140.3, 140.2, 132.0, 128.8, 127.4, 126.9, 126.8, 122.9, 90.9, 80.7, 62.5, 32.1, 28.5, 25.1, 19.4.

HRMS (ESI-TOF): m/z Calcd. For C₁₉H₂₁O: (M+H)⁺ 265.1587. Found: 265.1583.

6-([1,1'-biphenyl]-4-yl)hex-5-ynenitrile (1ai): Prepared according to general procedure C from 6-heptynenitrile and 4-iodobiphenyl. The spectra matched with reported literature.^[13]

¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.50 (m, 4H), 7.50 – 7.41 (m, 4H), 7.39 – 7.32 (m, 1H), 2.63 (t, *J* = 6.4 Hz, 2H), 2.58 (t, *J* = 7.2 Hz, 2H), 1.99 (p, *J* = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.7, 140.3, 132.0, 128.9, 127.6, 127.0, 122.2, 119.3, 87.7, 82.2, 24.6, 18.6, 16.2.

4-(hex-1-yn-1-yl)benzonitrile (1aj): Prepared according to general procedure C from 1-hexyne and 4-iodobenzonitrile. The spectra matched with reported literature.^[14] ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.51 (m, 2H), 7.48 – 7.40 (m, 2H), 2.43 (t, J = 6.8 Hz, 2H), 1. 63 – 1.55 (m, 2H), 1.52 – 1.42 (m, 2H), 0.95 (t, J = 7.2, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 131.9, 131.8, 129.0, 118.4, 110.7, 95.5, 79.3, 30.4, 21.9, 19.0, 13.4.

methyl 4-(hex-1-yn-1-yl)benzoate (1ak): Prepared according to general procedure C from 1-hexyne and Methyl 4-iodobenzoate. The spectra matched with reported literature.^[15]

¹**H NMR (400 MHz, CDCl₃)** δ 7.94 – 7.87 (m, 2H), 7.44 – 7.37 (m, 2H), 3.90 (s, 3H), 2.41 – 2.34 (m, 2H), 1.61 – 1.35 (m, 4H), 0.95 (t, *J* = 7.2, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 165.8, 131.1, 129.1, 128.7, 128.6, 93.4, 80.0, 51.5, 30.5, 21.8, 18.9, 13.3.

2-fluoro-1-(hex-1-yn-1-yl)-4-methylbenzene (1al): Prepared according to general procedure C from 1-hexyne and 3-fluoro-4-iodotoluene.

¹**H NMR (400 MHz, CDCl₃)** δ 7.26 (t, J = 7.6 Hz, 1H), 6.86 (d, J = 9.2 Hz, 2H), 2.44 (t, J = 7.2 Hz, 2H), 2.33 (s, 3H), 1.64 – 1.56 (m, 2H), 1.51 – 1.46 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.7 (d, J_{FC} = 248.5 Hz), 140.0 (d, J_{FC} = 7.7 Hz), 133.1 (d, J_{FC} = 2.3 Hz), 124.6 (d, J_{FC} = 3.3 Hz), 115.9 (d, J_{FC} = 20.9 Hz), 109.5 (d, J_{FC} = 15.8 Hz), 94.9 (d, J_{FC} = 3.3 Hz), 74.0, 30.8, 22.0, 21.2, 19.3, 13.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.5.

HRMS (ESI-TOF): m/z Calcd. For C₁₃H₁₄F: (M-H)⁺ 189.1085. Found: 189.1078.

1,2-di-*p*-tolylethyne (1an): Prepared according to general procedure C from 4ethynyltoluene and 4-iodotoluene. The spectra matched with reported literature.^[16] ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.0 Hz, 4H), 7.17 – 7.11 (d, J = 8.0 Hz, 4H), 2.36 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ138.3, 131.5, 129.2, 120.5, 89.0, 21.6.

([1,1'-biphenyl]-4-ylethynyl)trimethylsilane (4): Prepared according to general procedure G from 4-iodobiphenyl and trimethylsilylacetylene. The spectra matched with reported literature.^[17]

¹**H NMR (400 MHz, CDCl₃)** δ 7.59 (d, J = 7.6 Hz, 2H), 7.54 (s, 4H), 7.44 (t, J = 7.2 Hz, 2H), 7.36 (d, J = 6.8 Hz, 1H), 0.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 141.2, 140.3, 132.5, 128.9, 127.7, 127.1, 127.0, 122.1, 105.2, 94.9, 0.16.

MeS

trimethyl((4-(methylthio)phenyl)ethynyl)silane (5): Prepared according to general procedure G from 4-iodothioanisole and trimethylsilylacetylene. The spectra matched with reported literature.^[18]

¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 7.6 Hz, 2H), 7.15 (d, J = 7.6 Hz, 2H), 2.48 (s, 3H), 0.24 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 139.7, 132.3, 125.7, 119.5, 105.0, 94.3, 15.4, 0.12.

4. Derivatives

All reactions were conducted according to the general procedure with 0.2 mmol alkynes unless otherwise stated.

3-(*p***-tolyl)propanoic-2,2,3,3-***d***₄ acid (2a): Prepared according to general procedure using 1-ethynyl-4-methylbenzene (24.7 \muL, 0.2 mmol, 1.0 equiv) and (***n***Bu₄N)₂C₂O₄ (343.8 mg, 0.6 mmol, 3.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as white solid (28.6 mg, 85% yield).**

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.10 (s, 4H), 2.89 – 2.91 (m, 0.12H, **1.88D**), 2.63 – 2.65 (m, 0.23H, **1.77D**), 2.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 179.3, 137.1, 136.0, 129.4, 128.3, 35.6 – 35.1 (m, CD₂), 30.1 – 29.3 (m, CD₂), 21.2.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₀H₇D₄O₂⁻: 167.1016; found: 167.1023.

3-phenylpropanoic-2,2,3,3-*d*₄ acid (2b): Prepared according to general procedure using ethynylbenzene (21.9 μ L, 0.2 mmol, 1.0 equiv) and (*n*Bu₄N)₂C₂O₄ (343.8 mg, 0.6 mmol, 3.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as white solid (24.8 mg, 80% yield).

¹H NMR (400 MHz, CD₃OD) δ 7.28 – 7.13 (m, 5H). 2.8 – 2.87 (m, 0.14H, 1.86D), 2.57 – 2.55 (m, 0.26H, 1.74D).

¹³C NMR (100 MHz, CD₃OD) δ 176.8, 142.1, 129.5, 129.3, 127.2, 36.5 – 36.1 (m, CD₂), 31.5 – 30.7 (m, CD₂).

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₉H₅D₄O₂⁻: 153.0859; found: 153.0856.

3-([1,1'-biphenyl]-4-yl)propanoic-2,2,3,3- d_4 acid (2c): Prepared according to general procedure using 4-ethynyl-1,1'-biphenyl (35.6 mg, 0.2 mmol, 1.0 equiv) and (nBu_4N)₂C₂O₄ (343.8 mg, 0.6 mmol, 3.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as white solid (40.6 mg, 88% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.50 (m, 4H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.36 – 7.25 (m, 3H). 2.99 – 2.94 (m, 0.17H, **1.83D**), 2.71 – 2.69 (m, 0.22H, **1.78D**).

¹³C NMR (100 MHz, CDCl₃) δ 179.2, 141.0, 139.5, 139.3, 128.9, 128.8, 127.4, 127.3, 127.2, 35.7 – 34.7 (m, CD₂), 30.2 – 29.5 (m, CD₂).

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₅H₉D₄O₂⁻: 229.1172; found: 229.1173.

3-(4-methoxyphenyl)propanoic-2,2,3,3-*d*₄ acid (2d): Prepared according to general procedure using 1-ethynyl-4-methoxybenzene (25.9 mg, 0.2 mmol, 1.0 equiv) and $(nBu_4N)_2C_2O_4$ (343.8 mg, 0.6 mmol, 3.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as brown solid (27.4 mg, 74% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.12 (d, *J* = 8.8 Hz, 2H), 6.84 (d, *J* = 8.8 Hz, 2H), 3.79 (s, 3H), 2.89 – 2.87 (m, 0.17H, **1.83D**), 2.63 – 2.62 (m, 0.25H, **1.75D**).

¹³C NMR (100 MHz, CDCl₃) δ 179.3, 158.3, 132.3, 129.4, 114.1, 55.4, 35.9 – 35.4 (m, CD₂), 29.8 – 29.1 (m, CD₂).

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₀H₇D₄O₃⁻: 183.0965; found: 183.0974.

3-mesitylpropanoic-2,2,3,3-*d*⁴ **acid (2e):** Prepared according to general procedure using 2-ethynyl-1,3,5-trimethylbenzene (28.8 mg, 0.2 mmol, 1.0 equiv) and $(nBu_4N)_2C_2O_4$ (343.8 mg, 0.6 mmol, 3.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as brown solid (22.3 mg, 57% yield).

¹H NMR (400 MHz, CDCl₃) δ 6.85 (s, 2H), 2.95 – 2.93 (m, 0.07H, 1.93D), 2.48 – 2.46 (m, 0.22H, 1.78D), 2.30 (s, 6H), 2.25 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 179.7, 136.2, 135.9, 133.7, 129.2, 33.3 – 32.5 (m, CD₂), 24.2 – 23.5 (m, CD₂), 21.0, 19.7.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₂H₁₁D₄O₂⁻: 195.1329; found: 195.1337.

3-(4-cyanophenyl)propanoic-2,2,3,3-*d*₄ acid (2f): Prepared according to general procedure using 4-ethynylbenzonitrile (25.4 mg, 0.2 mmol, 1.0 equiv) and $(nBu_4N)_2C_2O_4$ (343.8 mg, 0.6 mmol, 3.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as

yellow solid (18.5 mg, 52% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.59 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 3.00 – 2.99 (m, 0.16H, **1.84D**), 2.70 – 2.68 (m, 0.24H, **1.76D**).

¹³C NMR (100 MHz, CDCl₃) δ 178.3, 145.7, 132.5, 129.3, 119.0, 110.5, 34.6 – 34.1 (m, CD₂), 30.1 – 29.6 (m, CD₂).

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₀H₄D₄NO₂⁻: 178.0812; found: 178.0807.

MeO₂C

3-(4-(methoxycarbonyl)phenyl)propanoic-2,2,3,3-*d*₄ acid (2g): Prepared according to general procedure using methyl 4-ethynylbenzoate (32.0 mg, 0.2 mmol, 1.0 equiv) and $(nBu_4N)_2C_2O_4$ (343.8 mg, 0.6 mmol, 3.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as white solid (32.2 mg, 76% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.97 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 3.91 (s, 3H), 2.87 – 2.89 (m, 0.10H, **1.90D**), 2.70 – 2.68 (m, 0.19H, **1.81D**).

¹³C NMR (100 MHz, CDCl₃) δ 178.6, 167.2, 145.6, 130.1, 128.5, 128.5, 52.2, 35.0 – 34.43 (m, CD₂), 29.9 – 29.3 (m, CD₂).

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₁H₇D₄O₄⁻: 211.0914; found: 211.0914.

3-(2-carboxyethyl-1,1,2,2-*d*₄)**benzoic acid (2h):** Prepared according to general procedure using 3-ethynylbenzoic acid (29.2 mg, 0.2 mmol, 1.0 equiv), D₂O (109.0 µL, 6.0 mmol, 30.0 equiv) and $(nBu_4N)_2C_2O_4$ (343.8 mg, 0.6 mmol, 3.0 equiv) at 50 °C. After 34 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/2 as the eluent) and obtained as white solid (25.5 mg, 64% yield). **¹H NMR (400 MHz, CD₃OD)** δ 7.90 (s, 1H), 7.86 (d, *J* = 7.6 Hz, 1H), 7.48 (d, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 8.0 Hz, 1H). 2.96 – 2.95 (m, 0.14H, **1.86D**), 2.62 – 2.60 (m, 0.32H, **1.68D**).

¹³C NMR (100 MHz, CD₃OD) *δ* 176.5, 169.9, 142.6, 134.1, 132.1, 130.6, 129.6, 128.7, 36.2 – 35.8 (m, CD₂), 31.5 – 30.8 (m, CD₂).

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₀H₅D₄O₄⁻: 197.0757; found: 197.0755.

methyl 3-(4-(methylamino)phenyl)propanoate-2,2,3,3-d4 (2i): Prepared according to

general procedure using 4-ethynylaniline (23.4 mg, 0.2 mmol, 1.0 equiv) and $(nBu_4N)_2C_2O_4$ (343.8 mg, 0.6 mmol, 3.0 equiv). After 8 hours add MeI (2 mmol, 0.12 mL, 10.0 equiv), then the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as red solid (17.3 mg, 44% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 6.61 (brs, 1H), 3.77 (s, 3H), 3.66 (s, 3H). 2.89 – 2.88 (m, 0.28H, 1.72D), 2.59 – 2.57 (m, 0.44H, 1.56D).

¹³C NMR (100 MHz, CDCl₃) δ 173.5, 154.2, 136.2, 129.0, 119.1, 52.5, 51.8, 35.7 – 35.3 (m, CD₂), 30.2 – 29.3 (m, CD₂).

3-(2-(benzylamino)phenyl)propanoic-2,2,3,3-*d*⁴ acid (2j): Prepared according to general procedure using *N*-benzyl-2-ethynylaniline (41.5 mg, 0.2 mmol, 1.0 equiv) and $(nBu_4N)_2C_2O_4$ (343.8 mg, 0.6 mmol, 3.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as white solid (42.7 mg, 82% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.25 – 7.19 (m, 3H), 7.16 (dd, J = 7.6, 1.6 Hz, 1H), 7.10 (td, J = 7.6, 1.6 Hz, 1H), 6.96 (td, J = 7.2, 1.2 Hz, 1H), 6.89 – 6.84 (m, 1H), 5.18 (s, 2H), 2.97 – 2.95 (m, 0.25H, **1.75D**), 2.59 – 2.57 (m, 0.36H, **1.64D**).

¹³C NMR (100 MHz, CDCl₃) *δ* 170.7, 140.0, 137.1, 128.8, 128.0, 127.6, 127.2, 126.5, 126.4, 123.0, 115.7, 46.3, 31.7 – 31.3 (m, CD₂), 25.5 – 24.4 (m, CD₂).

3-(2-(phenylamino)phenyl)propanoic-2,2,3,3-*d*⁴ **acid (2k):** Prepared according to general procedure using 2-ethynyl-*N*-phenylaniline (38.7 mg, 0.2 mmol, 1.0 equiv) and $(nBu_4N)_2C_2O_4$ (343.8 mg, 0.6 mmol, 3.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as white solid (32.4 mg, 66% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.51 (t, J = 7.2 Hz, 2H), 7.45 – 7.39 (m, 1H), 7.25 – 7.18 (m, 3H), 7.07 – 6.95 (m, 2H), 6.35 (dd, J = 8.0, 1.2 Hz, 1H), 2.97 – 2.95 (m, 0.19H, **1.81D**), 2.82 – 2.80 (m, 0.32H, **1.68D**).

¹³C NMR (100 MHz, CDCl₃) *δ*170.4, 141.8, 138.6, 130.0, 129.1, 128.3, 127.9, 127.3, 125.7, 123.1, 117.1, 32.1 – 31.2 (m, CD₂), 25.8 – 24.7 (m, CD₂).

3-(thiophen-3-yl)propanoic-2,2,3,3-*d*⁴ **acid (2l):** Prepared according to general procedure using 3-ethynylthiophene (22.0 mg, 0.2 mmol, 1.0 equiv) and (nBu4N)₂C₂O₄ (343.8 mg, 0.6 mmol, 3.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as white solid (4.5 mg, 14% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.26 (m, 1H), 7.00 (dd, J = 3.6, 1.6 Hz, 1H), 6.96 (dd, J = 3.6, 1.6 Hz, 1H), 2.97 – 2.95 (m, 0.13H, **1.87D**), 2.82 – 2.80 (m, 0.17H, **1.83D**). ¹³C NMR (100 MHz, CDCl₃) δ 178.3, 140.5, 128.0, 125.9, 120.9, 29.9 – 28.7 (m, CD₂), 24.8 – 24.3 (m, CD₂).

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₇H₃D₄O₂S⁻: 159.0423; found: 159.0430.

3-(1*H***-indol-5-yl)propanoic-2,2,3,3-***d***₄ acid (2m): Prepared according to general procedure using 5-ethynyl-1***H***-indole (28.2 mg, 0.2 mmol, 1.0 equiv) and (nBu_4N)_2C_2O_4 (343.8 mg, 0.6 mmol, 3.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as white solid (13.9 mg, 35% yield).**

¹**H NMR (400 MHz, CDCl₃)** δ 8.09 (brs, 1H), 7.47 (d, J = 1.6 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.18 (t, J = 2.4 Hz, 1H), 7.05 (dd, J = 8.0, 1.6 Hz, 1H), 6.50 (m, 1H). 3.04 – 3.02 (m, 0.30H, **1.70D**), 2.71 – 2.69 (m, 0.42, **1.58D**).

¹³C NMR (100 MHz, CDCl₃) δ 179.3, 134.7, 131.6, 128.3, 124.6, 122.8, 120.0, 111.2, 102.5, 36.4 – 35.4 (m, CD₂), 30.9 – 29.9 (m, CD₂).

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₁H₆D₄NO₂⁻: 192.0968; found: 192.0962.

3-(1-methyl-1*H***-indol-5-yl)propanoic-2,2,3,3-***d*₄ **acid (2n):** Prepared according to general procedure using 5-ethynyl-1-methyl-1*H*-indole (31.0 mg, 0.2 mmol, 1.0 equiv) and $(nBu_4N)_2C_2O_4$ (343.8 mg, 0.6 mmol, 3.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as white solid (36.5 mg, 88% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.25 (dd, J = 8.0, 2.0 Hz, 1H), 7.07 (d, J = 8.8 Hz, 1H), 7.02 (s, 1H), 6.42 (s, 1H), 3.76 (s, 3H), 3.04 – 3.02 (m, 0.15H, **1.85D**), 2.70 – 2.69 (m, 0.21, **1.79D**).

¹³C NMR (100 MHz, CDCl₃) δ 179.6, 135.7, 131.0, 129.2, 128.8, 122.3, 120.1, 109.4, 100.7, 36.6 – 35.4 (m, CD₂), 33.0, 30.3 – 29.7 (m, CD₂).

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₂H₈D₄NO₂⁻: 206.1125; found: 206.1119.

3-(phenanthren-9-yl)propanoic-2,2,3,3-*d*₄ acid (20): Prepared according to general procedure using 9-ethynylphenanthrene (40.5 mg, 0.2 mmol, 1.0 equiv) and $(nBu_4N)_2C_2O_4$ (343.8 mg, 0.6 mmol, 3.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as white solid (39.9 mg, 78% yield).

¹H NMR (400 MHz, CD₃OD) δ 8.82 – 8.76 (m, 1H), 8.70 (d, J = 8.0 Hz, 1H), 8.16 – 8.09 (m, 1H), 7.84 (dd, J = 7.6, 1.6 Hz, 1H), 7.69 – 7.63 (m, 3H), 7.62 – 7.53 (m, 2H), 3.04 – 3.02 (m, 0.24H, **1.76D**), 2.78 – 2.76 (m, 0.18H, **1.82D**).

¹³C NMR (100 MHz, CD₃OD) δ 176.9, 136.0, 133.2, 132.1(0), 132.0(8), 131.1, 129.2, 127.8, 127.7, 127.4, 127.3, 127.2, 125.1, 124.4, 123.5, 35.4 – 34.6 (m, CD₂), 29.2 – 28.5 (m, CD₂).

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₇H₉D₄O₂⁻: 253.1172; found: 253.1165.

3,3'-(1,4-phenylene)bis(propanoic-2,2,3,3-*d*₄ **acid) (2p):** Prepared according to general procedure using 1,4-diethynylbenzene (25.2 mg, 0.2 mmol, 1.0 equiv), $(nBu_4N)_2C_2O_4$ (687.6 mg, 1.2 mmol, 6.0 equiv) and D₂O (109.2 µL, 6.0 mmol, 30.0 equiv). After 57 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/2 as the eluent) and obtained as white solid (9.8 mg, 21% yield).

¹H NMR (400 MHz, CD₃OD) δ 7.13 (s, 4H). 3.04 – 3.02 (m, 0.31H, 1.69D), 2.78 – 2.76 (m, 0.38H, 1.62D).

¹³C NMR (100 MHz, CD₃OD) δ 176.8, 139.9, 129.4, 36.4 – 35.9 (m, CD₂), 31.4 – 30.5 (m, CD₂).

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₂H₅D₈O₄⁻: 229.1321; found: 229.1315.

3-(3-((((2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)phenyl)propanoic-2,2,3,3-*d***4** acid (2q): Prepared according to general procedure using (2*S*,5*R*)-2isopropyl-5-methylcyclohexyl 3-ethynylbenzoate (49.6 mg, 0.2 mmol, 1.0 equiv) and $(nBu_4N)_2C_2O_4$ (343.8 mg, 0.6 mmol, 3.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as white solid (40.7 mg, 60% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.91 – 7.89 (m, 2H), 7.43 – 7.34 (m, 2H), 4.94 (td, J = 10.8, 4.4 Hz, 1H), 3.00 – 2.99 (m, 0.14H, **1.86D**), 2.71 – 2.69 (m, 0.14H, **1.86D**), 2.16 – 2.08 (m, 1H), 1.95 (pd, J = 6.8, 2.4 Hz, 1H), 1.73 (dt, J = 14.4, 3.2 Hz, 2H), 1.62 – 1.52 (m, 2H), 1.19 – 1.06 (m, 2H), 0.93 (dd, J = 6.4, 3.2 Hz, 7H), 0.79 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 178.6, 166.2, 140.4, 132.9, 131.3, 129.5, 128.7, 127.8, 75.0, 47.4, 41.1, 35.1 – 34.8 (m, CD₂), 34.5, 31.6, 30.0 – 29.6 (m, CD₂), 26.6, 23.7, 22.2, 20.9, 16.6.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₂₀H₂₃D₄O₄⁻: 335.2166; found: 335.2165.

3-(4-((((1*S*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-

yl)oxy)carbonyl)phenyl)propanoic-2,2,3,3- d_4 acid (2r): Prepared according to general procedure using (1*S*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 4-ethynylbenzoate (56.5 mg, 0.2 mmol, 1.0 equiv) and (*n*Bu₄N)₂C₂O₄ (343.8 mg, 0.6 mmol, 3.0 equiv). After 13 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as white solid (54.7 mg, 82% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 5.10 (m, 1H), 3.00 – 2.99 (m, 0.10H, **1.90D**), 2.71 – 2.69 (m, 0.20H, **1.80D**), 2.52 – 2.41 (m, 1H), 2.13 (m, 1H), 1.81 (m, 1H), 1.73 (t, J = 4.4 Hz, 1H), 1.45 – 1.36 (m, 1H), 1.34 – 1.24 (m, 1H), 1.11 (dd, J = 14.0, 3.6 Hz, 1H), 0.97 (s, 3H), 0.91 (d, J = 3.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 178.1, 166.9, 145.4, 130.0, 129.3, 128.5, 80.6, 49.2, 48.0, 45.1, 37.1, 34.7 – 34.2 (m, CD₂), 30.3 – 29.4 (m, CD₂), 28.2, 27.5, 19.9, 19.1, 13.8.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₂₀H₂₁D₄O₄⁻: 333.2009; found: 333.2008.

2-methyl-3-phenylpropanoic-2,3,3- d_3 acid (3a): Prepared according to general procedure using prop-1-yn-1-ylbenzene (24.7 µL, 0.2 mmol, 1.0 equiv) and $(nBu_4N)_2C_2O_4$ (458.4 mg, 0.8 mmol, 4.0 equiv). After 24 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/10 - 1/5 as the eluent) and obtained as brown liquid (11.9 mg, 36% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.24 – 7.16 (m, 3H), 3.05 (s, 0.07H, 0.93D), 2.78 – 2.73 (q, *J* = 6.8 Hz, 0.13H, 0.87D), 2.65 (s, 0.07H, 0.93D), 1.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 181.1, 137.9, 127.9, 127.4, 125.4, 40.0 – 39.3 (m, CD), 37.9 – 37.4 (m, CD₂), 15.3.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₀H₈D₃O₂⁻: 166.0953; found: 166.0953.

2-cyclohexyl-3-phenylpropanoic-2,3,3- d_3 acid (3b): Prepared according to general procedure using (cyclohexylethynyl)benzene (36.9 mg, 0.2 mmol, 1.0 equiv) and (nBu_4N)₂C₂O₄ (458.4 mg, 0.8 mmol, 4.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/10 - 1/5 as the eluent) and obtained as brown liquid (26.9 mg, 57% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.21 (m, 2H), 7.21 – 7.11 (m, 3H), 2.85 (s, 0.04H, 0.96D), 2.81 (s, 0.05H, 0.95D), 2.47 (d, J = 7.2 Hz, 0.08H, 0.92D), 1.88 – 1.58 (m, 6H), 1.17 – 1.04 (m, 5H).

¹³C NMR (100 MHz, CDCl₃) δ 181.8, 139.2, 129.0, 128.5, 126.5, 53.7 – 52.7 (m, CD), 40.2, 34.8 – 34.1 (m, CD₂), 30.8, 30.7, 26.4.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₅H₁₆D₃O₂⁻: 234.1579; found: 234.1569.

2-(phenylmethyl- d_2 **)hexanoic-2-**d **acid (3c):** Prepared according to general procedure using hex-1-yn-1-ylbenzene (35.2 µL, 0.2 mmol, 1.0 equiv) and (nBu_4N)₂C₂O₄ (458.4 mg, 0.8 mmol, 4.0 equiv) at r.t. for 24 hours and then at 50 °C for 6 hours. The product was purified by flash column chromatography (EtOAc/petroleum 1/10 - 1/5 as the eluent) and obtained as yellow liquid (26.8 mg, 64% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.32 – 7.26 (m, 2H), 7.24 – 7.13 (m, 3H), 2.95 (s, 0.04H, **0.96D**), 2.74 (s, 0.04H, **0.96D**), 2.68 – 2.63 (m, 0.9H, **0.91D**), 1.63 (dd, J = 13.6, 4.4 Hz, 1H), 1.58 – 1.47 (m, 1H), 1.40 – 1.22 (m, 4H), 0.88 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) *δ* 181.1, 139.2, 129.0, 128.5, 126.5, 47.4 – 46.7 (m, CD), 38.1 – 37.1 (m, CD₂), 31.5, 29.5, 22.7, 14.0.

HRMS (ESI-TOF) m/z: [M-H]⁻ calcd for C₁₃H₁₄D₃O₂⁻: 208.1422; found: 208.1422.

3-([1,1'-biphenyl]-4-yl)-2-methylpropanoic-2,3,3-*d***3 acid (3d):** Prepared according to general procedure using 4-(prop-1-yn-1-yl)-1,1'-biphenyl (38.5 mg, 0.2 mmol, 1.0

equiv) and $(nBu_4N)_2C_2O_4$ (458.4 mg, 0.8 mmol, 4.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/10 - 1/5 as the eluent) and obtained as brown solid (46.9 mg, 96% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.54 (m, 2H), 7.54 – 7.50 (m, 2H), 7.44 – 7.39 (m, 2H), 7.35 – 7.29 (m, 1H), 7.28 – 7.22 (m, 2H), 3.09 (s, 0.04H, **0.96D**), 2.79 (q, J = 7.2 Hz, 0.04H, **0.96D**), 2.70 (s, 0.05H, **0.95D**), 1.20 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 182.8, 141.0, 139.5, 138.2, 129.6, 128.9, 127.3, 127.1, 41.2 – 40.6 (m, CD), 38.7 – 37.9 (m, CD₂), 16.5.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₆H₁₂D₃O₂⁻: 242.1266; found: 242.1267.

2-([1,1'-biphenyl]-4-ylmethyl- d_2 **)hexanoic-2-**d acid (3e): Prepared according to general procedure using 4-(hex-1-yn-1-yl)-1,1'-biphenyl (46.9 mg, 0.2 mmol, 1.0 equiv) and (nBu_4N)₂C₂O₄ (458.4 mg, 0.8 mmol, 4.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/10 - 1/5 as the eluent) and obtained as white solid (55.3 mg, 97% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.60 – 7.54 (m, 2H), 7.50 (d, J = 8.0 Hz, 2H), 7.41 (t, J = 7.6 Hz, 2H), 7.35 – 7.29 (m, 1H), 7.25 (d, J = 8.4 Hz, 2H), 2.99 (s, 0.05H, **0.95D**), 2.77 (s, 0.05H, **0.95D**), 2.70 (q, J = 5.2 Hz, 0.04H, **0.96D**), 1.70 – 1.64 (m, 1H), 1.58 – 1.51 (m, 1H), 1.38 – 1.24 (m, 4H), 0.88 (t, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 182.2, 141.0, 139.4, 138.3, 129.4, 128.9, 127.3, 127.1, 47.4 – 46.4 (m, CD), 37.9 – 36.3 (m, CD₂), 31.5, 29.5, 22.7, 14.0.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₉H₁₈D₃O₂⁻: 284.1735; found: 284.1731.

2-([1,1'-biphenyl]-4-ylmethyl- d_2 **)-3,3-dimethylbutanoic-2-**d acid (3f): Prepared according to general procedure using 4-(3,3-dimethylbut-1-yn-1-yl)-1,1'-biphenyl (46.9 mg, 0.2 mmol, 1.0 equiv) and (nBu_4N)₂C₂O₄ (458.4 mg, 0.8 mmol, 4.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/10 - 1/5 as the eluent) and obtained as pale yellow solid (27.0 mg, 47% yield).

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.53 (d, *J* = 7.6 Hz, 2H), 7.46 (dd, *J* = 8.2, 2.0 Hz, 2H), 7.43 – 7.36 (m, 2H), 7.34 – 7.27 (m, 1H), 7.26 – 7.19 (m, 2H), 2.89 (s, 0.01H, **0.99D**), 2.85 (s, 0.01D, **0.99D**), 2.48 (s, 0.02H, **0.98D**), 1.08 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 180.7, 141.0, 139.2, 139.1, 129.2, 128.3, 127.3, 127.2, 127.1, 58.2 – 57.8 (m, CD), 33.1, 29.5 (m, CD₂), 27.9.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₉H₁₈D₃O₂⁻: 284.1735; found: 284.1748.

4-(3,3-dimethylbutyl-1,1,2,2-*d***4)-1,1'-biphenyl (3f'):** The product was purified by flash column chromatography (petroleum as the eluent) and obtained as colourless liquid (18.6 mg, 38% yield)

¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.56 (m, 2H), 7.53 – 7.49 (m, 2H), 7.45 – 7.39 (m, 2H), 7.35 – 7.29 (m, 1H), 7.26 (d, *J* = 8.0 Hz, 2H), 2.58 (s, 0.05H, **0.95D**), 1.50 (s, 0.07H, **0.93D**), 1.02 (s, 3H), 0.97 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 142.9, 142.8, 141.3, 138.7, 128.8, 127.2, 127.1(5), 127.0(9), 46.2 – 45.5 (m, CD₂), 31.4 – 30.2 (m, CD), 30.6, 29.5.

2-([1,1'-biphenyl]-4-ylmethyl- d_2 **)-4-phenylbutanoic-2-**d acid (3g): Prepared according to general procedure using 4-(4-phenylbut-1-yn-1-yl)-1,1'-biphenyl (56.5 mg, 0.2 mmol, 1.0 equiv) and (nBu_4N)₂C₂O₄ (458.4 mg, 0.8 mmol, 4.0 equiv). After 24 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/10 - 1/5 as the eluent) and obtained as white solid (43.7 mg, 66% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.52 (m, 2H), 7.49 (d, J = 8.0 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.34 – 7.29 (m, 1H), 7.27 – 7.12 (m, 7H), 3.04 (s, 0.02H, **0.98D**), 2.97 (d, 0.01H, **0.99D**), 2.81 (s, 0.03H, **1.97D**), 2.77 – 2.70 (m, 1H), 2.67 – 2.59 (m, 1H), 2.06 – 1.98 (m, 1H), 1.89 – 1.81 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 182.1, 141.3, 140.9, 139.5, 137.8, 129.4, 128.9, 128.6, 128.5, 127.2(9), 127.2(7), 127.1, 126.2, 46.7 – 46.1 (m, CD), 37.5 – 36.6 (m, CD₂), 33.5, 33.2.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₂₃H₁₈D₃O₂⁻: 332.1735; found: 332.1750.

2-([1,1'-biphenyl]-4-ylmethyl- d_2 **)-7-hydroxyheptanoic-2-**d acid (3h): Prepared according to general procedure using 7-([1,1'-biphenyl]-4-yl)hept-6-yn-1-ol (52.9 mg, 0.2 mmol, 1.0 equiv) and (nBu_4N)₂C₂O₄ (458.4 mg, 0.8 mmol, 4.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 – 1/2 as the eluent) and obtained as pale yellow solid (48.6 mg, 77% yield).

¹H NMR (400 MHz, CD₃OD) δ 7.58 – 7.54 (m, 2H), 7.50 (dd, J = 8.0, 1.6 Hz, 2H), 7.39 (td, J = 7.2, 2.0 Hz, 2H), 7.29 (dd, J = 7.2, 2.0 Hz, 1H), 7.25 (dd, J = 8.0, 2.0 Hz, 2H), 3.51 (t, J = 6.8 Hz, 2H), 2.90 (s, 0.07H, **0.93D**), 2.74 (s, 0.07H, **0.93D**), 2.65 – 2.62 (m, 0.08H, **0.92D**), 1.70 – 1.59 (m, 1H), 1.57 – 1.44 (m, 3H), 1.43 – 1.26 (m, 4H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 176.4, 140.0, 138.9, 138.0, 129.4, 128.9, 127.2, 126.5, 60.6, 46.7 -45.5(m, CD₂), 37.2 - 35.9(CD), 32.4, 31.7, 26.7, 25.5.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₂₀H₂₀D₃O₃⁻: 314.1841; found: 314.1851.

2-([1,1'-biphenyl]-4-ylmethyl- d_2 **)-5-cyanopentanoic-2-**d acid (3i): Prepared according to general procedure using 6-([1,1'-biphenyl]-4-yl)hex-5-ynenitrile (49.1 mg, 0.2 mmol, 1.0 equiv) and (nBu_4N)₂C₂O₄ (458.4 mg, 0.8 mmol, 4.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/10 - 1/5 as the eluent) and obtained as white solid (22.0 mg, 37% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.55 (m, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.40 (t, J = 7.2 Hz, 2H), 7.33 – 7.26 (m, 3H), 2.96 (s, 0.06H, **0.94D**), 2.80 (s, 0.06H, **0.94D**), 2.71 – 2.68 (m, 0.03H, **0.97D**), 2.44 (td, J = 6.8, 1.6 Hz, 2H), 1.80 – 1.60 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) *δ* 178.5, 142.2, 140.6, 139.6, 130.5, 129.8, 128.2, 128.0, 127.8, 120.9, 48.0 – 47.1(m, CD), 38.6 – 38.0 (m, CD₂), 31.9, 24.5, 17.3.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₉H₁₅D₃NO₂⁻: 295.1531; found: 295.1545.

2-((4-cyanophenyl)methyl- d_2 **)hexanoic-2-**d **acid (3j):** Prepared according to general procedure using 4-(hex-1-yn-1-yl)benzonitrile (36.7 mg, 0.2 mmol, 1.0 equiv) and (nBu_4N)₂C₂O₄ (458.4 mg, 0.8 mmol, 4.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/10 - 1/5 as the eluent) and obtained as yellow solid (26.3 mg, 56% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 2.98 (s, 0.01H, 0.99D), 2.80 (s, 0.01H, 0.99D), 2.68 – 2.65 (m, 0.05H, 0.95D), 1.69 – 1.63 (m, 1H), 1.59 – 1.46 (m, 1H), 1.36 – 1.26 (m, 4H), 0.88 (t, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 181.3, 144.8, 132.4, 129.8, 119.0, 110.6, 46.8 – 46.2 (m, CD), 37.7 – 37.1 (m, CD₂), 31.6, 29.3, 22.6, 14.0.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₄H₁₃D₃NO₂⁻: 233.1375; found: 233.1374.

2-((4-(methoxycarbonyl)phenyl)methyl-*d***₂)hexanoic-2-***d* **acid** (3k): Prepared according to general procedure using methyl 4-(hex-1-yn-1-yl)benzoate (43.3 mg, 0.2 mmol, 1.0 equiv) and (*n*Bu₄N)₂C₂O₄ (458.4 mg, 0.8 mmol, 4.0 equiv). After 8 hours,

the product was purified by flash column chromatography (EtOAc/petroleum 1/10 - 1/5 as the eluent) and obtained as brown solid (35.0 mg, 65% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.8 Hz, 2H), 3.90 (s, 3H), 2.99 (s, 0.02H, **0.98D**), 2.79 (s, 0.02H, **0.98D**), 2.69 – 2.65 (m,0.10H, **0.90D**), 1.70 – 1.60 (m, 1H), 1.55 – 1.47 (m, 1H), 1.35 – 1.27 (m, 4H), 0.88 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 181.6, 167.2, 144.7, 129.9, 129.1, 128.5, 52.2, 47.0 – 46.4 (m, CD), 37.5 – 37.1 (m, CD₂), 31.5, 29.4, 22.6, 14.0.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₅H₁₆D₃O₄⁻: 266.1477; found: 266.1470.

2-((2-fluoro-4-methylphenyl)methyl- d_2 **)hexanoic-2-**d **acid (31):** Prepared according to general procedure using 2-fluoro-1-(hex-1-yn-1-yl)-4-methylbenzene (38.1 mg, 0.2 mmol, 1.0 equiv) and (nBu_4N)₂C₂O₄ (458.4 mg, 0.8 mmol, 4.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/10 - 1/5 as the eluent) and obtained as colourless liquid (33.8 mg, 70% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.04 (t, J = 8.0 Hz, 1H), 6.87 – 6.80 (m, 2H), 2.86 (s, 0.05H, **0.95D**), 2.80 (s, 0.05H, **0.95D**), 2.67 (dd, J = 8.8, 5.6 Hz, 0.10H, **0.90D**), 2.31 (s, 3H), 1.64 (dt, J = 9.6, 4.4 Hz, 1H), 1.56 – 1.46 (m, 1H), 1.30 (qd, J = 7.2, 6.8, 3.6 Hz, 4H), 0.88 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 181.6, 161.2 (d, J = 243.6 Hz), 138.7 (d, J = 7.9 Hz), 130.9 (d, J = 5.1 Hz), 124.8 (d, J = 2.4 Hz), 122.8 (d, J = 15.8 Hz), 116.0 (d, J = 21.6 Hz), 46.0 - 45.4 (m, CD), 31.6, 31.0 - 30.2 (m, CD₂), 29.4, 22.7, 21.1, 14.0.

¹⁹F NMR (376 MHz, CDCl₃)
$$\delta$$
 -120.2.

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₄H₁₅D₃FO₂⁻: 240.1485; found: 240.1472.

2,3-diphenylpropanoic-2,3,3- d_3 acid (3m): Prepared according to general procedure using 1,2-diphenylethyne (35.6 mg, 0.2 mmol, 1.0 equiv) and (nBu_4N)₂C₂O₄ (458.4 mg, 0.8 mmol, 4.0 equiv) at r.t. for 24 hours and then at 50 °C for 6 hours. T he product was purified by flash column chromatography (EtOAc/petroleum 1/10 - 1/5 as the eluent) and obtained as yellow solid (28.2 mg, 61% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.30 (m, 4H), 7.28 – 7.16 (m, 4H), 7.11 – 7.07 (m, 2H), 3.85 – 3.83 (m, 0.05H, **0.95D**), 3.39 – 3.37 (m, 0.03H, **0.97D**), 3.02 – 3.00 (m, 0.05H, **0.95D**).

¹³C NMR (100 MHz, CDCl₃) δ 179.6, 138.7, 138.0, 129.0, 128.8, 128.5, 128.2, 127.8, 126.6, 53.7 - 52.7 (m, CD), 38.8 - 38.1(m, CD₂).

HRMS (ESI-TOF) *m/z*: [M-H]⁻ calcd for C₁₅H₁₀D₃O₂⁻: 228.1109; found: 228.1104.

2,3-di-*p*-tolylpropanoic-2,3,3-*d*₃ acid (3n): Prepared according to general procedure using 1,2-di-*p*-tolylethyne (36.5 mg, 0.2 mmol, 1.0 equiv) and $(nBu_4N)_2C_2O_4$ (458.4 mg, 0.8 mmol, 4.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/10 - 1/5 as the eluent) and obtained as tawny solid (29.7 mg, 58% yield).

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.19 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.04-6.96 (m, 4H), 3.77 (s, 0.05H, **0.95D**), 3.31 (s, 0.05H, **0.95D**), 2.94 (s, 0.05H, **0.95D**), 2.31 (s, 3H), 2.28 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 179.7, 137.4, 136.0, 135.7, 135.1, 129.5, 129.2, 128.9, 128.1, 53.10 - 52.5 (m, CD), 38.7 - 37.75 (m, CD₂), 21.2(2), 21.1(7).

HRMS (ESI-TOF) m/z: [M-H]⁻ calcd for C₁₇H₁₄D₃O₂⁻: 256.1422; found: 256.1408.

2,3-bis(4-(ethoxycarbonyl)phenyl)propanoic-2,3,3- d_3 acid (30): Prepared according to general procedure using diethyl 4,4'-(ethyne-1,2-diyl)dibenzoate (64.5 mg, 0.2 mmol, 1.0 equiv) and (nBu_4N)₂C₂O₄ (458.4 mg, 0.8 mmol, 4.0 equiv). After 8 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/10 - 1/5 as the eluent) and obtained as pale yellow solid (24.2 mg, 33% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.98 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.72 (d, J = 8.4 Hz, 2H), 4.38 (q, J = 7.2 Hz, 2H), 4.30 (q, J = 7.2 Hz, 2H), 3.22 (s, 0.03H, **0.97D**), 2.77 (s, 0.03H, **0.97D**), 2.62 (s, 0.03H, **0.97D**), 1.41 (t, J = 7.2 Hz, 3H), 1.34 (t, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.7, 166.5, 147.6, 145.0, 130.1, 129.5, 129.4, 128.8, 128.5, 128.4, 61.2, 61.0, 54.1 - 52.9 (m, CD), 40.8 - 39.9 (m, CD₂), 14.5, 14.4.

diethyl 4,4'-(ethane-1,2-diyl-d₄)dibenzoate (30'): The product was purified by flash column chromatography (petroleum as the eluent) and obtained as yellow solid (21.3 mg, 32% yield)

¹**H NMR (400 MHz, CDCl₃)** δ 7.94 (d, J = 7.6 Hz, 4H), 7.18 (d, J = 7.2 Hz, 4H), 4.36 (q, J = 6.0 Hz, 4H),2.96 (s, 0.14H, **3.86D**), 1.39 (t, J = 6.4 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 166.8, 146.4, 129.8, 128.6, 128.5, 61.0, 37.3 - 36.3 (m, CD₂), 14.5.

2-(4-ethoxyphenyl)-3-(*p*-tolyl)propanoic-2,3,3- d_3 acid and 3-(4-ethoxyphenyl)-2-(*p*-tolyl)propanoic-2,3,3- d_3 acid (3p + 3p', 1:1.3): Prepared according to general procedure. using 1-ethoxy-4-(*p*-tolylethynyl)benzene (47.3 mg, 0.2 mmol, 1.0 equiv) and (*n*Bu4N)₂C₂O₄ (458.4 mg, 0.8 mmol, 4.0 equiv). After 36 hours, the product was purified by flash column chromatography (EtOAc/petroleum 1/5 as the eluent) and obtained as white solid (45.3 mg, 79% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.19 (dd, J = 8.4, 6.8 Hz, 2H), 7.10 (d, J = 8.0 Hz, 1H), 7.03 – 6.96 (m, 3H), 6.81 (d, J = 8.8 Hz, 1H), 6.73 (d, J = 8.8 Hz, 1H), 3.97 (dq, J =12.0, 7.2 Hz, 2H), 3.74 (s, 0.05H, **0.95D**), 3.28 (d, J = 3.2 Hz, 0.08H, **0.92D**), 2.92 (d, J = 6.0 Hz, 0.08H, **0.92D**), 2.31 (s, 1.28H), 2.27 (s, 1.66H), 1.42 – 1.34 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 180.0, 179.9, 158.5, 157.6, 137.4, 136.0, 135.7, 135.1, 130.8, 130.0, 129.5, 129.2(2), 129.1(7), 128.9, 128.1, 114.7, 114.5, 63.5, 63.4, 53.5 – 51.7 (m, CD), 38.6 – 37.3 (m, CD₂), 21.2, 21.1, 14.9(8), 14.9(5).

HRMS (ESI-TOF) m/z: [M-H]⁻ calcd for C₁₈H₁₆D₃O₃⁻: 286.1528; found: 256.1525.

5. The application of the reaction 5.1 TMS-protected alkynes

To An oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with the substrate (0.2 mmol), (nBu_4N)₂C₂O₄ (343.8 mg, 0.6 mmol, 3.0 equiv), 4DPAIPN (3.2 mg, 0.004 mmol, 2 mol%). The tube was filled with inert gas. Then D₂O (15.0 equiv) and anhydrous DMF (2 mL) were added. Finally, the Schlenk tube was placed under the 45 W blue LED (wavelength: 450 nm) at a distance of 3-4 cm and stirred at room temperature for 12 hours. After completion of the reaction, the reaction mixture was diluted with water (30 mL) and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with water and brine before dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (petroleum ether/ EtOAc 10/1 ~ 5/1) to give the pure desired product **2c'** (white solid, 39.6 mg, 86%) or **6** (pale yellow solid, 36.9 mg, 92%).

3-([1,1'-biphenyl]-4-yl)propanoic-2,2,3,3-*d*₄ acid (2c')

¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J = 18.0, 7.6 Hz, 4H), 7.42 (t, J = 7.6 Hz,

2H), 7.35 -7.27 (m, 3H), 2.98 (m, 0.06H, **1.94D**), 2.70 (m, 0.10H, **1.90D**).

¹³C NMR (100 MHz, CDCl₃) δ 179.3, 141.0, 139.5, 139.3, 128.9, 128.8, 127.4, 127.3, 127.2, 35.3 – 34.5 (m, CD₂), 30.1 – 29.0 (m, CD₂).

3-(4-(methylthio)phenyl)propanoic-2,2,3,3-d₄ acid (6)

¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 6.0 Hz, 2H), 2.89 (m, 0.06H, 1.94D), 2.63 (m, 0.11H, 1.89D), 2.46 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 179.3, 137.2, 136.3, 128.9, 127.2, 35.4 – 34.2 (m, CD₂), 30.0 – 28.9 (m, CD₂), 16.3.

HRMS (ESI-TOF): m/z [M-H]⁻ calcd for C₁₀H₇D₄O₂S⁻: 199.0736; found: 199.0732.

5.2 Synthesis of the deuterated analogue of nandrolone phenylpropionate

An oven-dried Schlenk tube (100 mL) containing a stirring bar was charged with the substrate (0.44 mL, 4 mmol, 1.0 equiv), $(nBu_4N)_2C_2O_4$ (6.88 g, 12 mmol, 3.0 equiv), 4DPAFIPN (63.8 mg, 0.08 mmol, 2 mol%). The tube was filled with nitrogen gas. Then D₂O (1.09 mL, 60 mmol, 15.0 equiv) and anhydrous DMF (2 mL) were added. Finally, the Schlenk tube was placed under the 45 W blue LED (wavelength: 450 nm) at the distance of 3-4 cm and stirred at room temperature for 12 hours. After completion of the reaction, the reaction mixture was diluted with water (60 mL) and extracted with EtOAc (3 x 60 mL). The combined organic layers were washed with water and brine before dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (petroleum ether/ EtOAc 5/1) to give the pure desired product **2b'**.

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.25 – 7.17 (m, 3H), 2.94 (s, 0.11H, 1.89D), 2.70 -2.63 (m, 0.21H, 1.79D).

An oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with the substrate (0.2 mmol), DCC (2.0 equiv, 0.4 mmol, 82.5 mg), DMAP (0.1 equiv, 0.02 mmol, 2.44 mg). Then DCM (2 mL) was added. Finally, the Schlenk tube was stirred at room temperature for 16 hours. After completion of the reaction, the reaction mixture was extracted with DCM (3 x 30 mL). The combined organic layers were washed with water and brine before dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (petroleum ether/ EtOAc $10/1 \sim 5/1$) to give the pure desired product **8** (white solid, 67.6 mg, 82%).

¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 6.0 Hz, 2H), 7.20 (d, J = 7.2 Hz, 3H), 5.82 (s, 1H), 4.69 – 4.53 (t, J = 7.2 Hz, 1H), 2.92 (s, 0.09H, 1.91D), 2.62 – 2.60 (m, 0.21H, 1.79D), 2.44 (m, 2H), 2.29 – 2.05 (m, 5H), 1.82 (d, J = 11.2 Hz, 2H), 1.71 – 1.64 (m, 2H), 1.48 – 1.04 (m, 8H), 0.89 – 0.85 (m, 1H), 0.79 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 200.0, 173.1, 166.5, 140.5, 128.6, 128.4, 126.3, 124.8, 82.6, 49.6, 49.4, 42.8, 42.6, 40.3, 36.6, 36.0, 35.5, 30.7, 27.5, 26.7, 26.1, 23.4, 12.1.
35.3 – 34.5 (m, CD₂), 30.1 – 29.0 (m, CD₂).

6. Control experiments

6.1 Unactivated alkynes

An oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with the substrate (0.2 mmol), (nBu_4N)₂C₂O₄ (343.8 mg, 0.6 mmol,3.0 equiv), 4DPAIPN (3.2 mg, 0.004 mmol, 2 mol%). The tube was filled with inert gas. Then D₂O (15.0 equiv or 30.0 equiv) and anhydrous DMF (2 mL) were added. Finally, the Schlenk tube was placed under the 45 W blue LED (wavelength: 450 nm) at a distance of 3-4 cm and stirred at room temperature for 12 hours. After completion of the reaction, the reaction mixture was diluted with water (30 mL) and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with water and brine before dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (petroleum ether/ EtOAc 10/1 ~ 5/1) to give the pure desired product **10** (white solid, 2.8 mg, 8%).

5-phenylpent-2-enoic-3-d acid (10)

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.21 (d, J = 7.4 Hz, 3H), 6.38 (t, J = 7.6 Hz, 1H), 3.01 (q, J = 7.6 Hz, 2H), 2.78 (t, J = 7.6 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 170.6, 152.0, 141.1, 128.6, 128.5, 126.3, 119.6 -119.4 (m, CD), 35.1, 30.7.

HRMS (ESI-TOF): m/z [M-H]⁻ calcd for C₁₁H₁₀DO₂⁻: 176.0827; found: 176.0835.

6.2 Under CO₂ atmosphere with H₂O

An oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with the substrate (0.2 mmol), $(nBu_4N)_2C_2O_4$ (343.8 mg, 0.6 mmol,3.0 equiv), 4DPAIPN (3.2 mg, 0.004 mmol, 2 mol%). The tube was filled with inert gas. Then H₂O (5.0 equiv) and anhydrous DMF (2 mL) were added. Finally, the Schlenk tube was placed under the 45 W blue LED (wavelength: 450 nm) at a distance of 3-4 cm and stirred at room temperature for 12 hours. After completion of the reaction, the reaction mixture was diluted with water (30 mL) and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with water and brine before dried over sodium sulfate and concentrated under reduced pressure. The residue was determined by ¹H NMR using 1, 2-dichloroethane as an internal standard. And compounds **11, 12, 13** could be dected.

6.3 TEMPO trapping experiment

An oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with the substrate (0.2 mmol), (*n*Bu4N)₂C₂O₄ (343.8 mg, 0.6 mmol, 3.0 equiv), 4DPAIPN (3.2 mg, 0.004 mmol, 2 mol%), TEMPO (0.6 mmol, 3.0 equiv). The tube was filled with inert gas. Then H₂O (5.0 equiv) and anhydrous DMF (2 mL) were added. Finally, the Schlenk tube was placed under the 45 W blue LED (wavelength: 450 nm) at a distance of 3-4 cm and stirred at room temperature for 12 hours. After completion of the reaction, the reaction mixture was diluted with water (30 mL) and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with water and brine before dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (petroleum ether), product **2c'** (15.4 mg, 43% yield).

4-(ethynyl-d)-1,1'-biphenyl (2c')

¹**H NMR (400 MHz, CDCl₃)** *δ* 7.62 – 7.53 (m, 6H), 7.47 – 7.42 (m, 2H), 7.39 – 7.33 (m, 1H).
6.4 Cinnamic acid under standard reaction conditions

An oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with substrate 14 (0.2 mmol), (*n*Bu₄N)₂C₂O₄ (343.8 mg, 0.6 mmol, 3.0 equiv), and 4DPAIPN (3.2 mg, 0.004 mmol, 2 mol%). The tube was filled with inert gas. Then D₂O (15.0 equiv) and anhydrous DMF (2 mL) were added. Finally, the Schlenk tube was placed under the 45 W blue LED (wavelength: 450 nm) at the distance of 3 - 4 cm and stirred at room temperature for 12 hours. After completion of the reaction, the reaction mixture was diluted with water (30 mL) and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with water and brine before dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (petroleum ether/ EtOAc $10/1 \sim 5/1$) to give the pure desired product 15 (white solid, 8.4 mg, 28%).

3-phenylpropanoic-2,3-d₂ acid (15)

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.24 – 7.17 (m, 3H), 2.98 – 2.90 (m, 1.12H, **0.88D**), 2.71 – 2.63 (m, 1.28H, **0.72D**).

6.5 Stern-Volmer fluorescence quenching analysis

Stern-Volmer fluorescence quenching experiments were run with freshly prepared solution of 5×10^{-5} M 4DPAIPN in degassed anhydrous DMF at room temperature. The solution was irradiated at 440 nm and the fluorescence was measured from 440 nm to 750 nm. Data was collected on an Agilent Technologices F-4600 spectrofluorometer at 25 °C. Parameters: data interval = 1 nm, scan rate = 645 nm/min, Averaging time = 0.1 sec. The samples were measured in Jingke ES quartz cuvettes (chamber volume = 2.5 mL, H × W × D = 56 nm × 12.5 nm × 12.5 nm).

Stern-Volmer Quenching

cinnamic acid

7. References

[1] P. Boehm, N. Kehl, B. Morandi, Angew. Chem. Int. Ed. 2023, 62, e202214071.

[2] Y. Bai, Z. Lin, Z. Ye D, J. Wang, L. Chen, F. Xie, Y. Li, P. H. Dixneuf, M. Zhang, Org. Lett. 2022, 24, 7988.

[3] E. J. Yoo, S. Chang, Org. Lett. 2008, 10, 1163.

[4] S. Dhanasekaran, V. K. Kannaujiya, R. G. Biswas, V. K. Singh, *J. Org. Chem.* **2019**, *84*, 3275.

[5] a) J. P. Soni, G. N. Reddy, Z. Rahman, A. Sharma, A. Spandana, R. Phanindranath,

M. P. Dandekar, N. Nagesh, N. Shankaraiah, Bioorg. Chem. 2023, 131, 106313; b) B.

L. Flynn, G. S. Gill, D. W. Grobelny, J. H. Chaplin, D. Paul, A. F. Leske, T. C. Lavranos,

D. K. Chalmers, S. A. Charman, E. Kostewicz, D. M. Shackleford, J. Morizzi, E. Hamel, M. K. Jung, G. Kremmidiotis, *J. Med. Chem.* **2011**, *54*, 6014.

[6] K.-Z. Deng, W.-L. Jia, and M. Á. Fernández-Ibáñez, Chem. Eur. J. 2022, 28, e202104107.

[7] D. Solooki, J. D. Bradshaw, C. A. Tessier, W. J. Youngs, *Organometallics* 1994, 13, 451.

[8] A. Ikeda, M. Omote, M. Komori, K. Kusumoto, A. Tarui, K. Sato, A. Ando, Org. Biomol. Chem. 2016, 14, 2127.

[9] H. Wu, S. Chen, D. Xiao, F. Li, K. Zhou, X. Yin, C. Liu, X. He, Y. Shang, *Org. Lett.* **2023**, *25*, 1166.

[10] Z.-Y. Song, C.-L. Zhang, S. Ye, Org. Biomol. Chem. 2019, 17, 181.

[11] J. Peng, C. Chen, J. Chen, X. Su, C. Xi, H. Chen, Org. Lett. 2014, 16, 3776.

[12] D. Zhuang, S. Jiang, Y. Wang, X. Wang, S. Shen, R. Yan, Org. Lett. 2023, 25, 3007.

[13] B. Zhao, Y. Wu, Y. Yuan, Z. Shi, Chem. Commun. 2020, 56, 4676.

[14] G. A. Molander, B. W. Katona, F. Machrouhi, J. Org. Chem. 2002, 67, 8416.

[15] R. Sun, E. Viaud, R. Nomula, J.-V. Naubron, N. Daugey, T. Buffeteau, F. Castet, P.

Y. Toullec, S. Quideau, P. A. Peixoto, Angew. Chem. In. Ed. 2023, 62, e202310436.

[16] R. Matake, Y. Niwa, H. Matsubara, Org. Lett. 2015, 17, 2354.

[17] H. Huang, G. Zhang, L. Gong, S. Zhang, Y. Chen, J. Am. Chem. Soc. 2014, 136, 2280.

[18] T. Brégent, J. P.nBouillon, T. Poisson, Chem. Eur. J. 2021, 27, 13966.

8. NMR spectra (2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl 3-ethynylbenzoate (1n) ¹H NMR (400 MHz, CDCl₃)

(2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl 3-ethynylbenzoate (1n) ¹³C NMR (100 MHz, CDCl₃)

fl (ppm)

7-([1,1'-biphenyl]-4-yl)hept-6-yn-1-ol (1ah) ¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

f1 (ppm)

2-fluoro-1-(hex-1-yn-1-yl)-4-methylbenzene (1al) ¹H NMR (400 MHz, CDCl₃)

2-fluoro-1-(hex-1-yn-1-yl)-4-methylbenzene (1al) ¹³C NMR (100 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

3-([1,1'-biphenyl]-4-yl)propanoic-2,2,3,3-*d*₄ acid (2c) ¹H NMR (400 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

3-(4-methoxyphenyl)propanoic-2,2,3,3-*d*₄ acid (2d) ¹H NMR (400 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

3-(4-(methoxycarbonyl)phenyl)propanoic-2,2,3,3-*d*₄ acid (2g) ¹H NMR (400 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

methyl 3-(4-(methylamino)phenyl)propanoate-2,2,3,3-*d*₄ (2i) ¹H NMR (400 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

3-(2-(benzylamino)phenyl)propanoic-2,2,3,3-*d*₄ acid (2j) ¹H NMR (400 MHz, CDCl₃)

3-(2-(benzylamino)phenyl)propanoic-2,2,3,3-*d*₄ acid (2j) ¹³C NMR (100 MHz, CDCl₃)

f1 (ppm)

3-(2-(phenylamino)phenyl)propanoic-2,2,3,3-d₄ acid (2k) ¹H NMR (400 MHz, CDCl₃)

3-(2-(phenylamino)phenyl)propanoic-2,2,3,3-*d*₄ acid (2k) ¹³C NMR (100 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

3-(thiophen-3-yl)propanoic-2,2,3,3-d4 acid (2l) ¹H NMR (400 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

3-(1*H*-indol-5-yl)propanoic-2,2,3,3-*d*₄ acid (2m) ¹H NMR (400 MHz, CDCl₃)

3-(1*H*-indol-5-yl)propanoic-2,2,3,3-*d*₄ acid (2m) ¹³C NMR (100 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

3-(1-methyl-1*H*-indol-5-yl)propanoic-2,2,3,3-*d*₄ acid (2n) ¹H NMR (400 MHz, CDCl₃)

3-(phenanthren-9-yl)propanoic-2,2,3,3-*d*₄ acid (20) ¹H NMR (400 MHz, CD₃OD)

8.812 8.803 8.795 8.791 8.791 8.771 8.771 8.771 8.771 8.771 8.771 8.771 8.771	8.138 8.132 8.132 8.126 8.126 8.126 8.127 7.847 7.847 7.828 7.828 7.828	7.673 7.667 7.662 7.662 7.655 7.623 7.617 7.617 7.617 7.579 7.579	7.559 7.556 7.541 7.537 7.537 3.423 3.423 3.406 3.406 3.406 2.783 2.764

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

3-(3-((((2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)phenyl)propanoic-2,2,3,3-*d*₄ acid (2q)

3-(3-((((2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)phenyl)propanoic-2,2,3,3-*d*₄ acid (2q)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

3-(4-((((1*S*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2yl)oxy)carbonyl)phenyl)propanoic-2,2,3,3-*d*₄ acid (2r) ¹H NMR (400 MHz, CDCl₃)

8.005	7.984	7.304	7.283	7.262	5.121	5.115	5.112	5.107	5.096	5.091	5.087	5.082	2.474	2.464	2.136	2.126	2.117	1.809	1.800	1.746	1.735	1.723	1.402	1.398	1.335	1.311	1.304	1.300	1.293	1.281	1.270	1.255	1.129	1.120	1.094	1.086	0.965	0.916	0.907
		_																									_	_		_	_		. L		_				_

3-(4-((((1*S*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2yl)oxy)carbonyl)phenyl)propanoic-2,2,3,3-*d*₄ acid (2r) ¹³C NMR (100 MHz, CDCl₃)

2-methyl-3-phenylpropanoic-2,3,3-*d*₃ acid (3a) ¹H NMR (400 MHz, CDCl₃)

2-methyl-3-phenylpropanoic-2,3,3-*d*₃ acid (3a) ¹³C NMR (100 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

2-cyclohexyl-3-phenylpropanoic-2,3,3-*d*₃ acid (3b) ¹H NMR (400 MHz, CDCl₃)

7.262 7.244 7.227 7.227 7.196 7.196 7.176 7.176 7.176	2.854 2.854 2.481 2.481 2.463 1.874 1.874 1.842 1.789	1.780 1.746 1.710 1.710 1.689 1.689 1.641 1.641 1.641 1.641 1.635 1.613 1.606	$\begin{array}{c} 1.585\\ 1.577\\ 1.577\\ 1.272\\ 1.272\\ 1.240\\ 1.207\\ 1.179\\ 1.172\\ 1.172\\ 1.172\\ 1.172\\ 1.172\\ 1.172\\ 1.172\\ 1.101\\ 1.1079\\ 1.049\\ 1.041\\ 1.041\end{array}$

2-cyclohexyl-3-phenylpropanoic-2,3,3-*d*₃ (3b) ¹³C NMR (100 MHz, CDCl₃)

ppm(t1)

2-(phenylmethyl-d₂)hexanoic-2-d acid (3c) ¹H NMR (400 MHz, CDCl₃)

.301	296	.292	.289	.283	.279	.276	.225	.221	.213	.208	.200	.189	.185	171.	.168	.159	.945	.657	.647	.623	.611	.537	.530	.518	.505	.480	.356	.319	.312	.308	.293	.281	.273	.262	.255	.894	.877	.859
		L.	5	5	5	-	5	5	5	5	5	5	5	5	-	5	6	-	-	-	7	-	-	7	-	-	-	-	-	-		2	-	5	5	2	9	2

2-(phenylmethyl-*d*₂)hexanoic-2-*d* acid (3c) ¹³C NMR (100 MHz, CDCl₃)

3-([1,1'-biphenyl]-4-yl)-2-methylpropanoic-2,3,3-d₃ acid (3d) ¹H NMR (400 MHz, CDCl₃)

fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 -10 -20 80 70 60 $\frac{1}{40}$ 30 $\frac{1}{20}$ 10 ò 50 fl (ppm)

2-([1,1'-biphenyl]-4-ylmethyl-d₂)hexanoic-2-d acid (3e) ¹H NMR (400 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

2-([1,1'-biphenyl]-4-ylmethyl-d₂)-3,3-dimethylbutanoic-2-*d* acid (3f) ¹H NMR (400 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

4-(3,3-dimethylbutyl-1,1,2,2-*d*₄)-1,1'-biphenyl (3f') ¹H NMR (400 MHz, CDCl₃)

20	16	00	98	96	8	85	80	E	68	65	27	22	17	12	909	5	96	16	49	47	41	37	33	128	124	119	60	03	66	37	33	30	25	20	15	65	45	52	SE
9	9	9				્યવ	_¥?	_ ¥ ?	_ ¥ ?	_ч;	<u>ч</u>	્યવ	<u>ч</u> ?	ų.	<u>ч</u>	4	্ৰ	্ৰ	্ৰ	্ৰ	্ৰ,	_ ~	ഘ	പ		_m	<u> </u>	_ m	.	C	₽.	9							
																																						-	0
							_	_	- L		- L	- L.		- E							_		_				_		_										

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

2-([1,1'-biphenyl]-4-ylmethyl-*d*₂)-4-phenylbutanoic-2-*d* acid (3g) ¹H NMR (400 MHz, CDCl₃)

		· L L L L U U U U U U U U U U U U U U U

2-([1,1'-biphenyl]-4-ylmethyl-*d*₂)-7-hydroxyheptanoic-2-*d* acid (3h) ¹H NMR (400 MHz, CD₃OD)

	 .533 .529 .516 .512 .512 .512 .5496	.539 .519 .501 .486 .482 .396	
	 m m m m m m m		

2-([1,1'-biphenyl]-4-ylmethyl-*d*₂)-5-cyanopentanoic-2-*d* acid (3i) ¹H NMR (400 MHz, CD₃OD)

7.588 7.584 7.570 7.567 7.567 7.564 7.534 7.534 7.534 7.513	7.404 7.384 7.321 7.318 7.318 7.314 7.304 7.304	7.291 7.287 7.284 7.281 7.276 7.271 7.271 7.271 7.271 7.271 7.271 7.271 7.436	2.423 2.419 2.419 1.733 1.733 1.718 1.711 1.711 1.711 1.703 1.699 1.699	1.687 1.680 1.672 1.672 1.651 1.658 1.655 1.651

2-((4-cyanophenyl)methyl-d2)hexanoic-2-d acid (3j) ¹H NMR (400 MHz, CDCl₃)

.586	.565	301	.280	.683	.677	.672	.667	.663	.654	.643	.638	.632	.538	.530	.525	519	.515	507	504	500	.359	.347	.338	.335	.331	.328	.323	.319	.316	.312	.306	.302	.290	.284	.277	.272	.905	.888	.870
	1			-					-	-	-	-	-	-	-				-		-		-			-	-	-		-	-	-		-		-	0	0	0
_																				_			_	_	_	_			- L-	- L.									

2-((4-cyanophenyl)methyl-*d*₂)hexanoic-2-*d* acid (3j) ¹³C NMR (100 MHz, CDCl₃)

2-((4-(methoxycarbonyl)phenyl)methyl-d₂)hexanoic-2-d acid (3k) ¹H NMR (400 MHz, CDCl₃)

796	.946	.263	.241	106.	.675	.675	.665	.654	.643	.631	.625	.619	.544	.531	.523	.511	.506	.497	.490	.473	.356	.344	.339	.330	.322	.318	.313	.309	.306	.302	.294	.290	.281	.279	.272	.262	.894	.876	.858
5	1	-	1	<u> </u>	2	_	-	_	_	_	_	_	_	-	_	_	_		_	_	_	-	_	_	_		_	_	-	_	_	_	-	_	-	_	9	-	-

fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

2-((2-fluoro-4-methylphenyl)methyl-*d*₂)hexanoic-2-*d* acid (3l) ¹H NMR (400 MHz, CDCl₃)

.063	.042	.023	.852	.844	.842	.835	.817	.857	.795	.691	.678	.670	.656	.310	.660	.650	.640	.627	.615	.548	534	.527	.515	.510	501	.477	359	.331	.321	.315	.312	.297	.294	.285	.276	897	.879	862
			9	9	9	9	9	2	2	2	2	2	2	2		-	-	-		-	-	-	-	-	-	-	-	-		-	-	-		-	-	0	0	0
- L																										. i					. L.	1		_	_			

2-((2-fluoro-4-methylphenyl)methyl-*d*₂)hexanoic-2-*d* acid (3l) ¹⁹F NMR (376 MHz, CDCl₃)

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 f1 (ppm)

2,3-diphenylpropanoic-2,3,3-*d*₃ acid (3m) ¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} 7,306\\ 7,304\\ 7,304\\ 7,295\\ 7,295\\ 7,273\\ 7,273\\ 7,276\\ 7,276\\ 7,276\\ 7,276\\ 7,216\\ 7,215\\ 7,216\\ 7,$

2,3-diphenylpropanoic-2,3,3-*d*₃ acid (3m) ¹³C NMR (100 MHz, CDCl₃)

2,3-di-*p*-tolylpropanoic-2,3,3-*d*₃ acid (3n) ¹³C NMR (100 MHz, CDCl₃)

2,3-bis(4-(ethoxycarbonyl)phenyl)propanoic-2,3,3-*d*₃ acid (30) ¹H NMR (400 MHz, CDCl₃)

2,3-bis(4-(ethoxycarbonyl)phenyl)propanoic-2,3,3-*d*₃ acid (30) ¹³C NMR (100 MHz, CDCl₃)

diethyl 4,4'-(ethane-1,2-diyl-*d*₄)dibenzoate (30') ¹³C NMR (100 MHz, CDCl₃)

2-(4-ethoxyphenyl)-3-(*p*-tolyl)propanoic-2,3,3-*d*₃ acid and 3-(4-ethoxyphenyl)-2-(*p*-tolyl)propanoic-2,3,3-*d*₃ acid (3p + 3p', 1:1.3) ¹H NMR (400 MHz, CDCl₃)

 $\begin{array}{c} 7.209\\ 7.192\\ 7.111\\ 7.191\\ 7.101\\ 7.001\\ 7.005\\ 7.005\\ 6.999\\ 6.999\\ 6.998\\ 6.988\\ 6.998\\ 6.975\\ 6.975\\ 6.975\\ 6.975\\ 6.975\\ 6.975\\ 6.745\\ 6.745\\ 7.005\\ 7.$

2-(4-ethoxyphenyl)-3-(*p*-tolyl)propanoic-2,3,3-*d*₃ acid and 3-(4-ethoxyphenyl)-2-(*p*-tolyl)propanoic-2,3,3-*d*₃ acid (3p + 3p', 1:1.3) ¹³C NMR (100 MHz, CDCl₃)

3-([1,1'-biphenyl]-4-yl)propanoic-2,2,3,3-*d*₄ acid (2c') ¹³C NMR (100 MHz, CDCl₃)

3-(4-(methylthio)phenyl)propanoic-2,2,3,3-*d*₄ acid (6) ¹³C NMR (100 MHz, CDCl₃)

(8R,9S,10R,13S,14S,17S)-13,17-dimethyl-3-oxo-

2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl 3-phenylpropanoate-2,2,3,3-*d*₄(8)

¹H NMR (400 MHz, CDCl₃)

(8R,9S,10R,13S,14S,17S)-13,17-dimethyl-3-oxo-

2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl 3-phenylpropanoate-2,2,3,3-*d*₄ (8)

¹³C NMR (100 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

5-phenylpent-2-enoic-3-*d* acid (10) ¹H NMR (400 MHz, CDCl₃)

