Supporting Information for

Spotting d-band centers of single-atom catalysts by oxygen intermediate-boosted electrochemiluminescence

Ruyu Xie,^a Kaitao Li,^{ac} Rui Tian,*^{ac} and Chao Lu^{*abc}

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China ^bPingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China ^c*Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, China*

*E-mail: tianrui@mail.buct.edu.cn; luchao@mail.buct.edu.cn

Table of Contents

Experimental Section

Materials. $Co(NO₃)₂·6H₂O$ (analytical reagent), NH₄F (analytical reagent) and urea (chemical pure) were all acquired from Xilong Scientific Co. Ltd. (Guangdong, China). $Al(NO₃)₃·9H₂O$ (analytical reagent), HCl, dimethyl sulfoxide (DMSO), KOH (AR), and $Na₂HPO₄$ (AR) were obtained from Beijing Reagent Company (Beijing, China). $NaH₂PO₄$ (guaranteed reagent) was purchased from Tianjin Jinke Fine Chemical Research Institute (Tianjin, China). NaN₃ (analytical reagent) was obtained from Fuchen Chemical Reagent Co., Ltd. (Tianjin, China). *p*-Benzoquinone (BQ, chemical pure) was supplied by Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). 2-Propanol (>99.7%) and isopropyl alcohol (IPA) (>99.7%) were acquired from Shanghai Tian Scientific Co., Ltd. (Shanghai, China). Indium tin oxide (ITO) electrodes (transmittance $> 84\%$) were supplied by South China Science & Technology Company Limited (Shenzhen, China). Chloroauric acid tetrahydrate (HAuCl₄·*xH*₂O) was purchased from Damasbeta (Shanghai, China). AgNO₃ (analytical reagent >99.8%) was bought from Beijing HWRK Company (Beijing, China). Nitro blue tetrazolium chloride (NBT) was obtained by Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Luminol (> 98.0%) was supplied from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). All the above reagents were used without further treatment.

Preparation of CoAl/LDHs on indium tin oxide (ITO) electrodes. ITO electrodes with the size of 1×2 cm² were firstly activated in ethanol and water under ultrasonic treatment for 15 minutes. The CoAl/LDHs was synthesized on ITO electrodes through a one-pot hydrothermal method according to the previous report with slight modification.¹ Brifly, $Co(NO₃)₂·6H₂O$ (0.165 mmol) , Al(NO₃)₃·9H₂O (0.55 mmol), NH₄F (0.8 mmol) and urea (2.0 mmol) were dissolved in 16.0 mL of deionized water and then transferred to a 25 mL Teflon-lined stainless steel autoclave. Next, the treated electrodes were placed vertically in the autoclave, and the CoAl/LDHs were prepared on the ITO electrodes. The hydrothermal reaction was carried out at 120 °C for 6 hours. After cooling to the room temperature, the electrodes with deposited CoAl/LDHs (labelled as LDH/ITO) were washed with deionized water and dried in air, and the acuiqred LDH/ITO was employed as the working electrode.

Preparation of LDH/ITO-supported single atoms. Electrodeposition method was employed to immobilize single atoms onto CoAl/LDH support.² Taking Ag^s/LDH/ITO as an example, a typical three-electrode system was employed. Briefly, LDH/ITO, Ag/AgCl and Pt electrodes were used as working electrode, reference electrode and counter electrode, respectively. The working electrolyte was 100.0 mL of KOH aqueous solution (1.2 mol/L), containing 0.1 $mmol/L$ AgNO₃ as the precursor for Ag species. The electrochemical depositions were carried out by cycling the potentials from -0.556 to -0.156 V with a scanning rate of 50 mV s⁻¹ under

stirring for 2 cycles, and the stirring rate was set as 600 r/min. After washing with deionized water, the Ag single atoms were localized onto the LDH/ITO electrodes and marked as Ag^s /LDH/ITO.

Similarly, Au^s/LDH/ITO, Cu^s/LDH/ITO and Fe^s/LDH/ITO were prepared through the electrodeposition method taking $HAuCl_4 \cdot xH_2O$, FeCl₃ and CuCl₂ as the metal precursors, respectively. The working electrolyte contained 100 μmol/L metal precursor and 1.2 mol/L KOH.

Preparation of controlled samples on ITO electrodes. To prepare Au or Ag nanoparticles, electrodeposition of 30 cycles were employed. In detail, Agnp/ITO and Aunp/ITO electrodes were acquired through the electrodeposition on bare ITO electrodes in KOH aqueous solution (1.2 mol/L) containing 0.1 mmol/L AgNO₃ or 0.1 mmol/L HAuCl₄·*xH₂O*, respectively. Similarly, the Ag or Au nanoparticles were immobilized on the LDH/ITO electrodes under the same condition of electrodeposition to acquire Ag^{np}/LDH/ITO and Au^{np}/LDH/ITO samples.

Electrochemical and electrochemiluminescence measurements. A CHI660E electrochemical workstation was used to perform the electrochemical experiments in a traditional three-electrode system with Pt, Ag/AgCl and modified ITO as counter electrode, reference electrode and the working electrode. The effective surface area of the working electrode was measured as 1×1

cm² during the electrochemical deposition and ECL measurements. Cyclic voltammetry (CV) curves were recorded in 6.0 mL of 0.01 mmol luminol (phosphate-buffered saline, PBS, $pH =$ 7.5) in a potential range from −0.8 to +0.8 V at a scan rate of 0.1 V/s. Real-time electrochemiluminescence (ECL) signals were collected by a biophysics chemiluminescence analyzer (Institute of Biophysics, Chinese Academy of Sciences, Beijing, China) with the voltage of the photomultiplier tube at −900 V. The *I*_{ECL}-potential curves were obtained based on the combination of the CV signal from CHI660E electrochemical workstation and ECL signal collected by a biophysics CL analyzer. The ECL emission spectra were acquired by an F-7000 fluorescence spectrophotometer (Hitachi, Tokyo, Japan) coupled with CHI660E. Electrochemical impedance spectroscopy (EIS) measurements were carried out from 0.1 Hz to 100 kHz in 5.0 mmol/L $K_3[Fe(CN)_6]/K_4[Fe(CN)_6]$ (0.1 mol/L KCl). The linear sweep voltammetry (LSV) curves were recorded at different rotation rates in O_2 -saturated 0.1 mol/L PBS (pH = 7.5) from 0 V to -1.2 V with a sweeping rate of 5 mV/s.

The identification of radicals during the ECL reaction were studied by a radical trapping experiment. Briefly, 70 μ L of NaN₃, IPA and BQ (0.02 mol/L) solution were added to 6.0 mL of 0.01 mmol/L luminol to capture singlet oxygen $(^1O_2)$, superoxide radical (O_2^{\bullet}) , and hydroxyl radical (OH•), respectively. O_2 ^{\sim} was semi-quantitatively analyzed by the trapping experiment of NBT. 100 μL of NBT (20 μmol/L) was added to the luminol electrolyte, and scans in the range of -0.8 to +0.8 V were performed for 10 times to produce O₂^{$-$}. The resulting electrode was

dissolved in 10 mL of 0.5% KOH-dimethyl sulfoxide solution for UV-vis adsorption measurement.

Sample characterization. X-ray diffraction (XRD) patterns for the samples were recorded with a 2500VB2 (Rigaku Corporation, Japan) using a Cu Kα (radiation $\lambda = 1.541844$ Å) ranging from 3° to 90° under a scanning rate of $5^{\circ}/$ min. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) measurements were implemented using an ESCALAB-MKII 250 (Thermo, Waltham, U.S.A.) with an Al K as exciting source. Scanning electron microscopy (SEM) images were taken on a JSM-7800F (Japan Electron Optics Laboratory Co., Ltd.) scanning electron microscope. High-resolution transmission electron microscopy (HRTEM) images were obtained with a JEM-ARM200F (Japan Electron Optics Laboratory Co., Ltd.). The morphologies of Au and Ag nanoparticles were studied by TEM 2100 (Japan Electron Optics Laboratory Co., Ltd.). High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) was performed on a JEOL JEM-ARM200F equipped with double aberration correctors and a cold field emission gun. The mass loadings of samples on the modified electrodes were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES, Thermo Fisher Scientific, U.S.A.). UV-vis absorption spectra were acquired by a UV-3900H (Shimadzu, Tokyo, Japan) spectrophotometer. Temperatureprogrammed desorption (TPD) was performed on a micromeritics chemisorb 2750 chemisorption instrument (ChemBET Pulsar, USA) with a thermal conductivity detector. The samples of 0.1000 g were preheated in a gas stream (10% oxygen and 90% helium) at 120 °C for 1 h. After cooling to the room temperature, the samples were kept in the same gas stream for 1 h to ensure saturated adsorption and then purged with a helium stream for another 1 h. The $O₂$ -TPD curve was collected by ramping the temperature from 30 °C to 950 °C with helium flow as the carrier gas (40 mL/min).

Fig. S1 Cathodic electrochemiluminescence (ECL) spectra at Ag^s/LDH/ITO or Au^s/LDH/ITO electrode in 0.01 mmol/L luminol (PBS, pH = 7.5).

Fig. S2 Current density-voltammetry curves in 0.01 mmol/L luminol (PBS, pH = 7.5) at ITO, LDH/ITO, Au^s/LDH/ITO and Ag^s/LDH/ITO electrodes.

Fig. S3 X-ray diffraction (XRD) patterns of Ag^{np}/LDH/ITO, Ag^s/LDH/ITO and Ag^{np}/ITO samples.

Fig. S4 UV-vis absorption spectra of LDH/ITO, Ag^{np}/ITO, Ag^{np}/LDH/ITO and Ag^s/LDH/ITO samples.

Fig. S5 XRD patterns of Au^s/LDH/ITO, Au^{np}/LDH/ITO and Au^{np}/ITO samples.

Fig. S6 UV-vis absorption spectra of Au^s/LDH/ITO, Au^{np}/ITO, Au^{np}/LDH/ITO and LDH/ITO samples.

Fig.S7 Scanning electron microscopy (SEM) image of CoAl/LDH deposited on ITO

electrode.

Fig. S8 Transmission electron microscopy (TEM) images and the high-resolution TEM images (insets) of (a) Agnp/LDH/ITO and (b) Aunp/LDH/ITO.

Fig. S9 X-ray photoelectron spectroscopy (XPS) spectra of Al 2p for LDH/ITO, Ag^{np}/LDH/ITO and Ag^s /LDH/ITO.

Fig. S10 XPS spectra of Al 2p for LDH/ITO, Aunp/LDH/ITO and Au^s /LDH/ITO.

Fig. S11 ECL intensities at Ag^s/LDH/ITO electrode in the absence (black lines) or presence of *p*-Benzoquinone (BQ, red lines), isopropyl alcohol (IPA, green lines), and NaN₃ (blue lines) as radical scavengers, respectively (the potential ranged from -0.8 V to 0 V).

Fig. S12 ECL intensities at Au^s/LDH/ITO electrode in the absence (black lines) or presence of p-BQ (red lines), IPA (green lines), and NaN₃ (blue lines) as radical scavengers, respectively (the potential ranged from -0.8 V to 0 V).

Fig. S13 (a) ECL intensities at Ag^s/LDH/ITO and Au^s/LDH/ITO electrodes in the absence or presence of p-BQ as radical scavengers, and (b) UV-vis spectra of NBT for the Ag^s/LDH/ITO and Au^s /LDH/ITO electrodes in KOH/DMSO solutions (the potential ranged from 0 V to +0.8 V).

Fig. S14 Electrochemical impedance spectroscopy (EIS) results for ITO, LDH/ITO, Au^s/LDH/ITO and Ag^s/LDH/ITO electrodes, and the inset showed the equivalent circuit (R_s , R_{ct} , C_{dl}, and W represented the resistance of solution, charge transfer resistance, double layer capacitance, and the Warburg constant, respectively).

Fig. S15 Linear sweep voltammetry (LSV) curves of Ag^s/LDH/ITO electrode in O₂-saturated PBS (pH = 7.5) solution at different rotation rates (the inset showed the K-L plots of j^{-1} vs. $\omega^{-1/2}$ at different potentials).

Fig. S16 LSV curves of Au^s/LDH/ITO electrode in O₂-saturated PBS (pH = 7.5) solution at different rotation rates (the inset showed the K-L plots of j^{-1} vs. $\omega^{-1/2}$ at different potentials).

Fig. S17 XRD patterns of Cu^s/LDH/ITO and LDH/ITO samples (absence of Cu nanoparticles at 50°).

Fig. S18 UV-vis absorption spectra of Cu^s/LDH/ITO and LDH/ITO samples (absence of Cu nanoparticles at 330 nm).

.

Fig. S19 (a) HAADF-STEM image and (b) STEM-EDS mapping images of Co, Al, and Cu for Cu^s /LDH/ITO.

Fig. S20 Ultraviolet photoelectron spectroscopy (UPS) valence-band spectra of Cu^s /LDH/ITO.

Fig. S21 (a) I_{ECL} -intensities and (b) I_{ECL} -potential curves for Cu^s/LDH/ITO sample.

Fig. S22 XRD patterns of Fe^s/LDH/ITO and LDH/ITO samples (absence of Fe nanoparticles at 45°).

.

Fig. S23 UV-vis absorption spectra of Fe^s /LDH/ITO and LDH/ITO samples (absence of Fe nanoparticles at 400 nm).

.

Fig. S24 (A) HAADF-STEM image and (B) STEM-EDS mapping images of Co, Al, and Fe for Fe^s /LDH/ITO.

Fig. S25 UPS valence-band spectra of Fe^s /LDH/ITO.

Fig. S26 (a) I_{ECL} -intensities and (b) I_{ECL} -potential curves for Fe^s/LDH/ITO sample.

Fig. S27 Correlation between the d-band centers and ECL intensities of Ag^s/LDH/ITO, Au^s/LDH/ITO, Cu^s/LDH/ITO and Fe^s/LDH/ITO electrodes (ECL measurements were performed 0.01 mmol/L luminol, PBS, pH = 7.5).

The reaction of cathodic luminol ECL:

 $O_2 \rightarrow$ ROSs

 $LH_2 \rightarrow L^{\sim}$ (Dianion)

 L^{\leftarrow} + ROSs \rightarrow AP₂^{-*} (3-aminophthalate) \rightarrow AP₂⁻ + h*v*

The reaction of anodic luminol ECL:

 $LH_2 + 2OH^- - 2e^- \rightarrow L^-$ (Dianion) + H₂O

 $L^{\leftarrow} + O_2^{\leftarrow} \rightarrow LO_2^{2-}$ (5-amino phthalic acid) $\rightarrow AP_2^{-*}$ (3-aminophthalate) + N₂

 $AP_2^{-*} \rightarrow AP_2^{-} + hv$

Scheme S1. ECL mechanism of luminol catalyzed by the single-atom catalysts.

	Valence	Peak position	Relative contents	$Co3+/Co2$
	state	(eV)	(%)	$^{+}(%)$
LDH/ITO	$Co3+$	783.7/798.8	23.3	71.9
	$Co2+$	781.3/797.2	32.4	
Ag ^{np} /LDH/I	$Co3+$	783.6/798.4	36.3	70.3
TO	$Co2+$	780.4/796.5	51.6	
Ag ^s /LDH/IT	Co^{3+}	783.2/798.1	17.6	40.6
Ω	$Co2+$	780.3/796.4	43.3	
Au ^{np} /LDH/I	Co^{3+}	783.6/798.7	26.4	68.4
TO	$Co2+$	780.9/797.0	38.6	
Au ^s /LDH/IT	$Co3+$	783.5/798.2	26.3	65.4
Ω	$Co2+$	780.6/796.5	40.2	

Table S1 Peak positions and Co^{3+}/Co^{2+} ratios of Co 2p in XPS spectra for LDH/ITO, Ag^{np}/LDH/ITO, Au^{np}/LDH/ITO, Ag^s/LDH/ITO and Au^s/LDH/ITO.

Table S2 Information and calculation of the average oxidation states for Ag^s/LDH/ITO and Au^s /LDH/ITO.

Samples	Valence states	Integrated area	$C\%$	
Ag ^s /LDH/ITO	Ag (0)	421.643	10%	
	Ag(I)	3794.758	90%	
Au ^s /LDH/ITO	Au (0)	963.834	27%	
	Au (I)	2605.922	73%	

The calculations of the average oxidation states for single atomic Ag and Au were carried out according to the following equations:³

Au_{oxidation state}= $C\%Au(I) \times 1 + C\%Au(0) \times 0$,

 $Ag_{oxidation state} = C\%Ag(I) \times 1 + C\%Ag(0) \times 0,$

where *C*% stood for the proportion of the integrated area for the different valence states to the total area calculated from the quantitative peak deconvolution.

	Oxygen	Peak position	Relative contents
	species	(eV)	(%)
LDH/ITO	O_{H}	533.8	20.1
	O _o	531.8	68.5
	O _{lat}	530.6	11.4
Au ^s /LDH/ITO	O_{H}	532.9	10.7
	O _o	531.4	70.3
	O _{lat}	530.5	13.0
	$Au-O$	532.0	6.0
Ag ^s /LDH/ITO	O_{H}	532.6	7.3
	O _o	531.3	71.2
	O _{lat}	530.4	14.0
	$Ag-O$	529.5	7.5

Table S3 Peak positions and relative contents of O 1s in XPS spectra for LDH/ITO, Ag^s /LDH/ITO and Au^s /LDH/ITO.

Samples	Radical scavengers	Target radicals	ECL intensity before addition	ECL intensity after addition	Quenchi ng rates
Au ^s /LDH/I TO	BQ	O_2 ⁻⁻	2.0×10^3	0.07×10^{3}	97%
Ag ^s /LDH/I TO	IPA	\cdot OH	1.9×10^{3}	0.5×10^3	74%
	NaN ₃	${}^{1}O_{2}$	1.8×10^3	0.6×10^3	67%
	BQ	O_2 ⁻⁻	2.6×10^{4}	0.2×10^3	99%
	IPA	\cdot OH	2.3×10^{4}	2.6×10^3	89%
	NaN ₃	${}^{1}O_{2}$	2.4×10^{4}	3.0×10^{3}	87%

Table S4 ECL intensity variations of Au^s/LDH/ITO and Ag^s/LDH/ITO electrodes in the presence of different scavengers.

References

- 1 W. Shi, L. Bai, J. Guo and Y. Zhao, *RSC Adv.*, 2015, **5**, 89056-89061.
- 2 Z. Zhang, C. Feng, C. Liu, M. Zuo, L. Qin, X. Yan, Y. Xing, H. Li, R. Si, S. Zhou and J. Zeng, *Nat. Commun.*, 2020, **11**, 1215.
- 3 T. Kashyap, S. Biswasi, A. R. Pal and B. Choudhury, *ACS Sustain. Chem. Eng.*, 2019, **7**, 19295**–**19302.