Supporting Information

Unified ionic and radical C-4 alkylation and arylation of pyridines

Qiu Shi, Xiaofeng Huang, Ruizhi Yang and Wenbo H. Liu*

School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China E-mail: liuwb29@mail.sysu.edu.cn

Table of Contents

1. General information	S3
2. Synthesis of diiminium ditriflate pyridine salt	S3
3. C-4 alkylation and arylation with Grignard reagents as the nucleophile	S14
4.: One-pot C-4 alkylation with Grignard reagents as the nucleophile	S20
6. C-4 alkylation with organozinc reagent as the nucleophile	S29
7. C-4 cyanylation with TMSCN as the nucleophile	S30
8. C-4 arylation with phenyl lithium as the nucleophile	S32
9. C-4 alkylation with the enolate as the nucleophile	S32
10. C-4 alkylation with silyl ketene acetal as the nucleophile	S33
11. C-4 alkylation with nitronate as the nucleophile	S34
12. C-4 alkylation with malonates as the nucleophile	S35
13. C-4 alkylation with carboxylic acids as the radical precursors	S37
14. C-4 arylation with aryl boronic acids as the radical precursors	S42
15. C-4 alkylation with functionalized alkanes as the radical precursors	S45
16. Late-stage functionalization of drug-like molecules	S46
17. Synthesis of 4-(1-tosylpiperidin-4-yl)picolinamide	S53
18. Synthesis of VU6001966	S53
19. Synthesis of LJI308	S55
20. Comparison of two pyridine salt additions with methyl Grignard reagent	S57
21. GC-MS data for the reaction of 5-chloropentanoic acid and 4h	S58
22. GC-MS data for the reaction of (4-ethylphenyl)boronic acid and 4h	S61
23. GC-MS data after oxidation of S-4s and <i>n</i> -pentylMgBr	S63
24. X-ray data of 4a and 4h	S65
25. Different pyridine C-4 selective functionalizations via C-C bond formation	S81
26. References	S81

27. Copies of NMR spectroscopy	
--------------------------------	--

1. General information

Commercial reagents were purchased from Energy, TCI, J&K, Accela, Bide, Macklin or Adamas and used without further purification. The anhydrous solvents used in the experiments were all purchased from J&K and used directly. All reactions were carried out with oven-dried glassware or Schlenk tubes. Analytical thin layer chromatography (TLC) was performed on 0.20 mm silica gel HSGF-254 plates (Huanghai, China). Column chromatography was performed on 200-300 mesh silica gel or 300-400 mesh silica gel (General-Reagent, China).

¹H NMR (400 MHz or 600 MHz), ¹³C NMR (101 MHz or 151 MHz) and ¹⁹F NMR (377 MHz or 565 MHz) were recorded on an NMR spectrometer with CDCl₃, DMSOd₆, D₂O, actone-d₆ or CD₃CN as the solvent. Chemical shifts of ¹H and ¹³C NMR spectra are reported in parts per million (ppm). The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale (CDCl₃: δ H = 7.26 ppm, $\delta C = 77.16$ ppm. DMSO-*d*₆: $\delta H = 2.50$ ppm, $\delta C = 39.52$ ppm. D₂O: $\delta H =$ 4.79 ppm. CD₃CN: δ H = 1.94 ppm, δ C = 118.26 ppm.). Multiplicity (s = singlet, d = doublet, dd = doublet of doublets, ddd = doublet of doublet, dt = triplet of doublet, t = triplet, q = quartet, m = multiplet, br = broad). All coupling constants (J values) were reported in Hertz (Hz). High resolution mass spectrometry of products were recorded on an LTQ Orbitrap Elite LC/MS (ESI). GC-MS data were collected by an Agilent 5977B instrument. Single-crystal X-ray diffraction of 4a and 4h. A pale white block crystal was selected and on a SuperNova, AtlasS2 diffractometer (Rigaku Oxiford Diffraction). Single crystal data were collected at 223K on a Bruker D8 VENTURE diffractometer equipped with a PHOTON III detector and with a MetalJet Ga source. Data reduction, solution and refinement used the programs APEX3 and Olex2 respectively. The room temperature ranges from 18 to 35 °C.

2. Synthesis of diiminium ditriflate pyridine salt

General Procedure I:

Under a nitrogen atmosphere, different ureas (2.1 mmol, 1.05 equiv) were added to an oven-dried 25 mL Schlenk tube with a magnetic bar. Anhydrous DCM (6.0 mL) was added and the solution was cooled to 0 °C in an ice-bath. Tf₂O (trifluoromethanesulfonic anhydride, 0.34 mL, 2.04 mmol, 1.02 equiv) was added dropwise via a 1.0 mL syringe within 5 minutes and the solution was stirred for 10 minutes at 0 °C (the reaction solution turned pale yellow during this period). Then pyridine (158.2 mg, 2.0 mmol, 1.0 equiv) was added dropwise via a 250 μ L micro syringe within 1 minute. The cooling bath was removed, rapid crystallization was observed after circa 3 h and the reaction was stirred vigorously overnight. (Note: Due to the mild hygroscopic feature of the pyridine salt, we transfer the filtration to the glove

box for operation that can be referenced to the literature^[1]). The reaction mixture was filtered with a buchner funnel with fritted disc and washed with anhydrous DCM ($3 \times 6.0 \text{ mL}$). The filtrate was removed, and the white solid was dried in vacuum and stored in the glove box to avoid contamination with water.

(4a)

Prepared via **General Procedure I** starting from pyridine (158.2 mg, 2.0 mmol, 1.0 equiv) and 1,1,3,3-tetramethylurea (243.8 mg, 2.1 mmol, 1.05 equiv) to give **4a** as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (eluent: DCM/MeOH = 10:1).

Yield 877.8 mg (92%).

NMR spectroscopy:

¹**H NMR** (CD₃CN, 400 MHz) δ 9.17 (d, *J* = 5.8 Hz, 2H), 9.06 (t, *J* = 7.9 Hz, 1H), 8.50 – 8.42 (m, 2H), 3.54 (s, 6H), 2.94 (s, 6H).

¹³**C NMR** (CD₃CN, 101 MHz) δ 156.8, 155.5, 146.0, 131.3, 121.8 (q, *J* = 323.2 Hz), 44.7, 43.5.

¹⁹**F NMR** (CD₃CN, 377 MHz) δ -79.2.

HRMS calcd for $(C_{10}H_{17}N_3)^{2+} [m/z]^+$: 89.5706, found 89.5709.

(4b)

Prepared via **General Procedure I** starting from pyridine (158.2 mg, 2.0 mmol, 1.0 equiv) and 1,3-dimethylimidazolidin-2-one (239.4 mg, 2.1 mmol, 1.05 equiv) to give **4b** as a white solid.

 $R_f = 0.6$ (eluent: DCM/MeOH = 10:1).

Yield 807.8 mg (85%).

NMR spectroscopy:

¹**H NMR** (D₂O, 600 MHz) δ 8.63 (d, *J* = 5.3 Hz, 2H), 8.48 (tt, *J* = 7.9, 1.4 Hz, 1H), 7.94 (t, *J* = 6.9 Hz, 2H), 3.19 (s, 4H), 2.56 (s, 6H).

¹³**C NMR** (D₂O, 151 MHz) δ 163.8, 147.2, 141.0, 127.4, 119.6 (q, *J* = 318.6 Hz), 44.9, 30.7.

¹⁹**F NMR** (D₂O, 565 MHz) δ -79.0.

HRMS calcd for $(C_{10}H_{15}N_3)^{2+} [m/z]^+$: 88.5628, found 88.5632.

Prepared via **General Procedure I** starting from pyridine (158.2 mg, 2.0 mmol, 1.0 equiv) and di(pyrrolidin-1-yl)methanone (352.8 mg, 2.1 mmol, 1.05 equiv) to give **4c** as a white solid.

 $R_f = 0.6$ (eluent: DCM/MeOH = 10:1).

Yield 814.7 mg (77%).

NMR spectroscopy:

¹**H** NMR (CD₃CN, 400 MHz) δ 9.32 – 9.24 (m, 2H), 9.03 (t, *J* = 7.9 Hz, 1H), 8.50 (t, *J* = 7.0 Hz, 2H), 4.25 (t, *J* = 6.7 Hz, 4H), 3.33 (t, *J* = 6.9 Hz, 4H), 2.15 (p, *J* = 6.6 Hz, 4H), 1.96 (p, *J* = 6.7 Hz, 4H).

¹³**C NMR** (CD₃CN, 101 MHz) δ 153.6, 149.6, 144.5, 131.8, 121.8 (q, *J* = 321.2 Hz), 55.1, 53.8, 26.7, 24.7.

¹⁹**F NMR** (CD₃CN, 377 MHz) δ -79.2.

HRMS calcd for $(C_{14}H_{21}N_3)^{2+} [m/z]^+$: 115.5863, found 115.5864.

(4d)

Prepared via **General Procedure I** starting from pyridine (158.2 mg, 2.0 mmol, 1.0 equiv) and 1,3-diisobutylimidazolidin-2-one (416.2 mg, 2.1 mmol, 1.05 equiv) to give **4d** as a white solid.

 $R_f = 0.6$ (eluent: DCM/MeOH = 10:1).

Yield 592.5 mg (53%).

NMR spectroscopy:

¹**H** NMR (CD₃CN, 400 MHz) δ 9.11 (t, *J* = 8.0 Hz, 1H), 9.07 (d, *J* = 6.1 Hz, 2H), 8.63 – 8.52 (m, 2H), 4.28 (s, 4H), 3.00 (d, *J* = 7.5 Hz, 4H), 2.05 – 1.95 (m, 2H), 0.87 (d, *J* = 6.7 Hz, 12H).

¹³**C NMR** (CD₃CN, 101 MHz) δ 155.1, 154.8, 144.6, 132.4, 121.8 (q, *J* = 321.2 Hz), 55.9, 49.7, 26.4, 19.5.

¹⁹**F NMR** (CD₃CN, 377 MHz) δ -79.2.

HRMS calcd for $(C_{16}H_{27}N_3)^{2+}$ $[m/z]^+$: 130.6097, found 137.6098.

Prepared via General Procedure I starting from pyridine (158.2 mg, 2.0 mmol, 1.0 equiv) and 1,3-dimethyltetrahydropyrimidin-2(1H)-one (269.0 mg, 2.1 mmol, 1.05 equiv) to give 4e as a white solid.

 $R_f = 0.6$ (eluent: DCM/MeOH = 10:1).

Yield 870.4 mg (89%).

NMR spectroscopy:

¹**H NMR** (CD₃CN, 600 MHz) δ 9.20 (d, J = 6.2 Hz, 2H), 9.05 (t, J = 7.9 Hz, 1H), 8.51 (t, J = 7.1 Hz, 2H), 3.83 (t, J = 5.9 Hz, 4H), 2.90 (s, 6H), 2.35 (p, J = 5.9 Hz, 2H). ¹³**C NMR** (CD₃CN, 101 MHz) δ 154.1, 151.1, 144.7, 131.8, 121.7 (q, J = 321.2 Hz), 50.9, 41.6, 18.8. ¹⁹**F NMR** (CD₃CN, 377 MHz) δ -79.2. **HRMS** calcd for (C₁₁H₁₇N₃)²⁺ [m/z]⁺: 95.5706, found 95.5710.

HKWIS called for $(C_{11}H_{17}N_3)^{-1}$ [m/2] : 95.5706, found 95.5710.

(4f) Because 4f is oily, the 4f is not separated and used directly in one-pot

Under a nitrogen atmosphere, 1,3-dibutyltetrahydropyrimidin-2(1H)-one (66.8 mg, 0.315 mmol, 1.05 equiv) was added to an oven-dried 25 mL Schlenk tube with a magnetic bar. Anhydrous DCM (3.0 mL) was added and the solution was cooled to 0 °C in an ice-bath. Tf₂O (trifluoromethanesulfonic anhydride, 51.4 µL, 0.306 mmol, 1.02 equiv) was added dropwise via a 100 µL micro syringe within 2 minutes and the solution was stirred for 10 minutes at 0 °C (the reaction solution turned pale vellow during this period). Then pyridine (23.7 mg, 0.3 mmol, 1.0 equiv) was added dropwise within 1 minute. The cooling bath was removed, the reaction mixture was stirred vigorously for 16 h. Then the mixture was concentrated under reduced pressure. After three vacuum nitrogen cycles, anhydrous THF (3.0 mL) was added and the solution was cooled to -78 °C in a low-temperature reactor. A solution of the *n*-pentylMgBr (0.45 mmol, 1.5 equiv) was added dropwise via a 1.0 mL syringe within 2 minutes and the resulting suspension was stirred for 10 minutes. Water (3.0 mL) was added in one portion and the reaction mixture stirred for 5 minutes at room temperature, then DCM (5.0 mL) and 1,3,5-trimethoybenzene (5.3 mg) were added in one portion. The mixture was extracted with DCM (3×5.0 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The oil residue was dissolved by CDCl₃ and the selectivity of the reaction was

determined by crude NMR spectroscopy.

$R_f = 0.4$ (eluent: DCM/MeOH = 10:1). Yield (NMR yield: 75%, C4/C2 = 12.6/1).

Figure S1. Crude ¹H NMR of 4f (CDCl₃, 400 MHz)

(4g) Because 4g is oily, 4g is not separated and is used directly in one-pot

Under a nitrogen atmosphere, 1,3-diisopentyltetrahydropyrimidin-2(1*H*)-one (75.6 mg, 0.315 mmol, 1.05 equiv) was added to an oven-dried 25 mL Schlenk tube with a magnetic bar. Anhydrous DCM (3.0 mL) was added and the solution was cooled to 0 °C in an ice-bath. Tf₂O (trifluoromethanesulfonic anhydride, 51.4 μ L, 0.306 mmol, 1.02 equiv) was added dropwise via a 250 μ L micro syringe within 2 minutes and the solution was stirred for 10 minutes at 0 °C (the reaction solution turned pale yellow during this period). Then pyridine (23.7 mg, 0.3 mmol, 1.0 equiv) was added dropwise within 1 minute. The cooling bath was removed and the reaction was stirred vigorously for 16 h. Then the mixture was concentrated under reduced pressure. After three vacuum nitrogen cycle operations, anhydrous THF (3.0 mL) was added and the solution was cooled to -78 °C in a low-temperature reactor. A solution of the *n*-pentylMgBr (0.45

mmol, 1.5 equiv) was added dropwise via a 1.0 mL syringe within 2 minutes and the resulting suspension was stirred for 10 minutes. Water (3.0 mL) was added in one portion and the reaction mixture stirred for 5 minutes at room temperature, then DCM (5.0 mL) and 1,3,5-trimethoybenzene (5.3 mg) were added in one portion. The mixture was extracted with DCM (3×5.0 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The oil residue was dissolved by CDCl₃ and the selectivity of the reaction was determined by crude NMR spectroscopy.

 $R_f = 0.4$ (eluent: DCM/MeOH = 10:1). Yield (NMR yield: 74%, C4/C2 = 6.0/1).

(4h)

Prepared via General Procedure I starting from pyridine (158.2 mg, 2.0 mmol, 1.0 equiv) and 1,3-diisobutyltetrahydropyrimidin-2(1H)-one (445.2 mg, 2.1 mmol, 1.05 equiv) to give 4h as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (eluent: DCM/MeOH = 10:1).

Yield 985.6 mg (86%).

NMR spectroscopy:

¹**H NMR** (CD₃CN, 400 MHz) δ 9.25 (d, *J* = 5.7 Hz, 2H), 9.11 (t, *J* = 8.0 Hz, 1H), 8.67 – 8.53 (m, 2H), 3.90 (t, *J* = 5.8 Hz, 4H), 2.89 (d, *J* = 7.6 Hz, 4H), 2.39 (p, *J* = 5.9 Hz, 2H), 2.13 – 1.83 (m, 2H), 0.82 (d, *J* = 6.7 Hz, 12H).

¹³**C NMR** (CD₃CN, 101 MHz) δ 154.7, 151.1, 144.8, 132.1, 121.7 (q, *J* = 321.2 Hz), 61.6, 49.1, 26.9, 19.5, 18.6.

¹⁹**F NMR** (CD₃CN, 565 MHz) δ -79.1.

HRMS calcd for $(C_{17}H_{29}N_3)^{2+} [m/z]^+$: 137.6178, found 137.6175.

(S-4i)

Prepared via **General Procedure I** starting from ethyl nicotinate (302.0 mg, 2.0 mmol, 1.0 equiv), 1,3-diisobutyltetrahydropyrimidin-2(1H)-one (445.2 mg, 2.1 mmol, 1.05 equiv) and stirred at 50 °C for 48 h to give **S-4i** as a white solid.

 $R_f = 0.5$ (eluent: DCM/MeOH = 10:1).

Yield 1.07 g (83%).

NMR spectroscopy:

¹**H** NMR (CD₃CN, 400 MHz) δ 9.77 (s, 1H), 9.46 (d, *J* = 8.2 Hz, 1H), 9.41 – 9.35 (m, 1H), 8.69 (dd, *J* = 8.1, 6.3 Hz, 1H), 4.52 (q, *J* = 7.1 Hz, 2H), 3.89 (t, *J* = 5.8 Hz, 4H), 2.95 – 2.83 (m, 4H), 2.38 (p, *J* = 5.9 Hz, 2H), 2.06 – 1.95 (m, 2H), 1.42 (t, *J* = 7.1 Hz, 3H), 0.81 (dd, *J* = 9.8, 6.7 Hz, 12H).

¹³**C NMR** (CD₃CN, 101 MHz) δ 160.9, 154.1, 150.8, 147.3, 145.8, 134.9, 132.8, 121.8 (q, *J* = 322.2 Hz), 64.7, 61.7, 49.2, 26.9, 19.5, 19.4, 18.6, 14.1.

¹⁹**F NMR** (CD₃CN, 377 MHz) δ -79.2.

HRMS calcd for $(C_{20}H_{33}N_3O_2)^{2+}$ $[m/z]^+$: 173.6281, found 173.6282.

(S-4j)

Prepared via **General Procedure I** starting from 3-chloropyridine (226.0 mg, 2.0 mmol, 1.0 equiv), 1,3-diisobutyltetrahydropyrimidin-2(1*H*)-one (445.2 mg, 2.1 mmol, 1.05 equiv) and stirred at room temperature for 48 h to give **S-4j** as a white solid.

 $R_f = 0.5$ (eluent: DCM/MeOH = 10:1). Yield 995.8 mg (82%).

NMR spectroscopy:

¹**H** NMR (DMSO-*d*₆, 400 MHz) δ 9.92 (s, 1H), 9.55 (d, *J* = 6.0 Hz, 1H), 9.36 (d, *J* = 8.6 Hz, 1H), 8.69 (dd, *J* = 8.5, 6.2 Hz, 1H), 3.88 – 3.71 (m, 4H), 3.05 – 2.81 (m, 4H), 2.34 – 2.16 (m, 2H), 2.01 – 1.87 (m, 2H), 0.78 (t, *J* = 7.1 Hz, 12H).

¹³**C NMR** (DMSO-*d*₆, 101 MHz) δ 153.2, 149.2, 143.1, 142.8, 137.8, 131.3, 120.7 (q, *J* = 323.2 Hz), 60.0, 48.1, 25.8, 19.19, 19.16, 17.9.

¹⁹**F NMR** (DMSO-*d*₆, 377 MHz) δ -78.9.

HRMS calcd for $(C_{17}H_{28}ClN_3)^{2+} [m/z]^+$: 154.5980, found 154.5978.

(S-4k)

Prepared via **General Procedure I** starting from 3-bromopyridine (314.0 mg, 2.0 mmol, 1.0 equiv), 1,3-diisobutyltetrahydropyrimidin-2(1*H*)-one (445.2 mg, 2.1 mmol, 1.05 equiv) and stirred at room temperature for 48 h to give **S-4k** as a white solid.

 $R_f = 0.5$ (eluent: DCM/MeOH = 10:1).

Yield 989.5 mg (76%).

NMR spectroscopy:

¹**H NMR** (DMSO-*d*₆, 400 MHz) δ 9.96 (s, 1H), 9.56 (d, *J* = 6.0 Hz, 1H), 9.46 (d, *J* = 8.5 Hz, 1H), 8.65 – 8.58 (m, 1H), 3.83 – 3.72 (m, 4H), 2.99 – 2.90 (m, 2H), 2.89 – 2.79 (m, 2H), 2.33 – 2.17 (m, 2H), 2.07 – 1.86 (m, 2H), 0.84 – 0.72 (m, 12H).

¹³**C NMR** (DMSO-*d*₆, 101 MHz) δ 155.7, 149.1, 144.4, 143.1, 131.2, 125.6, 120.7 (q, *J* = 323.2 Hz), 60.0, 48.0, 25.8, 19.19, 19.16, 17.9.

¹⁹**F NMR** (DMSO-*d*₆, 377 MHz) δ -78.9.

HRMS calcd for $(C_{17}H_{28}BrN_3)^{2+} [m/z]^+$: 176.5728, found 176.5727.

(S-4l)

Prepared via **General Procedure I** starting from 3-fluoropyridine (194.0 mg, 2.0 mmol, 1.0 equiv), 1,3-diisobutyltetrahydropyrimidin-2(1H)-one (445.2 mg, 2.1 mmol, 1.05 equiv) and stirred at room temperature for 48 h to give **S-4I** as a white solid.

R_f = 0.5 (eluent: DCM/MeOH = 10:1). **Yield** 874.8 mg (74%). **NMR spectroscopy:** ¹**H NMR** (DMSO- d_6 , 400 MHz) δ 9.90 (s, 1H), 9.52 (d, J = 6.0 Hz, 1H), 9.22 (t, J = 7.2 Hz, 1H), 8.81 - 8.71 (m, 1H), 3.88 - 3.75 (m, 4H), 3.03 - 2.82 (m, 4H), 2.31 - 2.14 (m, 2H), 2.03 - 1.84 (m, 2H), 0.77 (dd, J = 14.6, 6.6 Hz, 12H). ¹³C NMR (DMSO- d_6 , 101 MHz) δ 161.5 (d, J = 259.6 Hz), 149.2, 141.7 (d, J = 3.0 Hz), 141.4 (d, J = 18.2 Hz), 134.2 (d, J = 40.4 Hz), 132.4 (d, J = 8.1 Hz), 120.7 (q, J = 323.2 Hz), 60.1, 48.1, 25.8, 19.20, 19.15, 17.9. ¹⁹F NMR (DMSO- d_6 , 377 MHz) δ -78.9, -106.4.

HRMS calcd for $(C_{17}H_{28}FN_3)^{2+} [m/z]^+$: 146.6128, found 146.6127.

(S-4q)

Prepared via **General Procedure I** starting from 3-phenylpyridine (310.1 mg, 2.0 mmol, 1.0 equiv), 1,3-diisobutyltetrahydropyrimidin-2(1H)-one (445.2 mg, 2.1 mmol, 1.05 equiv) and stirred at room temperature for 48 h to give **S-4q** as a white solid.

 $R_f = 0.5$ (eluent: DCM/MeOH = 10:1).

Yield 1.13 g (87%).

NMR spectroscopy:

¹**H** NMR (CD₃CN, 400 MHz) δ 9.58 (s, 1H), 9.33 (d, *J* = 8.4 Hz, 1H), 9.14 (d, *J* = 6.1 Hz, 1H), 8.61 (dd, *J* = 8.4, 6.1 Hz, 1H), 7.95 – 7.88 (m, 2H), 7.73 – 7.67 (m, 3H), 3.93 (t, *J* = 5.8 Hz, 4H), 3.07 – 2.91 (m, 4H), 2.51 – 2.35 (m, 2H), 2.14 – 2.01 (m, 2H), 0.89 – 0.82 (m, 12H).

¹³C NMR (CD₃CN, 101 MHz) δ 151.0, 150.4, 144.0, 141.9, 140.9, 131.6, 131.5, 131.1, 130.0, 127.9, 121.1 (q, *J* = 321.6 Hz), 61.0, 48.3, 26.2, 18.74, 18.72, 17.9.
¹⁹F NMR (CD₃CN, 565 MHz) δ -79.2.

HRMS calcd for $(C_{20}H_{33}N_3O_2)^{2+}$ $[m/z]^+$: 175.6332, found 175.6327.

(S-4s)

Prepared via **General Procedure I** starting from 2-phenylpyridine (310.1 mg, 2.0 mmol, 1.0 equiv), 1,3-dimethylimidazolidin-2-one (239.4 mg, 2.1 mmol, 1.05 equiv) and stirred at room temperature for 48 h to give **S-4s** as a white solid.

 $R_f = 0.4$ (eluent: DCM/MeOH = 10:1). Yield 896.5 mg (81%). NMR spectroscopy: ¹H NMR (CD₃CN, 400 MHz) δ 9.16 (d, J = 6.0 Hz, 1H), 9.08 (t, J = 8.0 Hz, 1H), 8.53 (d, *J* = 8.2 Hz, 1H), 8.47 (t, *J* = 7.0 Hz, 1H), 7.86 (t, *J* = 7.4 Hz, 1H), 7.77 (t, *J* = 7.5 Hz, 2H), 7.65 (d, *J* = 7.6 Hz, 2H), 4.20 – 4.07 (m, 2H), 4.05 – 3.90 (m, 2H), 2.91 (s, 6H).

¹³**C NMR** (CD₃CN, 101 MHz) δ 155.6, 153.8, 153.1, 144.5, 134.0, 132.6, 130.5, 129.0, 128.8, 128.3, 121.0 (q, *J* = 321.2 Hz), 50.3, 34.3.

¹⁹**F NMR** (CD₃CN, 565 MHz) δ -79.2.

HRMS calcd for $(C_{16}H_{19}N_3)^{2+}$ $[m/z]^+$: 126.5784, found 126.5785.

(S-4t)

Prepared via **General Procedure I** starting from 2-(thiophen-2-yl)pyridine (322.0 mg, 2.0 mmol, 1.0 equiv), 1,3-dimethylimidazolidin-2-one (239.4 mg, 2.1 mmol, 1.05 equiv) and stirred at room temperature for 48 h to give **S-4t** as a yellow solid.

 $R_f = 0.4$ (eluent: DCM/MeOH = 10:1).

Yield 627.1 mg (56%).

NMR spectroscopy:

¹**H NMR** (CD₃CN, 600 MHz) δ 8.97 (d, J = 6.4 Hz, 1H), 8.93 (t, J = 8.1 Hz, 1H), 8.58 (d, J = 8.4 Hz, 1H), 8.32 (t, J = 6.5 Hz, 1H), 8.22 (d, J = 5.0 Hz, 1H), 7.90 (d, J = 3.9 Hz, 1H), 7.53 – 7.39 (m, 1H), 4.33 – 4.23 (m, 2H), 4.23 – 4.15 (m, 2H), 2.94 (s, 6H). ¹³**C NMR** (CD₃CN, 151 MHz) δ 154.0, 153.5, 150.3, 144.6, 139.0, 137.2, 132.7, 131.7, 128.91, 128.86, 122.0 (q, J = 320.1 Hz), 51.3, 35.0.

¹⁹**F NMR** (CD₃CN, 565 MHz) δ -79.2.

HRMS calcd for $(C_{14}H_{17}N_3S)^{2+} [m/z]^+$: 129.5566, found 129.5567.

(S-4u)

Prepared via **General Procedure I** starting from 4-(pyridin-2-yl)benzonitrile (360.1 mg, 2.0 mmol, 1.0 equiv), 1,3-dimethylimidazolidin-2-one (239.4 mg, 2.1 mmol, 1.05 equiv) and stirred at 50 °C for 36 h to give **S-4u** as a white solid.

R_f = 0.4 (eluent: DCM/MeOH = 10:1). Yield 780.0 mg (68%). NMR spectroscopy: ¹H NMR (CD₃CN, 400 MHz) δ 9.22 (d, J = 6.2 Hz, 1H), 9.13 (t, J = 8.0 Hz, 1H), 8.77 - 8.49 (m, 2H), 8.10 (d, J = 8.3 Hz, 2H), 7.79 (d, J = 8.3 Hz, 2H), 4.20 - 4.08 (m, 2H), 4.02 – 3.94 (m, 2H), 2.92 (s, 6H). ¹³C NMR (CD₃CN, 151 MHz) δ 153.0, 152.6, 150.9, 145.4, 133.5, 133.0, 130.5, 130.2, 129.9, 125.4, 124.6, 120.9 (q, *J* = 320.1 Hz), 50.4, 34.5. ¹⁹F NMR (CD₃CN, 377 MHz) δ -79.2.

HRMS calcd for $(C_{17}H_{18}N_4)^{2+} [m/z]^+$: 139.0760, found 139.0759.

(S-4w)

Prepared via **General Procedure I** starting from 9-(4-(pyridin-2-yl)phenyl)-9*H*-carbazole (640.2 mg, 2.0 mmol, 1.0 equiv), 1,3-dimethylimidazolidin-2-one (239.4 mg, 2.1 mmol, 1.05 equiv) and stirred at room temperature for 48 h to give **S-4w** as an orange solid.

 $R_f = 0.4$ (eluent: DCM/MeOH = 10:1).

Yield 1190.0 mg (83%).

NMR spectroscopy:

¹**H** NMR (CD₃CN, 400 MHz) δ 9.16 (d, J = 6.5 Hz, 1H), 9.11 (d, J = 8.0 Hz, 1H), 8.63 (d, J = 8.1 Hz, 1H), 8.51 (t, J = 7.0 Hz, 1H), 8.24 (d, J = 7.7 Hz, 2H), 8.07 (d, J = 8.5 Hz, 2H), 7.90 (d, J = 8.5 Hz, 2H), 7.67 (d, J = 8.3 Hz, 2H), 7.53 (t, J = 7.7 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 4.30 – 4.18 (m, 2H), 4.18 – 4.08 (m, 2H), 3.01 (s, 6H).

¹³**C NMR** (CD₃CN, 151 MHz) δ 154.9, 153.7, 153.1, 144.7, 142.9, 139.8, 132.6, 130.8, 129.1, 128.0, 126.6, 126.1, 124.0, 121.3, 121.0 (q, *J* = 320.1 Hz), 120.6, 110.1, 50.5, 34.2.

¹⁹**F NMR** (CD₃CN, 565 MHz) δ -79.2.

HRMS calcd for $(C_{28}H_{26}N_4)^{2+}$ $[m/z]^+$: 209.1073, found 209.1071.

(S-4aa)

Prepared via **General Procedure I** starting from 2-methylpyridine (186.1 mg, 2.0 mmol, 1.0 equiv), 1,3-dimethylimidazolidin-2-one (239.4 mg, 2.1 mmol, 1.05 equiv) and stirred at 50 °C for 48 h to give **S-4aa** as a brown solid.

 $R_f = 0.4$ (eluent: DCM/MeOH = 10:1). Yield 680.6 mg (70%). NMR spectroscopy: ¹H NMR (CD₃CN, 400 MHz) δ 9.02 (d, J = 6.2 Hz, 1H), 8.89 (t, J = 8.0 Hz, 1H), 8.35 (d, J = 8.2 Hz, 1H), 8.31 (t, J = 7.0 Hz, 1H), 4.44 – 4.34 (m, 2H), 4.32 – 4.23 (m, 2H), 2.95 (s, 6H), 2.89 (s, 3H). ¹³C NMR (CD₃CN, 101 MHz) δ 157.2, 152.7, 152.5, 143.2, 132.6, 128.2, 121.0 (q, J = 321.2 Hz), 50.7, 33.9, 19.3. ¹⁹F NMR (CD₃CN, 377 MHz) δ -79.2. HRMS calcd for (C₁₁H₁₇N₃)²⁺ [m/z]⁺: 95.5706, found 95.5710.

3. C-4 alkylation and arylation with Grignard reagents as the nucleophile

General procedures II:

Under a nitrogen atmosphere, 4h (171.9 mg, 0.3 mmol, 1.0 equiv) was added to an oven-dried 25 mL Schlenk tube with a magnetic bar at room temperature. Anhydrous THF (3.0 mL) was added and the suspension was cooled to -78 °C in a low-temperature reactor. (Note: If there is no low-temperature reactor in the laboratory, the reaction can also be carried out in an ice bath with a slight decrease in yield). A solution of the Grignard reagents (0.45 mmol, 1.5 equiv) was added dropwise via a 1.0 mL syringe within 2 minutes and the resulting suspension was stirred for 10 minutes to give a clear solution. Water (3.0 mL) was added in one portion and the reaction mixture was stirred for 5 minutes at room temperature, then NaNO₂ aqueous solution (100 mg/ mL, 0.83 mL, 4.0 equiv) and acetic acid (103 μ L, 6.0 equiv) were added in one portion and the mixture were stirred for 12 hours at room temperature. The mixture was neutralized with a saturated sodium bicarbonate solution (2.0 mL), extracted with EtOAc (3×8.0 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford C-4 alkylation or arylation pyridine products.

4-pentylpyridine (5a)

Prepared via **General Procedure II** starting from *n*-pentylMgBr (0.45 mmol, 1.5 equiv) to give 4-pentylpyridine (**5a**) as a pale-yellow oil.

R_f = 0.4 (eluent: petroleum ether/EtOAc = 5:1). **Yield** 35.4 mg (79%). **NMR spectroscopy:** ¹**H NMR** (CDCl₃, 600 MHz) δ 8.46 (d, J = 5.5 Hz, 2H), 7.09 (d, J = 5.7 Hz, 2H), 2.61 – 2.56 (m, 2H), 1.62 (p, J = 7.6 Hz, 2H), 1.37 – 1.27 (m, 4H), 0.88 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (CDCl₃, 151 MHz) δ 151.8, 149.5, 123.9, 35.2, 31.3, 29.9, 22.4, 13.9. **HRMS** calcd for (C₁₀H₁₆N)⁺ [M + H]⁺: 150.1277, found 150.1276.

4-cyclohexylpyridine (5b)

Prepared via General Procedure II starting from cyclohexylMgBr (0.45 mmol, 1.5 equiv) to give 4-cyclohexylpyridine (5b) as a colorless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 44.0 mg (91%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 600 MHz) δ 8.45 (d, *J* = 5.9 Hz, 2H), 7.09 (d, *J* = 5.9 Hz, 2H), 2.51 – 2.43 (m, 1H), 1.88 – 1.78 (m, 4H), 1.76 – 1.69 (m, 1H), 1.42 – 1.32 (m, 4H), 1.26 – 1.18 (m, 1H).

¹³C NMR (CDCl₃, 151 MHz) δ 156.6, 149.6, 122.3, 43.8, 33.5, 26.5, 25.9. HRMS calcd for (C₁₁H₁₆N)⁺ [M + H]⁺: 162.1277, found 162.1276.

4-isopropylpyridine (5c)

Prepared via General Procedure II starting from isopropylMgBr (0.45 mmol, 1.5 equiv) and 1,3,5-trimethoxybenzene (5.3 mg) as an internal standard to give 4-isopropylpyridine (5c) as a colorless oil. (Due to that the product is volatile, the yield of this substrate was determined by crude NMR)

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 10:1). NMR yield: (72%).

4-(*tert*-butyl)pyridine (5d)

Prepared via General Procedure II starting from *tert*-butylMgCl (0.45 mmol, 1.5 equiv) to give 4-(*tert*-butyl)pyridine (5d) as a colorless oil. (Note: the solvent concentration was carried out at room temperature)

R_f = 0.5 (eluent: petroleum ether/EtOAc = 5:1). **Yield** 18.2 mg (45%). **NMR spectroscopy:** ¹**H NMR** (CDCl₃, 400 MHz) δ 8.41 (d, J = 6.0 Hz, 2H), 7.17 (d, J = 6.1 Hz, 2H), 1.21 (s, 9H). ¹³**C NMR** (CDCl₃, 101 MHz) δ 159.8, 149.6, 120.6, 34.5, 30.4. **HRMS** calcd for (C₉H₁₄N)⁺ [M + H]⁺: 136.1121, found 136.1120.

4-(but-3-en-1-yl)pyridine (5e)

Prepared via **General Procedure II** starting from but-3-en-1-ylMgBr (0.45 mmol, 1.5 equiv) to give 4-(but-3-en-1-yl)pyridine (**5e**) as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (eluent: petroleum ether/EtOAc = 5:1).

Yield 23.1 mg (58%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 600 MHz) δ 8.47 (d, *J* = 4.9 Hz, 2H), 7.10 (d, *J* = 5.1 Hz, 2H), 5.84 – 5.75 (m, 1H), 5.02 (d, *J* = 17.1 Hz, 1H), 4.99 (d, *J* = 10.2 Hz, 1H), 2.69 (t, *J* = 7.7 Hz, 2H), 2.37 (q, *J* = 7.2 Hz, 2H).

¹³C NMR (CDCl₃, 151 MHz) δ 150.7, 149.6, 137.0, 123.9, 115.7, 34.5, 34.1. HRMS calcd for (C₉H₁₂N)⁺ [M + H]⁺: 134.0964, found 134.0965.

4-methylpyridine (5f)

Prepared via **General Procedure II** starting from methylMgBr (0.45 mmol, 1.5 equiv) and 1,3,5-trimethoxybenzene (5.3 mg) as internal standard to give 4-methylpyridine (**5f**) as a colourless oil. (Due to that the product is volatile, the yield of this substrate was determined by crude NMR)

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (eluent: petroleum ether/EtOAc = 10:1). NMR yield: (64%).

4-phenylpyridine (5g)

Prepared via **General Procedure II** starting from phenylMgBr (0.45 mmol, 1.5 equiv) to give 4-phenylpyridine (**5g**) as a white solid.

R_f = 0.3 (eluent: petroleum ether/EtOAc = 5:1). **Yield** 37.0 mg (80%). **NMR spectroscopy:** ¹**H NMR** (CDCl₃, 600 MHz) δ 8.67 – 8.61 (m, 2H), 7.63 – 7.56 (m, 2H), 7.50 – 7.43 (m, 4H), 7.45 – 7.38 (m, 1H). ¹³**C NMR** (CDCl₃, 151 MHz) δ 150.3, 148.3, 138.1, 129.12, 129.07, 127.0, 121.6.

HRMS calcd for $(C_{11}H_{10}N)^+$ $[M + H]^+$: 156.0808, found 156.0807.

4-(4-chlorophenyl)pyridine (5h)

Prepared via **General Procedure II** starting from 4-chlorophenylMgBr (0.45 mmol, 1.5 equiv) to give 4-(4-chlorophenyl)pyridine (**5h**) as a white solid.

R_f = 0.4 (eluent: petroleum ether/EtOAc = 4:1). **Yield** 34.3 mg (60%). **NMR spectroscopy:** ¹**H NMR** (CDCl₃, 600 MHz) δ 8.65 (d, J = 5.2 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.47 – 7.42 (m, 4H). ¹³**C NMR** (CDCl₃, 151 MHz) δ 150.3, 147.2, 136.6, 135.4, 129.4, 128.3, 121.4. **HRMS** calcd for C₁₁H₉ClN⁺ [M + H]⁺: 190.0418, found 190.0417.

4-(4-methoxyphenyl)pyridine (5i)

Prepared via **General Procedure II** starting from 4-methoxyphenylMgBr (0.45 mmol, 1.5 equiv) to give 4-(4-methoxyphenyl)pyridine (**5i**) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (eluent: petroleum ether/EtOAc = 2:1).

Yield 39.4 mg (71%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 600 MHz) δ 8.60 (d, *J* = 3.0 Hz, 2H), 7.59 (d, *J* = 8.7 Hz, 2H), 7.46 (d, *J* = 5.2 Hz, 2H), 7.00 (d, *J* = 8.6 Hz, 2H), 3.85 (s, 3H).

¹³C NMR (CDCl₃, 101 MHz) δ 160.6, 150.1, 147.9, 130.3, 128.2, 121.1, 114.6, 55.4. HRMS calcd for (C₁₂H₁₂NO)⁺ [M + H]⁺: 186.0913, found 186.0912.

4-(thiophen-2-yl)pyridine (5j)

Prepared via **General Procedure II** starting from thiophen-2-ylMgBr (0.45 mmol, 1.5 equiv) to give 4-(thiophen-2-yl)pyridine (**5j**) as a brown solid.

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (eluent: petroleum ether/EtOAc = 4:1).

Yield 31.1 mg (64%).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 600 MHz) δ 8.57 (dd, J = 4.7, 1.4 Hz, 2H), 7.50 – 7.47 (m, 1H), 7.46 (dd, J = 4.6, 1.6 Hz, 2H), 7.40 (dd, J = 5.0, 0.9 Hz, 1H), 7.12 (dd, J = 5.0, 3.7 Hz, 1H). ¹³**C** NMR (CDCl₃, 151 MHz) δ 150.3, 141.4, 141.2, 128.4, 127.2, 125.4, 119.9.

4.: One-pot C-4 alkylation with Grignard reagents as the nucleophile

General procedures III:

Under a nitrogen atmosphere, 1,3-diisobutyltetrahydropyrimidin-2(1*H*)-one (222.6 mg, 1.05 mmol, 1.05 equiv) was added to an oven-dried 25 mL Schlenk tube with a magnetic bar. Anhydrous DCM (6.0 mL) was added and the solution was cooled to 0 °C in an ice-bath. Tf₂O (trifluoromethanesulfonic anhydride, 0.17 mL, 1.02 mmol, 1.02 equiv) was added dropwise via a 250 µL micro syringe within 2 minutes and the solution was stirred for 10 minutes at 0 °C (the reaction solution turned pale yellow during this period). Then different pyridines (1.0 mmol, 1.0 equiv) were added dropwise within 1 minute. The cooling bath was removed, and the reaction was stirred vigorously $12 \sim 48$ h (Note: there are some substrates that we have heated, and the specific conditions have been written under each substrate). Then the mixture was concentrated under reduced pressure. After three vacuum nitrogen cycles, anhydrous THF (8.0 mL) was added and the suspension was cooled to -78 °C in a low-temperature reactor. (Note: If there is no low-temperature reactor in the laboratory, the reaction can also be carried out in an ice bath with a slight decrease in yield). A solution of the *n*-pentyl Grignard reagents (1.5 mmol, 1.5 equiv) was added dropwise via a 1.0 mL syringe within 2 minutes and the resulting suspension was stirred for 20 minutes to give a clear solution (Note: there are some substrates that we have reduced the amount of Grignard reagents, and the specific conditions have been written clearly under each substrate). Water (8.0 mL) was added in one portion and the reaction mixture stirred for 5 minutes at room temperature, then NaNO₂ aqueous solution (100 mg/ mL, 2.76 mL, 4.0 equiv) and acetic acid (346 µL, 6.0 equiv) were added in one portion and the mixture were stirred for 24 hours at different temperature. The mixture was neutralized with a saturated sodium bicarbonate solution (8.0 mL), extracted with EtOAc (3×10.0 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford C-4 alkylation pyridine products.

3-methyl-4-pentylpyridine (5k)

Prepared via General Procedure III starting from 3-methylpyridine (93.1 mg, 1.0 mmol, 1.0 equiv) and oxidized at room temperature for 24 h to give 3-methyl-4-pentylpyridine (5k) as a pale-yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (eluent: petroleum ether/EtOAc = 7:1).

Yield 94.7 mg (58%).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 600 MHz) δ 8.28 (s, 2H), 6.99 (d, J = 5.0 Hz, 1H), 2.54 – 2.47 (m, 2H), 2.22 (s, 3H), 1.57 – 1.49 (m, 2H), 1.35 – 1.28 (m, 4H), 0.87 (t, J = 6.9 Hz, 3H). ¹³**C** NMR (CDCl₃, 151 MHz) δ 150.5, 149.8, 147.4, 131.5, 123.4, 32.4, 31.7, 28.8, 22.5, 16.0, 13.9.

HRMS calcd for $(C_{11}H_{18}N)^+$ $[M + H]^+$: 164.1434, found 164.1433.

3-chloro-4-pentylpyridine (5l)

Prepared via **General Procedure III** starting from 3-chloropyridine (113.0 mg, 1.0 mmol, 1.0 equiv) and oxidized at 60 °C for 24 h to give 3-chloro-4-pentylpyridine (**5**I) as a pale-yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (eluent: petroleum ether/EtOAc = 5:1).

Yield 96.8 mg (53%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 400 MHz) δ 8.51 (s, 1H), 8.36 (d, *J* = 4.9 Hz, 1H), 7.14 (d, *J* = 4.9 Hz, 1H), 2.74 – 2.66 (m, 2H), 1.67 – 1.57 (m, 2H), 1.37 – 1.30 (m, 4H), 0.91 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (CDCl₃, 101 MHz) δ 149.3, 149.2, 147.5, 132.1, 124.8, 32.8, 31.4, 28.4, 22.4, 14.0.

HRMS calcd for $(C_{10}H_{15}ClN)^+$ [M + H]⁺: 184.0888, found 184.0889.

3,5-dimethyl-4-pentylpyridine (5m)

Prepared via **General Procedure III** starting from 3,5-dimethylpyridine (115.1 mg, 1.0 mmol, 1.0 equiv) and oxidized at room temperature for 24 h to give 3,5-dimethyl-4-pentylpyridine (**5m**) as a pale-yellow oil.

 $R_f = 0.3$ (eluent: petroleum ether/EtOAc = 5:1). Yield 122.3 mg (69%). NMR spectroscopy: ¹H NMR (CDCl₃, 600 MHz) δ 8.12 (s, 2H), 2.55 – 2.49 (m, 2H), 2.20 (s, 6H), 1.43 – 1.29 (m, 6H), 0.86 (t, J = 7.1 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ 148.7, 148.3, 130.8, 32.2, 29.2, 28.0, 22.4, 16.2, 14.0. HRMS calcd for (C₁₂H₂₀N)⁺ [M + H]⁺: 178.1590, found 178.1589.

3-bromo-4-pentylpyridine (5n)

Prepared via General Procedure III starting from 3-bromopyridine (157.0 mg, 1.0 mmol, 1.0 equiv), *n*-pentyl Grignard reagents (1.2 mmol, 1.2 equiv) and oxidized at 70 °C for 24 h to give 3-bromo-4-pentylpyridine (**5n**) as a pale-yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 115.9 mg (51%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 400 MHz) δ 8.64 (s, 1H), 8.39 (d, J = 4.9 Hz, 1H), 7.15 (d, J = 4.9 Hz, 1H), 2.75 – 2.67 (m, 2H), 1.66 – 1.56 (m, 2H), 1.42 – 1.31 (m, 4H), 0.91 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (CDCl₃, 101 MHz) δ 151.7, 151.1, 148.0, 125.1, 123.2, 35.4, 31.4, 28.6, 22.4, 14.0.

HRMS calcd for $(C_{10}H_{15}BrN)^+$ [M + H]⁺: 228.0382, found 228.0381.

ethyl 4-pentylnicotinate (50)

Prepared via **General Procedure III** starting from ethyl nicotinate (151.0 mg, 1.0 mmol, 1.0 equiv), *n*-pentyl Grignard reagents (1.2 mmol, 1.2 equiv) and oxidized at 70 °C for 24 h to give ethyl 4-pentylnicotinate (**50**) as a pale-yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (eluent: petroleum ether/EtOAc = 5:1).

Yield 127.1 mg (57%).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 400 MHz) δ 8.97 (s, 1H), 8.50 (d, J = 5.0 Hz, 1H), 7.12 (d, J = 5.0 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 2.95 – 2.86 (m, 2H), 1.61 – 1.48 (m, 2H), 1.35 (t, J = 7.1 Hz, 3H), 1.31 – 1.24 (m, 4H), 0.87 – 0.81 (m, 3H). ¹³**C** NMR (CDCl₃, 101 MHz) δ 166.1, 153.5, 151.9, 151.5, 125.9, 125.3, 61.1, 33.7, 31.7, 30.4, 22.4, 14.2, 13.9. **HRMS** calcd for $(C_{13}H_{20}NO_2)^+$ [M + H]⁺: 222.1489, found 222.1487.

4'-pentyl-2,3'-bipyridine (5p)

Prepared via **General Procedure III** starting from 2,3'-bipyridine (156.0 mg, 1.0 mmol, 1.0 equiv) and oxidized at 50 °C for 16 h to give 4'-pentyl-2,3'-bipyridine (**5p**) as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (eluent: petroleum ether/EtOAc = 1:1).

Yield 120.2 mg (53%).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 400 MHz) δ 8.72 (d, J = 4.8 Hz, 1H), 8.54 (s, 1H), 8.52 (d, J = 5.1 Hz, 1H), 7.80 (td, J = 7.7, 1.8 Hz, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.31 (ddd, J = 7.5, 4.9, 0.9 Hz, 1H), 7.24 (d, J = 5.1 Hz, 1H), 2.78 – 2.70 (m, 2H), 1.48 (p, J = 7.3 Hz, 2H), 1.24 – 1.15 (m, 4H), 0.80 (t, J = 6.8 Hz, 3H).

¹³C NMR (CDCl₃, 101 MHz) δ 156.9, 150.4, 149.8, 149.5, 148.9, 136.6, 136.2, 124.5, 124.2, 122.4, 32.3, 31.5, 29.8, 22.2, 13.9.

HRMS calcd for $(C_{15}H_{19}N_2)^+$ [M + H]⁺: 227.1543, found 227.1541.

4-pentyl-3-phenylpyridine (5q)

Prepared via **General Procedure II** starting from **S-4q** (194.7 mg, 0.3 mmol, 1.0 equiv) and *n*-pentylMgBr (0.45 mmol, 1.5 equiv) to give 4-pentyl-3-phenylpyridine (**5q**) as a pale-yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 51.2 mg (76%).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 600 MHz) δ 8.47 (d, J = 5.1 Hz, 1H), 8.41 (s, 1H), 7.43 (t, J = 7.4 Hz, 2H), 7.38 (t, J = 7.3 Hz, 1H), 7.29 (d, J = 7.3 Hz, 2H), 7.20 (d, J = 5.1 Hz, 1H), 2.68 – 2.43 (m, 2H), 1.48 (p, J = 7.4 Hz, 2H), 1.28 – 1.09 (m, 4H), 0.80 (t, J = 6.8 Hz, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 150.2, 149.2, 148.4, 138.0, 137.6, 129.4, 128.4, 127.6, 123.9, 32.3, 31.5, 29.9, 22.3, 13.9.

HRMS calcd for $(C_{16}H_{20}N)^+$ [M + H]⁺: 226.1590, found 226.1589.

N,*N*-diethyl-4-pentylnicotinamide (5r)

Prepared via **General Procedure III** starting from N,N-diethylnicotinamide (178.1 mg, 1.0 mmol, 1.0 equiv), *n*-pentyl Grignard reagents (1.2 mmol, 1.2 equiv) and oxidized at 80 °C for 24 h to give N,N-diethyl-4-pentylnicotinamide (**5r**) as a pale yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.2$ (eluent: petroleum ether/EtOAc = 2:1).

Yield 71.2 mg (29%, 65.0 mg starting material, 45% b.r.s.m).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 400 MHz) δ 8.48 (d, *J* = 5.1 Hz, 1H), 8.37 (s, 1H), 7.18 (d, *J* = 5.1 Hz, 1H), 3.96 – 3.22 (br, 2H), 3.11 (q, *J* = 7.1 Hz, 2H), 2.57 (t, *J* = 4.0 Hz, 2H), 1.72 – 1.48 (br, 2H), 1.33 – 1.28 (m, 4H), 1.24 (t, *J* = 7.1 Hz, 3H), 1.06 (t, *J* = 7.1 Hz, 3H), 0.86 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (CDCl₃, 101 MHz) δ 168.1, 149.5, 148.8, 146.1, 133.0, 124.3, 43.0, 38.9, 32.5, 31.7, 29.5, 22.4, 14.1, 13.9, 12.7.

HRMS calcd for $(C_{15}H_{25}N_2O)^+$ [M + H]⁺: 249.1962, found 249.1959.

4-pentyl-2-phenylpyridine (5s)

Prepared via **General Procedure II** starting from **S-4s** (165.3 mg, 0.3 mmol, 1.0 equiv) and *n*-pentylMgBr (0.45 mmol, 1.5 equiv) to give 4-pentyl-2-phenylpyridine (**5s**) as a pale-yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 53.2 mg (79%).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 400 MHz) δ 8.60 (d, *J* = 5.0 Hz, 1H), 8.01 (d, *J* = 7.4 Hz, 2H), 7.57 (s, 1H), 7.53 – 7.47 (m, 2H), 7.46 – 7.40 (m, 1H), 7.08 (d, *J* = 4.9 Hz, 1H), 2.73 – 2.63 (m, 2H), 1.70 (p, *J* = 7.3 Hz, 2H), 1.45 – 1.32 (m, 4H), 0.94 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 157.4, 152.6, 149.5, 139.6, 128.8, 128.7, 127.0, 122.5, 120.9, 35.5, 31.4, 30.1, 22.5, 14.0.

HRMS calcd for $(C_{16}H_{20}N)^+$ [M + H]⁺: 226.1590, found 226.1588.

4-pentyl-2-(thiophen-2-yl)pyridine (5t)

Prepared via **General Procedure II** starting from **S-4t** (167.1 mg, 0.3 mmol, 1.0 equiv) and *n*-pentylMgBr (0.45 mmol, 1.5 equiv) and the NaNO₂ was reduced to 2.0 equiv to give 4-pentyl-2-(thiophen-2-yl)pyridine (**5t**) as a pale yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 28.5 mg (41%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 400 MHz) δ 8.44 (d, J = 5.1 Hz, 1H), 7.58 (d, J = 3.5 Hz, 1H), 7.47 (s, 1H), 7.37 (d, J = 5.0 Hz, 1H), 7.18 – 7.05 (m, 1H), 6.97 (d, J = 5.0 Hz, 1H), 2.62 (t, J = 7.7 Hz, 2H), 1.65 (p, J = 7.4 Hz, 2H), 1.41 – 1.28 (m, 4H), 0.90 (t, J = 6.8 Hz, 3H). ¹³**C NMR** (CDCl₃, 151 MHz) δ 152.6, 152.4, 149.3, 145.0, 128.0, 127.3, 124.3, 122.4, 119.0, 35.4, 31.4, 30.0, 22.5, 14.0.

HRMS calcd for $(C_{14}H_{18}NS)^+$ [M + H]⁺: 232.1155, found 232.1153.

4-(4-pentylpyridin-2-yl)benzonitrile (5u)

Prepared via **General Procedure II** starting from S-4u (172.8 mg, 0.3 mmol, 1.0 equiv) and *n*-pentylMgBr (0.33 mmol, 1.1 equiv) and oxidized at 50 °C for 10 h to give 4-(4-pentylpyridin-2-yl)benzonitrile (**5u**) as a pale yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 45.2 mg (60%).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 600 MHz) δ 8.59 (d, *J* = 4.9 Hz, 1H), 8.10 (d, *J* = 8.3 Hz, 2H), 7.74 (d, *J* = 8.3 Hz, 2H), 7.57 (s, 1H), 7.14 (d, *J* = 4.5 Hz, 1H), 2.76 – 2.55 (m, 2H), 1.68 (p, *J* = 7.4 Hz, 2H), 1.42 – 1.30 (m, 4H), 0.90 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 155.1, 153.2, 149.8, 143.7, 132.5, 127.5, 123.6, 121.3, 118.9, 112.3, 35.5, 31.4, 30.1, 22.4, 14.0.

HRMS calcd for $(C_{17}H_{19}N_2)^+$ [M + H]⁺: 251.1543, found 251.1540.

methyl 4-(4-pentylpyridin-2-yl)benzoate (5v)

Prepared via **General Procedure III** starting from methyl 4-(pyridin-2-yl)benzoate (213.1.0 mg, 1.0 mmol, 1.0 equiv), *n*-pentyl Grignard reagents (1.2 mmol, 1.2 equiv) and oxidized at 50 °C for 24 h to give methyl 4-(4-pentylpyridin-2-yl)benzoate (**5v**) as a pale yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.45$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 126.3 mg (45%, 86.1 mg starting material).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 400 MHz) δ 8.57 (d, *J* = 5.0 Hz, 1H), 8.11 (d, *J* = 7.9 Hz, 2H), 8.05 (d, *J* = 8.5 Hz, 2H), 7.57 (s, 1H), 7.08 (d, *J* = 5.0 Hz, 1H), 3.92 (s, 3H), 2.68 – 2.58 (m, 2H), 1.65 (p, *J* = 7.4 Hz, 2H), 1.39 – 1.25 (m, 4H), 0.89 (t, *J* = 6.5 Hz, 3H).

¹³C NMR (CDCl₃, 101 MHz) δ 167.0, 156.1, 152.9, 149.7, 143.8, 130.3, 130.0, 126.9, 123.2, 121.3, 52.2, 35.5, 31.4, 30.2, 22.5, 14.0.

HRMS calcd for $(C_{18}H_{22}NO_2)^+$ [M + H]⁺: 284.1645, found 284.1644.

9-(4-(4-pentylpyridin-2-yl)phenyl)-9H-carbazole (5w)

Prepared via **General Procedure II** starting from **S-4w** (214.8 mg, 0.3 mmol, 1.0 equiv) and *n*-pentylMgBr (0.45 mmol, 1.5 equiv) to give 9-(4-(4-pentylpyridin-2-yl)phenyl)-9*H*-carbazole (**5w**) as a pale green oil.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 65.9 mg (56%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 600 MHz) δ 8.66 (d, J = 5.0 Hz, 1H), 8.26 (d, J = 8.4 Hz, 2H), 8.19 (d, J = 7.7 Hz, 2H), 7.71 (d, J = 8.4 Hz, 2H), 7.67 (s, 1H), 7.52 (d, J = 8.2 Hz, 2H), 7.46 (t, J = 7.5 Hz, 2H), 7.33 (t, J = 7.3 Hz, 2H), 7.14 (d, J = 4.7 Hz, 1H), 2.73 (t, J = 7.7 Hz, 2H), 1.75 (p, J = 7.2 Hz, 2H), 1.54 – 1.28 (m, 4H), 0.97 (t, J = 6.5 Hz, 3H). ¹³C NMR (CDCl₃, 151 MHz) δ 156.5, 152.9, 149.7, 140.8, 138.7, 138.3, 128.5, 127.2, 126.1, 123.6, 122.8, 120.9, 120.4, 120.1, 109.9, 35.6, 31.5, 30.2, 22.6, 14.1.

HRMS calcd for $(C_{28}H_{27}N_2)^+$ [M + H]⁺: 391.2169, found 391.2164.

2,4-diphenylpyridine (5x)

Prepared via **General Procedure II** starting from **S-4s** (165.3 mg, 0.3 mmol, 1.0 equiv) and phenylMgBr (0.45 mmol, 1.5 equiv) to give 2,4-diphenylpyridine (**5x**) as a yellow oil.

R_f = 0.5 (eluent: petroleum ether/EtOAc = 10:1). **Yield** 59.2 mg (85%). **NMR spectroscopy:** ¹**H NMR** (CDCl₃, 600 MHz) δ 8.76 (d, J = 5.0 Hz, 1H), 8.07 (d, J = 7.2 Hz, 2H), 7.94 (s, 1H), 7.70 (d, J = 7.1 Hz, 2H), 7.58 – 7.50 (m, 4H), 7.48 – 7.44 (m, 3H). ¹³**C NMR** (CDCl₃, 151 MHz) δ 158.1, 150.1, 149.4, 139.5, 138.5, 129.2, 129.1, 128.9, 127.14, 127.12, 127.11, 120.3, 118.8.

HRMS calcd for $(C_{17}H_{14}N)^+$ [M + H]⁺: 232.1121, found 232.1119.

4-cyclohexyl-2-phenylpyridine (5y)

Prepared via **General Procedure II** starting from **S-4s** (165.3 mg, 0.3 mmol, 1.0 equiv) and cyclohexylMgBr (0.45 mmol, 1.5 equiv) to give 4-cyclohexyl-2-phenylpyridine (**5y**) as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 53.5 mg (75%).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 600 MHz) δ 8.58 (d, *J* = 4.8 Hz, 1H), 7.99 (d, *J* = 7.4 Hz, 2H), 7.56 (s, 1H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.3 Hz, 1H), 7.07 (d, *J* = 4.3 Hz, 1H), 2.56 (t, *J* = 11.4 Hz, 1H), 1.92 (d, *J* = 12.2 Hz, 2H), 1.88 (d, *J* = 12.5 Hz, 2H), 1.78 (d, *J* = 13.1 Hz, 1H), 1.52 - 1.35 (m, 4H), 1.33 - 1.18 (m, 1H).

¹³C NMR (CDCl₃, 151 MHz) δ 157.5, 157.4, 149.6, 139.8, 128.8, 128.7, 127.0, 120.9, 119.4, 44.1, 33.6, 26.6, 26.0.

HRMS calcd for $(C_{17}H_{20}N)^+$ [M + H]⁺: 238.1590, found 238.1589.

4-(*tert*-butyl)-2-phenylpyridine (5z)

Prepared via **General Procedure II** starting from **S-4s** (165.3 mg, 0.3 mmol, 1.0 equiv) and *tert*-butylMgCl (0.45 mmol, 1.5 equiv) to give 4-(*tert*-butyl)-2-phenylpyridine (**5z**) as a pale yellow oil.

R_f = 0.5 (eluent: petroleum ether/EtOAc = 10:1). **Yield** 28.6 mg (45%). **NMR spectroscopy:** ¹**H NMR** (CDCl₃, 600 MHz) δ 8.61 (d, J = 5.2 Hz, 1H), 7.98 (d, J = 7.2 Hz, 2H), 7.71 (s, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.41 (t, J = 7.3 Hz, 1H), 7.24 (dd, J = 5.2, 1.8 Hz, 1H), 1.37 (s, 9H). ¹³**C NMR** (CDCl₃, 151 MHz) δ 160.8, 157.5, 149.5, 140.0, 128.8, 128.7, 127.1, 119.4, 117.8, 34.9, 30.6. **HRMS** calcd for (C₁₅H₁₈N)⁺ [M + H]⁺: 212.1434, found 212.1432.

4-pentyl-3-phenylpyridine (5aa)

Prepared via **General Procedure II** starting from **S-4aa** (146.7 mg, 0.3 mmol, 1.0 equiv) and phenylMgBr (0.45 mmol, 1.5 equiv) to give 4-pentyl-3-phenylpyridine (**5aa**) as a pale-yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 21.7 mg (43%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 600 MHz) δ 8.53 (d, *J* = 5.2 Hz, 1H), 7.62 (d, *J* = 7.3 Hz, 2H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.42 (t, *J* = 7.3 Hz, 1H), 7.37 (s, 1H), 7.31 (d, *J* = 4.7 Hz, 1H), 2.62 (s, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 158.8, 149.5, 148.8, 138.4, 129.1, 128.9, 127.0, 121.3, 118.9, 24.5.

HRMS calcd for $(C_{12}H_{12}N)^+$ [M + H]⁺: 170.0964, found 170.0962.

4-cyclohexyl-2-methylpyridine (5ab)

Prepared via **General Procedure II** starting from **S-4aa** (146.7 mg, 0.3 mmol, 1.0 equiv) and cyclohexylMgBr (0.45 mmol, 1.5 equiv) to give 4-cyclohexyl-2-methylpyridine (**5ab**) as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 17.7 mg (34%).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 600 MHz) δ 8.35 (d, *J* = 5.1 Hz, 1H), 6.97 (s, 1H), 6.91 (d, *J* = 4.8 Hz, 1H), 2.51 (s, 3H), 2.46 - 2.38 (m, 1H), 1.83 (d, *J* = 8.4 Hz, 4H), 1.74 (d, *J* = 12.8 Hz, 1H), 1.42 - 1.32 (m, 4H), 1.27 - 1.15 (m, 1H).

¹³**C NMR** (CDCl₃, 151 MHz) δ 158.1, 157.0, 148.9, 121.9, 119.5, 43.9, 33.5, 26.6, 26.0, 24.4.

HRMS calcd for $(C_{12}H_{18}N)^+$ [M + H]⁺: 176.1434, found 176.1432.

4-pentyl-2-methylpyridine (5ac)

Prepared via **General Procedure II** starting from **S-4aa** (146.7 mg, 0.3 mmol, 1.0 equiv) and *n*-pentylMgBr (0.45 mmol, 1.5 equiv) to give 4-pentyl-2-methylpyridine (**5ac**) as a pale-yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 18.2 mg (37%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 600 MHz) δ 8.35 (d, *J* = 5.1 Hz, 1H), 6.96 (s, 1H), 6.90 (d, *J* = 4.9 Hz, 1H), 2.56 – 2.52 (m, 2H), 2.51 (s, 3H), 1.59 (p, *J* = 7.6 Hz, 2H), 1.36 – 1.24 (m, 4H), 0.88 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 158.0, 152.2, 148.8, 123.5, 121.1, 35.2, 31.4, 30.0, 24.3, 22.5, 14.0.

HRMS calcd for $(C_{11}H_{18}N)^+$ $[M + H]^+$: 164.1434, found 164.1432.

6. C-4 alkylation with organozinc reagent as the nucleophile

The preparation of organozinc reagent^[2]

An oven-dried and N_2 flushed 25 mL Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with the anhydrous LiCl (10 mmol, 2.0 equiv) and dried for 10 minutes under the vacuum with the heat gun. Zinc powder (10 mmol, 2.0 equiv) was added under N_2 and the heterogeneous mixture of Zn and LiCl was dried again for 10 minutes under the vacuum with the heat gun. The sealed tube was backfilled with N_2 (this process was repeated for three times). THF (5.0 mL) was added and the Zn was activated with BrCH₂CH₂Br (5 mol%) under 80 °C for 20 minutes. After cooling, Me₃SiCl (1 mol%) and I₂ (0.5 mol%) were added under N₂ atmosphere, then the mixture was refluxed for another 20 minutes. Ethyl 4-bromobutanoate (5.0 mmol) was then added neat at room temperature and the reaction mixture was stirred at 70 °C for 12 h. The concentration of organozinc reagents was titrated by iodine and the concentration is approximately 0.5 M. The resulting suspension (approx. 0.5 M) can be used directly by syringe and stored in the refrigerator for several days.

ethyl 4-(pyridin-4-yl)butanoate (5ad)

An oven-dried and N₂ flushed 25 mL Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with the **4h** (171.9 mg, 0.3 mmol, 1.0 equiv) and dry THF (3.0 mL). Organozinc reagent (0.5 M in THF, 0.9 mL, 0.45 mmol, 1.5 equiv) was added dropwise within 1 minute and the reaction mixture was stirred at room temperature for 16 h to give a yellow suspension. Water (3.0 mL) was added in one portion and the reaction mixture was stirred for 5 minutes at room temperature, then NaNO₂ aqueous solution (100 mg/ mL, 0.83 mL, 4.0 equiv) and acetic acid (103 μ L, 6.0 equiv) were added in one portion and the mixture were stirred for 10 hours at room temperature. The mixture was neutralized with a saturated sodium bicarbonate solution (2.0 mL), extracted with EtOAc (3 × 8.0 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford C-4 alkylation pyridine product (**5ad**) as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (eluent: petroleum ether/EtOAc = 1:1).

Yield 30.1 mg (52%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 400 MHz) δ 8.46 (d, *J* = 5.5 Hz, 2H), 7.09 (d, *J* = 5.5 Hz, 2H), 4.10 (q, *J* = 7.1 Hz, 2H), 2.65 – 2.53 (m, 2H), 2.30 (t, *J* = 7.4 Hz, 2H), 1.94 (p, *J* = 7.4 Hz, 2H), 1.22 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (CDCl₃, 101 MHz) δ 173.1, 150.5, 149.7, 123.9, 60.5, 34.4, 33.5, 25.4, 14.2. HRMS calcd for (C₁₁H₁₆NO₂)⁺ [M + H]⁺: 194.1176, found 194.1170.

7. C-4 cyanation with TMSCN as the nucleophile

An oven-dried and N₂ flushed 25 mL Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with the corresponding pyridine salt (0.1 mmol, 1.0 equiv), dry CH₃CN (1.0 mL) and TMSCN (25.0 μ L, 0.2 mmol, 2.0 equiv). The resulting solution was heated to 60 °C and stirred vigorously overnight (Note: this reaction can be monitored by TLC, eluent: DCM/MeOH = 10:1). Then the mixture was concentrated

under reduced pressure and diluted by DMF (1.0 mL), and the oxidant $Mn(OAc)_3 \cdot 2H_2O$ (66.5 mg, 0.5 mmol, 5.0 equiv) was added in one portion. The reaction mixture was stirred at 110 °C for 18 h. The reaction mixture was diluted by EtOAc (5.0 mL), filtered with silica gel, extracted with water (5.0 mL) and EtOAc (3 × 5.0 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford C-4 cyanation pyridine products.

ethyl 4-cyanonicotinate (5ae)

Prepared via the above procedure starting from **S-4i** (64.5 mg, 0.1 mmol, 1.0 equiv) to give ethyl 4-cyanonicotinate (**5ae**) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (eluent: petroleum ether/EtOAc = 5:1).

Yield 12.8 mg (73%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 600 MHz) δ 9.39 (s, 1H), 8.99 – 8.91 (br, 1H), 7.68 (d, *J* = 4.6 Hz, 1H), 4.52 (q, *J* = 7.1 Hz, 2H), 1.47 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 162.7, 153.6, 152.3, 127.2, 126.3, 120.9, 115.3, 62.8, 14.1.

HRMS calcd for $(C_9H_9N_2O_2)^+$ [M + H]⁺: 177.0659, found 177.0658.

3-chloroisonicotinonitrile (5af)

Prepared via the above procedure starting from **S-4j** (60.7 mg, 0.1 mmol, 1.0 equiv) to give 3-chloroisonicotinonitrile (**5af**) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (eluent: petroleum ether/EtOAc = 5:1).

Yield 5.5 mg (40%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 400 MHz) δ 8.81 (s, 1H), 8.67 (d, *J* = 4.9 Hz, 1H), 7.56 (d, *J* = 4.9 Hz, 1H).

¹³C NMR (CDCl₃, 101 MHz) δ 150.4, 148.1, 133.1, 126.3, 120.9, 113.7. HRMS calcd for (C₆H₄ClN₂)⁺ [M + H]⁺: 139.0058, found 139.0055.

8. C-4 arylation with phenyl lithium as the nucleophile

An oven-dried and N₂ flushed 25 mL Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with **4h** (171.9 mg, 0.3 mmol, 1.0 equiv) and dry THF (3.0 mL). The resulting suspension was cooled to -78 °C. PhLi (1.9 M in hexane, 0.17 mL, 0.33 mmol, 1.1 equiv) was added dropwise within 3 minutes and the reaction mixture was stirred at -78 °C for 3 minutes to give a red solution. Water (3.0 mL) was added in one portion and the reaction mixture was stirred for 5 minutes at room temperature, then NaNO₂ aqueous solution (100 mg/ mL, 0.83 mL, 4.0 equiv) and acetic acid (103 μ L, 6.0 equiv) were added in one portion and the mixture were stirred for 10 hours at room temperature. The mixture was neutralized with a saturated sodium bicarbonate solution (2.0 mL), extracted with EtOAc (3 × 8.0 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford C-4 arylation pyridine products (**5g**) as a white solid.

 $R_f = 0.3$ (eluent: petroleum ether/EtOAc = 5:1). Yield 19.5 mg (42%). NMR spectroscopy: The NMP encetaneous and UDMS data of 5 a has a

The NMR spectroscopy and HRMS data of 5g has already been written on page S18.

9. C-4 alkylation with the enolate as the nucleophile

The preparation of lithium 2-methyl-1-phenylprop-1-en-1-olate

An oven-dried and N₂ flushed 25 mL Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with the corresponding 2-methyl-1-phenylpropan-1-one (296.0 mg, 2.0 mmol, 1.0 equiv) and dry THF (3.7 mL). The resulting solution was cooled to -78 °C. LDA (2.0 M in hexane, 1.0 mL, 2.0 mmol, 1.0 equiv) was added dropwise within 3 minutes and the reaction mixture was stirred at -78 °C for 1 h. Then the reaction tube was transferred to an ice bath and stirred for 30 min. The resulting brown solution (approx. 0.4 M) can be used directly by syringe and stored in the refrigerator for several days.

2-methyl-1-phenyl-2-(pyridin-4-yl)propan-1-one (5ag)

An oven-dried and N₂ flushed 25 mL Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with **4h** (171.9 mg, 0.3 mmol, 1.0 equiv) and dry THF (3.0 mL). The resulting suspension was cooled to -78 °C. 2-Methyl-1-phenylprop-1-en-1-olate (0.4 M in THF, 0.9 mL, 0.36 mmol, 1.2 equiv) was added dropwise within 3 minutes and the reaction mixture was stirred at -78 °C for 20 minutes to give a clear solution. Water (3.0 mL) was added in one portion and the reaction mixture was stirred for 5 minutes at room temperature, then NaNO₂ aqueous solution (100 mg/ mL, 0.83 mL, 4.0 equiv) and acetic acid (103 μ L, 6.0 equiv) were added in one portion and the mixture were stirred for 10 hours at room temperature. The mixture was neutralized with a saturated sodium bicarbonate solution (2.0 mL), extracted with EtOAc (3 × 8.0 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford C-4 alkylation pyridine product (**5ag**) as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.15$ (eluent: petroleum ether/EtOAc = 5:1).

Yield 34.4 mg (51%).

NMR spectroscopy:

¹H NMR (CDCl₃, 400 MHz) δ 8.57 (d, J = 4.2 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H), 7.26 - 7.18 (m, 4H), 1.60 (s, 6H).
¹³C NMR (CDCl₃, 101 MHz) δ 202.0, 154.7, 150.4, 135.4, 132.2, 129.6, 128.2, 121.0,

51.2, 27.4.

HRMS calcd for $(C_{15}H_{16}NO)^+$ [M + H]⁺: 226.1226, found 226.1225.

10. C-4 alkylation with silyl ketene acetal as the nucleophile

An oven-dried and N₂ flushed 25 mL Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with **4h** (114.6 mg, 0.2 mmol, 1.0 equiv), dry THF (2.0 mL) and ((1-methoxy-2-methylprop-1-en-1-yl)oxy)trimethylsilane (52.3 mg, 0.30 mmol, 1.5 equiv). The resulting suspension was stirred for 10 minutes at room temperature and the suspension changed to a clear solution. (Note: this reaction can be monitored by TLC, DCM/MeOH = 10:1). Water (2.0 mL) was added in one portion at room temperature, then NaNO₂ aqueous solution (100 mg/ mL, 0.55 mL, 4.0 equiv) and acetic acid (69 μ L, 6.0 equiv) were added in one portion and the mixture were stirred for 10 hours at 40 °C. The mixture was neutralized with a saturated sodium

bicarbonate solution (2.0 mL), extracted with EtOAc (3×6.0 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford C-4 alkylation pyridine products (**5ah**) as a pale-yellow oil.

R_f = 0.7 (eluent: petroleum ether/EtOAc = 5:1). **Yield** 24.1 mg (67%). **NMR spectroscopy:** ¹**H NMR** (CDCl₃, 400 MHz) δ 8.53 (d, J = 4.6 Hz, 2H), 7.22 (d, J = 6.1 Hz, 2H), 3.65 (s, 3H), 1.55 (s, 6H). ¹³**C NMR** (CDCl₃, 101 MHz) δ 175.9, 153.5, 149.8, 121.1, 52.4, 46.4, 25.8. **HRMS** calcd for (C₁₀H₁₄NO₂)⁺ [M + H]⁺: 180.1019, found 180.1018.

11. C-4 alkylation with nitronate as the nucleophile

The preparation of (2-nitropropan-2-yl)lithium

An oven-dried and N_2 flushed 25 mL Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with the corresponding 2-nitropropane (178.0 mg, 2.0 mmol, 1.0 equiv) and dry THF (3.8 mL). The resulting solution was cooled to -78 °C. LDA (2.0 M in hexane, 1.0 mL, 2.0 mmol, 1.0 equiv) was added dropwise within 3 minutes and the reaction mixture was stirred at -78 °C for 1 h. Then the reaction tube was transferred to an ice bath and stirred for 30 min. The resulting yellow solution (approx. 0.4 M) can be used directly by syringe and stored in the refrigerator for several days.

4-(2-nitropropan-2-yl)pyridine (5ai)

An oven-dried and N₂ flushed 25 mL Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with the corresponding **4h** (114.6 mg, 0.2 mmol, 1.0 equiv) and dry THF (2.0 mL). The resulting suspension was cooled to -78 °C. (2-nitropropan-2-yl)lithium (0.4 M in THF, 0.6 mL, 0.24 mmol, 1.2 equiv) was added dropwise within 3 minutes and the reaction mixture was stirred at -78 °C for 20 minutes to give a clear solution. Water (3.0 mL) was added in one portion and the reaction mixture stirred for 5 minutes at room temperature, then DCM (5.0 mL) was added and the mixture was extracted with DCM (3×5.0 mL) and the combined organic layers were concentrated under reduced pressure. The residue was dissolved by CH₃CN (2.0

mL), the oxidant DIPA ((diacetoxyiodo)benzene, 96.6 mg, 0.3 mmol, 1.5 equiv) was added in one portion and stirred at room temperature for 10 h. The mixture was neutralized with a saturated sodium bicarbonate solution (2.0 mL), extracted with EtOAc (3×5.0 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford C-4 alkylation pyridine product (**5ai**) as a yellow oil.

R_f = 0.2 (eluent: petroleum ether/EtOAc = 2:1). **Yield** 16.7 mg (50%). **NMR spectroscopy:** ¹**H NMR** (CDCl₃, 400 MHz) δ 8.66 (d, J = 6.2 Hz, 2H), 7.29 (d, J = 6.2 Hz, 2H), 1.98 (s, 6H). ¹³**C NMR** (CDCl₃, 101 MHz) δ 150.4, 148.9, 120.0, 89.1, 26.9. **HRMS** calcd for (C₈H₁₁N₂O₂)⁺ [M + H]⁺: 167.0815, found 167.0813.

12. C-4 alkylation with malonates as the nucleophile

An oven-dried and N₂ flushed 10 mL Schlenk-tube equipped with the screw cap and magnetic stirring bar, was charged with the corresponding malonate (0.15 mmol, 1.5 equiv), dry CH₃CN (1.0 mL) and NaH (0.15 mmol, 6.0 mg, 1.5 equiv). The reaction mixture was stirred at room temperature for 5 minutes. Then corresponding pyridine salt (0.1 mmol, 1.0 equiv) and dry CH₃CN (1.0 mL) were added in sequence. The resulting mixture was stirred at room temperature for 2 h and monitored by TLC (eluent: DCM/MeOH = 10:1). After the reaction was completed, DIPA (phenyliodine diacetate, 0.15 mmol, 48.3 mg, 1.5 equiv) was added to the tube under atmospheric conditions. The resulting mixture was stirred at room temperature for 10 h. Upon completion, the reaction was neutralized with saturated NaHCO₃ aqueous solution (2.0 mL) (pH >8). The crude mixture was diluted by DCM (5.0 mL) and the aqueous phase was extracted with DCM (3 × 5.0 mL). Then the combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude material was purified on silica gel chromatography to afford C-4 alkylation pyridine products.

diethyl 2-benzyl-2-(pyridin-4-yl)malonate (5aj)

Prepared via the above procedure starting from **4h** (0.1 mmol, 57.3 mg, 1.0 equiv) to give diethyl 2-benzyl-2-(pyridin-4-yl)malonate (**5aj**) as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (eluent: petroleum ether/EtOAc = 5:1). Yield 16.1 mg (49%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 400 MHz) δ 8.60 – 8.38 (br, 2H), 7.21 – 7.10 (m, 5H), 6.82 (d, J = 7.0 Hz, 2H), 4.23 (q, J = 7.1 Hz, 4H), 3.57 (s, 2H), 1.23 (t, J = 7.1 Hz, 6H). ¹³**C NMR** (CDCl₃, 101 MHz) δ 169.0, 149.2, 145.8, 135.0, 130.3, 128.1, 127.2, 123.5, 63.8, 62.1, 42.7, 13.9.

HRMS calcd for $(C_{19}H_{22}NO_4)^+$ [M + H]⁺: 328.1543, found 328.1542.

diethyl 2-phenyl-2-(pyridin-4-yl)malonate (5ak)

Prepared via the above procedure starting from **4h** (0.1 mmol, 57.3 mg, 1.0 equiv) to give diethyl 2-phenyl-2-(pyridin-4-yl)malonate (**5ak**) as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 5:1).

Yield 14.0 mg (45%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 400 MHz) δ 8.57 (d, *J* = 6.4 Hz, 2H), 7.39 – 7.29 (m, 7H), 4.29 (q, *J* = 7.1 Hz, 4H), 1.24 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (CDCl₃, 151 MHz) δ 168.7, 149.4, 147.6, 137.1, 129.3, 128.2, 128.0, 124.4, 67.9, 62.3, 13.8.

HRMS calcd for $(C_{18}H_{20}NO_4)^+$ [M + H]⁺: 314.1387, found 314.1385.

diethyl 2-allyl-2-(pyridin-4-yl)malonate (5al)

Prepared via the above procedure starting from **4h** (0.1 mmol, 57.3 mg, 1.0 equiv) to give diethyl 2-allyl-2-(pyridin-4-yl)malonate (**5al**) as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 5:1).

Yield 16.0 mg (58%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 400 MHz) δ 8.61 – 8.56 (m, 2H), 7.40 – 7.35 (m, 2H), 5.75 – 5.61 (m, 1H), 5.08 (s, 1H), 5.06 – 5.02 (m, 1H), 4.30 – 4.16 (m, 4H), 3.03 (d, *J* = 7.1 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (CDCl₃, 101 MHz) δ 169.1, 149.5, 149.4, 131.9, 123.3, 119.7, 62.3, 62.0, 40.0, 14.0.

HRMS calcd for $(C_{15}H_{20}NO_4)^+ [M + H]^+$: 278.1387, found 278.1386.
diethyl 2-benzyl-2-(3-chloropyridin-4-yl)malonate (5am)

Prepared via the above procedure starting from S-4j (60.7 mg, 0.1 mmol, 1.0 equiv) and oxidized at 50 °C for 16 h to give diethyl 2-benzyl-2-(3-chloropyridin-4-yl)malonate (5am) as a colorless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (eluent: petroleum ether/EtOAc = 5:1).

Yield 20.0 mg (55%).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 400 MHz) δ 8.57 (s, 1H), 8.25 (d, J = 5.4 Hz, 1H), 7.17 – 7.04 (m, 4H), 6.91 – 6.84 (m, 2H), 4.35 – 4.20 (m, 4H), 3.75 (s, 2H), 1.26 (t, J = 7.2 Hz, 6H). ¹³C NMR (CDCl₃, 101 MHz) δ 168.1, 150.2, 146.9, 144.3, 135.4, 130.5, 127.9, 127.0, 125.6, 64.3, 62.5, 39.2, 13.8.

HRMS calcd for $(C_{19}H_{21}CINO_4)^+$ [M + H]⁺: 362.1154, found 362.1164.

13. C-4 alkylation with carboxylic acids as the radical precursors ^[3]

To a 10 mL culture tube equipped with the Teflon septum screw cap and containing a stir bar, the corresponding pyridinium salt (0.2 mmol, 1.0 equiv), carboxylic acid (0.4 mmol, 2.0 equiv, in several substrates the carboxylic acid were used 4.0 equiv), $(NH_4)_2S_2O_8$ (91.3 mg, 0.4 mmol, 2.0 equiv), AgNO₃ (6.8 mg, 0.04 mmol, 20 mol%), dichloroethane (1.0 mL) and H₂O (1.0 mL) were added under atmospheric conditions and stirred at 50 °C for 10 h. Upon completion, the reaction was neutralized with saturated NaHCO₃ aqueous solution (2.0 mL) (pH >8). The crude mixture was diluted by DCM (3.0 mL) and the aqueous phase was extracted with DCM (3 × 3.0 mL). Then the combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. (The reaction mixture was analyzed by GC-MS and crude NMR dissolved in CDCl₃. 1, 3, 5-trimethoybenzene (2.7 mg) was used as an internal standard. The C-2 alkylated product was not observed in crude NMR spectroscopy and GC-MS.) The crude material was purified on silica gel chromatography to afford C-4 alkylation pyridine products **5**.

4-cyclohexylpyridine (5b)

Prepared via the above procedure starting from **4h** (114.6 mg, 0.2 mmol, 1.0 equiv) and cyclohexanecarboxylic acid (51.4 mg, 0.4 mmol, 2.0 equiv) to give 4-

cyclohexylpyridine (5b) as a colorless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 10:1). Yield 22.6 mg (70%).

The NMR spectroscopy and HRMS data of 5b has already been written on page S15.

4-(pyridin-4-yl)cyclohexan-1-one (5an)

Prepared via the above procedure starting from **4h** (114.6 mg, 0.2 mmol, 1.0 equiv) and 4-oxocyclohexane-1-carboxylic acid (113.6 mg, 0.8 mmol, 4.0 equiv) to give 4- (pyridin-4-yl)cyclohexan-1-one (**5an**) as a pale yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.25$ (eluent: petroleum ether/EtOAc = 1:1).

Yield 12.2 mg (35%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 400 MHz) δ 8.54 (d, J = 6.0 Hz, 2H), 7.18 (d, J = 6.0 Hz, 2H), 3.02 (tt, J = 12.1, 3.3 Hz, 1H), 2.56 – 2.48 (m, 4H), 2.28 – 2.18 (m, 2H), 2.01 – 1.85 (m, 2H). ¹³**C NMR** (CDCl₃, 101 MHz) δ 210.0, 153.8, 149.8, 122.2, 42.0, 41.0, 33.0. **HRMS** calcd for (C₁₁H₁₄NO)⁺ [M + H]⁺: 176.1070, found 176.1069.

4-(adamantan-1-yl)pyridine (5ao)

Prepared via the above procedure starting from **4h** (114.6 mg, 0.2 mmol, 1.0 equiv) and adamantane-1-carboxylic acid (72.0 mg, 0.4 mmol, 2.0 equiv) to give 4-(adamantan-1-yl)pyridine (**5ao**) as a white solid.

R_f = 0.4 (eluent: petroleum ether/EtOAc = 5:1). **Yield** 19.8 mg (46%). **NMR spectroscopy:** ¹**H NMR** (CDCl₃, 400 MHz) δ 8.51 (d, J = 4.7 Hz, 2H), 7.24 (d, J = 6.0 Hz, 2H), 2.14 – 2.07 (br, 3H), 1.88 (d, J = 2.3 Hz, 6H), 1.83 – 1.70 (m, 6H). ¹³**C NMR** (CDCl₃, 101 MHz) δ 160.0, 149.6, 120.4, 42.3, 36.6, 36.2, 28.6.

HRMS calcd for $(C_{15}H_{20}N)^+$ $[M + H]^+$: 214.1590, found 214.1589.

4-(4-chlorobutyl)pyridine (5ap)

Prepared via the above procedure starting from **4h** (114.6 mg, 0.2 mmol, 1.0 equiv) and 5-chloropentanoic acid (109.3 mg, 0.8 mmol, 4.0 equiv) to give 4-(4-chlorobutyl)pyridine (**5ap**) as a pale yellow oil.

R_f = 0.25 (eluent: petroleum ether/EtOAc = 5:1). **Yield** 16.3 mg (48%). **NMR spectroscopy:** ¹**H NMR** (CDCl₃, 400 MHz) δ 8.49 (d, J = 4.9 Hz, 2H), 7.10 (d, J = 5.4 Hz, 2H), 3.59 – 3.48 (m, 2H), 2.63 (t, J = 7.0 Hz, 2H), 1.84 – 1.72 (m, 4H). ¹³**C NMR** (CDCl₃, 101 MHz) δ 150.7, 149.7, 123.8, 44.6, 34.4, 31.9, 27.4. **HRMS** calcd for (C₉H₁₃ClN)⁺ [M + H]⁺: 170.0731, found 170.0730.

4-cyclobutylpyridine (5aq)

Prepared via the above procedure starting from **4h** (114.6 mg, 0.2 mmol, 1.0 equiv) and cyclobutanecarboxylic acid (40.0 mg, 0.4 mmol, 2.0 equiv) to give 4-cyclobutylpyridine (**5aq**) as a pale-yellow oil. (Due to the product is volatile, the yield of this substrate was determined by crude NMR, 1,3,5-trimethoxybenzene (2.7 mg) as the internal standard.)

R_f = 0.4 (eluent: petroleum ether/EtOAc = 5:1). **Yield** 7.2 mg (NMR yield: 56%, isolate yield: 27%). **NMR spectroscopy:** ¹**H NMR** (CDCl₃, 400 MHz) δ 8.50 (d, J = 5.1 Hz, 2H), 7.16 (d, J = 5.8 Hz, 2H), 3.55 (p, J = 8.6 Hz, 1H), 2.44 – 2.35 (m, 2H), 2.21 – 2.13 (m, 2H), 2.11 – 2.02 (m, 1H), 1.95 – 1.86 (m, 1H). ¹³C NMP (CDCl₂, 101 MHz) δ 155 2, 140 4, 121 8, 30 3, 28 0, 18 4

¹³C NMR (CDCl₃, 101 MHz) δ 155.2, 149.4, 121.8, 39.3, 28.9, 18.4. HRMS calcd for (C₉H₁₂N)⁺ [M + H]⁺: 134.0964, found 134.0965.

4-(tetrahydro-2*H*-pyran-4-yl)pyridine (5ar)

Prepared via the above procedure starting from **4h** (114.6 mg, 0.2 mmol, 1.0 equiv) and tetrahydro-2*H*-pyran-4-carboxylic acid (52.0 mg, 0.4 mmol, 2.0 equiv) to give 4- (tetrahydro-2*H*-pyran-4-yl)pyridine (**5ar**) as a colorless oil.

R_f = 0.5 (eluent: petroleum ether/EtOAc = 1:1). **Yield** 20.0 mg (61%). **NMR spectroscopy:** ¹**H NMR** (CDCl₃, 600 MHz) δ 8.53 (d, *J* = 4.8 Hz, 2H), 7.16 (d, *J* = 5.6 Hz, 2H), 4.12 – 4.06 (m, 2H), 3.53 (td, *J* = 11.4, 3.2 Hz, 2H), 2.81 – 2.73 (m, 1H), 1.85 – 1.72 (m, 4H).

¹³C NMR (CDCl₃, 151 MHz) δ 154.7, 149.7, 122.3, 68.0, 40.9, 32.9. HRMS calcd for (C₁₀H₁₄NO)⁺ [M + H]⁺: 164.1070, found 164.1069.

methyl 4-(pyridin-4-yl)bicyclo[2.2.2]octane-1-carboxylate (5as)

Prepared via the above procedure starting from **4h** (114.6 mg, 0.2 mmol, 1.0 equiv) and 4-(methoxycarbonyl)bicyclo[2.2.2]octane-1-carboxylic acid (84.8 mg, 0.4 mmol, 2.0 equiv) to give methyl 4-(pyridin-4-yl)bicyclo[2.2.2]octane-1-carboxylate (**5as**) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (eluent: petroleum ether/EtOAc = 2:1).

Yield 31.2 mg (64%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 400 MHz) δ 8.49 (d, *J* = 5.1 Hz, 2H), 7.20 (d, *J* = 5.7 Hz, 2H), 3.67 (s, 3H), 1.96 – 1.88 (m, 6H), 1.87 – 1.79 (m, 6H).

¹³C NMR (CDCl₃, 101 MHz) δ 178.0, 158.2, 149.5, 121.0, 51.8, 39.0, 34.8, 31.1, 28.5. HRMS calcd for (C₁₅H₂₀NO₂)⁺ [M + H]⁺: 246.1489, found 246.1487.

4-(1-tosylpiperidin-4-yl)pyridine (5at)

Prepared via the above procedure starting from **4h** (114.6 mg, 0.2 mmol, 1.0 equiv) and 1-tosylpiperidine-4-carboxylic acid (226.4 mg, 0.8 mmol, 4.0 equiv) to give 4-(1-tosylpiperidin-4-yl)pyridine (**5at**) as a white solid.

 $\mathbf{R_f} = 0.6$ (eluent: pure EtOAc).

Yield 21.1 mg (33%).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 400 MHz) δ 8.50 (d, *J* = 3.9 Hz, 2H), 7.67 (d, *J* = 8.1 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.06 (d, *J* = 5.4 Hz, 2H), 3.93 (d, *J* = 11.8 Hz, 2H), 2.44 (s, 3H), 2.34 (td, *J* = 12.0, 2.9 Hz, 2H), 1.95 – 1.75 (m, 5H).

¹³C NMR (CDCl₃, 101 MHz) δ 153.5, 150.1, 143.6, 133.2, 129.7, 127.8, 122.1, 46.5, 41.1, 31.7, 21.5.

HRMS calcd for $(C_{17}H_{21}N_2O_2S)^+$ [M + H]⁺: 317.1318, found 317.1319.

4-cyclohexyl-3-fluoropyridine (5au)

Prepared via the above procedure starting from **S-4I** (118.2 mg, 0.2 mmol, 1.0 equiv) and cyclohexanecarboxylic acid (51.4 mg, 0.4 mmol, 2.0 equiv) to give 4-cyclohexyl-3-fluoropyridine (**5au**) as a colorless oil.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 24.2 mg (68%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 600 MHz) δ 8.34 (s, 1H), 8.31 (d, *J* = 5.5 Hz, 1H), 7.16 (t, *J* = 5.5 Hz, 1H), 2.86 (t, *J* = 8.7 Hz, 1H), 1.89 – 1.81 (m, 4H), 1.79 – 1.73 (m, 1H), 1.46 – 1.36 (m, 4H), 1.28 – 1.22 (m, 1H).

¹³C NMR (CDCl₃, 151 MHz) δ 157.9 (d, *J* = 250.7 Hz), 145.7 (d, *J* = 4.5 Hz), 143.0 (d, *J* = 12.1 Hz), 137.6 (d, *J* = 25.7 Hz), 122.3, 36.8, 32.2, 26.4, 25.9.

¹⁹**F NMR** (CDCl₃, 565 MHz) δ -133.7.

HRMS calcd for $(C_{11}H_{15}FN)^+$ [M + H]⁺: 180.1183, found 180.1182.

3-chloro-4-cyclohexylpyridine (5av)

Prepared via the above procedure starting from S-4j (121.4 mg, 0.2 mmol, 1.0 equiv) and cyclohexanecarboxylic acid (51.4 mg, 0.4 mmol, 2.0 equiv) to give 3-chloro-4-cyclohexylpyridine (5av) as a pale-yellow oil.

 $R_f = 0.6$ (eluent: petroleum ether/EtOAc = 10:1). Yield 17.9 mg (46%). NMR spectroscopy: ¹**H NMR** (CDCl₃, 400 MHz) δ 8.48 (s, 1H), 8.38 (d, *J* = 5.1 Hz, 1H), 7.15 (d, *J* = 5.1 Hz, 1H), 3.01 – 2.90 (m, 1H), 1.89 – 1.82 (m, 4H), 1.81 – 1.73 (m, 1H), 1.50 – 1.17 (m, 5H).

¹³C NMR (CDCl₃, 151 MHz) δ 153.3, 149.3, 147.9, 131.6, 121.9, 40.1, 32.2, 26.5, 26.0. HRMS calcd for (C₁₁H₁₅ClN)⁺ [M + H]⁺: 196.0888, found 196.0887.

3-bromo-4-cyclohexylpyridine (5aw)

Prepared via the above procedure starting from S-4k (130.2 mg, 0.2 mmol, 1.0 equiv) and cyclohexanecarboxylic acid (51.4 mg, 0.4 mmol, 2.0 equiv) to give 3-bromo-4-cyclohexylpyridine (5aw) as a pale-yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 23.6 mg (49%).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 400 MHz) δ 8.64 (s, 1H), 8.52 – 8.31 (br, 1H), 7.22 – 7.06 (br, 1H), 2.91 (tt, *J* = 11.3, 2.6 Hz, 1H), 1.92 – 1.82 (m, 4H), 1.81 – 1.72 (m, 1H), 1.50 – 1.18 (m, 5H).

¹³C NMR (CDCl₃, 101 MHz) δ 154.9, 151.9, 148.5, 123.1 (low signal), 122.4, 42.9, 32.3, 26.5, 26.0.

HRMS calcd for $(C_{11}H_{15}BrN)^+$ [M + H]⁺: 240.0383, found 240.0381.

14. C-4 arylation with aryl boronic acids as the radical precursors

Following the known literature procedure for borono-minisci reaction ^[4], to a 10 mL culture tube equipped with the screw cap and magnetic stir bar, the pyridinium salt **4h** (114.6 mg, 0.2 mmol, 1.0 equiv), 4-substituted aryl-boronic acid (0.3 mmol, 1.5 equiv), (NH₄)₂S₂O₈ (91.3 mg, 0.4 mmol, 2.0 equiv) and AgNO₃ (6.8 mg, 0.04 mmol, 20 mol%) were added, together with dichloromethane (1.0 mL) and H₂O (1.0 mL) under atmospheric conditions and stirred at room temperature for 10 h. Upon completion, the reaction was neutralized with saturated NaHCO₃ aqueous solution (2.0 mL) (pH >8). The crude mixture was diluted by DCM (3.0 mL) and the aqueous phase was extracted with DCM (3 × 3.0 mL). Then the combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude material was purified on silica gel chromatography to afford C-4 arylation pyridine products **5** as a white solid. 1, 3, 5-trimethoybenzene (2.7 mg) was used as an internal standard. The desired C-4 arylation product **5** was observed in GC-MS. The products of C-2 arylation can be observed in crude GC-MS at a ratio of less than 1:35 (C-2/C-4).

4-(4-ethylphenyl)pyridine (5ax)

Prepared via the above procedure starting from (4-ethylphenyl)boronic acid (45.0 mg, 0.3 mmol, 1.5 equiv) to give 4-(4-ethylphenyl)pyridine (**5ax**) as a white solid.

(d, J = 5.8 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 2.71 (q, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H).

¹³C NMR (CDCl₃, 101 MHz) δ 150.1, 148.4, 145.6, 135.4, 128.7, 126.9, 121.5, 28.6, 15.5.

HRMS calcd for $(C_{13}H_{14}N)^+$ [M + H]⁺: 184.1121, found 184.1120.

4-(4-chlorophenyl)pyridine (5ay)

Prepared via the above procedure starting from (4-chlorophenyl)boronic acid (46.8 mg, 0.3 mmol, 1.5 equiv) to give 4-(4-chlorophenyl)pyridine (**5ay**) as a white solid.

 $\mathbf{R_f} = 0.4$ (eluent: petroleum ether/EtOAc = 4:1). Yield 29.6 mg (78%, GC-MS: C4/C2 = 67.7/1). The NMR spectroscopy and HRMS data of **5ay** are the same as **5**h

4-(4-(trifluoromethyl)phenyl)pyridine (5az)

Prepared via the above procedure starting from (4-(trifluoromethyl)phenyl)boronic acid (57.0 mg, 0.3 mmol, 1.0 equiv) to give 4-(4-(trifluoromethyl)phenyl)pyridine (**5az**) as a white solid.

R_f = 0.4 (eluent: petroleum ether/EtOAc = 5:1). **Yield** 34.0 mg (76%, GC-MS: C4/C2 = 35.7/1). **NMR spectroscopy:** ¹**H NMR** (CDCl₃, 400 MHz) δ 8.70 (d, J = 6.1 Hz, 2H), 7.77 – 7.70 (m, 4H), 7.51 (d, J = 6.1 Hz, 2H). ¹³**C NMR** (CDCl₃, 151 MHz) δ 150.4, 147.0, 141.7, 131.1 (q, J = 33.2 Hz), 127.5, 126.1 (q, J = 3.0 Hz), 124.0 (q, J = 271.8 Hz), 121.8. ¹⁹**F NMR** (CDCl₃, 377 MHz) δ -62.7. **HRMS** calcd for (C₁₂H₉F₃N)⁺ [M + H]⁺: 224.0682, found 224.0680.

1-(4-(pyridin-4-yl)phenyl)ethan-1-one (5ba)

Prepared via the above procedure starting from (4-acetylphenyl)boronic acid (49.2 mg, 0.3 mmol, 1.5 equiv) to give 1-(4-(pyridin-4-yl)phenyl)ethan-1-one (**5ba**) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (eluent: petroleum ether/EtOAc = 1:1).

Yield 25.4 mg (64%, GC-MS: C4/C2 > 99/1).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 400 MHz) δ 8.70 (d, *J* = 5.2 Hz, 2H), 8.06 (d, *J* = 8.3 Hz, 2H), 7.72 (d, *J* = 8.3 Hz, 2H), 7.53 (d, *J* = 5.7 Hz, 2H), 2.64 (s, 3H).

¹³C NMR (CDCl₃, 101 MHz) δ 197.5, 150.3, 147.2, 142.5, 137.3, 129.1, 127.3, 121.7, 26.7.

HRMS calcd for $(C_{13}H_{12}NO)^+$ $[M + H]^+$: 198.0913, found 198.0912.

4-(naphthalen-2-yl)pyridine (5bb)

Prepared via the above procedure starting from naphthalen-2-ylboronic acid (51.6 mg, 0.3 mmol, 1.0 equiv) to give 4-(naphthalen-2-yl)pyridine (**5bb**) as a pale yellow solid.

R_f = 0.5 (eluent: petroleum ether/EtOAc = 5:1). **Yield** 24.6 mg (60%, GC-MS: C-4/C-2 > 99/1). **NMR spectroscopy:** ¹**H NMR** (CDCl₃, 400 MHz) δ 8.70 (d, J = 6.0 Hz, 2H), 8.12 (s, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.94 - 7.90 (m, 1H), 7.90 - 7.85 (m, 1H), 7.74 (dd, J = 8.5, 1.7 Hz, 1H), 7.64 (d, J = 6.1 Hz, 2H), 7.58 - 7.47 (m, 2H). ¹³C NMR (CDCl₃, 101 MHz) δ 150.2, 148.4, 135.3, 133.5, 129.0, 128.5, 127.8, 126.9, 126.8, 126.5, 124.5, 121.9. HRMS calcd for (C₁₅H₁₂N)⁺ [M + H]⁺: 206.0964, found 206.0963.

15. C-4 alkylation with functionalized alkanes as the radical precursors

A 25 mL Schlenk tube with the screw-cap was added silver nitrate (0.04 mmol, 0.2 equiv, 6.8 mg), $K_2S_2O_8$ (0.4 mmol, 2.0 equiv, 108.0 mg) and pyridine salt (0.2 mmol, 1.0 equiv, 114.6 mg). After sealing with a screw-cap, the tube was evacuated and backfilled with nitrogen three times. Then, water (1.0 mL), H_2SO_4 (18.4 mol/L, 1.0 mmol, 5.0 equiv, 54.0 µL) and alcohols (0.6 mmol, 3.0 equiv) were added consecutively. The resulting mixture was stirred at 50 °C using an oil bath for 4 h, after which saturated NaHCO₃ solution was added until the pH of the solution was above 8. Then, EtOAc (5.0 mL) was added and mixed to obtain a biphasic mixture. After that, the organic phase was separated and collected, while the aqueous phase was extracted three more times with EtOAc (3 × 5.0 mL). The organic phase was combined, dried over Na₂SO₄ and then concentrated under reduced pressure. The resulting crude mixture was purified by column chromatography on silica gel to afford C-4 alkylation pyridine products as a pale-yellow oil.

4-(pyridin-4-yl)pentan-1-ol (5bc)

Prepared via the above procedure starting from pentanol (52.8 mg, 0.6 mmol, 3.0 equiv) to give 4-(pyridin-4-yl)pentan-1-ol (**5bc**) as a pale yellow oil.

R_f = 0.3 (eluent: EtOAc) **Yeild** 16.8 mg (51%). ¹**H NMR** (CDCl₃, 400 MHz) δ 8.46 (br, 2H), 7.11 (d, J = 5.1 Hz, 2H), 3.60 (t, J = 6.5 Hz, 2H), 2.76 – 2.64 (m, 1H), 2.23 (br, 1H), 1.69 – 1.62 (m, 2H), 1.57 – 1.46 (m, 1H), 1.46 – 1.35 (m, 1H), 1.25 (d, J = 6.9 Hz, 3H). ¹³**C NMR** (CDCl₃, 101 MHz) δ 156.6, 149.5, 123.0 (*low signal*), 62.5, 39.3, 33.7, 30.7,

21.5.

HRMS calcd for $(C_{10}H_{16}NO)^+$ $[M + H]^+$: 166.1226, found 166.1225.

4-methoxy-4-(pyridin-4-yl)butan-1-ol (5bd)

Prepared via the above procedure starting from 4-methoxy-1-butanol (62.4 mg, 0.6 mmol, 3.0 equiv) to give 4-methoxy-4-(pyridin-4-yl)butan-1-ol (**5bd**) as a pale yellow oil.

R_f = 0.2 (eluent: DCM/MeOH = 30:1) **Yeild** 11.7 mg (32%). ¹**H** NMR (CDCl₃, 400 MHz) δ 8.56 (d, J = 5.9 Hz, 2H), 7.43 (d, J = 6.0 Hz, 2H), 4.29 (t, J = 6.2 Hz, 1H), 3.66 (t, J = 6.1 Hz, 2H), 3.29 (s, 3H), 1.83 – 1.75 (m, 2H), 1.66 – 1.63 (m, 2H). (*There is one less signal of active hydrogen on the hydroxyl group*) ¹³C NMR (CDCl₃, 101 MHz) δ 151.7, 149.6, 121.7, 82.7, 62.5, 57.2, 34.4, 28.8. **HRMS** calcd for (C₁₀H₁₆NO₂)⁺ [M + H]⁺: 182.1176, found 182.1175.

16. Late-stage functionalization of drug-like molecules.

2-butoxyethyl 4-pentylnicotinate (5be)

Prepared via **General Procedure III** starting from 2-butoxyethyl nicotinate (223.1 mg, 1.0 mmol, 1.0 equiv), *n*-pentyl Grignard reagents (1.2 mmol, 1.2 equiv) and oxidized at 75 °C for 36 h to give 2-butoxyethyl 4-pentylnicotinate (**5be**) as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.2$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 109.3 mg (37%, 44.8 mg starting material, 47% b.r.s.m).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 400 MHz) δ 9.04 (s, 1H), 8.55 (d, *J* = 4.5 Hz, 1H), 7.17 (d, *J* = 5.1 Hz, 1H), 4.51 – 4.42 (m, 2H), 3.78 – 3.68 (m, 2H), 3.49 (t, *J* = 6.6 Hz, 2H), 2.98 – 2.90 (m, 2H), 1.66 – 1.50 (m, 4H), 1.44 – 1.28 (m, 6H), 0.90 (t, *J* = 7.3 Hz, 3H), 0.88 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (CDCl₃, 101 MHz) δ 166.2, 153.9, 152.1, 151.7, 125.7, 125.4, 71.3, 68.5, 64.4, 33.7, 31.8, 31.7, 30.5, 22.5, 19.3, 14.0, 13.9.

HRMS calcd for $(C_{17}H_{28}NO_3)^+$ [M + H]⁺: 294.2064, found 294.2062.

3-(5-chloro-2-(2,4-dichlorophenoxy)phenyl)-4-pentylpyridine (5bf)

Prepared via **General Procedure III** starting from 3-(5-chloro-2-(2,4-dichlorophenoxy)phenyl)pyridine (349.0 mg, 1.0 mmol, 1.0 equiv), *n*-pentyl Grignard reagents (1.2 mmol, 1.2 equiv) and oxidized at 50 °C for 24 h to give 3-(5-chloro-2-(2,4-dichlorophenoxy)phenyl)-4-pentylpyridine (**5bf**) as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 10:1).

Yield 194.4 mg (46%, 24.6 mg starting material, 49% b.r.s.m).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 400 MHz) δ 8.46 (d, J = 5.0 Hz, 1H), 8.36 (s, 1H), 7.34 (s, 1H), 7.32 (d, J = 4.0 Hz, 1H), 7.28 (s, 1H), 7.20 (d, J = 5.1 Hz, 1H), 7.12 (d, J = 8.7 Hz, 1H), 6.81 – 6.74 (m, 2H), 2.60 (t, J = 8.2 Hz, 2H), 1.59 – 1.45 (m, 2H), 1.29 – 1.12 (m, 4H), 0.83 (t, J = 6.4 Hz, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 152.4, 150.7, 150.5, 150.0, 149.2, 131.9, 131.7, 130.7, 130.5, 129.48, 129.47, 129.0, 128.0, 126.2, 123.5, 120.7, 118.8, 32.6, 31.5, 29.3, 22.3, 13.9.

HRMS calcd for $(C_{22}H_{21}Cl_3NO)^+$ [M + H]⁺: 420.0683, found 420.0678.

(*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-yl pentylnicotinate (5bg) 4-

Prepared via **General Procedure III** starting from (*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-yl nicotinate (535.4 mg, 1.0 mmol, 1.0 equiv), *n*-pentyl Grignard reagents (1.2 mmol, 1.2 equiv) and oxidized at 75 °C for 24 h to give (*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6-yl 4-pentylnicotinate (**5bg**) as a pale yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.5$ (eluent: petroleum ether/EtOAc = 10:1). Yield 208.3 mg (34%, 203.5 mg starting material, 55% b.r.s.m). NMR spectroscopy: ¹**H** NMR (Actone- d_6 , 600 MHz) δ 9.32 (s, 1H), 8.68 (d, J = 5.1 Hz, 1H), 7.43 (d, J = 5.1 Hz, 1H), 3.11 – 3.05 (m, 2H), 2.67 (t, J = 6.7 Hz, 2H), 2.13 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 1.91 – 1.76 (m, 2H), 1.69 – 1.50 (m, 7H), 1.48 – 1.30 (m, 14H), 1.28 (s, 3H), 1.20 – 1.08 (m, 6H), 0.95 – 0.83 (m, 15H).

¹³C NMR (Actone-*d*₆, 151 MHz) δ 165.2, 155.3, 153.9, 152.7, 150.5, 141.8, 127.8, 126.9, 126.3, 126.0, 123.7, 118.8, 76.1, 40.4, 38.6, 38.5, 38.42, 38.35, 38.3, 34.4, 33.74, 33.66, 32.8, 32.1, 31.9, 28.9, 25.8, 25.4, 25.3, 23.4, 23.3, 23.2, 22.0, 21.4, 20.4, 20.3, 14.5, 13.6, 12.8, 12.3.

HRMS calcd for $(C_{40}H_{64}NO_3)^+$ [M + H]⁺: 606.4881, found 606.4872.

(S)-3-(4-chloro-3-(4-((tetrahydrofuran-3-yl)oxy)benzyl)phenyl)-4-pentylpyridine (5bh)

Prepared via **General Procedure III** starting from (*S*)-3-(4-chloro-3-(4-((tetrahydrofuran-3-yl)oxy)benzyl)phenyl)pyridine (365.1 mg, 1.0 mmol, 1.0 equiv), *n*-pentyl Grignard reagents (1.2 mmol, 1.2 equiv) and oxidized at 50 °C for 24 h to give (*S*)-3-(4-chloro-3-(4-((tetrahydrofuran-3-yl)oxy)benzyl)phenyl)-4-pentylpyridine (**5bh**) as a pale yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (eluent: petroleum ether/EtOAc = 2:1).

Yield 245.9 mg (57%, 131.2 mg starting material, 89% b.r.s.m).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 600 MHz) δ 8.46 (d, J = 4.3 Hz, 1H), 8.34 (s, 1H), 7.44 (d, J = 8.1 Hz, 1H), 7.17 (d, J = 4.8 Hz, 1H), 7.11 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 9.2 Hz, 1H), 7.06 (s, 1H), 6.78 (d, J = 8.3 Hz, 2H), 4.90 – 4.86 (m, 1H), 4.08 (s, 2H), 4.03 – 3.93 (m, 3H), 3.91 – 3.70 (m, 1H), 2.55 – 2.42 (m, 2H), 2.22 – 2.09 (m, 2H), 1.43 (p, J = 7.5 Hz, 2H), 1.24 – 1.12 (m, 4H), 0.82 (t, J = 7.0 Hz, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 156.0, 150.0, 149.2, 148.6, 139.2, 136.7, 136.5, 133.7, 131.8, 131.5, 130.0, 129.5, 128.5, 124.0, 115.4, 77.3, 73.1, 67.2, 38.3, 33.0, 32.3, 31.5, 29.9, 22.3, 13.9.

HRMS calcd for $(C_{27}H_{31}CINO_2)^+$ [M + H]⁺: 436.2038, found 436.2034.

ethyl 1,2-dimethyl-5-(4-pentylpyridin-3-yl)-1H-indole-3-carboxylate (5bi)

Prepared via **General Procedure III** starting from ethyl 1,2-dimethyl-5-(pyridin-3-yl)-1*H*-indole-3-carboxylate (294.1 mg, 1.0 mmol, 1.0 equiv), *n*-pentyl Grignard reagents (1.2 mmol, 1.2 equiv) and oxidized at 50 °C for 12 h to give ethyl 1,2-dimethyl-5-(4pentylpyridin-3-yl)-1*H*-indole-3-carboxylate (**5bi**) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (eluent: petroleum ether/EtOAc = 2:1).

Yield 171.3 mg (47%, 94.1 mg starting material, 69% b.r.s.m).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 400 MHz) δ 8.48 (s, 1H), 8.47 (d, J = 5.2 Hz, 1H), 8.06 (s, 1H), 7.34 (d, J = 8.3 Hz, 1H), 7.21 (d, J = 5.1 Hz, 1H), 7.15 (dd, J = 8.3, 1.5 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 3.73 (s, 3H), 2.79 (s, 3H), 2.73 – 2.51 (m, 2H), 1.52 (p, J = 7.4 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H), 1.23 – 1.06 (m, 4H), 0.78 (t, J = 6.8 Hz, 3H).

¹³C NMR (CDCl₃, 101 MHz) δ 166.0, 150.7, 149.5, 147.9, 146.0, 138.7, 135.9, 131.4, 126.6, 123.8, 123.5, 122.3, 108.9, 104.2, 59.4, 32.4, 31.5, 30.0, 29.7, 22.3, 14.7, 13.9, 11.9.

HRMS calcd for $(C_{23}H_{29}N_2O_2)^+$ [M + H]⁺: 365.2224, found 365.2221.

(4-pentylpyridin-3-yl)methyl 3-(4,5-diphenyloxazol-2-yl)propanoate (5bj)

Prepared via **General Procedure III** starting from pyridin-3-ylmethyl 3-(4,5diphenyloxazol-2-yl)propanoate (384.1 mg, 1.0 mmol, 1.0 equiv), *n*-pentyl Grignard reagents (1.2 mmol, 1.2 equiv) and oxidized at 50 °C for 12 h to give (4-pentylpyridin-3-yl)methyl 3-(4,5-diphenyloxazol-2-yl)propanoate (**5bj**) as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 3:1).

Yield 123.8 mg (27%, 160.0 mg starting material, 47% b.r.s.m).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 600 MHz) δ 8.53 (s, 1H), 8.46 (d, *J* = 5.0 Hz, 1H), 7.60 (d, *J* = 7.0 Hz, 2H), 7.54 (d, *J* = 6.9 Hz, 2H), 7.40 – 7.27 (m, 6H), 7.11 (d, *J* = 5.0 Hz, 1H), 5.21 (s, 2H), 3.19 (t, *J* = 7.5 Hz, 2H), 2.95 (t, *J* = 7.5 Hz, 2H), 2.65 – 2.51 (m, 2H), 1.66 – 1.54 (m, 2H), 1.34 – 1.28 (m, 4H), 0.88 (t, *J* = 6.6 Hz, 3H).

¹³C NMR (CDCl₃, 101 MHz) δ 171.7, 161.5, 151.2, 150.8, 150.0, 145.5, 135.2, 132.4, 129.3, 129.0, 128.7, 128.6, 128.5, 128.1, 127.9, 126.5, 124.1, 62.2, 31.8, 31.7, 31.1, 29.9, 23.5, 22.5, 14.0.

HRMS calcd for $(C_{29}H_{31}N_2O_3)^+$ [M + H]⁺: 455.2329, found 455.2325.

(4-pentylpyridin-3-yl)methyl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5carboxylate (5bk)

Prepared via **General Procedure III** starting from pyridin-3-ylmethyl 2-(3-cyano-4isobutoxyphenyl)-4-methylthiazole-5-carboxylate (407.1 mg, 1.0 mmol, 1.0 equiv), *n*pentyl Grignard reagents (1.2 mmol, 1.2 equiv) and oxidized at 50 °C for 12 h to give (4-pentylpyridin-3-yl) methyl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5carboxylate (**5bk**) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 2:1).

Yield 120.7 mg (25%, 204.8 mg starting material, 50% b.r.s.m).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 600 MHz) δ 8.62 (s, 1H), 8.51 (d, *J* = 4.9 Hz, 1H), 8.16 (d, *J* = 1.9 Hz, 1H), 8.06 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.19 (d, *J* = 4.9 Hz, 1H), 7.00 (d, *J* = 8.9 Hz, 1H), 5.38 (s, 2H), 3.89 (d, *J* = 6.4 Hz, 2H), 2.76 (s, 3H), 2.74 – 2.68 (m, 2H), 2.25 – 2.15 (m, 1H), 1.68 – 1.58 (m, 2H), 1.38 – 1.28 (m, 4H), 1.08 (d, *J* = 6.7 Hz, 6H), 0.89 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 167.6, 162.6, 162.1, 161.6, 151.5, 150.5, 149.8, 132.6, 132.1, 129.2, 125.9, 124.2, 120.9, 115.3, 112.7, 103.1, 75.7, 62.4, 31.9, 31.7, 29.9, 28.2, 22.5, 19.0, 17.6, 14.0.

HRMS calcd for $(C_{27}H_{32}N_{3}O_{3}S)^{+}$ [M + H]⁺: 478.2159, found 478.2153.

ethyl 4-(8-chloro-4-pentyl-5,6-dihydro-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-ylidene)piperidine-1-carboxylate (5bl)

Prepared via **General Procedure III** starting from 1,3-dimethylimidazolidin-2-one (119.7 mg, 1.05 mmol, 1.05 equiv), ethyl 4-(8-chloro-5,6-dihydro-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-ylidene)piperidine-1-carboxylate (382.1 mg, 1.0 mmol, 1.0 equiv), *n*-pentyl Grignard reagents (1.2 mmol, 1.2 equiv) and oxidized at 40 °C for 24 h to give ethyl 4-(8-chloro-4-pentyl-5,6-dihydro-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-ylidene)piperidine-1-carboxylate (**5bl**) as a pale yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 2:1).

Yield 261.4 mg (58%, 75.7 mg starting material, 72% b.r.s.m).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 400 MHz) δ 8.24 (d, *J* = 5.0 Hz, 1H), 7.13 – 7.01 (m, 3H), 6.93 (d, *J* = 5.0 Hz, 1H), 4.09 (q, *J* = 7.1 Hz, 2H), 3.83 – 3.69 (br, 2H), 3.42 – 3.32 (m, 1H), 3.24 – 3.04 (m, 3H), 2.95 – 2.85 (m, 1H), 2.83 – 2.72 (m, 1H), 2.60 – 2.51 (m, 2H), 2.42 – 2.30 (m, 3H), 2.24 – 2.14 (m, 1H), 1.60 – 1.47 (m, 2H), 1.37 – 1.28 (m, 4H), 1.20 (t, *J* = 7.1 Hz, 3H), 0.86 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (CDCl₃, 101 MHz) δ 158.4, 155.5, 149.9, 146.5, 139.2, 136.7, 136.4, 134.8, 132.8, 131.5, 130.9, 129.4, 126.0, 123.0, 61.3, 44.8, 44.7 (both carbons in the nitrogen ortho position on the piperidine ring have signals), 32.5, 31.9, 31.8, 30.6, 29.6, 26.5, 22.5, 14.7, 14.0.

HRMS calcd for $(C_{27}H_{34}ClN_2O_2)^+$ [M + H]⁺: 453.2304, found 453.2302.

pyridin-3-ylmethyl 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetate (5bm)

Prepared via **General Procedure III** starting from pyridin-3-ylmethyl 2-(11-oxo-6,11dihydrodibenzo[b,e]oxepin-2-yl)acetate (359.1 mg, 1.0 mmol, 1.0 equiv), n-pentyl Grignard reagents (1.2 mmol, 1.2 equiv) and oxidized at 50 °C for 12 h to give (4pentylpyridin-3-yl)methyl 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetate (**5bm**) as a pale yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.4$ (eluent: petroleum ether/EtOAc = 2:1).

Yield 120.1 mg (28%, 165.1 mg starting material, 52% b.r.s.m).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 400 MHz) δ 8.49 (s, 1H), 8.45 (d, *J* = 5.0 Hz, 1H), 8.09 (d, *J* = 2.3 Hz, 1H), 7.89 – 7.83 (m, 1H), 7.54 (td, *J* = 7.4, 1.3 Hz, 1H), 7.45 (td, *J* = 7.6, 1.1 Hz, 1H), 7.39 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.34 (d, *J* = 7.4 Hz, 1H), 7.12 (d, *J* = 5.1 Hz, 1H), 7.01 (d, *J* = 8.4 Hz, 1H), 5.17 (s, 2H), 5.16 (s, 2H), 3.66 (s, 2H), 2.65 – 2.54 (m, 2H), 1.62 – 1.51 (m, 2H), 1.35 – 1.24 (m, 4H), 0.91 – 0.78 (m, 3H).

¹³C NMR (CDCl₃, 101 MHz) δ 190.7, 171.0, 160.6, 151.2, 150.5, 149.8, 140.4, 136.2, 135.5, 132.8, 132.5, 129.5, 129.30, 129.27, 127.8, 127.4, 125.2, 124.0, 121.2, 73.6, 62.3, 40.1, 31.7, 31.6, 29.7, 22.5, 13.9.

HRMS calcd for $(C_{27}H_{28}NO_4)^+$ [M + H]⁺: 430.2013, found 430.2003.

(4-pentylpyridin-3-yl)methyl 4-(*N*,*N*-dipropylsulfamoyl)benzoate (5bn)

Prepared via **General Procedure III** starting from pyridin-3-ylmethyl 4-(N,N-dipropylsulfamoyl)benzoate (376.1 mg, 1.0 mmol, 1.0 equiv), n-pentyl Grignard reagents (1.2 mmol, 1.2 equiv) and oxidized at 50 °C for 12 h to give (4-pentylpyridin-3-yl)methyl 4-(N,N-dipropylsulfamoyl)benzoate (**5bn**) as a yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 3:1).

Yield 177.1 mg (40%, 141.6 mg starting material, 64% b.r.s.m).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 400 MHz) δ 8.62 (s, 1H), 8.50 (d, *J* = 5.0 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 2H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 5.1 Hz, 1H), 5.43 (s, 2H), 3.12 – 3.04 (m, 4H), 2.73 – 2.66 (m, 2H), 1.67 – 1.57 (m, 2H), 1.56 – 1.46 (m, 4H), 1.36 – 1.26 (m, 4H), 0.84 (t, *J* = 7.4 Hz, 9H).

¹³**C NMR** (CDCl₃, 101 MHz) δ 165.0, 151.4, 150.9, 150.1, 144.7, 133.1, 130.4, 129.2, 127.2, 124.3, 62.9, 50.0, 32.0, 31.8, 30.1, 22.6, 22.0, 14.0, 11.2.

HRMS calcd for $(C_{24}H_{35}N_2O_4S)^+$ [M + H]⁺: 447.2312, found 447.2309.

(4-pentylpyridin-3-yl)methyl5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxylate(5bo)

Prepared via **General Procedure III** starting from pyridin-3-ylmethyl 5-(4chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1*H*-pyrazole-3-carboxylate (471.0 mg, 1.0 mmol, 1.0 equiv), *n*-pentyl Grignard reagents (1.2 mmol, 1.2 equiv) and oxidized at 50 °C for 12 h to give (4-pentylpyridin-3-yl)methyl 5-(4-chlorophenyl)-1-(2,4dichlorophenyl)-4-methyl-1*H*-pyrazole-3-carboxylate (**5bo**) as a pale yellow oil.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 3:1).

Yield 245.1 mg (45%, 119.6 mg starting material, 60% b.r.s.m).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 400 MHz) δ 8.67 (s, 1H), 8.48 (d, *J* = 5.1 Hz, 1H), 7.39 (d, *J* = 2.1 Hz, 1H), 7.34 – 7.26 (m, 4H), 7.15 (d, *J* = 5.1 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 2H), 5.48 (s, 2H), 2.81 – 2.69 (m, 2H), 2.31 (s, 3H), 1.65 (p, *J* = 7.6 Hz, 2H), 1.39 – 1.28 (m, 4H), 0.86 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 162.4, 151.1, 150.7, 149.7, 143.0, 142.4, 136.1, 135.8, 135.1, 133.0, 130.9, 130.6, 130.2, 129.5, 128.9, 127.8, 126.9, 124.1, 119.3, 62.0, 32.0, 31.7, 29.8, 22.5, 13.9, 9.7. HRMS calcd for (C₂₈H₂₇Cl₃N₃O₂)⁺ [M + H]⁺: 542.1164, found 542.1159.

17. Synthesis of 4-(1-tosylpiperidin-4-yl)picolinamide

4-(1-tosylpiperidin-4-yl)picolinamide (8)

Follow the literature procedure^[5].

To a 10 mL culture tube equipped with the screw cap and magnetic stir bar, AgNO₃ (7.2 mg, 0.04 mmol, 20 mol%), $K_2S_2O_8$ (81.1 mg, 0.3 mmol, 1.5 equiv), HCO₂Na (27.2 mg, 0.4 mmol, 2.0 equiv) and corresponding pyridine **5at** (63.2 mg, 0.2 mmol, 1,0 equiv) were added, together with formamide (1 mL), and H₂O (0.2 mL). While the resulting mixture was stirred at 80 °C other 2 portions of $K_2S_2O_8$ (2 × 81.1 mg, 0.3 mmol, 1.5 equiv) were added after 1 hour and 2 hours. The mixture was then stirred at the same temperature for another 2 hours. At the end of the reaction, the reaction mixture was cooled to room temperature, poured into a brine (7.0 mL) and extracted with EtOAc (3 × 7.0 mL). The organic phases were combined, evaporated in a rotary evaporator. The residue was purified by flash column chromatography on silica gel (EtOAc) to afford the corresponding product **8** as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.6$ (eluent: EtOAc).

Yield 48.9 mg (68%).

NMR spectroscopy:

¹**H** NMR (CDCl₃, 400 MHz) δ 8.49 (d, J = 5.0 Hz, 1H), 8.02 (s, 1H), 7.92 – 7.82 (br, 1H), 7.68 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.26 – 7.24 (m, 1H), 5.72 – 5.59 (br, 1H), 3.99 – 3.92 (m, 2H), 2.58 – 2.47 (m, 1H), 2.46 (s, 3H), 2.38 (td, J = 11.9, 3.0 Hz, 2H), 1.97 – 1.78 (m, 4H).

¹³C NMR (CDCl₃, 101 MHz) δ 166.5, 155.4, 149.7, 148.6, 143.7, 133.2, 129.7, 127.7, 124.5, 121.3, 46.4, 41.2, 31.6, 21.6.

HRMS calcd for $(C_{18}H_{22}N_3O_3S)^+$ [M + H]⁺: 360.1376, found 360.1375.

18. Synthesis of VU6001966

3-fluoro-4-(4-fluorophenyl)pyridine (11)

Prepared via the previous procedure starting from S-4I (295.5 mg, 0.5 mmol, 1.0 equiv) to give 3-fluoro-4-(4-fluorophenyl)pyridine (11) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: petroleum ether/EtOAc = 5:1).

Yield 58.3 mg (61%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 600 MHz) δ 8.54 (s, 1H), 8.47 (d, *J* = 4.7 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.38 (t, *J* = 5.8 Hz, 1H), 7.19 (t, *J* = 8.5 Hz, 2H).

¹³**C** NMR (CDCl₃, 151 MHz) δ 163.4 (d, *J* = 250.7 Hz), 156.6 (d, *J* = 256.7 Hz), 145.9 (d, *J* = 4.5 Hz), 139.0 (d, *J* = 25.7 Hz), 135.2 (d, *J* = 10.6 Hz), 130.8 (dd, *J* = 9.1, 4.5 Hz), 128.9 (d, *J* = 3.0 Hz), 124.1, 116.0 (d, *J* = 21.1 Hz).

¹⁹**F NMR** (CDCl₃, 377 MHz) δ -111.5, -132.9.

HRMS calcd for $(C_{11}H_8F_2N)^+$ [M + H]⁺: 192.0619, found 192.0618.

4-(4-fluorophenyl)-3-((1-methyl-1*H*-pyrazol-3-yl)methoxy)pyridine (13)

An oven-dried and N₂ flushed 10 mL Schlenk-tube equipped with the screw cap and magnetic stirring bar, was charged with the corresponding diethyl (1-methyl-1*H*-pyrazol-3-yl)methanol (0.22 mmol, 24.6 mg, 1.1 equiv), dry DMF (1.0 mL) and NaH (0.122 mmol, 8.8 mg, 1.1 equiv). The reaction mixture was stirred at room temperature for 10 minutes. Then **11** (0.2 mmol, 38.2 mg, 1.0 equiv) was dissolved in dry DMF (1.0 mL) and added to the mixture. The resulting mixture was stirred at 40 °C for 10 h and monitored by TLC. Water (6.0 mL) was added in one portion and the mixture was extracted with EtOAc (5 × 6.0 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford 4-(4-fluorophenyl)-3-((1-methyl-1*H*-pyrazol-3-yl)methoxy)pyridine (**13**) as a white solid.

R_f = 0.28 (eluent: Pure EtOAc, 1% Et₃N). **Yield** 37.5 mg (66%). **NMR spectroscopy:** ¹**H NMR** (CDCl₃, 400 MHz) δ 8.50 (s, 1H), 8.30 (d, *J* = 4.7 Hz, 1H), 7.59 (dd, *J* = 8.7, 5.5 Hz, 2H), 7.29 (d, *J* = 2.1 Hz, 1H), 7.24 (d, *J* = 4.8 Hz, 1H), 7.10 (t, *J* = 8.7 Hz, 2H), 6.19 (d, J = 2.1 Hz, 1H), 5.15 (s, 2H), 3.87 (s, 3H). ¹³C NMR (CDCl₃, 101 MHz) δ 162.8 (d, J = 248.5 Hz), 151.8, 147.8, 143.1, 137.4, 136.6, 131.6 (d, J = 3.0 Hz), 131.13, 131.09 (d, J = 8.0 Hz), 124.3, 115.2 (d, J = 22.2Hz), 105.2, 65.7, 38.9. ¹⁹F NMR (CDCl₃, 377 MHz) δ -113.4.

HRMS calcd for $(C_{16}H_{15}FN_{3}O)^{+}$ [M + H]⁺: 284.1194, found 284.1193.

4-(4-fluorophenyl)-5-((1-methyl-1*H*-pyrazol-3-yl)methoxy)picolinamide VU6001966

To a 10 mL culture tube equipped with the screw cap and magnetic stir bar, AgNO₃ (3.6 mg, 0.02 mmol, 20 mol%), K₂S₂O₈ (40.5 mg, 0.15 mmol, 1.5 equiv), HCO₂Na (13.6 mg, 0.2 mmol, 2 equiv) and corresponding pyridine **13** (28.3 mg, 0.1 mmol, 1.0 equiv) were added, together with formamide (1.0 mL) and H₂O (0.2 mL). While the resulting mixture was stirred at 80 °C other 2 portions of K₂S₂O₈ (40.5 mg, 0.15 mmol, 1.5 equiv) were added after 1 hour and 2 hours. The mixture was then stirred at the same temperature for another 6 hours. At the end of the reaction, the reaction mixture was cooled to room temperature, poured into a brine (4.0 mL), and extracted with EtOAc (3 × 5.0 mL). The organic phases were combined, evaporated in a rotary evaporator. The residue was purified by column chromatography on silica gel to afford the corresponding product 4-(4-fluorophenyl)-5-((1-methyl-1*H*-pyrazol-3-yl)methoxy)picolinamide (**VU6001966**) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.3$ (eluent: Pure EtOAc, 1% Et₃N).

Yield 11.0 mg (34%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 600 MHz) δ 8.44 (s, 1H), 8.19 (s, 1H), 7.78 – 7.72 (br, 1H), 7.66 – 7.60 (m, 2H), 7.32 (s, 1H), 7.11 (t, *J* = 8.5 Hz, 2H), 6.22 (s, 1H), 5.66 – 5.59 (br, 1H), 5.25 (s, 2H), 3.90 (s, 3H).

¹³C NMR (CDCl₃, 151 MHz) δ 166.5, 162.9 (d, *J* = 249.2 Hz), 153.9, 147.3, 143.0, 137.8, 134.4, 131.3, 131.2 (d, *J* = 7.6 Hz), 131.0 (d, *J* = 3.0 Hz), 123.9, 115.3 (d, *J* = 21.1 Hz), 105.3, 65.6, 39.0.

¹⁹**F NMR** (CDCl₃, 565 MHz) δ -112.8.

HRMS calcd for $(C_{17}H_{16}FN_4O_2)^+$ [M + H]⁺: 327.1252, found 327.1250.

19. Synthesis of LJI308

The preparation of (4-morpholinophenyl)magnesium bromide (16)

$$0 \xrightarrow{N} \xrightarrow{H_2 \text{ (cat.)}} Br \xrightarrow{H_2 \text{ (cat.)}} 15 \qquad 0 \xrightarrow{N} \xrightarrow{H_2 \text{ (cat.)}} 16$$

An oven-dried and N₂ flushed 25 mL Schlenk-tube, equipped with a magnetic stirring bar and a septum, was charged with the corresponding 4-(4-bromophenyl)morpholine **15** (241.0 mg, 1.0 mmol, 1.0 equiv), magnesium chips (28.8 mg, 1.2 mmol, 1.2 equiv), I₂ (one crystals) and anhydrous THF (5.0 mL). The resulting solution was heated to 70 °C for 3 hours to obtain the product. The resulting brown clear solution (approx. 0.2 M) can be used directly by syringe and stored in the refrigerator for several days.

4-(4-(3-bromopyridin-4-yl)phenyl)morpholine (17)

Under a nitrogen atmosphere, **S-4k** (195.3 mg, 0.3 mmol, 1.0 equiv) was added to an oven-dried 25 mL Schlenk tube with a magnetic bar at room temperature. Anhydrous THF (3.0 mL) was added and the suspension was cooled to -78 °C in a low-temperature reactor. A solution of the (4-morpholinophenyl)magnesium bromide (1.8 mL, 0.36 mmol, 1.2 equiv) was added dropwise via a 2.5 mL syringe within 2 minutes and the resulting suspension was stirred for 10 minutes to give a clear solution. Water (3.0 mL) was added in one portion and the reaction mixture stirred for 5 minutes at room temperature, then NaNO₂ aqueous solution (100 mg/ mL, 0.83 mL, 4.0 equiv) and acetic acid (103 μ L, 6.0 equiv) were added in one portion and the mixture were stirred for 16 hours at 65 °C. The mixture was neutralized with a saturated sodium bicarbonate solution (2.0 mL), extracted with EtOAc (3 × 8.0 mL) and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford 4-(4-(3-bromopyridin-4-yl)phenyl)morpholine (17) as a white solid.

 $R_f = 0.3$ (eluent: DCM/MeOH = 100:1).

Yield 20.9 mg (22%).

NMR spectroscopy:

¹**H NMR** (CDCl₃, 400 MHz) δ 8.78 (s, 1H), 8.50 (d, *J* = 4.8 Hz, 1H), 7.42 (d, *J* = 8.8 Hz, 2H), 7.27 (d, *J* = 5.0 Hz, 1H), 6.99 (d, *J* = 8.8 Hz, 2H), 3.92 – 3.85 (m, 4H), 3.29 – 3.23 (m, 4H).

¹³C NMR (CDCl₃, 101 MHz) δ 152.3, 151.4, 149.6, 147.9, 130.0, 128.9, 125.6, 120.9 (low signal), 114.6, 66.8, 44.5.

HRMS calcd for $(C_{15}H_{16}BrN_2O)^+$ $[M + H]^+$: 319.0441, found 319.0440.

2,6-difluoro-4-(4-(4-morpholinophenyl)pyridin-3-yl)phenol (LJI308)

Under a nitrogen atmosphere, Pd(dppf)Cl₂ (7.3 mg, 20.0 mol%), Na₂CO₃ (26.5 mg, 5.0 equiv), (3,5-difluoro-4-hydroxyphenyl)boronic acid 18 (17.4 mg, 2.0 equiv) and 17 (0.05 mmol, 15.9 mg, 1.0 equiv) were added to an oven-dried 10 mL Schlenk tube with a magnetic bar at room temperature. To this tube were added a mixture solvent of DME and H₂O (ratio: 2:1, 0.9 mL) under a stream of nitrogen. The tube was heated at 110 °C for 10 h. The reaction mixture was filtered with silica gel and dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by 2,6-difluoro-4-(4-(4column chromatography on silica gel to afford morpholinophenyl)pyridin-3-yl)phenol (LJI308) as a white solid.

 $\mathbf{R}_{\mathbf{f}} = 0.15$ (eluent: petroleum ether/EtOAc = 1:1).

Yield 12.6 mg (68%).

NMR spectroscopy:

¹**H** NMR (DMSO- d_6 , 400 MHz) δ 10.34 (s, 1H), 8.55 (d, J = 4.8 Hz, 1H), 8.50 (s, 1H), 7.37 (d, J = 4.9 Hz, 1H), 7.06 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 7.9 Hz, 2H), 3.77 – 3.62 (m, 4H), 3.17 – 3.05 (m, 4H).

¹³**C NMR** (DMSO-*d*₆, 151 MHz) δ 152.5 (dd, *J* = 241.6, 7.6 Hz), 151.0, 150.9, 149.3, 147.2, 133.5, 133.4 (t, *J* = 7.6 Hz), 130.3, 128.8 (t, *J* = 7.6 Hz), 128.1, 124.8, 114.8, 113.6 (dd, *J* = 16.6, 6.0 Hz), 66.5, 48.1.

¹⁹**F NMR** (DMSO-*d*₆, 377 MHz) δ -132.2.

HRMS calcd for $(C_{21}H_{19}F_2N_2O_2)^+$ [M + H]⁺: 369.1409, found 369.1408.

20. Comparison of two pyridine salt additions with methyl Grignard reagent

21. GC-MS data for the reaction of 5-chloropentanoic acid and 4h

Figure S8. GC-MS detail (Time: 10.003 minutes)

丰 度 扫描 1831 (10.853 分): SQ-20231129-2-r.D\data.ms 169.1 130000 $1\ 2\ 0\ 0\ 0\ 0$ $1\; 1\; 0\; 0\; 0\; 0 \\$ $1 \ 0 \ 0 \ 0 \ 0 \ 0$ 90000 80000 70000 60000 $5\ 0\ 0\ 0\ 0$ $4\ 0\ 0\ 0\ 0$ $3\ 0\ 0\ 0\ 0$ 113.0 20000 212.2 10000 253.0 281.1 304.8326.8 354.9 386.8 240 260 280 300 320 340 360 380 400 141 0 0 19 220 120 160 100 140 180 200 m / z - - >

Figure S12. GC-MS detail (Time: 10.853 minutes)

22. GC-MS data for the reaction of (4-ethylphenyl)boronic acid and 4h

Figure S15. Crude GC-MS ratio of 4h and (4-ethylphenyl)boronic acid

Figure S17. GC-MS detail (Time: 10.857 minutes)

Figure S19. GC-MS detail (Time: 11.267 minutes)

23. GC-MS data after oxidation of S-4s and *n*-pentylMgBr

Figure S20. Crude GC-MS after oxidation of S-4s and *n*-pentylMgBr

24. X-ray data of 4a and 4h X-ray Structure of Pyridinium 4a

Figure S24. X-ray Structure of Pyridinium 4a

Tuble 1 Crystal data and structure reintenent for fat								
Identification code	4a							
CCDC number	2328544							
Empirical formula	$C_{12}H_{17}F_6N_3O_6S_2$							
Formula weight	477.40							
Temperature/K	222.99(10)							
Crystal system	monoclinic							
Space group	P2 ₁ /n							
a/Å	9.8561(4)							
b/Å	14.1484(5)							
c/Å	14.0248(6)							
α/°	90							
β/°	95.009(4)							
γ/°	90							
Volume/Å ³	1948.25(13)							
Ζ	4							
$\rho_{calc}g/cm^3$	1.628							
μ/mm ⁻¹	3.359							
F(000)	976.0							
Crystal size/mm ³	$0.15\times0.09\times0.028$							
Radiation	$CuK\alpha (\lambda = 1.54184)$							
20 range for data collection/°	8.896 to 145.72							
Index ranges	$-11 \le h \le 12, -17 \le k \le 10, -17 \le l \le 17$							
Reflections collected	7440							

Table 1 Crystal data and structure relinement for 4	Table 1	1 Crystal	data and	structure	refinement for 4a	a.
---	---------	-----------	----------	-----------	-------------------	----

Independent reflections	$3771 [R_{int} = 0.0650, R_{sigma} = 0.0745]$
Data/restraints/parameters	3771/0/266
Goodness-of-fit on F ²	1.027
Final R indexes [I>=2σ (I)]	$R_1 = 0.0697, wR_2 = 0.1840$
Final R indexes [all data]	$R_1 = 0.0828, wR_2 = 0.2074$
Largest diff. peak/hole / e Å ⁻³	0.58/-0.52

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for 4a. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	Х	У	Z	U(eq)
C1	3279(4)	1623(2)	3220(2)	33.7(6)
C2	3804(4)	2925(2)	4287(3)	39.9(7)
C3	3752(4)	3364(3)	5147(3)	48.7(9)
C4	3228(4)	2874(3)	5894(3)	52.6(9)
C5	2797(4)	1950(3)	5764(3)	54.7(10)
C6	2845(4)	1537(3)	4887(3)	48.0(8)
C7	4636(5)	1452(3)	1863(3)	60.3(11)
C8	5706(4)	1303(3)	3525(3)	45.9(8)
С9	1811(6)	779(3)	2004(3)	62.0(12)
C10	835(4)	1958(3)	3055(3)	56.5(10)
N1	3326(3)	2033.3(18)	4165.0(19)	34.4(6)
N2	4451(3)	1472.0(19)	2886(2)	38.4(6)
N3	2053(3)	1454(2)	2807(2)	41.3(7)
C11	8353(5)	4124(4)	3994(4)	68.5(13)
F1	9387(4)	4041(3)	3453(4)	123.8(18)
F2	8633(4)	4874(3)	4568(3)	106.2(13)
F3	8289(5)	3365(3)	4515(4)	137(2)
01	7048(4)	5143(2)	2733(3)	73.3(10)
O2	5832(4)	4481(2)	3967(3)	68.8(9)
O3	6544(4)	3470(2)	2751(2)	72.1(10)
S1	6769.2(9)	4323.0(6)	3272.1(6)	41.2(3)
C12	8671(4)	1020(3)	5616(3)	43.7(8)
F4	8276(3)	791(2)	4715.9(18)	66.8(7)
F5	9508(3)	1742.3(19)	5600(2)	71.4(8)
F6	9356(3)	288.4(18)	5999(2)	64.4(7)
O4	6557(3)	2063.3(19)	5799(2)	54.4(7)
05	7778(3)	1462(2)	7230(2)	56.5(7)
06	6448(3)	405(2)	6173(2)	56.7(7)
S2	7185.2(9)	1269.2(5)	6284.3(6)	39.4(3)

Table 3 Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for 4a. The Anisotropic

1				L.		
Atom	U11	U22	U33	U23	U13	U12
C1	45.3(17)	25.1(13)	29.9(15)	-0.1(11)	-1.3(12)	-2.9(12)
C2	41.9(17)	34.0(15)	42.9(18)	-3.1(13)	-1.4(14)	-2.3(14)
C3	49.4(19)	41.3(19)	54(2)	-16.5(15)	-3.9(17)	3.7(16)
C4	41.6(18)	72(2)	43(2)	-22.0(18)	-2.6(14)	8.0(18)
C5	55(2)	74(3)	35.1(19)	-2.7(17)	7.2(16)	-6(2)
C6	56(2)	45.8(18)	43(2)	1.7(15)	7.0(16)	-11.6(17)
C7	78(3)	63(2)	41(2)	0.6(17)	16(2)	16(2)
C8	43.2(19)	47.0(19)	47(2)	0.9(15)	3.1(15)	9.9(15)
С9	91(3)	46(2)	43(2)	0.4(16)	-22(2)	-22(2)
C10	42.2(19)	60(2)	65(3)	12.8(19)	-3.0(17)	-1.3(18)
N1	37.3(13)	32.6(12)	32.6(14)	-2.3(10)	-0.4(10)	-2.2(11)
N2	47.5(16)	34.1(13)	33.0(14)	-2.9(10)	0.9(11)	3.6(12)
N3	47.7(16)	34.8(13)	39.3(15)	4.0(11)	-8.0(12)	-9.1(12)
C11	57(2)	63(3)	84(4)	23(2)	-3(2)	0(2)
F1	61(2)	106(3)	210(5)	25(3)	41(3)	27(2)
F2	93(2)	123(3)	95(3)	-11(2)	-36(2)	-35(2)
F3	136(4)	118(3)	149(4)	85(3)	-41(3)	-6(3)
01	80(2)	64.3(19)	76(2)	31.1(16)	4.6(18)	-6.8(17)
02	61.0(18)	65.1(18)	84(2)	-19.0(16)	28.9(17)	-14.6(15)
03	107(3)	61.4(18)	48.7(17)	-18.6(14)	11.7(17)	-23.0(18)
S1	47.7(5)	36.9(5)	39.0(5)	-0.7(3)	3.7(3)	-4.7(3)
C12	45.0(18)	38.8(17)	46(2)	-0.7(14)	-2.8(14)	3.8(15)
F4	65.2(15)	89.9(19)	44.8(13)	-10.8(12)	1.4(11)	12.4(14)
F5	64.1(16)	56.9(14)	95(2)	-2.4(13)	19.3(15)	-14.9(12)
F6	63.8(15)	58.7(14)	70.4(17)	5.4(12)	3.4(12)	22.2(12)
04	63.5(17)	43.7(14)	55.5(17)	4.8(12)	2.6(13)	14.6(13)
05	72.6(19)	52.4(15)	43.0(15)	-8.7(12)	-2.8(13)	7.0(14)
06	63.6(17)	45.7(14)	61.5(18)	-8.3(12)	9.9(14)	-8.5(13)
S2	47.1(5)	30.0(4)	40.4(5)	-1.5(3)	0.6(3)	3.0(3)

displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U_{11} + 2hka^* b^* U_{12} + ...]$.

Table 4 Bond Lengths for 4a.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C1	N1	1.444(4)	C11	F2	1.346(7)
C1	N2	1.302(5)	C11	F3	1.305(6)
C1	N3	1.315(5)	C11	S1	1.807(5)
C2	C3	1.362(5)	01	S1	1.425(3)
C2	N1	1.352(4)	O2	S1	1.418(3)
C3	C4	1.393(7)	03	S1	1.418(3)
C4	C5	1.382(6)	C12	F4	1.328(5)
C5	C6	1.366(6)	C12	F5	1.314(5)
C6	N1	1.352(5)	C12	F6	1.324(4)

C7	N2	1.462(5)	C12	S2	1.841(4)
C8	N2	1.481(5)	04	S2	1.427(3)
С9	N3	1.479(5)	05	S2	1.428(3)
C10	N3	1.465(6)	06	S2	1.425(3)
C11	F1	1.327(7)			

Table 5 Bond Angles for 4a.

Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°
N2	C1	N1	115.9(3)		F3	C11	F2	109.3(5)
N2	C1	N3	128.4(3)		F3	C11	S1	111.1(4)
N3	C1	N1	115.6(3)		01	S1	C11	103.1(2)
N1	C2	C3	119.9(3)		O2	S1	C11	102.8(3)
C2	C3	C4	119.0(4)		O2	S1	01	113.8(2)
C5	C4	C3	120.1(3)		O2	S1	03	114.0(2)
C6	C5	C4	119.3(4)		03	S1	C11	104.2(3)
N1	C6	C5	119.6(4)		03	S1	01	116.6(2)
C2	N1	C1	118.3(3)		F4	C12	S2	110.5(3)
C6	N1	C1	119.6(3)		F5	C12	F4	107.8(3)
C6	N1	C2	122.1(3)		F5	C12	F6	108.4(3)
C1	N2	C7	123.1(3)		F5	C12	S2	112.8(3)
C1	N2	C8	122.0(3)		F6	C12	F4	106.9(3)
C7	N2	C8	114.9(3)		F6	C12	S2	110.1(3)
C1	N3	C9	122.3(4)		O4	S2	C12	103.83(18)
C1	N3	C10	123.2(3)		O4	S2	05	114.72(18)
C10	N3	C9	114.4(3)		05	S2	C12	103.34(19)
F1	C11	F2	106.5(5)		O6	S2	C12	101.59(17)
F1	C11	S1	111.3(4)		O6	S2	O4	115.3(2)
F2	C11	S1	109.6(4)]	O6	S2	05	115.41(19)
F3	C11	F1	108.9(5)					

Table 6 Hydrogen Bonds for 4a.

D	Н	А	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C2	H2	O2	0.94	2.40	3.034(5)	124.7
C2	H2	O51	0.94	2.50	3.096(5)	121.3

Table 7 Torsion Angles for 4a.

А	В	С	D	Angle/°	А	В	С	D	Angle/°
C2	C3	C4	C5	1.4(6)	N3	C1	N2	C8	-153.3(3)
C3	C2	N1	C1	174.3(3)	F1	C11	S1	01	-56.1(4)
C3	C2	N1	C6	-3.0(5)	F1	C11	S1	02	-174.7(4)
C3	C4	C5	C6	-2.4(6)	F1	C11	S1	03	66.1(4)
C4	C5	C6	N1	0.7(6)	F2	C11	S1	01	61.5(4)
C5	C6	N1	C1	-175.3(4)	F2	C11	S 1	02	-57.1(4)

C5	C6	N1	C2	2.0(6)	F2	C11	S1	03	-176.3(4)
N1	C1	N2	C7	-153.3(3)	F3	C11	S1	01	-177.6(5)
N1	C1	N2	C8	27.0(4)	F3	C11	S1	02	63.8(5)
N1	C1	N3	C9	-160.1(3)	F3	C11	S1	03	-55.4(5)
N1	C1	N3	C10	24.0(5)	F4	C12	S2	04	-62.2(3)
N1	C2	C3	C4	1.3(5)	F4	C12	S2	05	177.7(3)
N2	C1	N1	C2	66.2(4)	F4	C12	S2	06	57.8(3)
N2	C1	N1	C6	-116.4(4)	F5	C12	S2	04	58.6(3)
N2	C1	N3	C9	20.2(5)	F5	C12	S2	05	-61.4(3)
N2	C1	N3	C10	-155.7(4)	F5	C12	S2	06	178.6(3)
N3	C1	N1	C2	-113.5(3)	F6	C12	S2	04	179.9(3)
N3	C1	N1	C6	63.8(4)	F6	C12	S2	05	59.8(3)
N3	C1	N2	C7	26.4(5)	F6	C12	S2	06	-60.1(3)

Table 8 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 4a.

Atom	X	у	Z	U(eq)
H2	4171	3241	3779	48
Н3	4065	3988	5235	58
H4	3168	3172	6488	63
Н5	2474	1609	6273	66
H6	2545	911	4786	58
H7A	4780	806	1665	90
H7B	5420	1833	1740	90
H7C	3829	1705	1506	90
H8A	6292	1853	3522	69
H8B	6181	757	3299	69
H8C	5466	1186	4171	69
H9A	1767	1120	1402	93
H9B	958	451	2058	93
Н9С	2550	325	2026	93
H10A	191	1510	3282	85
H10B	419	2281	2493	85
H10C	1086	2416	3553	85

X-ray Structure of Pyridinium 4h

Figure S25. X-ray Structure of Pyridinium 4h

Table 9.	Crystal	data and	structure	refinement	for 4h.
Table 7.	Crystar	uata anu	suucuic	remement	101 411.

●C ●F ●F ●O ●O S

•	
Identification code	4h
CCDC number	2328545
Empirical formula	$C_{19}H_{29}F_6N_3O_6S_2$
Formula weight	573.57
Temperature/K	273.00
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	10.7560(6)
b/Å	14.3931(8)
c/Å	17.2752(8)
α/°	90
β/°	99.796(3)
γ/°	90
Volume/Å ³	2635.4(2)
Z	4
$\rho_{calc}g/cm^3$	1.446
μ/mm^{-1}	1.683
F(000)	1192.0
Crystal size/mm ³	$0.12 \times 0.09 \times 0.07$
Radiation	$GaK\alpha \ (\lambda = 1.34138)$
2Θ range for data collection/°	6.996 to 119.156
Index ranges	$-13 \le h \le 13, -18 \le k \le 18, -22 \le l \le 22$
Reflections collected	30685
Independent reflections	5713 [$R_{int} = 0.0593$, $R_{sigma} = 0.0511$]
Data/restraints/parameters	5713/1319/631

Goodness-of-fit on F ²	1.008
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.1185, wR_2 = 0.2230$
Final R indexes [all data]	$R_1 = 0.1782, wR_2 = 0.2486$
Largest diff. peak/hole / e Å ⁻³	0.51/-0.45

Table 10. Fractional Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Parameters $(\mathring{A}^2 \times 10^3)$ for 4h. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

orthogo				1
Atom	x	У	Z	U(eq)
S 1	-2500(5)	3384(4)	3972(3)	78.2(11)
F1	-4871(7)	3273(7)	3944(6)	143(3)
F2	-4138(11)	4401(8)	4602(5)	157(3)
F3	-4410(10)	4423(7)	3347(5)	125(3)
01	-2756(8)	2823(6)	3293(3)	97(2)
O2	-1665(6)	4125(6)	3909(5)	110(3)
O3	-2192(11)	2884(8)	4681(4)	98(3)
C18	-4019(5)	3925(6)	3974(5)	106(2)
S2	-3051(4)	4185(3)	-1358(2)	88.1(12)
S2A	-2985(7)	4301(5)	-1203(5)	113(2)
O4A	-3797(9)	4921(7)	-876(8)	108(4)
O5A	-1768(6)	4719(8)	-1149(7)	141(4)
05	-4119(5)	3614(5)	-1640(5)	126(3)
O6A	-3403(12)	3991(10)	-1990(5)	158(4)
O4	-2252(6)	4235(6)	-1936(4)	159(3)
06	-3373(11)	5104(4)	-1146(7)	156(4)
N1	-987(4)	5179(4)	2044(3)	58(3)
C2	-891(4)	5501(4)	1297(3)	68.9(18)
C3	-1969(5)	5765(4)	782(2)	83(2)
C4	-3144(4)	5708(4)	1012(3)	84(3)
C5	-3240(4)	5386(4)	1758(3)	72(2)
C6	-2162(5)	5122(4)	2274(2)	63(2)
N2	331(6)	4048(4)	2652(4)	74.2(19)
N3	694(6)	5607(4)	3024(5)	81(2)
C1	64(7)	4948(5)	2611(4)	63.6(12)
C7	1360(10)	3709(6)	3261(6)	112(3)
C8	1721(11)	4386(6)	3877(6)	111(3)
C9	1784(9)	5379(6)	3617(7)	107(3)
C10	-366(7)	3296(5)	2193(4)	78.8(18)
C11	426(9)	2703(7)	1763(6)	96(2)
C12	-394(10)	1911(6)	1337(6)	118(3)

C13	1021(10)	3205(7)	1136(6)	131(3)
C14	371(8)	6591(5)	2920(5)	90(2)
C15	144(11)	7078(5)	3624(6)	103(2)
C16	-907(11)	6584(7)	3966(7)	138(3)
C17	-192(11)	8090(5)	3502(6)	114(3)
N2A	833(15)	4285(12)	2502(9)	66(5)
N3A	234(17)	5449(11)	3298(8)	74(6)
C1A	30(17)	4938(9)	2635(11)	63.6(12)
C4A	-2928(11)	5859(11)	918(7)	75(7)
C3A	-3211(9)	5274(10)	1504(8)	56(5)
C2A	-2258(12)	4978(10)	2099(7)	50(5)
N1A	-1022(10)	5266(11)	2109(7)	53(8)
C6A	-739(9)	5852(9)	1522(8)	54(4)
C5A	-1692(12)	6148(10)	927(7)	71(5)
C7A	1963(18)	4042(16)	3067(11)	81(6)
C8A	2240(30)	4800(20)	3620(20)	127(12)
C9A	1200(20)	5208(18)	3972(11)	86(7)
C10A	580(20)	3782(15)	1762(12)	92(3)
C11A	400(20)	2774(19)	1736(14)	97(3)
C12A	80(30)	2230(20)	968(11)	121(5)
C13A	-720(20)	2660(20)	2180(15)	115(5)
C14A	-560(18)	6230(11)	3448(17)	96(3)
C15A	130(30)	7097(11)	3616(16)	103(3)
C16A	770(20)	7502(17)	2965(12)	104(5)
C17A	-560(30)	7910(16)	3935(18)	117(6)
S1A	-2506(13)	3659(10)	4098(8)	90(2)
O1A	-2480(20)	3287(16)	3346(9)	100(4)
O2A	-1890(20)	4523(13)	4231(14)	120(5)
O3A	-2520(30)	3099(17)	4767(11)	81(5)
F1A	-4890(20)	3691(17)	4252(14)	135(5)
F2A	-4090(20)	4778(16)	3429(14)	118(5)
F3A	-3650(20)	4767(16)	4621(14)	135(5)
C18A	-4029(13)	4217(13)	4026(11)	117(3)
F6	-2862(8)	3658(8)	105(6)	166(4)
F4	-1825(9)	2828(5)	-557(6)	185(4)
F5	-1206(7)	4178(6)	-228(5)	171(3)
C19	-2206(6)	3674(5)	-465(3)	129(3)
F7	-4044(8)	2961(8)	-729(8)	163(4)
F9	-2153(9)	2813(10)	-872(8)	183(5)
F8	-2283(14)	3624(13)	122(7)	168(4)
------	-----------	----------	---------	--------
C19A	-2919(8)	3320(5)	-541(5)	127(3)

Table 11. Anisotropic Displacement Parameters (Å ²	² ×10 ³) for 4h. The Anisotropic
displacement factor exponent takes the form: $-2\pi^2$	h ² a* ² U11+2hka*b*U12+].

Atom	U11	U22	U33	U23	U13	U12
S 1	86.9(15)	84(2)	62.8(18)	9.9(15)	9.0(12)	-6.3(15)
F1	97(4)	169(7)	171(6)	-6(5)	45(4)	-20(4)
F2	174(7)	161(7)	146(5)	-26(5)	59(5)	4(5)
F3	121(6)	123(6)	127(5)	28(4)	8(4)	18(5)
01	112(5)	105(5)	69(3)	-6(3)	2(3)	1(4)
O2	107(4)	108(5)	119(5)	21(4)	28(4)	-13(4)
03	117(7)	102(6)	72(4)	24(4)	9(4)	11(4)
C18	107(4)	115(5)	102(4)	0(4)	33(4)	0(4)
S2	70.3(18)	101(2)	94(2)	1.3(18)	17.1(16)	-13.2(16)
S2A	95(3)	119(4)	126(4)	3(3)	23(3)	4(3)
O4A	93(6)	93(6)	143(8)	-9(6)	38(6)	31(5)
O5A	103(6)	143(7)	182(8)	-6(6)	33(6)	-28(6)
05	73(4)	126(6)	171(6)	-44(5)	0(4)	-4(4)
O6A	152(8)	181(8)	146(8)	5(7)	41(7)	-31(7)
O4	109(6)	226(8)	143(6)	-3(6)	18(5)	1(6)
06	145(7)	118(6)	207(8)	10(6)	33(6)	24(6)
N1	55(3)	58(3)	61(3)	1.7(16)	14.2(17)	3.4(16)
C2	69(2)	70(2)	69(2)	-0.4(18)	14.3(18)	0.6(18)
C3	85(3)	82(3)	82(3)	2.5(19)	13.3(19)	0.4(19)
C4	81(3)	83(3)	86(3)	4.0(19)	12.0(19)	2.1(19)
C5	68(3)	75(3)	72(3)	-2.6(19)	12.8(18)	2.4(18)
C6	59(3)	64(3)	64(3)	-0.4(18)	11.7(17)	-1.6(17)
N2	70(4)	70(4)	79(4)	2(3)	5(3)	12(3)
N3	59(3)	66(4)	112(5)	6(3)	-3(3)	2(3)
C1	58(2)	67(3)	66(3)	9(2)	11(2)	8(2)
C7	114(6)	98(6)	109(6)	24(5)	-22(5)	21(5)
C8	114(6)	98(6)	106(6)	19(5)	-23(5)	7(5)
C9	82(5)	96(6)	132(7)	-1(5)	-18(5)	10(5)
C10	83(4)	67(3)	91(4)	3(3)	28(3)	1(3)
C11	95(4)	93(4)	105(4)	-3(3)	33(3)	7(3)
C12	132(6)	104(6)	124(6)	-11(5)	42(5)	-3(5)
C13	135(6)	136(7)	135(6)	-9(6)	57(5)	-2(6)
C14	91(4)	79(4)	97(4)	3(3)	10(3)	-4(3)

C15	111(4)	94(4)	101(4)	-7(3)	4(4)	7(4)
C16	145(7)	112(6)	159(7)	-17(6)	35(6)	5(6)
C17	138(7)	83(5)	112(6)	-6(5)	-5(5)	0(5)
N2A	64(8)	76(9)	55(8)	-1(7)	2(6)	17(7)
N3A	77(9)	65(8)	81(9)	5(7)	10(7)	-5(7)
C1A	58(2)	67(3)	66(3)	9(2)	11(2)	8(2)
C4A	74(7)	75(7)	76(7)	1(2)	12(2)	0(2)
C3A	54(5)	57(5)	56(5)	-2(2)	11(2)	1(2)
C2A	49(5)	50(5)	50(5)	-1(2)	10(2)	0(2)
N1A	51(9)	52(9)	55(9)	1(2)	11(2)	3(2)
C6A	55(5)	55(5)	53(5)	0(2)	9(2)	0(2)
C5A	71(6)	71(6)	72(6)	1(2)	11(2)	-1(2)
C7A	69(9)	86(10)	89(10)	21(8)	12(8)	29(8)
C8A	119(14)	134(14)	125(14)	15(10)	12(9)	-14(10)
C9A	85(10)	94(11)	79(10)	6(8)	15(8)	-3(8)
C10A	93(5)	91(5)	98(5)	0(5)	31(5)	8(5)
C11A	98(5)	93(5)	104(5)	-2(5)	32(5)	4(5)
C12A	130(9)	113(9)	126(9)	-8(9)	40(8)	9(9)
C13A	114(9)	110(9)	123(9)	2(9)	25(8)	5(9)
C14A	99(6)	93(5)	98(6)	-7(5)	19(5)	0(5)
C15A	108(5)	93(5)	103(5)	-6(5)	10(5)	4(5)
C16A	108(9)	92(9)	110(9)	-7(8)	11(8)	-5(8)
C17A	124(9)	99(9)	125(10)	-15(9)	14(9)	4(8)
S1A	90(3)	107(5)	77(4)	19(4)	26(3)	-3(4)
O1A	105(8)	110(9)	90(7)	7(7)	29(6)	4(8)
O2A	123(9)	119(9)	119(9)	7(8)	19(8)	-20(8)
O3A	87(9)	96(9)	59(7)	15(7)	15(6)	12(7)
F1A	116(8)	155(9)	141(9)	-6(8)	41(7)	-18(8)
F2A	111(9)	116(10)	131(8)	25(8)	35(7)	14(8)
F3A	135(10)	130(10)	140(8)	-37(8)	19(8)	-15(8)
C18A	113(5)	128(6)	113(5)	1(5)	31(5)	-1(5)
F6	164(7)	210(7)	134(6)	25(6)	53(6)	-9(7)
F4	194(7)	144(6)	181(7)	-21(6)	-71(6)	49(6)
F5	132(6)	214(7)	156(6)	-25(6)	-3(5)	-43(5)
C19	119(5)	131(5)	134(5)	-4(4)	14(4)	-1(4)
F7	153(8)	137(7)	203(9)	-14(7)	45(7)	-33(6)
F9	178(8)	138(7)	193(9)	-42(7)	-84(8)	37(7)
F8	164(8)	186(7)	139(7)	17(7)	-15(7)	18(7)
C19A	116(5)	133(5)	129(5)	-19(5)	8(5)	1(5)

Atom	Atom	Length/Å	
S1	01	1.411(2)	
S1	O2	1.410(2)	
S1	03	1.410(2)	
S1	C18	1.811(2)	
F1	C18	1.306(2)	
F2	C18	1.307(2)	
F3	C18	1.307(2)	
S2	05	1.4294(12)	
S2	O4	1.4267(12)	
S2	O6	1.4298(12)	
S2	C19	1.807(2)	
S2A	O4A	1.4311(12)	
S2A	O5A	1.4295(12)	
S2A	O6A	1.4290(12)	
S2A	C19A	1.811(2)	
N1	C2	1.3900	
N1	C6	1.3900	
N1	C1	1.404(6)	
C2	C3	1.3900	
C3	C4	1.3900	
C4	C5	1.3900	
C5	C6	1.3900	
N2	C1	1.326(8)	
N2	C7	1.474(9)	
N2	C10	1.470(8)	
N3	C1	1.306(8)	
N3	С9	1.457(9)	
N3	C14	1.462(8)	
C7	C8	1.446(10)	
C8	С9	1.504(10)	
C10	C11	1.490(9)	
C11	C12	1.549(10)	
C11	C13	1.531(10)	
C14	C15	1.460(10)	
C15	C16	1.536(10)	

Atom	Atom	Length/Å
C15	C17	1.507(10)
N2A	C1A	1.323(14)
N2A	C7A	1.466(15)
N2A	C10A	1.454(15)
N3A	ClA	1.347(13)
N3A	C9A	1.467(15)
N3A	C14A	1.463(16)
C1A	N1A	1.407(13)
C4A	C3A	1.3900
C4A	C5A	1.3900
C3A	C2A	1.3900
C2A	N1A	1.3900
N1A	C6A	1.3900
C6A	C5A	1.3900
C7A	C8A	1.440(16)
C8A	C9A	1.483(16)
C10A	C11A	1.462(17)
C11A	C12A	1.531(16)
C11A	C13A	1.546(16)
C14A	C15A	1.453(17)
C15A	C16A	1.534(16)
C15A	C17A	1.533(15)
S1A	OlA	1.410(2)
S1A	O2A	1.409(2)
S1A	O3A	1.410(2)
S1A	C18A	1.810(2)
F1A	C18A	1.305(2)
F2A	C18A	1.305(2)
F3A	C18A	1.305(2)
F6	C19	1.306(2)
F4	C19	1.303(2)
F5	C19	1.304(2)
F7	C19A	1.305(2)
F9	C19A	1.304(2)
F8	C19A	1.305(2)

Table 13. Bond Angles for 4h.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
1	S1	C18	101.5(5)	C1A	N2A	C7A	123.1(12)
O2	S1	01	113.8(5)	C1A	N2A	C10A	118.5(15)

O2	S1	C18	105.2(5)	C10A	N2A	C7A	118.5(14)
03	S1	01	114.4(6)	C1A	N3A	C9A	122.5(12)
03	S1	02	113.3(7)	C1A	N3A	C14A	123.7(15)
03	S1	C18	107.3(5)	C14A	N3A	C9A	113.5(15)
F1	C18	S1	108.5(5)	N2A	C1A	N3A	121.2(12)
F1	C18	F2	104.0(7)	N2A	C1A	N1A	127.1(14)
F1	C18	F3	103.7(8)	N3A	C1A	N1A	111.3(12)
F2	C18	S1	116.2(7)	C3A	C4A	C5A	120.0
F3	C18	S1	113.4(7)	C4A	C3A	C2A	120.0
F3	C18	F2	109.7(8)	C3A	C2A	N1A	120.0
05	S2	06	113.8(7)	C2A	N1A	C1A	124.7(14)
05	S2	C19	108.3(4)	C6A	N1A	C1A	115.0(14)
O4	S2	05	109.59(17)	C6A	N1A	C2A	120.0
O4	S2	06	109.47(17)	C5A	C6A	N1A	120.0
O4	S2	C19	110.0(5)	C6A	C5A	C4A	120.0
O6	S2	C19	105.5(5)	C8A	C7A	N2A	108(2)
O4A	S2A	C19A	101.4(6)	C7A	C8A	C9A	119.2(19)
O5A	S2A	O4A	108.98(17)	N3A	C9A	C8A	105(2)
O5A	S2A	C19A	110.5(6)	N2A	C10A	C11A	121.6(17)
O6A	S2A	O4A	117.2(9)	C10A	C11A	C12A	123(2)
06A	S2A	O5A	109.30(17)	C10A	C11A	C13A	102(2)
O6A	S2A	C19A	109.2(6)	C12A	C11A	C13A	107.1(14)
C2	N1	C6	120.0	C15A	C14A	N3A	113.8(17)
C2	N1	C1	123.2(5)	C14A	C15A	C16A	117(2)
C6	N1	C1	116.7(5)	C14A	C15A	C17A	118(2)
N1	C2	C3	120.0	C17A	C15A	C16A	106.2(14)
C4	C3	C2	120.0	O1A	S1A	C18A	105.2(13)
C3	C4	C5	120.0	O2A	S1A	O1A	113.8(13)
C4	C5	C6	120.0	O2A	S1A	O3A	116.1(17)
C5	C6	N1	120.0	O2A	S1A	C18A	91.0(12)
C1	N2	C7	119.4(6)	O3A	S1A	O1A	122.8(15)
C1	N2	C10	127.2(6)	O3A	S1A	C18A	100.1(13)
C10	N2	C7	113.1(6)	F1A	C18A	S1A	113.8(15)
C1	N3	C9	120.1(6)	F2A	C18A	S1A	104.4(15)
C1	N3	C14	123.1(6)	F2A	C18A	F1A	131.0(19)
C9	N3	C14	116.8(6)	F2A	C18A	F3A	102(2)
N2	C1	N1	114.3(6)	F3A	C18A	S1A	93.4(15)
N3	C1	N1	119.3(6)	F3A	C18A	F1A	104.9(17)
N3	C1	N2	126.4(6)	F6	C19	S2	113.1(6)
C8	C7	N2	112.1(7)	F4	C19	S2	113.6(6)
C7	C8	C9	116.2(8)	F4	C19	F6	107.3(2)
N3	C9	C8	110.6(7)	F4	C19	F5	107.3(2)
N2	C10	C11	114.1(6)	F5	C19	S2	108.0(5)

C10	C11	C12	109.3(7)	F5	C19	F6	107.1(2)
C10	C11	C13	115.2(9)	F7	C19A	S2A	102.5(8)
C13	C11	C12	106.5(7)	F7	C19A	F8	132.6(11)
C15	C14	N3	115.6(7)	F9	C19A	S2A	96.8(9)
C14	C15	C16	109.7(8)	F9	C19A	F7	107.3(2)
C14	C15	C17	114.7(8)	F9	C19A	F8	107.3(2)
C17	C15	C16	109.1(8)	F8	C19A	S2A	104.6(10)

Table 14. Torsion Angles for 4h.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
01	S1	C18	F1	54.2(8)	С9	N3	C1	N1	179.8(9)
01	S1	C18	F2	171.0(8)	C9	N3	C1	N2	-2.2(16)
01	S1	C18	F3	-60.4(7)	С9	N3	C14	C15	-56.5(12)
02	S1	C18	F1	173.1(7)	C10	N2	C1	N1	-2.0(13)
02	S1	C18	F2	-70.2(8)	C10	N2	C1	N3	179.9(9)
02	S1	C18	F3	58.4(7)	C10	N2	C7	C8	-158.6(9)
03	S1	C18	F1	-66.1(9)	C14	N3	C1	N1	-0.9(14)
03	S1	C18	F2	50.7(9)	C14	N3	C1	N2	177.1(9)
03	S1	C18	F3	179.3(8)	C14	N3	C9	C8	158.5(9)
O4A	S2A	C19A	F7	71.8(7)	N2A	C1A	N1A	C2A	98(3)
O4A	S2A	C19A	F9	-178.8(7)	N2A	C1A	N1A	C6A	-75(3)
O4A	S2A	C19A	F8	-68.9(8)	N2A	C7A	C8A	C9A	46(4)
O5A	S2A	C19A	F7	-172.8(7)	N2A	C10A	C11A	C12A	177(2)
O5A	S2A	C19A	F9	-63.4(6)	N2A	C10A	C11A	C13A	58(3)
O5A	S2A	C19A	F8	46.5(7)	N3A	C1A	N1A	C2A	-89(2)
05	S2	C19	F6	-64.1(6)	N3A	C1A	N1A	C6A	98(2)
05	S2	C19	F4	58.6(6)	N3A	C14A	C15A	C16A	62(3)
05	S2	C19	F5	177.5(5)	N3A	C14A	C15A	C17A	-169(2)
06A	S2A	C19A	F7	-52.5(9)	C1A	N2A	C7A	C8A	-19(3)
06A	S2A	C19A	F9	56.9(8)	C1A	N2A	C10A	C11A	-120(3)
06A	S2A	C19A	F8	166.8(8)	C1A	N3A	C9A	C8A	34(3)
04	S2	C19	F6	176.2(5)	C1A	N3A	C14A	C15A	-123(3)
04	S2	C19	F4	-61.2(6)	C1A	N1A	C6A	C5A	174.0(14)
04	S2	C19	F5	57.8(5)	C4A	C3A	C2A	N1A	0.0
06	S2	C19	F6	58.2(6)	C3A	C4A	C5A	C6A	0.0
06	S2	C19	F4	-179.2(6)	C3A	C2A	N1A	C1A	-173.3(16)
06	S2	C19	F5	-60.2(6)	C3A	C2A	N1A	C6A	0.0
N1	C2	C3	C4	0.0	C2A	N1A	C6A	C5A	0.0
C2	N1	C6	C5	0.0	N1A	C6A	C5A	C4A	0.0
C2	N1	C1	N2	-97.5(9)	C5A	C4A	C3A	C2A	0.0
C2	N1	C1	N3	80.7(9)	C7A	N2A	C1A	N3A	3(4)
C2	C3	C4	C5	0.0	C7A	N2A	C1A	N1A	175(2)
C3	C4	C5	C6	0.0	C7A	N2A	C10A	C11A	60(3)

C4	C5	C6	N1	0.0	C7A	C8A	C9A	N3A	-53(4)
C6	N1	C2	C3	0.0	C9A	N3A	C1A	N2A	-12(4)
C6	N1	C1	N2	85.9(8)	C9A	N3A	C1A	N1A	175(2)
C6	N1	C1	N3	-95.8(9)	C9A	N3A	C14A	C15A	63(3)
N2	C7	C8	C9	-41.0(15)	C10A	N2A	C1A	N3A	-178(2)
N2	C10	C11	C12	177.3(8)	C10A	N2A	C1A	N1A	-5(4)
N2	C10	C11	C13	-62.8(11)	C10A	N2A	C7A	C8A	162(2)
N3	C14	C15	C16	-56.7(11)	C14A	N3A	C1A	N2A	175(2)
N3	C14	C15	C17	-179.8(8)	C14A	N3A	C1A	N1A	1(3)
C1	N1	C2	C3	-176.5(6)	C14A	N3A	C9A	C8A	-152(2)
C1	N1	C6	C5	176.7(5)	O1A	S1A	C18A	F1A	95(2)
C1	N2	C7	C8	16.1(14)	O1A	S1A	C18A	F2A	-53.7(18)
C1	N2	C10	C11	125.6(10)	O1A	S1A	C18A	F3A	-157.4(17)
C1	N3	С9	C8	-22.1(15)	O2A	S1A	C18A	F1A	-150(2)
C1	N3	C14	C15	124.1(10)	O2A	S1A	C18A	F2A	61.3(18)
C7	N2	C1	N1	-175.9(8)	O2A	S1A	C18A	F3A	-42.3(17)
C7	N2	C1	N3	6.0(15)	O3A	S1A	C18A	F1A	-33(2)
C7	N2	C10	C11	-60.2(11)	O3A	S1A	C18A	F2A	178.1(18)
C7	C8	С9	N3	44.0(16)	O3A	S1A	C18A	F3A	74(2)

Table 15. Hydrogen Atom Coordinates (Å×104) and Isotropic DisplacementParameters (Å2×103) for 4h.

Atom	X	У	Z	U(eq)
H2	-105	5540	1143	83
Н3	-1905	5981	282	100
H4	-3865	5885	667	100
Н5	-4026	5348	1912	86
H6	-2226	4907	2773	75
H7A	1092	3142	3488	134
H7B	2087	3561	3020	134
H8A	2542	4213	4165	133
H8B	1125	4348	4239	133
H9A	1807	5788	4066	129
H9B	2551	5476	3403	129
H10A	-1041	3566	1817	95
H10B	-749	2905	2545	95
H11	1102	2426	2145	115
H12A	-713	1533	1717	177
H12B	109	1536	1050	177
H12C	-1087	2172	980	177
H13A	419	3244	658	197
H13B	1749	2866	1040	197
H13C	1270	3820	1315	197

H14A	1051	6904	2721	108
H14B	-380	6644	2522	108
H15	918	7041	4014	124
H16A	-1615	6478	3556	206
H16B	-1164	6966	4366	206
H16C	-598	6000	4189	206
H17A	393	8382	3215	171
H17B	-150	8389	4002	171
H17C	-1031	8144	3209	171
H4A	-3565	6058	519	90
НЗА	-4037	5081	1497	67
H2A	-2447	4586	2491	60
H6A	88	6045	1529	65
H5A	-1503	6540	535	86
H7AA	1817	3475	3342	98
H7AB	2669	3939	2795	98
H8AA	2617	5291	3355	153
H8AB	2880	4579	4044	153
Н9АА	882	4764	4311	103
H9AB	1493	5757	4275	103
H10C	1270	3917	1483	111
H10D	-172	4053	1456	111
H11A	1149	2488	2053	116
H12D	-733	2415	696	181
H12E	72	1575	1082	181
H12F	706	2350	644	181
H13D	-668	2063	2433	172
H13E	-1496	2702	1815	172
H13F	-689	3139	2568	172
H14C	-1215	6319	2994	115
H14D	-970	6077	3891	115
H15A	820	6944	4042	123
H16D	266	7380	2463	157
H16E	1587	7218	2988	157
H16F	875	8160	3039	157
H17D	-1060	7681	4303	176
H17E	-1094	8214	3508	176
H17F	52	8345	4193	176

Table 16. Atomic Occupancy for 4h.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
S1	0.713(13)	F1	0.713(13)	F2	0.713(13)
F3	0.713(13)	01	0.713(13)	O2	0.713(13)

03	0.713(13)		C18	0.713(13)		S2	0.587(5)
S2A	0.413(5)		O4A	0.413(5)		O5A	0.413(5)
05	0.587(5)		O6A	0.413(5)		O4	0.587(5)
06	0.587(5)		N1	0.749(5)		C2	0.749(5)
H2	0.749(5)		C3	0.749(5)		H3	0.749(5)
C4	0.749(5)		H4	0.749(5)		C5	0.749(5)
Н5	0.749(5)		C6	0.749(5)		H6	0.749(5)
N2	0.749(5)		N3	0.749(5)		C1	0.749(5)
C7	0.749(5)		H7A	0.749(5)		H7B	0.749(5)
C8	0.749(5)		H8A	0.749(5)		H8B	0.749(5)
C9	0.749(5)		H9A	0.749(5)		H9B	0.749(5)
C10	0.749(5)		H10A	0.749(5)		H10B	0.749(5)
C11	0.749(5)		H11	0.749(5)		C12	0.749(5)
H12A	0.749(5)		H12B	0.749(5)		H12C	0.749(5)
C13	0.749(5)		H13A	0.749(5)		H13B	0.749(5)
H13C	0.749(5)		C14	0.749(5)		H14A	0.749(5)
H14B	0.749(5)		C15	0.749(5)		H15	0.749(5)
C16	0.749(5)		H16A	0.749(5)		H16B	0.749(5)
H16C	0.749(5)		C17	0.749(5)		H17A	0.749(5)
H17B	0.749(5)		H17C	0.749(5)		N2A	0.251(5)
N3A	0.251(5)		C1A	0.251(5)		C4A	0.251(5)
H4A	0.251(5)		C3A	0.251(5)		H3A	0.251(5)
C2A	0.251(5)		H2A	0.251(5)		N1A	0.251(5)
C6A	0.251(5)		H6A	0.251(5)		C5A	0.251(5)
H5A	0.251(5)		C7A	0.251(5)		H7AA	0.251(5)
H7AB	0.251(5)		C8A	0.251(5)		H8AA	0.251(5)
H8AB	0.251(5)		C9A	0.251(5)		H9AA	0.251(5)
H9AB	0.251(5)		C10A	0.251(5)		H10C	0.251(5)
H10D	0.251(5)		C11A	0.251(5)		H11A	0.251(5)
C12A	0.251(5)		H12D	0.251(5)		H12E	0.251(5)
H12F	0.251(5)		C13A	0.251(5)		H13D	0.251(5)
H13E	0.251(5)		H13F	0.251(5)		C14A	0.251(5)
H14C	0.251(5)		H14D	0.251(5)		C15A	0.251(5)
H15A	0.251(5)		C16A	0.251(5)		H16D	0.251(5)
H16E	0.251(5)		H16F	0.251(5)		C17A	0.251(5)
H17D	0.251(5)		H17E	0.251(5)		H17F	0.251(5)
S1A	0.287(13)	ļ	OlA	0.287(13)	ļ	O2A	0.287(13)
O3A	0.287(13)		F1A	0.287(13)		F2A	0.287(13)
F3A	0.287(13)		C18A	0.287(13)		F6	0.587(5)
F4	0.587(5)		F5	0.587(5)		C19	0.587(5)
F7	0.413(5)		F9	0.413(5)		F8	0.413(5)

25. Different pyridine C-4 selective functionalizations via C-C bond formation

Figure S26. different pyridine C-4 selective functionalization strategies

26. References

N. Bormann, J. S. Ward, A. K. Bergmann, P. Wenz, K. Rissanen, Y. Gong, W.-B. Hatz, A. Burbaum,
F. F. Mulks, *Chemistry – A European Journal* 2023, 29, e202302089.

[2] Y. Weng, C. Zhang, Z. Tang, M. Shrestha, W. Huang, J. Qu, Y. Chen, *Nature Communications* **2020**, 11, 392.

[3] J. Choi, G. Laudadio, E. Godineau, P. S. Baran, *Journal of the American Chemical Society* **2021**, *143*, 11927-11933.

[4] I. B. Seiple, S. Su, R. A. Rodriguez, R. Gianatassio, Y. Fujiwara, A. L. Sobel, P. S. Baran, *Journal of the American Chemical Society* **2010**, *132*, 13194-13196.

[5] Han, W.; Jin, F.; Zhao, Q.; Du, H.; Yao, L. Synlett 2016, 27, 1854.

27. Copies of NMR spectroscopy

²⁰ 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Figure S28. ¹³C NMR of 4a (CD₃CN, 101 MHz)

20Tf Me Лe I Ме Me 4a, ¹⁹F NMR (CD₃CN, 377 MHz)

---79.21

¹⁰ ¹⁰ ¹⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ ⁻²² **Figure S29.** ¹⁹F NMR of **4a** (CD₃CN, 377 MHz)

Figure S31. ¹³C NMR of **4b** (D₂O, 151 MHz)

4a, ¹⁹F NMR (D₂O, 565 MHz)

9.30 9.27 9.27 9.05 9.03 9.01 8.50 8.48

 $\begin{array}{c} -4.25\\ -4.25\\ -4.25\\ -2.19\\ -3.33\\ -3$

4c, ¹H NMR (CD₃CN, 400 MHz)

Figure S34. ¹³C NMR of **4c** (CD₃CN, 101 MHz)

 $4c, F MMR (CD_3 CN, 577 MHZ)$

Figure S37. ¹³C NMR of 4d (CD₃CN, 101 MHz)

20Tf Me Мe

4d, ¹⁹F NMR (CD₃CN, 377 MHz)

Figure S40. ¹³C NMR of 4e (CD₃CN, 101 MHz)

4e, ¹⁹F NMR (CD₃CN, 377 MHz)

Figure S43. ¹³C NMR of 4h (CD₃CN, 101 MHz)

4h, ¹⁹F NMR (CD₃CN, 565 MHz)

$\begin{array}{c} 4.54\\ 4.54\\ 4.55\\ 3.390\\ 5.292\\ 5.292\\ 5.292\\ 5.292\\ 5.292\\ 5.292\\ 5.292\\ 5.292\\ 5.292\\ 5.292\\ 5.292\\ 5.292\\ 5.292\\ 5.292\\ 5.202$

Figure S46. ¹³C NMR of S-4i (CD₃CN, 101 MHz)

¹⁰ ¹⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ ⁻²² **Figure S47.** ¹⁹F NMR of S-4i (CD₃CN, 377 MHz)

2OTf Μ Μe Ŵе

S-4j, ¹⁹F NMR (DMSO-d6, 377 MHz)

3.80 3.79 2.294 2.294 2.295 2.286 2.286 2.286 2.287 2.287 2.287 2.287 2.287 2.287 2.286 2.287 2.287 2.225 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555 2.2555

Figure S52. ¹³C NMR of S-4k (DMSO-*d*₆, 101 MHz)

S-4k, ¹⁹F NMR (DMSO-*d*₆, 377 MHz)

¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ **Figure S53.** ¹⁹F NMR of S-4k (DMSO-*d*₆, 377 MHz)

---78.90

3.3.33 3.8.1 3.3.81 2.294 2.295 2.205 2.005 2.005 2.00

¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ **Figure S56.** ¹⁹F NMR of **S-4l** (DMSO- d_6 , 377 MHz)

Figure S58. ¹³C NMR of S-4q (CD₃CN, 101 MHz)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

Figure S59. ¹⁹F NMR of S-4q (CD₃CN, 565 MHz)

Figure S61. ¹³C NMR of S-4s (CD₃CN, 101 MHz)

¹⁰ 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 **Figure S62.** ¹⁹F NMR of **S-4s** (CD₃CN, 565 MHz)

Figure S64. ¹³C NMR of S-4t (CD₃CN, 151 MHz)

¹⁰ 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 **Figure S65.** ¹⁹F NMR of **S-4t** (CD₃CN, 565 MHz)

Figure S67. ¹³C NMR of S-4u (CD₃CN, 151 MHz)

¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ **Figure S68.** ¹⁹F NMR of **S-4u** (CD₃CN, 377 MHz)

²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ **Figure S70.** ¹³C NMR of S-4w (CD₃CN, 151 MHz)

¹⁰ ⁰ -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 **Figure S71.** ¹⁹F NMR of **S-4w** (CD₃CN, 565 MHz)

S-4aa, ¹⁹F NMR (CD₃CN, 377 MHz)

---79.21

Figure S76. ¹³C NMR of 5a (CDCl₃, 151 MHz)

Figure S78. ¹³C NMR of 5b (CDCl₃, 151 MHz)

²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ **Figure S80.** ¹³C NMR of **5d** (CDCl₃, 101 MHz)

5e, ¹H NMR (CDCI₃, 600 MHz)

Figure S82. ¹³C NMR of **5e** (CDCl₃, 151 MHz)

²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ **Figure S84.** ¹³C NMR of **5g** (CDCl₃, 151 MHz)

²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ **Figure S86.** ¹³C NMR of **5h** (CDCl₃, 151 MHz)

Figure S88. ¹³C NMR of **5i** (CDCl₃, 101 MHz)

-8.28

Figure S92. ¹³C NMR of 5k (CDCl₃, 151 MHz)

5I, ¹H NMR (CDCI₃, 400 MHz)

Figure S94. ¹³C NMR of 5l (CDCl₃, 101 MHz)

²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ **Figure S96.** ¹³C NMR of **5m** (CDCl₃, 151 MHz)

$$\begin{array}{c} -2.73\\ -2.71\\ -2.69\\ 1.66\\ 1.66\\ 1.66\\ 1.68\\ 1.38\\ 1.$$

5n, ¹H NMR (CDCI₃, 400 MHz)

Figure S98. ¹³C NMR of 5n (CDCl₃, 101 MHz)

-8.97

5o, ¹H NMR (CDCI₃, 400 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Figure S100. ¹³C NMR of **5**0 (CDCl₃, 101 MHz)

78.72 78.71 78.54 78.51 77.82 77.78 77.79 77.79 77.79 77.79 77.71 77.71 77.71 77.71 77.71 77.71 77.73 77.77.73

72.76 -2.74 -2.72 -2.72 -2.74 -2.74 -1.50 -1.50 -1.48 -1.46 -1.48 -1.23 -1.23 -1.23 -1.23 -1.20 -1.23 -1.20 -1.20 -1.23

²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ **Figure S102.** ¹³C NMR of **5p** (CDCl₃, 101 MHz)

Figure S104. ¹³C NMR of 5q (CDCl₃, 151 MHz)

2.70 -2.69 -2.69 -2.67 -1.74 -1.72 -1.70 -1.70 -1.70 -1.70 -1.70 -1.33 -

5s, ¹H NMR (CDCI₃, 400 MHz)

8.59 8.58 8.11</l

5u, ¹H NMR (CDCI₃, 600 MHz)

Figure S112. ¹³C NMR of 5u (CDCl₃, 151 MHz)

S133

Figure S116. ¹³C NMR of **5w** (CDCl₃, 151 MHz)

5x, ¹H NMR (CDCI₃, 600 MHz)

Figure S118. ¹³C NMR of 5x (CDCl₃, 151 MHz)

Figure S120. ¹³C NMR of 5y (CDCl₃, 151 MHz)

Figure S124. ¹³C NMR of 5aa (CDCl₃, 151 MHz)

Figure S126. ¹³C NMR of 5ab (CDCl₃, 151 MHz)

Figure S128. ¹³C NMR of 5ac (CDCl₃, 151 MHz)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 **Figure S130.** ¹³C NMR of **5ad** (CDCl₃, 101 MHz)

$$-9.39 - -9.39 - -8.95 - -8.9$$

CO₂Et

5ae, ¹H NMR (CDCI₃, 600 MHz)

5af, ¹³C NMR (CDCI₃, 101 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Figure S134. ¹³C NMR of 5af (CDCl₃, 101 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure S136.** ¹³C NMR of **5ag** (CDCl₃, 101 MHz)

Figure S138. ¹³C NMR of 5ah (CDCl₃, 101 MHz)

Figure S140. ¹³C NMR of 5ai (CDCl₃, 101 MHz)

²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ **Figure S142.** ¹³C NMR of **5aj** (CDCl₃, 101 MHz)

Figure S144. ¹³C NMR of 5ak (CDCl₃, 151 MHz)

Figure S146. ¹³C NMR of 5al (CDCl₃, 101 MHz)

Figure S148. ¹³C NMR of 5am (CDCl₃, 101 MHz)

.0

²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ **Figure S150.** ¹³C NMR of **5an** (CDCl₃, 101 MHz)

Figure S152. ¹³C NMR of 5ao (CDCl₃, 101 MHz)

5ap, ¹H NMR (CDCI₃, 400 MHz)

²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ **Figure S154.** ¹³C NMR of **5ap** (CDCl₃, 101 MHz)

Figure S156. ¹³C NMR of 5aq (CDCl₃, 101 MHz)

 $<_{7.16}^{7.16}$

 $\begin{matrix} 8.53 \\ 8.53 \end{matrix}$

²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ **Figure S158.** ¹³C NMR of **5ar** (CDCl₃, 151 MHz)

Figure S160. ¹³C NMR of 5as (CDCl₃, 101 MHz)

Figure S162. ¹³C NMR of 5at (CDCl₃, 101 MHz)

Figure S164. ¹³C NMR of 5au (CDCl₃, 151 MHz)

¹⁰ 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 **Figure S165.** ¹⁹F NMR of **5au** (CDCl₃, 565 MHz)

Figure S167. ¹³C NMR of 5av (CDCl₃, 151 MHz)

5ax, ¹H NMR (CDCI₃, 400 MHz)

²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ **Figure S171.** ¹³C NMR of **5ax** (CDCl₃, 101 MHz)

²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ Figure S173. ¹³C NMR of **5az** (CDCl₃, 151 MHz)

¹⁰ ¹⁰ ¹⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ ⁻²² **Figure S174.** ¹⁹F NMR of **5az** (CDCl₃, 377 MHz)

-8.71 -8.77 -7.98 -7.98 -7.99 -7.99 -7.99 -7.99 -7.99 -7.79 -7.755 -7.7555 -7.755 -7.755 -7.755 -7.7555 -7.7555 -7.755 -7.755 -7.7555 -

²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ **Figure S178.** ¹³C NMR of **5bb** (CDCl₃, 101 MHz)

5bd, ¹H NMR (CDCI₃, 400 MHz)

Figure S182. ¹³C NMR of 5bd (CDCl₃, 101 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Figure S186. ¹³C NMR of 5bf (CDCl₃, 151 MHz)

²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ **Figure S188.** ¹³C NMR of **5bg** (Actone-*d*₆, 151 MHz)

Figure S190. ¹³C NMR of 5bh (CDCl₃, 151 MHz)

8.48 8.47 8.46 8.46 8.46 8.46 8.06 8.06 8.06 7.33 7.23 7.23 7.23 7.15 7.15 7.15 7.13

Figure S192. ¹³C NMR of 5bi (CDCl₃, 101 MHz)

28:45 28:45 28:45 28:45 28:45 29:75 20:77 20

5bj, ¹H NMR (CDCI₃, 600 MHz)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 **Figure S194.** ¹³C NMR of **5bj** (CDCl₃, 101 MHz)

Figure S196. ¹³C NMR of 5bk (CDCl₃, 151 MHz)

Figure S198. ¹³C NMR of **5bl** (CDCl₃, 101 MHz)

8.49 8.845 8

Figure S202. ¹³C NMR of 5bn (CDCl₃, 101 MHz)

Figure S204. ¹³C NMR of 5bo (CDCl₃, 151 MHz)

Figure S206. ¹³C NMR of 8 (CDCl₃, 101 MHz)

Figure S208. ¹³C NMR of **11** (CDCl₃, 151 MHz)

¹⁰ ¹⁰ ¹⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ ⁻²² **Figure S209.** ¹⁹F NMR of **11** (CDCl₃, 377 MHz)

13, ¹⁹F NMR (CDCI₃, 377 MHz)

¹⁰ ¹⁰ ¹⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ ⁻²² **Figure S212.** ¹⁹F NMR of **13** (CDCl₃, 377 MHz)

-Me

VU6001966, ¹⁹F NMR (CDCI₃, 565 MHz)

---112.78

3b, ¹H NMR (CDCI₃, 400 MHz)

Figure S217. ¹³C NMR of 17 (CDCl₃, 101 MHz)

 $\begin{pmatrix} 3.72 \\ 3.71 \\ 3.71 \\ 3.14 \\ 3.13 \\ 3.12 \\ 3.12 \end{pmatrix}$

-10.34

LJI308, ¹H NMR (DMSO-*d*₆, 400 MHz)

Figure S219. ¹³C NMR of **LJI308** (DMSO-*d*₆, 151 MHz)

LJI308, ¹⁹F NMR (DMSO-*d*₆, 377 MHz)

¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ ⁻²² **Figure S220.** ¹⁹F NMR of **LJI308** (DMSO-*d*₆, 377 MHz)

---132.24