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1. Experimental section 

1.1 Materials 

Cadmium chloride (CdCl2·2.5H2O), Sulfur powder (S), hydrochloric acid (HCl), lithium fluoride (LiF), 

2-mercaptoethylamine (MEA), Aux clusters Gold (III) chloride trihydrate (HAuCl4·3H2O), ethanol (C2H6O, 

EtOH), acetonitrile (C2H3N), triethanolamine (C6H15NO3, TEOA), DL-Lactic acid (C3H6O3), Methanol 

(CH4O), Ethanol (C2H6O), Ethylene glycol (C2H6O2) and sodium sulfate (Na2SO4) were obtained from 

Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Ti3AlC2 power was obtained from Laizhou Kai 

Kai Ceramic Materials Co., Ltd. L-glutathione (GSH) was obtained from Sigma-Aldrich.Deionized water (DI 

H2O, Millipore,18.2 MΩ·cm resistivity). 

1.2 Photoelectrochemical (PEC) measurements 

PEC measurements were carried out on electrochemical workstations (CHI 660E and Gamary Interface 

1000 E) in a conventional three-electrode quartz cell, which use Pt plate as the counter electrode, Ag/AgCl 

electrode as the reference electrode, and the samples coated on FTO were utilized as the working electrodes. 

The working electrodes were prepared on fluorine-dope tin oxide (FTO) glass that was cleaned by sonication 

in ethanol for 30 min and dried at 353 K. The boundary of FTO glass was protected using scotch tape. The 5 

mg sample was completely dispersed in 0.5 mL of ethyl alcohol absolute by sonication to get slurry which 

uniformly was spread onto the pretreated FTO glass. After drying in the air, the working electrode was further 

dried at 353 K for 2 h to improve adhesion. Then the Scotch tape was unstuck, and the uncoated part of the 

electrode was isolated with nail polish. The exposed area of the working electrode was 1 cm2. Besides, Na2SO4 

(0.5 M, pH=6.69) aqueous solution was used as the electrolyte. Average electron lifetime (τn) of the 

photoelectrode is determined by the following equation: 

𝜏 =
𝑘𝐵𝑇

𝑒(𝑑𝑉𝑜𝑐/𝑑𝑡)
−1                   Equation (1) 

where τ is the potential-dependent electron lifetime, kB is the Boltzmann’s constant (1.38 × 10-23 J/K), T 

is the temperature (298 K), e is the charge of a single electron (1.6 ×10-19 C), and Voc is the open-circuit voltage 



at time t. Charge carrier density (ND) of photoelectrode is calculated by the formula below. 

𝑁𝐷 = (
2

𝜀𝜀0𝑒0
) [

𝑑(1/𝑐2)

𝑑𝑉
]−1                Equation (2) 

where 𝜀 is the dielectric constant (𝜀Cd𝐼𝑛2𝑆4 =6.60), 𝜀0 is the vacuum permittivity (8.86×10-12 F/m), 𝑒0 is 

the electronic charge unit (1.6×10-19 C), and V is the potential. 

 

  



 

 

Fig. S1. Zeta potential of CdS aqueous solution. 

  



Fig. S2. (a) Zeta potential (pH=7), (b) FESEM image, (c) XRD pattern, (d) UV-vis absorption spectrum, 

(e) and AFM image & (f) height profile of Ti3C2Tx NSs. 

 

 



 

 

  

Fig. S3. Schematic model of Aux NCs along with the molecular structure of GSH ligand. 

  



 

 

Fig. S4. (a) Zeta potentials and (b) UV-vis absorption spectrum, (c)TEM image and (d) size distribution 

histogram of Aux@GSH NCs. 

 

 

 

 

  



 

Fig. S5. Survey spectra of CdS, CT0.06 and CT0.06A1.2. 

 

 

 

 



 

Fig. S6. High-resolution C 1s spectra of CT0.06 and CT0.06A1.2.   



 

Fig. S7. Nitrogen adsorption/desorption isotherms and Pore-size distribution curves of CdS, CT0.06 and 

CT0.06A1.2. 

 



  
Fig. S8. (a) FESEM image and (b-e) elemental mapping & (f) EDS results of CdS NSs. 

  



Fig. S9. (a) FESEM image and (b-g) elemental mapping & (h) EDS results of CT0.06. 

 

 

 

 

 

 

 

 

  



 

Fig. S10.Stability measurements for CdS and CT0.06A1.2. 

  



  

Fig. S11. XRD patterns of CTA before and after reaction. 

 



  
Fig. S12. (a) FESEM image of CTA after cyclic reaction with corresponding (b) EDS and (c-g) elemental 

mapping results. 

 

  



 

Fig. S13. (a) Mott−Schottky plots of CdS, CT0.06 and CT0.06A1.2. 

 



 

Fig S14. (a) CV curves of Aux@GSH NCs. (electrolyte: degassed acetonitrile containing 0.1 mol L-1 TEAP); 

(b) Transformed plots based on the Kubelka−Munk function vs. the energy of light for Aux@GSH NCs. 

  



Table S1. Peak position with corresponding functional groups. 

   
Peak position (cm-1 ) Vibrational mode Reference 

2917/2856 υ -CH2 [4] 

1630 δ-NH2 & υ-OH [2] 

3423 υ-COOH & υ-NH2 [2] 

613 Ti-O [5] 



Table S2. Summary of the specific surface area, pore volume and pore size of CdS, CT and CTA. 

 

Samples SBET (m2g-1)a Total pore volume(cm3g-1)b Average pore size (nm)c 

CdS 36.0810  0.081219 9.00410 

CT 67.7794 0.119111 7.02936 

CTA 54.5328 0.109915 8.06232 

 

a BET surface area is calculated from the linear part of BET plot.  

b Single point total pore volume of the pores at P/P0=0.95.  

c Adsorption average pore width (4V/A by BET). 

 

  



Table S3. Chemical bond species vs. B.E. for different samples. 

Elements CdS CT CTA Chemical bond species Reference 

Cd 3d5/2 403.5 404.9 405 Cd2+ [6] 

Cd 3d3/2 410.3 411.7 411.8 Cd2+ [6] 

S 3d3/2 160.3 161.3 161.4 S2- [7] 

S 3d1/2 161.9 162.4 162.6 S2- [7] 

C 1s A N.D. 284.8 284.8 C-C [8] 

C 1s B N.D. 281.7 281.5 C-Ti [8] 

C 1s C N.D. 286.2 286.2 C-O-C [8] 

C 1s D N.D. 288.1 288.1 C-F [8] 

Ti 2p A N.D. 458.7 N.D. Ti-C [6] 

Ti 2p B N.D. 460.2 N.D. Ti-C [6] 

Ti 2p C N.D. 463.1 N.D. Ti-O [6] 

Ti 2p D N.D. 462.2 N.D. Ti-Ox [6] 

Ti 2p E N.D. 455.5 N.D. Ti-Ox [6] 

Ti 2p F N.D. 461.0 N.D. Ti-x [6] 

Au 4f5/2 N.D. N.D. 88.2 Metallic Au0 [9] 

Au 4f5/2 N.D. N.D. 89.0 Au+ [9] 

Au 4f7/2 N.D. N.D. 84.5 Metallic Au0 [9] 

Au 4f7/2 N.D. N.D. 85.4 Au+ [9] 

 

  



Table S4. Fitted EIS results of sample under visible light irradiation based on the equivalent circuit. 

Photoandes Rs/ohm CPE/(×10^-5 F cm-2) Rct/ohm 

CdS 14.92 6.791 8869 

CT 15.66 5.874 7190 

CTA 14.74 7.448 5971 
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