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1. Experimental Section

General Procedures and Materials: All operations were performed in a Mbraun glovebox
under a N2> atmosphere with rigorous exclusion of oxygen and water using both Schlenk and
glovebox techniques, unless otherwise noted. Solvents were dried using a J. C. Meyer solvent
system, degassed by free-pump-thaw method and stored over activated 4 A molecular sieves
prior to use. The water content of the solvents used was monitored using a Karl Fischer
titration. The 1,2,4,5-tetrazine (tz) ligand was prepared according to the literature.!"
[Cp*2Ln][(u-Ph2)BPhy] and [Cp*2Ln(CsHs)] (Ln = Gd", Y") starting materials were prepared
according to the literature.””? All reagents were purchased from TCI, Alfa Aesar, or Strem
Chemicals and used without further purification. HCp* (99+%) was purchased from Alfa Aesar
and was degassed/dried as previously described prior to use. Elemental Analysis was
performed by Midwest Microlab. All sample manipulations took place inside the glovebox.

Synthesis of [(Cp*2Y)z(tz")(THF)2][BPh4] (1-Y): Complex 1-Y was prepared by slightly
modifying a previously published procedure.P! In 5 mL THF, one equivalent of tz (0.125 mmol,
10 mg) was combined with one equivalent of KCg (0.125 mmol, 17 mg). After 5 h, the dark
grey colour mixture was added dropwise to a solution of two equivalents of [(Cp*.Y][(u-
Ph2)(BPh2)] (0.25 mmol, 169 mg) in THF (5 mL). The colour of the resulting solution became
dark red (almost black) upon stirring. The reaction solution was left to stir overnight and then
was filtered. Upon slow diffusion with Et,O, dark red crystals of 1-Y were isolated after one
week in 59% yield. Elemental Analysis: Calcd: C, 70.30 %; H, 7.81 %; N, 4.43%, Found: C,
70.58%; H, 8.13%; N, 4.19%.

Synthesis of [(Cp*2Gd)(tz?)(THF).]-2THF (2-Gd): To a solution of tz (0.125 mmol, 10 mg)
in THF (5 mL), one equivalent of KCg (0.125 mmol, 17 mg) was added and the resulting mixture
was left to stir for 5 h. In a separate vial one equivalent of KCg (0.125 mmol, 17 mg) was
combined with two equivalents of [(Cp*2Gd)(CsHs)] (0.25 mmol, 117 mg) and was left to stir
for 5 minutes resulting in a very dark green mixture. The dark grey colour mixture of the tz and
KCs was slowly added to the dark green mixture of the metal and KCs and the resulting dark
green-yellow mixture was left to stir for 10 additional minutes. Upon filtration, a dark red-brown
(almost black) solution was isolated. Upon slow diffusion with Et,O at low temperature, violet
crystals of 2-Gd were isolated after 8 days in 30% yield. Prior to any analysis the sample was
purified by washing with trifluorotoluene. Elemental Analysis: Calcd: C, 56.83%; H, 7.73%; N,
4.57%, Found: C, 56.59%; H, 7.36%; N, 4.74%.

Synthesis of [(Cp*2Y)2(tz>)(THF).]-THF (2-Y): This complex was prepared in a similar
manner as 2-Gd by simply replacing [Cp*.Gd][(u-Ph2)BPh2] with [Cp*2Y][(u-Ph2)BPh2] (0.25
mmol, 100 mg) in 2-Y. Yield = 31%. Elemental Analysis: Calcd: C, 63.96%; H, 8.70%; N,
5.14%, Found: C, 64.13%; H, 8.29%; N, 4.87%.

Infrared Spectroscopy: Fourier transform infrared (FTIR) spectra were recorded on a Nicolet
Nexus 550 FT-IR spectrometer in the transmission window of 400-4000 cm™. All samples
comprised suspensions of crushed polycrystalline solid in a thin layer of Parabar 10312 oll,
which were prepared inside the glovebox. All spectra were corrected for the presence of the
oil.
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Diffuse reflectance and UV-Vis absorption spectroscopy: Diffuse reflectance (DR) and
UV-visible absorption spectra were recorded on an Agilent Cary 5000 UV-Vis-NIR
spectrophotometer. The DR spectra for 1-Y and 2-Y were collected on crushed polycrystalline
solids using air-tight sample holders, in the 200-800 nm range. Samples were prepared inside
the glovebox and after ensuring an airtight seal, they were transferred out of the glovebox and
mounted onto the spectrometer's sample holder. The UV-vis spectrum of 1-Y was collected in
dichloromethane (DCM; degassed by freeze-pump-thaw method, dried by J. C. Meyer solvent
system and stored over molecular sieves for several days prior to use) at ambient temperature
in the range of 250-800 nm using an airtight cuvette. The sample was prepared inside the
glovebox.

EPR spectroscopy: The X-band EPR spectrum of 1-Y was recorded at ambient temperature
using a Bruker EMX-200 spectrometer. The sample was prepared inside the glovebox where
polycrystalline sample of 1-Y was dissolved in THF solution (the solvent was degassed by
freeze-pump-thaw method, dried by J. C. Meyer solvent system and stored over molecular
sieves for several days prior to use). The sample was sealed with a septum, Teflon tape and
a layer of Parafilm to minimize incursion of air and moisture. After ensuring an airtight seal,
the sample was transferred out of the glovebox and mounted onto the spectrometer’s sample
holder.

Electrochemical analysis: Cyclic voltammetry (CV) was performed inside the glovebox using
a Princeton Applied Research Versastat 3 potentiostat employing a glass cell, platinum
auxiliary wires for the counter and pseudo-reference electrodes and a glassy carbon electrode
as a working electrode. The measurements were carried out in DCM solutions (dried by J. C.
Meyer solvent system and stored over molecular sieves for several days prior to use)
containing 0.1 M tetrabutylammonium hexafluorophosphate (Sigma Aldrich) as supporting
electrolyte with a scan rate of 100 mV/s. The experiments were referenced to the Fc/Fc* redox
couple of ferrocene (Sigma Aldrich) at +0.48 V vs. SCE.

Single crystal X-ray diffraction: Suitable crystals of 1-Y, 2-Gd and 2-Y for single-crystal X-
ray diffraction (SCXRD) analysis were covered, inside the glovebox, in parabar oil and then
mounted on a MiTeGen MicroLoop. Full data (Table S1) were collected on a Bruker KAPPA
APEX-II CCD single-crystal diffractometer (graphite monochromated Mo-Ka radiation, A =
0.71073 A), at 213 K (1-Y) and 200 K (2-Gd and 2-Y) temperatures. Absorption corrections
were applied by using multi-scan of the SADABS™ program. All structures were solved using
direct methods with SHELXT™ and refined by the full-matrix least-squares methods on F? with
SHELXL-2018/3"! in anisotropic approximation for all non-hydrogen atoms. All carbon-bound
hydrogen atoms were generated geometrically and included in the refinement in the riding
model approximation. The temperature factors of all H atoms were set to multiple of the
equivalent isotropic temperature factors of the parent site (aromatic and methylene at 1.2
times; methyl at 1.5 times the factor). The crystal structure of 1-Y contains an area of highly
disordered solvent molecules (two diethyl ether) resulting in a smeared-out electron density.
Attempts to model the disordered area with chemically and crystallographically reasonable
geometry were unsuccessful. Therefore, the SQUEEZE! function of PLATON® was
employed to remove the contribution of the electron density associated with those molecules
from the intensity data. In structures 2-Gd and 2-Y, there is a positional disorder on the two
crystallographically unique Cp* ligands and after careful refinement, the ratio was found to be
0.514(5):0.486(5) and 0.481(9):0.519(9) for 2-Gd, 0.499(5):0.501(5) and 0.485(9):0.515(9) for
2-Y. The disordered components were left to refine with free variables and soft restraints were
used to handle the disordered groups (SIMU, SADI, ISOR, DFIX etc). All
geometric/crystallographic calculations were carried out using PLATONE! and WINGX®
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packages while the molecular/packing graphics were prepared with DIAMOND!' and
MERCURY.['!

Magnetic measurements: Magnetic susceptibility measurements were obtained using a
Quantum Design SQUID magnetometer MPMS-XL7 for 1-Y and MPMS3 for 2-Gd operating
between 1.8 and 300 K. Direct current (dc) measurements were performed on 56.9 mg for 1-
Y and 17.3 mg for 2-Gd of crushed polycrystalline samples, which were sealed in a
polyethylene membrane. All samples were prepared inside the glovebox and after ensuring
an airtight seal, they were transferred outside the glovebox and mounted onto the SQUID’s
sample holder. Diamagnetic corrections were applied for the polyethylene membrane and the
silicon grease that was used to restrain 2-Gd. The samples were subjected to dc fields of 70
to -70 kOe.

Thermogravimetric analysis (TGA): The analysis was performed using a TA Instruments
Discovery TGA 55, which was housed in a “chemical-free”, nitrogen-filled (99.998%) MBraun
Labmaster 130 glovebox. Analyte was placed in a platinum pan and was heated to 800 °C
with a ramp rate of 10 °C min™, using nitrogen (99.999% purity, 60 sccm) as the purge gas.

2. Single-crystal X-ray data and molecular features

Table S1. Crystallographic data and refinement details for 1-Y, 2-Gd and 2-Y.

Compound reference 1-Y 2-Gd 2-Y
Chemical formula C74HggBY2N402 C50H78Gd2N402'2(C4H80) C50H78Y2N402'2(C4H80)
Formula mass 1264.19 1225.87 1089.19
Crystal system Monoclinic Monoclinic Monoclinic
alA 15.2944(4) 14.3222(4) 14.2304(8)
biA 20.2938(6) 13.3614(3) 13.3587(8)
clA 25.5590(9) 14.9998(4) 15.0126(10)
al° 90 90 90
Bl° 96.449(2) 94.976(1) 95.235(4)
y/° 90 90 90
Unit cell volume/A3 7882.8(4) 2859.61(13) 2842.0(3)
Temperature/K 213(2) 200(2) 200(2)
Space group 12/a P24/n P24/n
No. of formula units/unit cell, Z 4 2 2
Radiation type Mo Ka Mo Ka Mo Ka
Absorption coefficient, y/mm-! 1.505 2.345 2.078
No. of reflections measured 56747 64834 45212
No. of independent reflections 8623 6637 6636
Data / parameters / restraints 8623/385/6 6637 /342 /270 6636 /509 / 480
Rint 0.0356 0.0643 0.0763
Final Ry values (all data) 0.0465 0.0563 0.0718
Final wR(F?) values (all data) 0.0954 0.1233 0.1470
Final Ry values (I > 20(/)) 0.0337 0.0460 0.0471
Final wRx(F?) values (I > 20(/)) 0.0875 0.1112 0.1282
Goodness of fit on F2 1.037 1.075 1.045
Largest diff. peak and hole (eA) 0.845/-0.507 2.737/-1.923 0.878 /-1.000
CCDC number 2358823 2358824 2358825
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Table S2. Selected bond distances (A) and angles (°) for 1-Y, 2-Gd and 2-Y.

Distance/angle

Distance/angle

1-Y
Y-y 7.051(5) Y-0 2.364(1)
Y-N1 2.437(2) Y-N2' 2.462(2)
Y-Cpeent*A 2.386(4) Y-CPpoent*B 2.390(5)
Y ~tZeent 3.525(4) N1-N2' 1.395(2)
C1-N1 1.322(3) C1-N2 1.317(3)
N1-C1-N2 126.83(2) C1-N2-N1’ 116.55(2)
N2'-N1-C1 116.61(2) N2-Y-O 81.14(5)
O-Y-Cpeent*A 101.96(4) O-Y-Cpeent™B 102.88(4)
N1=Y-Cpeent*A 101.87(4) N1-Y-Cpeent*B 99.93(4)
N2'-Y~Cpeent*A 111.16(4) N2'-Y=Cpeent*B 107.81(4)
CPeent"A=Y—Cpeeni™B 136.28(2) N1-Y-N2’ 33.08(6)
2-Gd
Gd-Gd' 6.792(4) Gd-0 2.475(3)
Gd-N1 2.354(4) Gd-N2’ 2.363(4)
Gd-CpeentA 2.535(3) Gd-CpeentB 2.426(3)
Gd~tZeent 3.396(3) N1-N2' 1.481(6)
C1-N1 1.308(6) C1-N2 1.317(7)
N1-C1-N2 129.64(5) C1-N2-N1' 114.41(4)
N2'-N1-C1 115.96(4) N2-Gd-O 81.02(1)
0-Gd-Cpeent*A 102.63(9) O-Gd-Cpeent*B 102.97(1)
N1-Gd-Cpeent*A 103.38(1) N1-Gd—Cpeent*B 101.79(1)
N2'-Gd-Cpeent*A 117.29(1) N2'-Gd-Cpeent*B 108.74(1)
CPeent*A-Gd-Cpeent™B 129.91(1) N1-Gd-N2’ 36.60(1)
2-Y
Y-Y' 6.732(5) Y-0 2.439(2)
Y-N1 2.326(3) Y-N2' 2.320(3)
Y-Cpeent*A 2.390(3) Y-Cpeent*B 2.413(3)
Y ~tZeent 3.366(3) N1-N2' 1.481(4)
C1-N1 1.304(4) C1-N2 1.322(5)
N1-C1-N2 129.76(3) C1-N2-N1' 113.75(3)
N2'-N1-C1 116.48(3) N2-Y-O 81.05(9)
O-Y-Cpeent*A 103.04(6) O-Y-Cpeent™B 99.35(6)
N1=Y-Cpeent*A 101.64(7) N1-Y-Cpoent*B 98.01(7)
N2'-Y~Cpeent*A 109.35(7) N2'-Y=Cpeent*B 108.51(7)
CPeent"A=Y~Cpeeni™B 138.35(1) N1-Y-N2' 37.17(9)

CpoentA: C6-C10; Cpeent™B: C16-C20
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Figure S1: Molecular structures of 1-Y (top), as well as structural overlay (bottom) of 1-Gd!
(green) and 1-Y (blue), highlighting that both complexes are isostructural. For clarity reasons
BPhs moieties, and H-atoms have been omitted, while partial labeling and transparency have
been employed.
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Figure S2: Molecular structures of 2-Gd (top) and 2-Y (middle), as well as structural overlay
(bottom) of 2-Y (green) and 2-Y (blue), highlighting that both complexes are isostructural. For
clarity reasons disorder conformers, THF lattice solvents and H-atoms have been omitted,
while partial labeling and transparency have been employed.
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3. Cyclic voltammetry and UV-Vis absorption spectroscopy
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Figure S3: Cyclic voltammograms of tz measured in DCM at room temperature with
[BusN][PFe] (0.1 M) as supporting electrolyte, using a scan rate of 0.1 V/s. Inset: Cyclic
voltammogram of tz extended to more negative potential (-2.2 V).
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Figure S4: UV-Vis absorption spectrum of 1-Y in DCM at room temperature. Inset: Zoomed-
in area of the visible range of the spectrum highlighting the broad absorption band of the tz"~
between 450 and 700 nm.

S8



4. IR Spectroscopy
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Figure S5: Comparison of the solid-state infrared (IR) spectra of the free tz ligand (pink), with
complexes 1-Y (purple) and 2-Y (violet), in which the tz ligand is its radical and dianionic state,
respectively.
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Figure S6: Solid-state infrared (IR) spectra of complexes 1-Gd® (magenta) and 1-Y (blue).
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Figure S7: Solid-state infrared (IR) spectra of complexes 2-Gd (green) and 2-Y (violet).
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Figure S8: (A) Solid-state infrared (IR) spectra of complex 2-Y (blue) and the obtained orange
powder after dissolution of 2-Y in F-benzene (orange). The major bands discussed in the main
manuscript are highlighted with light-orange lines. (B) Zoomed-in area (3800-1450 cm™) of the
IR spectra for 2-Y (blue) and the obtained orange powder after dissolution of 2-Y in F-benzene
(orange), with the respective wavenumbers.
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5. Thermogravimetric analysis
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Figure S9: TGA curves of complexes 1-Y (A) and 2-Y (B).

6. Additional dc magnetic and EPR data
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Figure S10: Field dependence of the magnetization (top) and the reduced magnetization

(bottom) for 1-Y and 2-Gd at the indicated temperatures.
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Table S3. Simulated isotropic hyperfine coupling constants for the selected nitrogen,
hydrogen and yttrium atoms in 1-Y.

Nucleus mT MHz
14N 0.584 16.367
14N 0.584 16.367
14N 0.584 16.367
14N 0.584 16.367
89y 0.105 2.943
89y 0.105 2.943
H 0.021 0.589
H 0.021 0.589

7. Computational details and discussion

All calculations were carried out using density functional theory (DFT) as implemented in the
Amsterdam Density Functional (ADF) code!'? of the Amsterdam Modelling Suite (AMS)
package version 2023.101.1"¥ Geometry optimizations utilized the pure GGA exchange-
correlation (XC) functional PBE,!"! while single-point calculations utilized either the hybrid XC
PBEO!'*' or the range-separated hybrid XC CAM-B3LYP.'® Dispersion effects were
estimated with the empirical DFT-D3 correction'! with the Becke—Johnson damping
function.l'® Scalar relativistic effects were introduced using the zeroth-order regular
approximation (ZORA) as implemented in ADF.I'" All calculations used the default ADF Slater-
type orbital (STO) basis sets designed for ZORA calculations.?™ Valence triple- basis sets
with two sets of polarization functions (TZ2P) were used for all atoms. In the geometry
optimizations the 1s orbitals of C, N and O atoms and all orbitals of Y up to 4p were treated
as frozen cores, while in the single-point calculations all orbitals were optimized. The
“NumericalQuality” keyword in ADF was set to “Good” in the geometry optimizations and to
“VeryGood” in the single-point calculations.

The calculations were carried out on three systems: the hypothetical [Y2]**, [Y2]* and [Y2],
where the tetrazine ligand is diamagnetic neutral, a radical monoanion or a diamagnetic
dianion, respectively. Two types of geometries were considered: crystal-structure geometries
were only the positions of the hydrogen atoms were optimized and fully optimized structures
with no constraints on the symmetry. Frequency calculations were carried out on the freely
optimized structure to ensure that the stationary structures correspond to minima on the
potential energy surface and to produce IR frequencies and absorption intensities. The initial
structures of [Y2]* and [Y.] were extracted from their respective crystal structures, while the
initial structure of [Y2]** was extracted from the crystal structure of [Y2]".

Atomic charges were calculated using the quantum theory of atoms in molecules (QTAIM)?"
as it is implemented in ADF.?? The fully optimized geometries and the PBEO functional were
used in the charge calculations. Nuclear-independent chemical shifts (NICS)%¥! were
calculated on both the optimized and crystal-structure geometries using the PBEO functional.
The shifts were calculated at the centroid of the tetrazine rings that also corresponds to the
molecule inversion center. The calculations utilized the gauge-including atomic orbitals
(GIAOs) as implemented in ADF.*Y The shifts were also calculated for the free ligands as well
as some other systems used as a reference. The geometries of these systems were fully
optimized at the same level as the complexes. The signh convention was chosen to correspond
to that used in ref. [23]; namely, negative sign indicates aromaticity and positive sign anti-
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aromacity. Time-dependent density functional theory (TD-DFT) calculations'® were carried
out on the crystal-structure geometries using the CAM-B3LYP functional and the Tamm-—
Dancoff approximation.®®! The 50 lowest singlet-singlet excitations were solved in the
calculations.
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Figure $11: Calculated IR frequencies and absorption intensities along with the measured IR
absorbance of [Y2]".
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Figure S$12: Calculated IR frequencies and absorption intensities along with the measured IR
absorbance of [Y2].
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Table S4. Selected optimized bond distances (in A, using the crystal-structure labels) in [Y2]**,
[Y2]* and [Y2], and their comparison to the respective crystal-structure parameters. For [Y2]**
only the optimized bond distances are provided.

Structure Source N1-Y N2-Y N1-N2 N1-C1 N2-C2
[Y2]** DFT 2.391 2.459 1.368 1.332 1.333
. DFT 2.398 2474 1.390 1.327 1.330
[l XRD 2.437 2.462 1.395 1.317 1.322
DFT 2.322 2.347 1.476 1.313 1.327
vl XRD 2.326 2.320 1.481 1.304 1.322
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Table S5. QTAIM charges calculated for the Y(lIl) ions and the atoms in the tetrazine bridge

in [Y2]%*, [Y2]" and [Y2] using the crystal-structure labels of the atoms.

[Y2]** [Y2]" [Y2]

Y 1.97 1.98 2.01

Y 1.97 1.98 2.01

H 0.1 0.07 0.02

H 0.1 0.07 0.02
C1/C2 1.00 1.01 1.07
C1/C2 1.00 1.01 1.07
N1/N2 —0.68 -0.74 -0.92
N1/N2 -0.67 -0.74 -0.91
N1/N2 —0.68 -0.74 -0.92
N1/N2 -0.67 -0.74 —-0.91
Total bridge charge -0.47 -0.78 -1.49

Table S6. Final bond
optimized structures.

energies (defined with respect to default ADF atomic fragments) of the

Structure E(PBE) / Hartree E(PBEQO) / Hartree
[Y2)?* —29.05762379 -35.09185103
[Y2]* —29.35685799 —-35.41815800
[Y2] —29.52004967 —35.57954371

Table S7. NICS values (in ppm) calculated at the centroid of a given ring in crystal structure

and optimized geometries of the complexes as well as the free ligands.

DFT geometry XRD geometry Free ligand
[Y2] 25.75 22.08 9.02
[Y2]* 24.94 38.98 14.53
[Y2]* 16.37 - -1.35
Benzene - - —7.88
Pyridine - - —6.58
Pyrazine - - —-4.95
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Optimized Cartesian coordinates
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