Efficient N² electroreduction enabled by linear charge transfer over atomically dispersed W sites

Jin Wan^a , Dong Liu^a , Chuanzhen Feng^a , Huijuan Zhang a, b , Yu Wanga, b**

^a The School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street,

Shapingba District, Chongqing City, 400044, P.R. China

^b College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote,

010022, P. R. China

E-mail address: zhanghj@cqu.edu.cn ; *wangy@cqu.edu.cn*

Chemicals

V₂AlC MAX powder (\geq 98%, -200 mesh) was purchased from Beijing FUSIMAN Tech Co. Hydrofluoric acid (HF, 40.0% in aq. solution) was ordered from Chengdu Cologne Chemical Co. Tetrabutylammonium Hydroxide (TBAOH, 40% wt) was supplied from Shanghai Titan Scientific Co., Ltd. Tungsten chloride (WCl₆, 99.9% metals basis) was supplied from Shanghai McLean Biochemical Technology Co. All chemicals were used without any further purification.

Catalyst preparation

Synthesis of few-layer V2-xCT^y MXene

1.0 g of high-purity V₂AlC MAX powder was dispersed in 40 mL HF (40.0% in aq. solution). The etching process was stirred at room temperature for 36 h. The obtained $V_{2-x}CT_y$ powder was then exfoliated by sonication with TBAOH solution (3 days). Finally, the exfoliated $V_{2-x}CT_y$ powder was purified several times with distilled water and dried under vacuum for 12 h.

Synthesis of $n-W/V_{2-x}CT_v$

First, 100 mg $V_{2-x}CT_x$ MXene was dispersed in 40 mL distilled water and sonicated for 30 min to form solution A. Solution B was prepared by adding 10 mg of WCl₆ powder to 10 mL of ethanol and sonicated for 30 min**.** Then, solution B was slowly immersed in solution A and stirred for 12 h. Finally, the obtained n-W/V_{2-x}CT_y was filtered and washed with distilled water for several times and dried under vacuum for one night.

Synthesis of WSAC/V2-xCT^y

The synthesis of WSAC/V_{2-x}CT_y follows a similar pathway as n-W/V_{2-x}CT_y, with the main difference being the reduced concentration of HF (30.0% in aq. solution) used to etch V₂CAl. The decrease in HF concentration reduces formation of V vacancy clusters, thereby diminishing the generation of W dual atoms.

Synthesis of W NPs/V2-xCT^y

W NPs/V_{2-x}CT_y was synthesized similarly to n-W/V_{2-x}CT_y, except for the added amount of WCl₆ powder (20 mg).

Characterization

X-ray diffraction (XRD) data were measured with Cu Kα radiation. X-ray photoelectron spectrometer (XPS, Thermo Scientific ESCALAB 250Xi spectrometer with an Al Kα radiation source) was adopted to determine the W atomic valence state. The metal loadings were tested by

ICP-MS on a VISTA MPX (Varian, Inc.). Field emission scanning electron microscopy (FESEM) and high-angle annular-dark-field scanning transmission electron microscopy (HAADF-STEM) images were performed on JEOL JSM-7800F at 15kV and Talos F200S at 200kV, respectively. The distribution states of W were characterized by an objective spherical aberration-corrected transmission electron microscopy (AC-TEM, FEI Titan ChemiSTEM). The X-ray absorption spectra of the W L3-edge were processed and fitted with Athena and Artemis programs and wavelettransformed EXAFS plots were processed by Hama Fortran program.

Electrochemical measurements

The NRR measurements were tested on CHI 760E (CH Istruments, Inc., Shanghai) in an H-type cell with a three-electrode system. The as-prepared samples, Ag/ AgCl and Pt foil (1 cm \times 1 cm) were the working electrode, reference electrode, and counter electrode, respectively. Before the test, the Nafion membrane was pretreated by boiling in H_2O_2 (3%) aqueous solution, 0.5 M H_2SO_4 , and distilled water at 100 ℃ for 1.5 h. To prepare the working electrode, 5 mg of prepared samples were dispersed into 1000 μL ethanol containing 50 μL of 5 w% Nafion and sonicated for 1 h to obtain the catalyst ink. Subsequently, 80 μL of the n-W/ $V_{2-x}CT_v$ ink was loaded on the carbon paper (1) $\text{cm} \times 1 \text{ cm}$) and dried at room temperature. The electrode potentials were calibrated to the reversible hydrogen electrode (RHE) by using the following equation:

$$
E_{RHE} = E_{Ag/AgCl} + 0.197 + 0.059 \times pH
$$

Before electrochemical NRR measurement, all the electrolyte (0.05 M H_2SO_4 solution (pH=1)) was purged with high-purify N_2 (99.999%) for 30 min (flow rate: 20 mL min⁻¹).

Ammonia quantification

The concentration of produced NH₃ after electroreduction tests was detected by the indophenol blue method and NMR. For indophenol blue method, 2 mL solution wastaken from the cathodic chamber and followed by adding 2 mL NaOH solution containing 5 wt% $C_7H_6O_3$, and 5 wt% $C_6H_5Na_3O_7$. Sequentially, 0.05 M NaClO (1 mL) and 1 wt% $C_5F\text{eN}_6\text{Na}_2\text{O}$ (0.2 mL) aqueous solution were added into the above mixed solution. After 2 h of reaction, the solution was measured at 655 nm using UV-Vis absorption spectra. For NMR, ${}^{15}N_2$ was used as the feeding gas, after 8 h of N₂ electroreduction, the electrolyte was taken out and further quantified by ¹H NMR.

Hydrazine quantification

The concentration of N_2H_4 electrolyte was determined by the method of Watt and Chrisp. Briefly, 5.99 g $C_9H_{11}NO$ and 30 ml of HCl in 300 ml ethanol were mixed and prepared as a color reagent. Then, 5 mL electrolyte was taken from the cathodic chamber and 5 mL color reagent was added. After the reaction for 20 min, the UV-Vis absorption spectra was measured at 458 nm.

Calculation of NH³ yields and the Faradaic efficiency

The NH₃ yields were calculated by the following equation:

$$
v_{\rm NH_3} = (c_{\rm NH_3} \times V)/(t \times m_{\rm cat.})
$$

The Faradaic efficiency (FE) was calculated as follows:

$$
FE = (3 \times F \times c_{NH_3} \times V)/(17 \times Q)
$$

where c_{NH_3} is the measured NH₄⁺ concentration (μ g mL⁻¹); *V* is the volume of electrolyte (mL); *t* is the electrolysis time (h); $m_{\text{cat.}}$ is the mass loading of the catalyst on the carbon paper; *F* is the faraday constant (96 500 C mol⁻¹); and Q is the quantity of applied electricity (C).

Computational Methods

All calculations were performed by spin polarization density functional theory (DFT) as implemented in the Vienna ab initio Simulation Package (VASP).¹⁻³ The core electrons were expanded by the Projected Augmented Wave (PAW) approach.⁴ The generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) functional was applied.⁵ The DFT-D3 method was used to treat van der Waals (vdW) interactions in the systems.⁶ A cutoff energy of 500 eV was applied for the plane-wave basis. The convergence criterion for energy and force were set to 10^{-5} eV and 0.03 eV/Å, respectively. A vacuum gap of 15 Å was utilized to avoid the interaction between the periodic images. The Brillouin zone was sampled using a $2 \times 2 \times 1$ and $4 \times 4 \times 1$ gamma (Γ) k-mesh for geometry optimization and electronic properties calculations, respectively. The Gibbs free energy change (*ΔG*) for each reaction was calculated by the formula:

$$
\Delta G = \Delta E + \Delta E_{ZPE} + T\Delta S
$$

Where *ΔE*, *ΔEZPE*, and *ΔS* are the changes of calculation energy, the zero-point energy difference, and the entropy change, respectively.

Furthermore, the limiting potential was calculated by the equation:

$$
\eta^{NRR} = \Delta G/e.
$$

The adsorption energy (*Eads*) of adsorbate was calculated according to the equation:

$$
E_{ads} = E_{sub/ads} - E_{sub} - E_{ads}
$$

where *Esub/ads, Esub, Eads* are energies of the substrate with adsorbate, the isolated substrate, and the corresponding adsorbate, respectively.

Figure S1. SEM image of multi-layer $V_{2-x}CT_y$ nanosheets.

Figure S2. SEM image $V_{2-x}CT_y$ nanosheets after exfoliation.

Figure S3. AFM image of $V_{2-x}CT_y$ nanosheets after exfoliation.

Figure S4. HAADF-STEM image and its EDS elemental mapping for elements V, C, and O of few-

layer $\rm V_{2-x}CT_y$ nanosheets.

Figure S5. XRD diagrams of $V_{2-x}CT_y$ and n-W/V_{2-x}CT_y.

Figure S6. Atomic-resolution HAADF-STEM image of atomically dispersed W atoms on $V_{2-x}CT_y$ surface.

Figure S7. HAADF-STEM image and its EDS elemental mapping for elements V, C, O, and W of $WSAC/V_{2-x}CT_y.$

Figure S8. STEM image of W $NPs/V_{2-x}CT_y$.

Figure S9. HAADF-STEM image and its EDS elemental mapping for elements V, C, O, and W of W $\rm NPs/V_{2-x}CT_y.$

Figure S10. W 4f XPS spectrum of n-W/V_{2-x}CT_y.

Figure S11. W K edge EXAFS fitting results in k space based on the theoretical model of $\text{WDAC}/\text{V}_{\text{2-x}}\text{CT}_\text{y}$ for n-W/V $_{\text{2-x}}\text{CT}_\text{y}$.

Figure S12. FT-EXAFS fitting results of n-W/V_{2-x}CT_y in R space based on the theoretical model of $\ensuremath{\mathsf{WSAC}}\xspace/\ensuremath{\mathsf{V}}\xspace_{2\text{-x}}\ensuremath{\mathsf{CT}}\xspace_y.$

Figure S13. W K edge EXAFS fitting results in k space based on the theoretical model of $\ensuremath{\mathsf{WSAC}}\xspace/\ensuremath{\mathsf{V}}\xspace_{2\text{-x}}\ensuremath{\mathsf{CT}}\xspace_y$ for n-W/V $_{2\text{-x}}\ensuremath{\mathsf{CT}}\xspace_y.$

Figure S14. (a) UV-vis curves of indophenol assays with NH₄⁺ ions (ammonium chloride solutions of known concentration) after being incubated for 2 h at room temperature. (b) calibration curve used for estimation of NH₃ by NH₄⁺ ion concentration. The absorbance at 655 nm was measured by UV-vis spectrophotometer. The standard curve showed good linear relation of absorbance with NH₄⁺ ion concentration (y = $0.38468x + 0.05022$, R² = 0.99971).

Figure S15. (a) UV-Vis absorption spectra of various N₂H₄ concentration after incubated for 20 min at room temperature. (b) Calibration curve used for calculation of N_2H_4 concentration. The absorbance at 458 nm was measured by UV-vis spectrophotometer. The standard curve showed good linear relation of absorbance with N₂H₄ ion concentration (y = 0.62143x + 0.06629, R² = 0.99969).

Figure S16. (a) Chronoamperometry curves of n-W/V_{2-x}CT_y at different applied potentials in N₂saturated 0.05 M H₂SO₄ solution. (b) UV-Vis absorption spectra of the electrolytes stained with para-dimethylamino-benzaldehyde indicator after 20 min electrolysis in N_2 at various potentials under ambient conditions.

Figure S17. UV-Vis absorption spectra of n-W/V_{2-x}CT_y at -0.1V (versus RHE) for 3 times.

Figure S18. (a) ¹H NMR spectra of standard ammonia solution. (b) The standard curve of NMR peak height against NH₄⁺ concentration.

Figure S19. ¹H NMR spectra of the electrolyte over n-W/V_{2-x}CT_y for NRR at -0.1 V (versus RHE) for 8 h.

Figure S20. (a) UV-Vis absorption spectra of various NO₃ concentration after incubated for 20 min at room temperature. (b) Calibration curve used for calculation of $NO₃$ concentration.

Figure S21. UV-Vis absorption spectra of NO₃ for n-W/V_{2-x}CT_y at -0.1 V (versus RHE).

Figure S22. UV-Vis absorption spectra of NH_4^+ for n-W/V_{2-x}CT_y at -0.1V (versus RHE) under Ar atmosphere.

Figure S23. Electrochemical evaluation of $V_{2-x}CT_y$ (a) UV-Vis absorption spectra of indophenol assays with NH₄⁺ after incubated for 2 h at different potentials. (b) UV-Vis absorption spectra of para-dimethylamino-benzaldehyde assays N₂H₄ after incubated for 20 min at different potentials. (c) Chronoamperometry curves of $V_{2-x}CT_y$ at different applied potentials in N₂-saturated 0.05 M H2SO⁴ solution. (d) NH³ yields and FEs at different applied potentials.

Figure S24. UV-Vis absorption spectra of $V_{2-x}CT_y$ at -0.1V (versus RHE) for 3 times.

Figure S25. Electrochemical evaluation of WSAC/V_{2-x}CT_y (a) UV-Vis absorption spectra of indophenol assays with NH₄⁺ after incubated for 2 h at different potentials. (b) UV-Vis absorption spectra of para-dimethylamino-benzaldehyde assays N_2H_4 after incubated for 20 min at different potentials. (c) Chronoamperometry curves of $WSAC/V_{2-x}CT_v$ at different applied potentials in N₂saturated 0.05 M H₂SO₄ solution. (d) NH₃ yields and FEs at different applied potentials.

Figure S26. UV-Vis absorption spectra of WSACV_{2-x}CT_y at -0.1V (versus RHE) for 3 times.

Figure S27. Electrochemical evaluation W $NPS/V_{2-x}CT_y$ (a) UV-Vis absorption spectra of indophenol assays with NH₄⁺ after incubated for 2 h at different potentials. (b) UV-Vis absorption spectra of para-dimethylamino-benzaldehyde assays N_2H_4 after incubated for 20 min at different potentials. (c) Chronoamperometry curves of W $NPs/V_{2-x}CT_v$ at different applied potentials in N₂saturated 0.05 M H₂SO₄ solution. (d) NH₃ yields and FEs at different applied potentials.

Figure S28. UV-Vis absorption spectra of W NPs/V_{2-x}CT_y at -0.1V (versus RHE) for 3 times.

Figure S29. (a) Chronoamperometry curves in cycle tests of n-W/V_{2-x}CT_y at -0.1V (versus RHE). (b) UV-Vis absorption spectra of indophenol assays in five cycles over n-W/V_{2-x}CT_y at -0.1V (versus RHE).

Figure S30. XRD diagrams of n-W/V2-xCT^y before and after stability test.

Figure S31. W 4f XPS spectrum of n-W/V_{2-x}CT_y before and after stability test.

Figure S32. Gibbs free energy diagrams of NRR via distal pathways on $V_{2-x}CT_y$, WSAC/V_{2-x}CT_y, and $WDAC/V_{2-x}CT_y$, respectively.

Figure 33. The explicit solvation model of NHNH₂ $^* \rightarrow NH_2NH_2$ * step.

Figure S34. The adsorption energies of N_2 on $WTAC/V_{2-x}CT_y$, and $WQAC/V_{2-x}CT_y$ by side-on and end-on configurations, respectively.

Figure S35. Gibbs free energy diagrams of NRR via distal pathways on WTAC/V_{2-x}CT_y, and $WQAC/V_{2-x}CT_y$, respectively.

Figure S36. Gibbs free energy diagrams of NRR via alternating pathways on WTAC/V_{2-x}CT_y, and $WQAC/V_{2-x}CT_y$, respectively.

Figure S37. Optimized structures and charge density differences of N_2 on $V_{2-x}CT_y$, $WSAC/V_{2-x}CT_y$, $WTAC/V_{2-x}CT_y$, and $WQAC/V_{2-x}CT_y$ surfaces (Cyan and yellow represent charge depletion and accumulation, respectively. The isosurface value is $0.001 \text{ e}/\text{\AA}^3$)

Figure S38. PDOS of free N₂.

Figure S39. PDOS of N_2 on $V_{2-x}CT_y$, WSAC/V_{2-x}CT_y, WDAC/V_{2-x}CT_y, WTAC/V_{2-x}CT_y, and $WQAC/V_{2-x}CT_y$ surface.

TableS1. W loadings of the studied n-W/V₂CO_x catalyst and W NPs/ V₂CO_x, as determined by ICP-OES.

Catalysts	Quality of WCl_6 (mg)	W loading $(wt\%)$
$V_{2-x}CT_v$		
$n-W/V_{2-x}CT_v$	10 mg	1.39
W NPs/V _{2-x} CT _y	20 mg	5.12

TableS2. Curve fit parameters of W K-edge EXAFS based on WSAC/ $W/V_{2-x}CT_y$ and $WDAC/$ $\ensuremath{\text{W}}\xspace/\ensuremath{\text{V}}\xspace_{2\text{-x}}\text{CT}_\text{y}$ for n-W/V $_{2\text{-x}}\text{CT}_\text{y}$

Sample	Path	N _b	$R(\AA^c)$	$\sigma(10^{-3}\AA^{2d})$	ΔE_0 (eV)	R factor
$WSAC/V_{2-x}CT_v$ W-C 3.62±0.72			1.97 ± 0.02	5.06 ± 3.1	-9.13 ± 4.30	0.0189
$WDAC/V_{2-x}CT_v$ W-C		3.61 ± 0.71	1.98 ± 0.02	5.10 ± 3.1	-9.22 ± 4.25	0.0187

 S_0^2 was fixed as 1.0. Data ranges $3.0 \le k \le 12.0$ Å⁻¹, $1.0 \le R \le 2.0$ Å. ^bN is the coordination number; ^cR is interatomic distance; ${}^{d}\sigma^2$ is Debye-Waller factor; ΔE_0 is edge-energy shift. R factor is residual factor.

Table S3. Solvation energies (E_{solv}) of the catalytic reaction intermediates, η /vac and η /sol for the potential-limiting step of $\rm WDAC/V_{2-x}CT_y.$

	E_{solv} (eV)	η /vac (eV)	η /sol (eV)
NN^*	-0.52	-0.14	-0.41
$NNH*$	-0.66		
NHNHH [*]	-1.39	-0.77	0.32
NHHNHH [*]	-2.16		

References

- 1. G. Kresse and J. Furthmuller, *Comp. Mater. Sci.*, 1996, **6**, 15-50.
- 2. G. Kresse and J. Furthmuller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 3. G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758-1775.
- 4. P. E. Blochl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 5. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.
- 6. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.*, 2010, **132**, 154104.