Supporting Information for

Spotting d-band centers of single-atom catalysts by oxygen intermediate-boosted electrochemiluminescence

Ruyu Xie,^a Kaitao Li,^{ac} Rui Tian,^{*ac} and Chao Lu^{*abc}

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China ^bPingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China ^cQuzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, China

*E-mail: tianrui@mail.buct.edu.cn; luchao@mail.buct.edu.cn

Table of Contents

Experimental Section	S4
Fig. S1 Cathodic ECL spectra at Ag ^s /LDH/ITO or Au ^s /LDH/ITO electrode in 0.01	S10
mmol/L luminol.	
Fig. S2 Current density-voltammetry curves in 0.01 mmol/L luminolat ITO,	S11
LDH/ITO, Au ^s /LDH/ITO and Ag ^s /LDH/ITO electrodes.	
Fig. S3 XRD patterns of Ag ^{np} /LDH/ITO, Ag ^s /LDH/ITO and Ag ^{np} /ITO samples.	S12
Fig. S4 UV-vis absorption spectra of LDH/ITO, Agnp/ITO, Agnp/LDH/ITO and	S13
Ag ^s /LDH/ITO samples.	
Fig. S5 XRD patterns of Au ^s /LDH/ITO, Au ^{np} /LDH/ITO and Au ^{np} /ITO samples.	S14
Fig. S6 UV-vis absorption spectra of Au ^s /LDH/ITO, Au ^{np} /ITO, Au ^{np} /LDH/ITO and	S15
LDH/ITO samples.	~
Fig. S7 SEM image of CoAl/LDH deposited on ITO electrode.	S16
Fig. S8 TEM images and the high-resolution TEM images of Agnp/LDH/ITO and	S17
Au ^{np} /LDH/ITO.	~ 1 0
Fig. S9 XPS spectra of Al 2p for LDH/ITO, Ag ^{np} /LDH/ITO and Ag ^s /LDH/ITO.	S18
Fig. S10 XPS spectra of Al 2p for LDH/ITO, Au ^{np} /LDH/ITO and Au ^s /LDH/ITO.	S19
Fig. S11 ECL intensities at Ag ^s /LDH/ITO electrode in the absence or presence of p -	S20
BQ, IPA, and NaN ₃ as radical scavengers, respectively.	
Fig. S12 ECL intensities at Au ^s /LDH/ITO electrode in the absence or presence of p -	S21
BQ, IPA, and NaN ₃ as radical scavengers, respectively.	G2 2
Fig. S13 ECL intensities at Ag ^s /LDH/ITO and Au ^s /LDH/ITO electrodes in the	822
absence or presence of <i>p</i> -BQ as radical scavengers, and UV-vis spectra of NBT for	
the Ag ^s /LDH/ITO and Au ^s /LDH/ITO electrodes in KOH/DMSO solutions.	572
Fig. S14 EIS results for ITO, LDH/ITO, Au ^s /LDH/ITO and Ag ^s /LDH/ITO	525
electrodes.	S24
Fig. S15 LSV curves of Ag/LDH/110 electrode in O_2 -saturated PBS solution at different rotation rates	521
Fig. S16 I SV curves of $Au^{s/I}$ DH/ITO electrode in O ₂ -saturated PBS solution at	S25
different rotation rates	
Fig. S17 XRD patterns of Cu ^s /LDH/ITO and LDH/ITO sample.	S26
Fig. S18 UV-vis absorption spectra of $Cu^{s/I}$ DH/ITO and I DH/ITO sample	S27
Fig. S10 UAADE STEM image and STEM EDS magning images of Ca. Al. and	\$28
rig. 517 GAADF-STEWI mage and STEWI-EDS mapping images of Co, AI, and	520

Cu for Cu ^s /LDH/ITO.	
Fig. S20 Ultraviolet photoelectron spectroscopy (UPS) valence-band spectra of	S29
Cu ^s /LDH/ITO.	
Fig. S21 (a) I_{ECL} -intensities and (b) I_{ECL} -potential curves for Cu ^s /LDH/ITO.	S30
Fig. S22 XRD patterns of Fe ^s /LDH/ITO and LDH/ITO samples.	S31
Fig. S23 UV-vis absorption spectra of Fe ^s /LDH/ITO and LDH/ITO samples.	S32
Fig. S24 HAADF-STEM image and STEM-EDS mapping images of Co, Al, and Fe	S33
for Fe ^s /LDH/ITO.	
Fig. S25 UPS valence-band spectra of Fe ^s /LDH/ITO.	S34
Fig. S26 (a) I_{ECL} -intensities and (b) I_{ECL} -potential curves for Fe ^s /LDH/ITO.	S35
Fig. S27 Correlation between the d-band centers and ECL intensities of	S36
Ag ^s /LDH/ITO, Au ^s /LDH/ITO, Cu ^s /LDH/ITO and Fe ^s /LDH/ITO electrodes.	
Scheme S1 ECL mechanism of luminol catalyzed by the single-atom catalysts.	S37
Table S1 Peak positions and Co ³⁺ /Co ²⁺ ratios of Co 2p in XPS spectra for	S38
LDH/ITO, Ag ^{np} /LDH/ITO, Au ^{np} /LDH/ITO, Ag ^s /LDH/ITO and Au ^s /LDH/ITO.	
Table S2 Information and calculation of the average oxidation states for	S39
Ag ^s /LDH/ITO and Au ^s /LDH/ITO.	
Table S3 Peak positions and relative contents of O 1s in XPS spectra for LDH/ITO,	S40
Ag ^s /LDH/ITO and Au ^s /LDH/ITO.	
Table S4 ECL intensity variations of Au ^s /LDH/ITO and Ag ^s /LDH/ITO electrodes	S41
in the presence of different scavengers.	
References	S42

Experimental Section

Materials. Co(NO₃)₂·6H₂O (analytical reagent), NH₄F (analytical reagent) and urea (chemical pure) were all acquired from Xilong Scientific Co. Ltd. (Guangdong, China). Al(NO₃)₃·9H₂O (analytical reagent), HCl, dimethyl sulfoxide (DMSO), KOH (AR), and Na₂HPO₄ (AR) were obtained from Beijing Reagent Company (Beijing, China). NaH₂PO₄ (guaranteed reagent) was purchased from Tianjin Jinke Fine Chemical Research Institute (Tianjin, China). NaN3 (analytical reagent) was obtained from Fuchen Chemical Reagent Co., Ltd. (Tianjin, China). p-Benzoquinone (BQ, chemical pure) was supplied by Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). 2-Propanol (>99.7%) and isopropyl alcohol (IPA) (>99.7%) were acquired from Shanghai Tian Scientific Co., Ltd. (Shanghai, China). Indium tin oxide (ITO) electrodes (transmittance > 84%) were supplied by South China Science & Technology Company Limited (Shenzhen, China). Chloroauric acid tetrahydrate (HAuCl₄·xH₂O) was purchased from Damasbeta (Shanghai, China). AgNO₃ (analytical reagent >99.8%) was bought from Beijing HWRK Company (Beijing, China). Nitro blue tetrazolium chloride (NBT) was obtained by Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Luminol (> 98.0%) was supplied from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). All the above reagents were used without further treatment.

Preparation of CoAl/LDHs on indium tin oxide (ITO) electrodes. ITO electrodes with the size of $1 \times 2 \text{ cm}^2$ were firstly activated in ethanol and water under ultrasonic treatment for 15 minutes. The CoAl/LDHs was synthesized on ITO electrodes through a one-pot hydrothermal method according to the previous report with slight modification.¹ Brifly, Co(NO₃)₂·6H₂O (0.165 mmol), Al(NO₃)₃·9H₂O (0.55 mmol), NH₄F (0.8 mmol) and urea (2.0 mmol) were dissolved in 16.0 mL of deionized water and then transferred to a 25 mL Teflon-lined stainless steel autoclave. Next, the treated electrodes were placed vertically in the autoclave, and the CoAl/LDHs were prepared on the ITO electrodes. The hydrothermal reaction was carried out at 120 °C for 6 hours. After cooling to the room temperature, the electrodes with deposited CoAl/LDHs (labelled as LDH/ITO) were washed with deionized water and dried in air, and the acuiqred LDH/ITO was employed as the working electrode.

Preparation of LDH/ITO-supported single atoms. Electrodeposition method was employed to immobilize single atoms onto CoAl/LDH support.² Taking Ag^s/LDH/ITO as an example, a typical three-electrode system was employed. Briefly, LDH/ITO, Ag/AgCl and Pt electrodes were used as working electrode, reference electrode and counter electrode, respectively. The working electrolyte was 100.0 mL of KOH aqueous solution (1.2 mol/L), containing 0.1 mmol/L AgNO₃ as the precursor for Ag species. The electrochemical depositions were carried out by cycling the potentials from -0.556 to -0.156 V with a scanning rate of 50 mV s⁻¹ under

stirring for 2 cycles, and the stirring rate was set as 600 r/min. After washing with deionized water, the Ag single atoms were localized onto the LDH/ITO electrodes and marked as Ag^s/LDH/ITO.

Similarly, Au^s/LDH/ITO, Cu^s/LDH/ITO and Fe^s/LDH/ITO were prepared through the electrodeposition method taking HAuCl₄·xH₂O, FeCl₃ and CuCl₂ as the metal precursors, respectively. The working electrolyte contained 100 µmol/L metal precursor and 1.2 mol/L KOH.

Preparation of controlled samples on ITO electrodes. To prepare Au or Ag nanoparticles, electrodeposition of 30 cycles were employed. In detail, Ag^{np}/ITO and Au^{np}/ITO electrodes were acquired through the electrodeposition on bare ITO electrodes in KOH aqueous solution (1.2 mol/L) containing 0.1 mmol/L AgNO₃ or 0.1 mmol/L HAuCl₄·*x*H₂O, respectively. Similarly, the Ag or Au nanoparticles were immobilized on the LDH/ITO electrodes under the same condition of electrodeposition to acquire Ag^{np}/LDH/ITO and Au^{np}/LDH/ITO samples.

Electrochemical and electrochemiluminescence measurements. A CHI660E electrochemical workstation was used to perform the electrochemical experiments in a traditional three-electrode system with Pt, Ag/AgCl and modified ITO as counter electrode, reference electrode and the working electrode. The effective surface area of the working electrode was measured as 1 × 1

cm² during the electrochemical deposition and ECL measurements. Cyclic voltammetry (CV) curves were recorded in 6.0 mL of 0.01 mmol luminol (phosphate-buffered saline, PBS, pH = 7.5) in a potential range from -0.8 to +0.8 V at a scan rate of 0.1 V/s. Real-time electrochemiluminescence (ECL) signals were collected by a biophysics chemiluminescence analyzer (Institute of Biophysics, Chinese Academy of Sciences, Beijing, China) with the voltage of the photomultiplier tube at -900 V. The I_{ECL} -potential curves were obtained based on the combination of the CV signal from CHI660E electrochemical workstation and ECL signal collected by a biophysics CL analyzer. The ECL emission spectra were acquired by an F-7000 fluorescence spectrophotometer (Hitachi, Tokyo, Japan) coupled with CHI660E. Electrochemical impedance spectroscopy (EIS) measurements were carried out from 0.1 Hz to 100 kHz in 5.0 mmol/L K₃[Fe(CN)₆]/K₄[Fe(CN)₆] (0.1 mol/L KCl). The linear sweep voltammetry (LSV) curves were recorded at different rotation rates in O2-saturated 0.1 mol/L PBS (pH = 7.5) from 0 V to -1.2 V with a sweeping rate of 5 mV/s.

The identification of radicals during the ECL reaction were studied by a radical trapping experiment. Briefly, 70 μ L of NaN₃, IPA and BQ (0.02 mol/L) solution were added to 6.0 mL of 0.01 mmol/L luminol to capture singlet oxygen (¹O₂), superoxide radical (O₂⁻⁻), and hydroxyl radical (OH•), respectively. O₂⁻⁻ was semi-quantitatively analyzed by the trapping experiment of NBT. 100 μ L of NBT (20 μ mol/L) was added to the luminol electrolyte, and scans in the range of -0.8 to +0.8 V were performed for 10 times to produce O₂⁻⁻. The resulting electrode was

dissolved in 10 mL of 0.5% KOH-dimethyl sulfoxide solution for UV-vis adsorption measurement.

Sample characterization. X-ray diffraction (XRD) patterns for the samples were recorded with a 2500VB2 (Rigaku Corporation, Japan) using a Cu K α (radiation $\lambda = 1.541$ 844 Å) ranging from 3° to 90° under a scanning rate of 5°/min. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) measurements were implemented using an ESCALAB-MKII 250 (Thermo, Waltham, U.S.A.) with an Al K as exciting source. Scanning electron microscopy (SEM) images were taken on a JSM-7800F (Japan Electron Optics Laboratory Co., Ltd.) scanning electron microscope. High-resolution transmission electron microscopy (HRTEM) images were obtained with a JEM-ARM200F (Japan Electron Optics Laboratory Co., Ltd.). The morphologies of Au and Ag nanoparticles were studied by TEM 2100 (Japan Electron Optics Laboratory Co., Ltd.). High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) was performed on a JEOL JEM-ARM200F equipped with double aberration correctors and a cold field emission gun. The mass loadings of samples on the modified electrodes were analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES, Thermo Fisher Scientific, U.S.A.). UV-vis absorption spectra were acquired by a UV-3900H (Shimadzu, Tokyo, Japan) spectrophotometer. Temperatureprogrammed desorption (TPD) was performed on a micromeritics chemisorb 2750

chemisorption instrument (ChemBET Pulsar, USA) with a thermal conductivity detector. The samples of 0.1000 g were preheated in a gas stream (10% oxygen and 90% helium) at 120 °C for 1 h. After cooling to the room temperature, the samples were kept in the same gas stream for 1 h to ensure saturated adsorption and then purged with a helium stream for another 1 h. The O₂-TPD curve was collected by ramping the temperature from 30 °C to 950 °C with helium flow as the carrier gas (40 mL/min).

Fig. S1 Cathodic electrochemiluminescence (ECL) spectra at Ag^s/LDH/ITO or Au^s/LDH/ITO electrode in 0.01 mmol/L luminol (PBS, pH = 7.5).

Fig. S2 Current density-voltammetry curves in 0.01 mmol/L luminol (PBS, pH = 7.5) at ITO, LDH/ITO, Au^s/LDH/ITO and Ag^s/LDH/ITO electrodes.

Fig. S3 X-ray diffraction (XRD) patterns of Ag^{np}/LDH/ITO, Ag^s/LDH/ITO and Ag^{np}/ITO samples.

Fig. S4 UV-vis absorption spectra of LDH/ITO, Ag^{np}/ITO, Ag^{np}/LDH/ITO and Ag^s/LDH/ITO samples.

Fig. S5 XRD patterns of Au^s/LDH/ITO, Au^{np}/LDH/ITO and Au^{np}/ITO samples.

Fig. S6 UV-vis absorption spectra of Au^s/LDH/ITO, Au^{np}/ITO, Au^{np}/LDH/ITO and LDH/ITO samples.

Fig.S7 Scanning electron microscopy (SEM) image of CoAl/LDH deposited on ITO

electrode.

Fig. S8 Transmission electron microscopy (TEM) images and the high-resolution TEM images (insets) of (a) Ag^{np}/LDH/ITO and (b) Au^{np}/LDH/ITO.

Fig. S9 X-ray photoelectron spectroscopy (XPS) spectra of Al 2p for LDH/ITO, Ag^{np}/LDH/ITO and Ag^s/LDH/ITO.

Fig. S10 XPS spectra of Al 2p for LDH/ITO, Au^{np}/LDH/ITO and Au^s/LDH/ITO.

Fig. S11 ECL intensities at Ag^s/LDH/ITO electrode in the absence (black lines) or presence of p-Benzoquinone (BQ, red lines), isopropyl alcohol (IPA, green lines), and NaN₃ (blue lines) as radical scavengers, respectively (the potential ranged from -0.8 V to 0 V).

Fig. S12 ECL intensities at Au^s/LDH/ITO electrode in the absence (black lines) or presence of p-BQ (red lines), IPA (green lines), and NaN₃ (blue lines) as radical scavengers, respectively (the potential ranged from -0.8 V to 0 V).

Fig. S13 (a) ECL intensities at $Ag^{s}/LDH/ITO$ and $Au^{s}/LDH/ITO$ electrodes in the absence or presence of *p*-BQ as radical scavengers, and (b) UV-vis spectra of NBT for the $Ag^{s}/LDH/ITO$ and $Au^{s}/LDH/ITO$ electrodes in KOH/DMSO solutions (the potential ranged from 0 V to +0.8 V).

Fig. S14 Electrochemical impedance spectroscopy (EIS) results for ITO, LDH/ITO, $Au^{s}/LDH/ITO$ and $Ag^{s}/LDH/ITO$ electrodes, and the inset showed the equivalent circuit (R_{s} , R_{ct} , C_{dl} , and W represented the resistance of solution, charge transfer resistance, double layer capacitance, and the Warburg constant, respectively).

Fig. S15 Linear sweep voltammetry (LSV) curves of Ag^s/LDH/ITO electrode in O₂-saturated PBS (pH = 7.5) solution at different rotation rates (the inset showed the K-L plots of j^{-1} vs. $\omega^{-1/2}$ at different potentials).

Fig. S16 LSV curves of Au^s/LDH/ITO electrode in O₂-saturated PBS (pH = 7.5) solution at different rotation rates (the inset showed the K-L plots of j^{-1} vs. $\omega^{-1/2}$ at different potentials).

Fig. S17 XRD patterns of Cu^s/LDH/ITO and LDH/ITO samples (absence of Cu nanoparticles at 50°).

Fig. S18 UV-vis absorption spectra of Cu^s/LDH/ITO and LDH/ITO samples (absence of Cu nanoparticles at 330 nm).

Fig. S19 (a) HAADF-STEM image and (b) STEM-EDS mapping images of Co, Al, and Cu for Cu^s/LDH/ITO.

Fig. S20 Ultraviolet photoelectron spectroscopy (UPS) valence-band spectra of Cu^s/LDH/ITO.

Fig. S21 (a) I_{ECL} -intensities and (b) I_{ECL} -potential curves for Cu^s/LDH/ITO sample.

Fig. S22 XRD patterns of Fe^s/LDH/ITO and LDH/ITO samples (absence of Fe nanoparticles at 45°).

Fig. S23 UV-vis absorption spectra of Fe^s/LDH/ITO and LDH/ITO samples (absence of Fe nanoparticles at 400 nm).

Fig. S24 (A) HAADF-STEM image and (B) STEM-EDS mapping images of Co, Al, and Fe for Fe^s/LDH/ITO.

Fig. S25 UPS valence-band spectra of Fe^s/LDH/ITO.

Fig. S26 (a) I_{ECL} -intensities and (b) I_{ECL} -potential curves for Fe^s/LDH/ITO sample.

Fig. S27 Correlation between the d-band centers and ECL intensities of $Ag^{s}/LDH/ITO$, $Au^{s}/LDH/ITO$, $Cu^{s}/LDH/ITO$ and $Fe^{s}/LDH/ITO$ electrodes (ECL measurements were performed 0.01 mmol/L luminol, PBS, pH = 7.5).

The reaction of cathodic luminol ECL:

 $O_2 \rightarrow ROSs$

 $LH_2 \rightarrow L^{-}$ (Dianion)

 $L^{-} + ROSs \rightarrow AP_2^{-*}$ (3-aminophthalate) $\rightarrow AP_2^{-} + hv$

The reaction of anodic luminol ECL:

 $LH_2 + 2OH^- - 2e^- \rightarrow L^{-}(Dianion) + H_2O$

 $L^{-} + O_2^{-} \rightarrow LO_2^{2-}$ (5-amino phthalic acid) $\rightarrow AP_2^{-*}$ (3-aminophthalate) + N_2

 $AP_2^{-*} \rightarrow AP_2^{-} + hv$

Scheme S1. ECL mechanism of luminol catalyzed by the single-atom catalysts.

	Valence	Peak position	Relative contents	C0 ³⁺ /C0 ²
	state	(eV)	(%)	+ (%)
LDH/ITO	Co ³⁺	783.7/798.8	23.3	71.9
	Co ²⁺	781.3/797.2	32.4	
Agnp/LDH/I	Co ³⁺	783.6/798.4	36.3	70.3
ТО	Co ²⁺	780.4/796.5	51.6	
Ag ^s /LDH/IT	Co ³⁺	783.2/798.1	17.6	40.6
0	Co ²⁺	780.3/796.4	43.3	
Au ^{np} /LDH/I	Co ³⁺	783.6/798.7	26.4	68.4
ТО	Co ²⁺	780.9/797.0	38.6	
Au ^s /LDH/IT	Co ³⁺	783.5/798.2	26.3	65.4
0	Co ²⁺	780.6/796.5	40.2	

Table S1 Peak positions and Co3+/Co2+ ratios of Co 2p in XPS spectra for LDH/ITO,Agnp/LDH/ITO, Aunp/LDH/ITO, Ags/LDH/ITO and Aus/LDH/ITO.

 Table S2 Information and calculation of the average oxidation states for Ag^s/LDH/ITO and Au^s/LDH/ITO.

Samples	Valence states	Integrated area	<i>C%</i>	
Ag ^s /LDH/ITO	Ag (0)	421.643	10%	
	Ag (I)	3794.758	90%	
Au ^s /LDH/ITO	Au (0)	963.834	27%	
	Au (I)	2605.922	73%	

The calculations of the average oxidation states for single atomic Ag and Au were carried out according to the following equations:³

 $Au_{\text{oxidation state}} = C\%Au(I) \times 1 + C\%Au(0) \times 0,$

 $Ag_{\text{oxidation state}} = C\%Ag(I) \times 1 + C\%Ag(0) \times 0,$

where C% stood for the proportion of the integrated area for the different valence states to the total area calculated from the quantitative peak deconvolution.

	Oxygen	Peak position	Relative contents
	species	(eV)	(%)
LDH/ITO	O _H	533.8	20.1
	Oo	531.8	68.5
	O _{lat}	530.6	11.4
Au ^s /LDH/ITO	O_{H}	532.9	10.7
	Oo	531.4	70.3
	O _{lat}	530.5	13.0
	Au–O	532.0	6.0
Ag ^s /LDH/ITO	O_{H}	532.6	7.3
	Oo	531.3	71.2
	O _{lat}	530.4	14.0
	Ag–O	529.5	7.5

Table S3 Peak positions and relative contents of O 1s in XPS spectra for LDH/ITO,Ags/LDH/ITO and Aus/LDH/ITO.

Samples	Radical scavengers	Target radicals	ECL intensity before addition	ECL intensity after addition	Quenchi ng rates
Au ^s /LDH/I TO	BQ	O₂•−	2.0×10 ³	0.07×10 ³	97%
Ag ^s /LDH/I TO	IPA	•OH	1.9×10 ³	0.5×10 ³	74%
	NaN ₃	¹ O ₂	1.8×10 ³	0.6×10 ³	67%
	BQ	O ₂ •-	2.6×10 ⁴	0.2×10 ³	99%
	IPA	•OH	2.3×10 ⁴	2.6×10 ³	89%
	NaN ₃	$^{1}O_{2}$	2.4×10 ⁴	3.0×10 ³	87%

Table S4 ECL intensity variations of Au^s/LDH/ITO and Ag^s/LDH/ITO electrodes in the presence of different scavengers.

References

- 1 W. Shi, L. Bai, J. Guo and Y. Zhao, RSC Adv., 2015, 5, 89056-89061.
- 2 Z. Zhang, C. Feng, C. Liu, M. Zuo, L. Qin, X. Yan, Y. Xing, H. Li, R. Si, S. Zhou and J. Zeng, *Nat. Commun.*, 2020, **11**, 1215.
- 3 T. Kashyap, S. Biswasi, A. R. Pal and B. Choudhury, ACS Sustain. Chem. Eng., 2019, 7, 19295–19302.