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S1. Additional molecular simulation details 

Table S1. Lennard-Jones parameters used in molecular simulations for MOF atoms. 

atom epsilon(K) sigma(Å) atom epsilon(K) sigma(Å) atom epsilon(K) sigma(Å) 

O 48.15 3.03 Sr 118.26 3.24 Nd 5.03 3.18 

N 37.43 3.26 Pd 24.15 2.58 Ge 201.29 3.8 

C 47.86 3.47 Ru 28.18 2.64 Sm 4.03 3.14 

F 36.48 3.09 Pb 333.63 3.83 Ce 6.54 3.17 

B 47.81 3.58 Hf 36.23 2.8 Sn 276.77 3.98 

P 161.03 3.7 Ho 3.52 3.04 Au 19.63 2.93 

S 173.11 3.59 Eu 4.03 3.11 Ba 183.17 3.3 

W 33.72 2.73 Pr 5.03 3.21 Pt 40.26 2.45 

V 8.05 2.8 Cs 22.64 4.02 Mo 28.18 2.72 

I 256.64 3.7 Na 15.1 2.66 Ra 203.3 3.28 

U 11.07 3.02 He 10.9 2.64 Ac 16.61 3.1 

K 17.61 3.4 Bi 260.66 3.89 Th 13.08 3.03 

Y 36.23 2.98 Li 12.58 2.18 Pa 11.07 3.05 

Cl 142.56 3.52 Se 216.38 3.59 Np 9.56 3.05 

Br 186.19 3.52 As 206.32 3.7 Pu 8.05 3.05 

H 22.14 2.57 Rb 20.13 3.67 Am 7.05 3.01 

Zn 62.4 2.46 Tc 24.15 2.67 Cm 6.54 2.96 

Be 42.77 2.45 Rh 26.67 2.61 Bk 6.54 2.97 

Cr 7.55 2.69 La 8.55 3.13 Cf 6.54 2.95 

Fe 6.54 2.59 Pm 4.53 3.16 Es 6.04 2.94 

Mn 6.54 2.64 Gd 4.53 3 Fm 6.04 2.93 

Cu 2.52 3.11 Tb 3.52 3.07 Md 5.54 2.92 

Co 7.05 2.56 Dy 3.52 3.05 No 5.54 2.89 

Ga 201.29 3.91 Er 3.52 3.02 Lw 5.54 2.88 

Ti 8.55 2.83 Tm 3.02 3.01       

Sc 9.56 2.94 Yb 114.73 2.99   

Ni 7.55 2.52 Lu 20.63 3.24       

Zr 34.72 2.78 Ta 40.76 2.82       

Mg 55.86 2.69 Re 33.21 2.63       

Ne 21.14 2.89 Os 18.62 2.78       

Ag 18.12 2.8 Ir 36.74 2.53       

In 276.77 4.09 Hg 193.74 2.41       

Cd 114.73 2.54 Tl 342.19 3.87       

Sb 276.77 3.88 Po 163.55 4.2       

Te 286.84 3.77 At 142.91 4.23       

Al 156 3.91 Rn 124.8 4.25       

Si 156 3.8 Fr 25.16 4.37       

Ca 119.77 3.03 Nb 29.69 2.82       
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Figure S1. Schematic of gas molecule models used in molecular simulations. Partial charge is denoted by q, while LJ parameters are 

denoted by σ and ε. Hydrogen, nitrogen, oxygen, water, ammonia, and argon molecules are in a), b), c), d), e), and f), respectively. 

 

Figure S2. Comparison of measured isotherms for two representative MOFs against simulated (GCMC) ones using the force field 

parameters described in the methods section. MIL-101 is a large-pore MOF with a largest pore diameter (LPD) of 31 Å, and MOF-

303 is a small-pore MOF with a LPD of 6 Å. Experimental data taken from refs. 16, 17.  

S2. Surrogate model selection 

Molecular simulation data for the 1,000 MOFs randomly sampled from our database was used to guide the selection of 

the surrogate model. We first use the aforementioned labeled set to train our Gaussian process (GP) model using the 

kernel function discussed in Section 3.2 in the main text to learn the various relevant metrics. We split the labeled 1,000 

MOF dataset into a training and a validation set with a 80%–20% ratio, trained the GP on the training set, and finally 

observed its performance on the validation set. We compared the GP’s performance against two other similarly trained 

models. Namely, a linear regression and a feedforward neural network (both learn from only the numerical features). The 

neural network has three hidden layers with 24, 12, and 6 neurons, respectively, and a ReLU activation function after 

each layer except for the last layer. 
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Figure S3. Parity plots comparing the prediction of NNH3
ads—where NNH3

ads is the NH3 adsorption loading at 1 bar 300 K—from 

machine learning with that obtained from molecular simulation (ground truth). Models were trained using molecular simulation data 

for the randomly 1,000 MOFs. a) Gaussian process, b) linear regression model, and c) feedforward neural network. The red line 

corresponds to the parity line. 

  

Fig S3. shows the parity plots to illustrate the result of learning the property NNH3
ads (introduced in Section 2). We see that 

our GP model performs the best. More crucially, we notice that the GP’s predictions that are sufficiently different from 

the ground truth are often accompanied by high levels of uncertainty (large error bars). This calibrated quantification of 

uncertainty is a desideratum of the GP and is exactly what enables our VBO approach to search under uncertainty. Finally, 

we include in Table S2 relevant performance metrics—mean squared error (MSE), mean absolute error (MAE), and 

Coefficient of Determination, R²—when we train on different properties and metrics defined in Section 2 of the main 

text. We see that overall, the GP offers strong predictive performance, consistently achieving lower errors than the other 

two models. One exception is found in the safety metric, where the GP performs marginally worse than the other two 

models. We note that this is because the problem of learning the safety metric is a challenging one, as our search space 

is dominated by data points having labels with zero values (that is, MOFs without sufficient hydrophobicity). While the 

GP is outperformed by other models, all three models leave room for improvement in terms of predictive accuracy. This 

relatively poor predictive performance illustrates the difficulty of learning this safety metric. With that said, as we showed 

in Section 4 of the main text as well as in the next section, the GP still allows us to perform effective optimization of this 

metric. 

 

Table S2. Performance metrics of different machine learning model frameworks 

  Loss Functions Gaussian process Linear regression 
Feedforward neural 

network 

NNH3|400k 

Mean Squared Error  0.7039 0.959 0.8274 

Mean Absolute Error 0.6133 0.8025 0.6959 

Coefficient of 

Determination 
0.3443 0.1068 0.2293 

NNH3|300k 

Mean Squared Error  0.2771 0.5666 0.3772 

Mean Absolute Error 0.3376 0.5643 0.4299 

Coefficient of 

Determination 
0.6282 0.2398 0.4939 

αNH3 

Mean Squared Error  2.1308 2.6776 2.5066 

Mean Absolute Error 1.0566 1.2896 1.2357 

Coefficient of 

Determination 
0.2878 0.1051 0.1623 

Mean Squared Error  9.5577 16.0603 12.9641 



S5 

∆NNH3 

Mean Absolute Error 1.8654 2.9361 2.3445 

Coefficient of 

Determination 
0.5898 0.3107 0.4435 

MATS 

Mean Squared Error  9.1432 11.266 11.0344 

Mean Absolute Error 2.1701 2.6433 2.632 

Coefficient of 

Determination 
0.3721 0.2253 0.2422 

MATS 

Mean Squared Error  0.0003 0.0003 0.0003 

Mean Absolute Error 0.0052 0.005 0.004 

Coefficient of 

Determination 
-0.0646 -0.0336 -0.0119 

 

S3. Additional details about VBO campaigns 

 

Feature importance analysis 

In Section 3, we designed our kernel function as a weighted sum of individual kernel functions, each capturing a specific 

aspect about a MOF to compute the similarity between two input MOFs. As the weights for these base kernels are 

optimized to best fit the data observed throughout the search, we may inspect the optimized values of these weights to 

gain insights into which features are deemed important for the prediction task at hand. Table S3 shows the values of these 

optimized weights for the three search objectives at the end of our search campaign. 

 

In Table S3, the weights of the 'linker' and 'node' kernels represent the importance of the building blocks. The 'global' 

section covers texture properties, including the largest and most accessible pores, pore volume, surface area, volume 

fraction, and metal-to-metal ratio. 'Pore size distribution' (PSD) implies the variation in pore sizes of the MOFs. For 

∆NNH3, the metric is solely based on mono ammonia absorption at two different temperatures. In terms of weight 

distribution, ∆NNH3 prioritizes the 'global' (44%) and 'PSD' (37%) sections, followed by 'linker' (20%) and 'nodes' (2%). 

This distribution is consistent with our previous discussions: the pore structure substantially affects the metric values, 

and detailed information about the linker aids the model in depicting the pore structure, extending beyond mere texture 

properties. In the second row of MATS's weight distribution, there is a noticeable shift compared to the first row. 5.5% and 

27.2% of importance move from the 'PSD' kernel and 'global' kernel to the 'node' kernel, while the importance allocated 

to the 'linker' kernel remains unchanged. For MATS, the metric combines ammonia loading and its selectivity over nitrogen 

and hydrogen. Considering ammonia is polar (unlike nitrogen and hydrogen), promoting selective adsorption of ammonia 

can be achieved by harnessing Coulomb interactions between the framework and the adsorbate. The charges on metals 

and neighboring atoms in inorganic nodes bolster Coulomb interactions with ammonia, rendering them more effective 

than the van der Waals forces with nitrogen and hydrogen. In the third row of metric MATSTH, the 'node' kernel holds 

97.6% importance. This metric specifically requires the MOF to adsorb ammonia over water, a more complex task than 

MATS's selectivity since both ammonia and water are polar molecules. Coulomb interactions could facilitate the adsorption 

of both. Consequently, meticulously choosing charges on metals within inorganic nodes becomes a top priority. 

 

Table S3. Weights of trained kernels in Gaussian process across three different metrics ∆NNH3, MATS, and MATSTH. 

  Knode weight (w1) Klinker weight (w2) Kglobal weight (w3) KPSD weight (w4) 

∆NNH3 0.019 0.176 0.437 0.368 

MATS 0.353 0.169 0.165 0.313 

 MATSTH 0.976 0.014 0.005 0.005 
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Figure S4. Distributions of ∆NNH3 values sampled by VBO (blue) and random search (orange). 

 

S4. Additional structure-property and elemental composition relationships 

 

 

Figure S5. Plots of structure-performance relationships. Each square bin corresponds to a combination of ∆NNH3 and MOF property. 

Where the color followed by the color bar of each bin reflects the number of MOFs normalized by all 1400 MOFs from the randomly 

1,000 subset and the 400 MOFs selected by the VBO. 
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Figure S6. Plots of percent of stored NH3 released versus heat of adsorption. Each square bin corresponds to a combination of 

theoretical energy recovery of NH3 after the desorption from MOF, and the heat of adsorption of NH3 at 300K. Where the color of each 

bin reflects the average value of ΔNNH₃ in the side color scale, across all MOFs in 1000 random subset and the 400 subset selected by 

the VBO. The theoretical energy recovery is calculated through values of ΔNNH3 divided by the value of NNH3-300 which is the NH3 

loading at 300K 1 bar. 

 

 

Figure S7. The mean of the percentage of elemental content of the top-14 MOFs (solid circles) and the entire database (empty circles) 

in logarithmic scale. The difference between top-14 MOFs and the entire database is indicated by the shaded area.  
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Figure S8. The heatmap of the relationship between ΔNNH3 and the common elements content across 1400 MOFs (1000 randoms + 

400 selected by VBO). The color in the color bar reflects the element content normalized by values of each bin across the whole 

column via MinMaxScaler in the sklean package. The value of each bin is the average percentage of element content of all MOFs 

with corresponding ΔNNH3 and element. 

 

S5. Additional details about promising MOF designs 

 

Table S4. Textural properties and element compositions of the top 20 MOFs of ∆NNH3 value.  
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∆NNH3(mmolNH3/g-MOF) 29.2 29 26.5 26.5 25.9 25.6 25.5 25.3 24.7 23.9 23.9 23.8 23.7 23.7 23.6 23.6 23.5 23 23 22.9 

Thermal stability (°C) 352 359 316 259 390 340 193 413 NA 416 361 425 309 NA 411 371 NA 587 412 306 

Release energy 
penalty (%) 9 8.5 9.1 8.6 8.2 8.7 9.8 10.5 9.2 11.4 8.8 8.1 8.5 9.6 10.1 9.8 11.3 8.4 11.5 11.6 

Pore Volume(cm3/g) 1.2 1.12 1.11 1.1 1 1.2 1.12 1.07 1.13 0.9 1.1 0.9 1.04 1 1.02 1.12 1.02 1.04 1.01 0.91 

Void Fraction 0.68 0.68 0.69 0.68 0.71 0.74 0.67 0.68 0.65 0.63 0.73 0.62 0.69 0.66 0.66 0.68 0.72 0.67 0.71 0.66 

SurfaceArea(m2/g) 4310 3759 4244 4211 3513 4385 3986 4525 4112 3953 4191 3366 4017 3689 3968 5225 3306 4424 3844 3735 
PoreDi-1 (Å) 11.1 11.7 9.9 9.2 11.4 8.9 12 7.4 12.1 6.9 8.5 10 11.3 14.6 9.3 8.3 10.7 8.4 8.5 10.9 
PoreDi-2 (Å) 11.1 11.7 9.9 9.2 11.4 8.8 11.3 7.4 10.5 6.8 8.5 10 9.8 14.4 8.8 8.2 10.7 8.4 7.6 10.8 

APD 10.1 10.5 9.7 8.4 10.8 8.6 10.8 7.4 9.6 6.9 8.1 9.5 9.9 11.4 8.2 6.7 10.3 7.9 8.2 9.7 

 

PoreDi-1 and PoreDi-2 denote the largest pore diameter and the diffusion-limiting pore diameter, respectively, measured in angstroms (Å). APD 

represents the average pore diameter of the pore size distribution (PSD). The 20 MOFs structures can be found as a supplementary file in cif 

format. 
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Table S5. Associated publication of top-MOFs belongs to CoRE MOFs database (extant 

structures), which contains information about relevant synthesis procedure 

 CSD refcode Reference 

WOLREV 1  

JAJZAY 2 

CEKHIL 3 

PARHEW 4 

PARHAS 4 

WAQFIG 5 

WAQDOJ 6 

BEFGEA 7 

HOJLID 8 

VIDJID 9 

ENESOH 10 

DURDAX 11 

 

 

Table S6. Free energy-based synthesizability criterion of hypothesized MOFs. The Free energy and the Synth. Criteria 

are calculated through the method by Anderson and Gómez-Gualdrón. 12 Per earlier work by these authors, MOFs have 

high synthesizability likelihood when the criterion value (last column in Table S5) is below 4.4 kJ/mol per atom 

MOF name 
Met

al 

Metal/Organi

c Ratio 

Free Energy 

[kJ/mol/atom] 

Linear 

Model 

Synth. Criteria 

[kJ/mol/atom] 

OPT_lnj_sym_3_on_2_sym_7_mc_4_ntn_edge_1B_2OH Cr 0.021 20.32 20.60 -0.28 

OPT_lnj_sym_3_on_1_sym_7_mc_4_ntn_edge_1B_2OH Cr 0.024 19.03 20.69 -1.66 

OPT_lvtb_sym_5_mc_2_sym_5_on_9_1B_2OH Cu 0.029 12.33 16.68 -4.35 

SR_rtw_v1-4c_Cu_1_Ch_v2-
5c_bicyclooctane_Ch_1B_2OH_Ch_1x1x2 Cu 0.014 26.93 16.85 10.08 

SR_pti_v1-4c_B_Ch_v2-4c_Cu_1_Ch_v3-
4c_bicyclooctane_Ch_1B_2NH2_Ch_1x1x2 

Cu 0.013 20.22 16.86 3.36 

OPT_mcn_sym_6_mc_3_sym_3_on_2_ntn_edge_1B_2OH_1
B_2OH 

Zn 0.041 16.38 16.88 -0.50 

SR_pdp_v1-3c_triazine_Ch_v2-6c_bicyclooctane_Ch_v3-
4c_Cu_1_Ch_1B_2OH_Ch_ntn_edge_1x1x1 

Cu 0.014 18.88 16.85 2.03 

OPT_mcn_sym_6_mc_3_sym_3_on_2_ntn_edge_1B_2OH_nt
n_edge Zn 0.047 12.51 16.86 -4.35 

 

 

 

https://sciwheel.com/work/citation?ids=16198328&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15866685&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15866716&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15866723&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15866723&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15866748&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15866758&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10159530&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15866778&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16198363&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15866787&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16198368&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11625179&pre=&suf=&sa=0
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Table S7. Heat of adsorption of state of art MOFs  

∆NNH3(mmolNH3/g-

MOF) 

Adsorption 

Temperature 

(K)  

Adsorption 

Pressure (bar)  
Material 

Heat of 

Ads 

(kJ/mol) 

Reference 

23.5 298 1 Ni_acryl_TMA 45 13 

23.9 298 1 Mg2(dobpdc) 146 14 

33.9  298 1 MIL-53-(OH)2 78 15 
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