Supporting Information: Atomically precise surface chemistry of zirconium and hafnium metal oxo clusters beyond carboxylate ligands

Ajmal Roshan Unniram Parambil,†,‡,¶ Rohan Pokratath,‡ Muhammed Jibin

Parammal,[‡] Evert Dhaene,[‡] Dietger Van den Eynden,^{‡,§} Sandor Balog,[∥]

Alessandro Prescimone, $^\ddag$ Ivan Infante, $^\perp$ Patrick Shahgaldian, † and Jonathan De $Roo^{*,\ddagger}$

†Institute of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland ‡Department of Chemistry, University of Basel, Mattenstrasse 22, 4058 Basel, Switzerland ¶Swiss Nanoscience Institute, Klingelbergstrasse 82, 4056 Basel §Department of Chemistry, University of Ghent, Krijgslaan 281, 9000 Ghent, Belgium ∥Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland $\perp BCMaterials$, Spain

E-mail: jonathan.deroo@unibas.ch

Contents

1 In silico ligand exchange

Figure S1: Crystal structure of $\text{Zr6-acetate cluster } (Zr_6O_4(OH)_4(OOCCH_3)_{12})$ - CCDC-1051013.S1 All twelve carboxylate ligands are in bridging mode. Hydrogen atoms and core oxygen atoms are omitted for clarity.

Figure S2: Crystal structure of Zr6-methacrylate cluster $(Zr_6O_4(OH)_4(OOC(CH_3)C=CH_2)_{12})$ - CCDC-106826.^{S2} Ligand shell contains 9 bridging carboxylates and 3 chelating carboxylates. Hydrogen atoms, aliphatic chain carbon atoms and core oxygen atoms are omitted for clarity.

Figure S3: (A) Scheme representing the exchange of acetate ligands for phosphorus-based ligands on a fully bridged Hf6 cluster. (B) Enthalpy of ligand exchange reactions as a function of equivalents of exchanged ligands, ΔH . (C) The enthalpy change for every step, $\Delta\Delta H$.

Figure S4: DFT optimized structures of Zr/Hf acetate clusters partially or fully exchanged with diethylphosphinic acid. Cyan and blue atoms represent zirconium and hafnium, respectively; all other atoms follow conventional CPK coloring. Hydrogen atoms and core oxygen atoms are omitted for clarity.

 $\text{Zr6}(\text{acetate})_{_{8}}$ (dimethylphosphinate) $_{4}$

 $Zr6(acetate)₄$ (dimethylphosphinate) $_{8}$

Zr6(dimethylphosphinate) $_{12}$

 $Hf6(acetate)_{s}$ (dimethylphosphinate) $_{4}$

 $Hf6(acetate)_{_4}$ (dimethylphosphinate) $_8$

Hf6(dimethylphosphinate)₁₂

Figure S5: DFT optimized structures of Zr/Hf acetate clusters partially or fully exchanged with dimethylphosphinic acid. Cyan and blue atoms represent zirconium and hafnium, respectively; all other atoms follow conventional CPK coloring. Hydrogen atoms and core oxygen atoms are omitted for clarity.

Figure S6: DFT optimized structures of Zr/Hf acetate clusters partially or fully exchanged with ethylphosphinic acid. Cyan and blue atoms represent zirconium and hafnium, respectively; all other atoms follow conventional CPK coloring. Hydrogen atoms (except P-H) and core oxygen atoms are omitted for clarity.

Figure S7: DFT optimized structures of Zr/Hf acetate clusters partially or fully exchanged with methylphosphinic acid. Cyan and blue atoms represent zirconium and hafnium, respectively; all other atoms follow conventional CPK coloring. Hydrogen atoms (except P-H) and core oxygen atoms are omitted for clarity.

Figure S8: DFT optimized structures of Zr/Hf acetate clusters partially or fully exchanged with ethylphosphonic acid. Cyan and blue atoms represent zirconium and hafnium, respectively; all other atoms follow conventional CPK coloring. The dotted lines indicate some hydrogen bonds formed due to the second acidic group. Hydrogen atoms (except P-OH) and core oxygen atoms are omitted for clarity.

Figure S9: DFT optimized structures of Zr/Hf acetate clusters partially or fully exchanged with methylphosphonic acid. Cyan and blue atoms represent zirconium and hafnium, respectively; all other atoms follow conventional CPK coloring. The dotted lines indicate some hydrogen bonds formed due to the second acidic group. Hydrogen atoms (except P-OH) and core oxygen atoms are omitted for clarity.

Figure S10: (A) Both cis and trans Zr-Zr distances as a function of the equivalents of exchanged methylphosphinate ligands obtained from DFT calculations. The averaged distances with standard deviation are shown in B.

Figure S11: (A) Both *cis* and *trans* Zr-Zr distances as a function of the equivalents of exchanged ethylphosphinate ligands obtained from DFT calculations. The averaged distances with standard deviation are shown in B.

Figure S12: (A) Both cis and trans Zr-Zr distances as a function of the equivalents of exchanged methylphosphonate ligands obtained from DFT calculations. The averaged distances with standard deviation are shown in B.

Figure S13: (A) Both *cis* and *trans* Zr-Zr distances as a function of the equivalents of exchanged ethylphosphonate ligands obtained from DFT calculations. The averaged distances with standard deviation are shown in B.

Figure S14: (A) Both *cis* and *trans* Zr-Zr distances as a function of the equivalents of exchanged dimethylphosphinate ligands obtained from DFT calculations. The averaged distances with standard deviation are shown in B.

Figure S15: (A) Both cis and trans Zr-Zr distances as a function of the equivalents of exchanged diethylphosphinate ligands obtained from DFT calculations. The averaged distances with standard deviation are shown in B.

Figure S16: (A) Both *cis* and *trans* Hf-Hf distances as a function of the equivalents of exchanged methylphosphinate ligands obtained from DFT calculations. The averaged distances with standard deviation are shown in B.

Figure S17: (A) Both *cis* and *trans* Hf-Hf distances as a function of the equivalents of exchanged ethylphosphinate ligands obtained from DFT calculations. The averaged distances with standard deviation are shown in B.

Figure S18: (A) Both *cis* and *trans* Hf-Hf distances as a function of the equivalents of exchanged methylphosphonate ligands obtained from DFT calculations. The averaged distances with standard deviation are shown in B.

Figure S19: (A) Both *cis* and *trans* Hf-Hf distances as a function of the equivalents of exchanged ethylphosphonate ligands obtained from DFT calculations. The averaged distances with standard deviation are shown in B.

Figure S20: (A) Both *cis* and *trans* Hf-Hf distances as a function of the equivalents of exchanged dimethylphosphinate ligands obtained from DFT calculations. The averaged distances with standard deviation are shown in B.

Figure S21: (A) Both *cis* and *trans* Hf-Hf distances as a function of the equivalents of exchanged diethylphosphinate ligands obtained from DFT calculations. The averaged distances with standard deviation are shown in B.

Figure S22: (A) Scheme representing the exchange of one equivalent of phosphonic acid or mono or dialkyl phosphinic acid with acetate ligand on a **Hf12** cluster. Exchanged acetate can be chelating, belt-bridging, innerface-bridging, or intercluster-bridging. Enthalpy of ligand exchange reactions on Hf12 (B) Enthalpy of ligand exchange reactions at different binding sites.

Figure S23: Enthalpy of dimerisation of fully bridged Zr6 carboxylate or phosphinate clusters to their corresponding Zr12. The ligand binding modes in the Zr12 is also indicated.

2 Ligand exchange for dialkylphosphinic acid

2.1 NMR titrations of clusters

Figure S24: (A) Scheme for the titration of $Zr12$ -acetate cluster with diethylphosphinic acid. (B) ³¹P and (C) ¹H NMR of the titration of **Zr12**-acetate cluster with increasing equivalents of diethylphosphinic acid (expressed as equivalents with respect to a monomer unit). The cluster concentration is 20 mg/mL in CDCl₃. ³¹P and ¹H NMR of free phosphinic acid are also provided (with one equivalent acetic acid added for the ³¹P NMR reference).

Figure S25: ¹H NMR spectra of the titrations of (A) $Zr12$ -acetate and (B) $Zr6$ methylbutanoate with dioctylphosphinic acid (expressed as equivalents with respect to a monomer unit). The cluster concentration is 20 mg/mL in CDCl_3 . The reference ¹H NMR spectrum of dioctylphosphinic acid and carboxylate clusters are also provided.

2.2 Reference spectra

Figure S26: ³¹P NMR of (A) dioctylphosphinic acid and (B) diethylphosphinic acid with increasing equivalents of acetic acid in CDCl₃. The more the acetic acid, the more deshielded the phosphorus signal.

3 Ligand exchange for aryl or alkyl phosphinic acids

3.1 NMR titrations of clusters

Figure S27: ¹H NMR spectra of the titrations of **Zr12**-acetate with phenyl and hexyl phosphinic acid (expressed as equivalents with respect to a monomer unit). The cluster concentration is 20 mg/mL in CDCl₃. ¹H NMR spectra of the free phosphinic acids and acetate cluster are provided as reference.

Figure S28: (A) Scheme for the titration of $Zr12$ -acetate cluster with tetradecylphosphinic acid. ${}^{31}P(B)$ and ${}^{1}H(C)$ NMR of the titration of $Zr12$ -acetate cluster with increasing equivalents of tetradecylphosphinic acid (expressed as equivalents with respect to a monomer unit). The cluster concentration is 20 mg/mL in CDCl₃. ³¹P and ¹H NMR of tetradecylphosphinic acid and carboxylate clusters are also provided (with one equivalent acetic acid added for the ³¹P NMR reference).

Figure S29: (A) Scheme for the titration of **Zr6**-methylbutanoate cluster with hexylphosphinic acid. ³¹P (B) and ¹H (C) NMR of the titration of $\mathbf{Zr6}$ -methylbutanoate cluster with increasing equivalents of hexylphosphinic acid. The cluster concentration is 20 mg/mL in CDCl₃. The appearance of free 2-methylbutanoic acid confirms the ligand exchange. ^{31}P and ¹H NMR of hexylphosphinic acid and carboxylate clusters are also provided (with one equivalent acetic acid added for the ³¹P NMR reference).

3.2 Reference spectra

Figure S30: ³¹P NMR of (A) hexylphosphinic acid and (B) tetradecylphosphinic acid with increasing equivalents of acetic acid in CDCl₃. The more the acetic acid, the more deshielded the phosphorus signal.

Figure S31: ³¹P NMR of phenylphosphinic acid with increasing equivalents of acetic acid in CDCl³ . The more the acetic acid, the more deshielded the phosphorus signal.

3.3 Characterization of purified clusters

Figure S32: (A) Crystal structure of **Hf6**-phenylphosphinate cluster $\mathrm{Hf_{6}O_{4}(OH)_{4}}$ Blue atoms represent hafnium and all other atoms follow conventional CPK coloring. The co-crystallized dichloromethane molecules and hydrogen atoms are omitted for clarity. (B) PDF fit for Hf6-phenylphosphinate cluster with its crystal structure. PDF fit of Hf6-hexylphosphinate cluster with distorted Hf6-phosphinate cluster is also shown. (C) FTIR spectra of Hf6-phosphinate clusters. IR spectra of free ligands are also provided for reference. (D) ^{31}P NMR of purified **Hf6**-phosphinate clusters. ³¹P NMR of free acids are provided as reference.

3.4 Single crystal data

Structure	Zr6-phenylphosphinate	Hf6-phenylphosphinate
CCDC	2358676	2358675
Empirical formula	$C_{73}H_{78}Cl_2O_{32}P_{12}Zr_6$	$C_{73.5}H_{78.9}Cl_{2.9}O_{32}P_{12}Hf_6$
Formula weight	2445.11	3019.05
Temperature/K	150	150
Crystal system	triclinic	triclinic
Space group	$P-1$	$P-1$
$a/\text{\AA}$	14.4003(3)	14.3943(3)
b/\AA	15.2252(4)	15.1871(3)
$c/\text{\AA}$	24.9863 (6)	24.9430(5)
α /°	89.897 (2)	89.932 (2)
β /°	80.487(2)	99.740 (2)
γ / \circ	64.685 (2)	115.133(2)
Volume/ \AA^3	4869.4(2)	4849.75(19)
Ζ	$\overline{2}$	$\overline{2}$
$\rho_{\rm calc}/\rm g cm^{-3}$	1.668	2.067
μ /mm ⁻¹	5.401	9.992
F(000)	2428.0	2874.0
Crystal size/ $mm3$	$0.22 \times 0.197 \times 0.17$	$0.18 \times 0.173 \times 0.16$
Radiation	GaK α ($\lambda = 1.34143$)	GaK α ($\lambda = 1.34143$)
2Θ range for data collection/ \circ	6.008 to 111.626	8.336 to 111.808
Index ranges	$-13 \le h \le 17$,	$-15 \le h \le 17$,
	$-18 \le k \le 18$,	$-18 < k < 10$,
	$-28 \le l \le 30$	$-30 \le l \le 30$
Reflections collected	91695	69963
Independent reflections	18798 [$R_{int} = 0.0713$, $R_{\text{sigma}} = 0.0416$	18736 [$R_{int} = 0.0541$, $R_{\text{sigma}} = 0.0306$
Data/restraints/parameters	18798/333/1127	18736/793/976
Goodness-of-fit on F^2	1.048	1.046
Final R indexes $[I>=2\sigma(I)]$	$R_1 = 0.0875$, $wR_2 = 0.2465$	$R_1 = 0.0899$, $wR_2 = 0.2276$
Final R indexes [all data]	$R_1 = 0.0976$, $wR_2 = 0.2591$	$R_1 = 0.0984$, $wR_2 = 0.2348$
Largest diff. peak/hole/e \AA^{-3}	$1.99/-1.77$	$3.04/-1.26$

Table S1: Crystallographic data and structure refinement parameters for the Zr6 and Hf6 phenylphosphinate clusters.

Cluster	Average cis M-M distance (\AA)	Average trans M-M distance (\AA)
$Zr6$ -acetate	3.534	4.997
$Zr6$ -benzoate	3.525	4.985
$Zr12$ -acetate	3.509	4.962
Hf12-acetate	3.494	4.941
$Zr6$ -dimethylphosphate	3.575	5.055
$Zr6$ -phenylphosphinate	3.581	5.064
Hf6-phenylphosphinate	3.563	5.039

Table S2: Average *cis* and *trans* M-M distances of cluster cores from crystal structures.

Figure S33: (A) Both cis and trans Zr-Zr distances of different zirconium crystal structures - $\overline{Zr12}$ -acetate (CCDC-604528), S3 $\overline{Zr6}$ -acetate (CCDC-1051013), S1 $\overline{Zr6}$ -benzoate (CCDC-117768), ^{S4} Zr6-dimethylphosphate (CCDC-1863035), ^{S5} and Zr6-phenylphosphinate (this work). The averaged distances with standard deviation are shown in B.

3.5 PDF refinement data

Figure S34: Structure of distorted Zr6 phosphinate predicted from PDF refinement. Cyan atoms represent zirconium and all other atoms follow conventional CPK coloring.

Figure S35: (A) Both *cis* and *trans* Zr-Zr distances of **Zr6**-phenylphosphinate and distorted Zr6-phosphinate structure. The averaged distances with standard deviation are shown in B.

Figure S36: PDF fit for synthesized Zr6-hexylphosphinate cluster with the crystal structure of Zr6-phenylphosphinate and distorted phosphinate clusters.

Figure S37: PDF fit for synthesized Zr6-tetradecylphosphinate cluster with the crystal structure of Zr6 phenylphosphinate and distorted phosphinate clusters.

	Experimental data Zr6-phenylphosphinate	Zr6-hexylphosphinate		Zr6-tetradecylphosphinate	
Model	$Zr6$ -phenyl	$Zr6$ -phenyl	distorted Zr6	$Zr6$ -phenyl	distorted Zr6
	phosphinate	phosphinate	phosphinate	phosphinate	phosphinate
scale	0.50	0.81	0.87	0.49	0.51
Uiso $\rm{Zr}[\AA^2]$	0.003	0.004	0.005	0.003	0.003
Uiso $O[\AA^2]$	0.010	0.013	0.012	0.015	0.010
Uiso $P[A^2]$	0.009	0.008	0.010	0.008	0.010
Uiso $C[\AA^2]$	0.020	0.030	$\overline{}$	0.060	
delta ₂	2.1	2.1	2.4	2.2	2.2
Rw	0.18	0.40	0.21	0.43	0.24

Table S3: Refined parameters after fitting monoalkylphosphinate capped Zr6 clusters with the crystal structure of Zr6-phenylphosphinate and distorted phosphinate clusters.

Figure S38: PDF fit for synthesized Hf6-hexylphosphinate cluster with the crystal structure of Hf6-phenylphosphinate and distorted phosphinate clusters.

Figure S39: PDF fit for synthesized Hf6-tetradecylphosphinate cluster with the crystal structure of Hf6-phenylphosphinate and distorted phosphinate clusters.

3.6 Dynamic light scattering analysis

Figure S40: (A) DLS particle size distribution and (B) correlogram for measurements of 40 mg/mL solution of Zr6-hexylphosphinate in dichloromethane after manual fitting. Average solvodynamic radius = 0.64 ± 0.04 nm, polydispersity index = 0.03 ± 0.02 . The different colors represent individual measurements taken in triplicate.

Figure S41: (A) DLS particle size distribution and (B) correlogram for measurements of 40 mg/mL solution of Zr12-hexanoate in dichloromethane after manual fitting. Average solvodynamic radius = 0.91 ± 0.05 nm, polydispersity index = 0.05 ± 0.02 . The different colors represent individual measurements taken in triplicate.

3.7 ¹H and ³¹P NMR spectra of purified clusters

Figure S42: ¹H (A) and ³¹P (B) NMR of purified $Zr6$ -phenylphosphinate cluster in CDCl₃. ¹H and ³¹P NMR of free acids are provided as reference. The broadening of NMR signals confirms the cluster binding of new phenylphosphinate ligands.

Figure S43: ¹H (A) and ³¹P (B) NMR of purified **Hf6**-phenylphosphinate cluster in CDCl₃. ¹H and ³¹P NMR of free acids are provided as reference. The broadening of NMR signals confirms the cluster binding of new phenylphosphinate ligands.

Figure S44: ¹H (A) and ³¹P (B) NMR of purified $Zr6$ -hexylphosphinate cluster in CDCl₃. ¹H and ³¹P NMR of free acids are provided as reference. The broadening of NMR signals confirms the cluster binding of new hexylphosphinate ligands.

Figure S45: ¹H (A) and ³¹P (B) NMR of purified **Hf6**-hexylphosphinate cluster in CDCl₃. ¹H and ³¹P NMR of free acids are provided as reference. The broadening of NMR signals confirms the cluster binding of new hexylphosphinate ligands.

Figure S46: ¹H (a) and ³¹P (b) NMR of purified Zr6-tetra decylphosphinate cluster in CDCl₃. ¹H and ³¹P NMR of free acids are provided as reference. The broadening of NMR signals confirms the cluster binding of new phenylphosphinate ligands.

Figure S47: ${}^{1}H$ (a) and ${}^{31}P$ (b) NMR of purified **Hf6**-tetradecylphosphinate cluster in CDCl₃. ¹H and ³¹P NMR of free acids are provided as reference. The broadening of NMR signals confirms the cluster binding of new phenylphosphinate ligands.

Figure S48: ESI-HRMS analysis of Zr6-phenylphosphinate cluster $\rm{Zr_6O_4(OH)_4(C_6H_5PHOO)_{12}}$. Both the experimental and simulated spectra are shown.

Figure S49: ESI-HRMS analysis of Hf6-phenylphosphinate cluster $\text{Hf}_6\text{O}_4(\text{OH})_4(\text{C}_6\text{H}_5\text{PHOO})_{12}$. Both the experimental and simulated spectra are shown.

3.9 Powder X-ray diffraction data

Figure S50: Powder X-ray diffraction data of Zr6- and Hf6-phenylphosphinate clusters. The simulated powder patterns ($\lambda = 0.1821 \text{ Å}$, same as experimental wavelength) are provided as reference.

3.10 Ligand stripping experiments

Figure S51: ¹H NMR of **Zr6**-hexylphosphinate cluster after ligand stripping experiments with trifluoroacetic acid. ¹H NMR of hexylphosphinic acid and acetic acid in trifluoroacetic acid are provided as references. The integral values corresponding to the methyl group of both ligands are also mentioned.

Figure S52: ¹H NMR of **Zr6**-tetradecylphosphinate cluster after ligand stripping experiments with trifluoroacetic acid. ¹H NMR of tetradecylphosphinic acid and acetic acid in trifluoroacetic acid are provided as references. The integral values corresponding to the methyl group of both ligands are also mentioned.

4 Ligand Exchange with phosphonic acids

$\mathbf B$ C A D Ε

4.1 NMR titrations of clusters

Figure S53: Gelation of $Zr12$ -acetate cluster solution in CDCl₃ with 12 equivalents (per cluster monomer) of hexylphosphonic acid (A), dodecylphosphonic acid (B), oleylphosphonic acid (C) and 2-ethylhexylphosphonic acid (D). No gelation was observed for 2 hexyldecylphosphonic acid (E). The cluster concentration is 40 mg/mL.

Figure S54: Gelation of $\text{Zr6-methylbutanoate cluster solution in CDCl}_3$ with 12 equivalents (per cluster monomer) of hexylphosphonic acid (A), dodecylphosphonic acid (B), oleylphosphonic acid (C) and 2-ethylhexylphosphonic acid (D). No gelation was observed for 2-hexyldecylphosphonic acid (E) . The cluster concentration is 40 mg/mL.

Figure S55: (A) Scheme for the titration of Zr12-acetate cluster with 2 ethylhexylphosphonic acid. ³¹P (B) and ¹H (C) NMR of the titration of $\mathbf{Zr12}$ -acetate cluster with increasing equivalents of 2-ethylhexylphosphonic acid (expressed as equivalents with respect to a monomer unit). The cluster concentration is 20 mg/mL in CDCl₃. ³¹P and ¹H NMR of 2-ethylhexylphosphonic acid and carboxylate clusters are also provided (with one equivalent acetic acid added for the ³¹P NMR reference).

Figure S56: (A) Scheme for the titration of $Zr12$ -acetate cluster with oleylphosphonic acid. $31P$ (B) and $1H$ (C) NMR of the titration of **Zr12**-acetate cluster with oleylphosphonic acid. Gelation prevented the data acquisition at high equivalents. ^{31}P and ^{1}H NMR of oleyl phosphonic acid and carboxylate clusters are also provided (with one equivalent acetic acid added for the ³¹P NMR reference).

Figure S57: ¹H NMR of the titration of a solution of **Zr12**-acetate cluster with increasing 2-hexyldecylphosphonic acid (expressed as equivalents with respect to a monomer unit). The cluster concentration is 20 mg/mL in CDCl₃. ¹H NMR of 2-hexyldecylphosphonic acid and acetate clusters are also provided.

Figure S58: (A) Scheme for the titration of **Zr6**-methylbutanoate cluster with hexylphosphonic acid. ³¹P (B) and ¹H (C) NMR of the titration of $\mathbf{Zr6}$ -methylbutanoate cluster with increasing equivalents of hexylphosphonic acid. The cluster concentration is 20 mg/mL in CDCl₃. Gelation prevented the data acquisition at high equivalents. ³¹P and ¹H NMR of hexylphosphonic acid and methylbutanoate cluster are also provided (with one equivalent acetic acid added for the ³¹P NMR reference).

4.2 Reference spectra

Figure S59: ³¹P NMR of (A) hexylphosphonic acid and (B) oleylphosphonic acid with increasing equivalents of acetic acid. The more the acetic acid, the more deshielded the phosphorus signal.

Figure S60: ³¹P NMR of (A) 2-hexyldecylphosphonic acid and (B) 2-ethylhexylphosphonic acid with increasing equivalents of acetic acid. The more the acetic acid, the more deshielded the phosphorus signal.

4.3 ¹H and ³¹P NMR spectra of purified clusters

Figure S61: ¹H (A) and ³¹P (B) NMR of purified ligand exchanged $Zr12$ -acetate cluster with 2-hexyldecylphosphonic acid in $CDCl_3$. ¹H and ³¹P NMR of free acids are provided as reference. The broadening of NMR signals confirms the cluster binding of new 2-hexyldecylphosphonate ligands.

Figure S62: ¹H (A) and ³¹P (B) NMR of purified ligand exchanged **Hf12**-acetate cluster with 2-hexyldecylphosphonic acid in $CDCl_3$. ¹H and ³¹P NMR of free acids are provided as reference. The broadening of NMR signals confirms the cluster binding of new 2-hexyldecylphosphonate ligands.

4.4 PDF refinement data

Figure S63: Crystal structure of layered zirconium phenylphosphonate (JPCDS:44-2000). Cyan atoms represent zirconium; all other atoms follow conventional CPK coloring. Hydrogen atoms are omitted for clarity. M, O, and P represent metal (zirconium), oxygen and phosphorus, respectively.

Figure S64: Single-phase PDF fit for hexyldecylphosphonate exchanged Zr clusters with various cluster structures reported in the literature. For each of the structural models, we removed the excess carbon atoms to arrive at a model with acetate ligands.

Figure S65: Single-phase PDF fit for hexyldecylphosphonate exchanged Zr clusters with a 3 x 3 layer of Zr phenylphosphonate (contains 9 zirconium atoms in total). The phenyl ring is removed from the structure model.

Model	$Zr3$ -acetate	$Zr3$ -acetate	Zr4-formate	Zr6 -bridging chelating	Zr6-bridging
	isopropoxide	<i>tert</i> -butoxide	isopropoxide	isobutyurate	acetate
scale	0.72	0.73	0.71	0.56	0.53
Uiso $Zr[\AA^2]$	0.013	0.021	0.005	0.005	0.005
Uiso $O[\AA^2]$	0.005	0.005	0.005	0.040	0.79
Uiso $C[\AA^2]$	0.090	0.090	0.090	0.090	0.090
delta ₂	2.1	3.0	2.0	3.0	3.0
$\bm{R}\bm{w}$	0.85	0.87	0.75	0.64	0.69
Model	$Zr10$ -salicylate	$Zr12$ -bridging chelating	$Zr26$ -formate	Zr phenylphosphonate	
		acetate	isopropoxide	3×3 layer	
scale	0.65	0.58	0.52	0.93	
Uiso $\mathbb{Z}r[\AA^2]$	0.005	0.005	0.005	0.007	
Uiso $O[\AA^2]$	0.011	0.055	0.057	0.017	
Uiso $P[A^2]$			-0.005		
Uiso $C[\AA^2]$	0.090	0.090	0.090	0.085	
delta2	3.0	3.0	3.0	1.7	
Rw	0.61	0.63	0.65	0.73	

Table S5: Refined parameters after single-phase PDF fit for hexyldecylphosphonate exchanged Zr clusters.

Figure S66: Structure model of **Zr6**-chelating bridging acetate cut from the crystal structure of Zr12-acetate.S3 Carbon atoms are removed from structure model. Cyan atoms represent zirconium; all other atoms follow conventional CPK coloring.

		Hf hexylphosphonate	Hf hexyldecylphosphonate		
	Phase I	Phase II	Phase I	Phase II	
Model	Hf phosphonate	Hf6-acetate	Hf phosphonate	Hf6-acetate	
	3×3 layer	chelating bridging	3×3 layer	chelating bridging	
scale	3.43	2.75	1.88	2.58	
Uiso $Hf[A^2]$	0.006	0.005	0.006	0.006	
Uiso $O[A^2]$	0.010	0.025	0.010	0.026	
Uiso $P[A^2]$	0.007		0.009		
Uiso $C[\AA^2]$	0.056		0.100		
delta ₂	3.50	3.44	3.50	3.50	
$\bm{R}\bm{w}$	0.23		0.25		
Amplitude (A)			1.45		
wasyn			5.56		
λ			6.30		
ϕ			-0.90		
θ			2.04		
wsig			0.81		

Table S6: Refined parameters after dual-phase fitting phosphonate exchanged Hf clusters.

Figure S67: Dual phase PDF fit for phosphonate-exchanged Zr clusters with a 3 x 3 layer of Zr phenylphosphonate (which contains 9 zirconium atoms in total) and Zr6-chelating bridging acetate. Refined parameters are tabulated in Table S7.

		Zr hexylphosphonate	Zr hexyldecylphosphonate		
	Phase I	Phase II	Phase I	Phase II	
Model	Zr phosphonate	Zr6-acetate	Zr phosphonate	Zr6-acetate	
	5×5 layer	chelating bridging	3×3 layer	chelating bridging	
scale	0.079	0.044	0.69	0.56	
Uiso $\rm{Zr}[\AA^2]$	0.006	0.003	0.006	0.004	
Uiso $O[A^2]$	0.020	0.043	0.010	0.032	
Uiso $P[A^2]$	0.010		0.009		
Uiso $C[\AA^2]$	0.09		0.040		
delta ₂	2.5	2.5	$1.0\,$	2.5	
$\bm{R}\bm{w}$	0.32		0.36		
Amplitude (A)			0.60		
wasyn			-143.3		
λ			-9.7		
ϕ			-162.0		
θ			-62.2		
wsig			-37.9		

Table S7: Refined parameters after dual-phase fitting phosphonate exchanged Zr clusters.

4.5 Dynamic light scattering analysis

Figure S68: (A) DLS particle size distribution (by volume) and (B) correlogram for measurements of 10 mg/mL solution of zirconium hexyldecylphosphonate in chloroform. Z-average $= 22.74 \pm 2.13$ nm, polydispersity index $= 0.2251 \pm 0.0403$. The different colors represent individual measurements taken in triplicate.

Figure S69: (A) DLS particle size distribution (by volume) and (B) correlogram for measurements of 10 mg/mL solution of hafnium hexyldecylphosphonate in chloroform. Z-average $= 20.19 \pm 0.05$ nm, polydispersity index $= 0.433 \pm 0.0022$. The different colors represent individual measurements taken in triplicate.

4.6 FT-IR spectra

Figure S70: IR spectra of phosphonate exchanged hafnium clusters after isolation and purification. IR spectra of free acids are provided as reference.

References

- (S1) Hennig, C.; Weiss, S.; Kraus, W.; Kretzschmar, J.; Scheinost, A. C. Solution Species and Crystal Structure of $Zr(IV)$ Acetate. *Inorg. Chem.* 2017, 56, 2473–2480.
- (S2) Kickelbick, G.; Schubert, U. Oxozirconium Methacrylate Clusters: $\text{Zr}_6(\text{OH})_4\text{O}_4(\text{OMc})_{12}$ and $\text{Zr}_4\text{O}_2(\text{OMc})_{12}$ (OMc = Methacrylate). Ber. Dtsch. Chem. Ges. 1997, 130, 473–478.
- (S3) Puchberger, M.; Kogler, F. R.; Jupa, M.; Gross, S.; Fric, H.; Kickelbick, G.; Schubert, U. Can the Clusters $\rm{Zr_6O_4(OH)_4(OOCR)}_{12}$ and $\rm{[Zr_6O_4(OH)_4(OOCR)_{12}]_2}$ Be Converted into Each Other? *Eur. J. Inorg. Chem.* **2006**, *2006*, 3283-3293.
- (S4) Kickelbick, G.; Wiede, P.; Schubert, U. Variations in cap-

ping the $Zr_6O_4(OH)_4$ core: X-ray structure analyses of $\left[\text{Zr}_6(\text{OH})_4\text{O}_4(\text{OOC-CH=CH}_2)_{10}\right]_2(\mu-\text{OOC-CH=CH}_2)_4$ and $\text{Zr}_6(\text{OH})_4\text{O}_4(\text{OOCR})_{12}(\text{ProH})$ (R=Ph, CMe=CH₂). *Inorg. Chim. Acta* 1999, 284, 1–7.

(S5) Ji, Z.; Zhang, H.; Liu, H.; Yaghi, O. M.; Yang, P. Cytoprotective metal-organic frameworks for anaerobic bacteria. Proc. Natl. Acad. Sci. 2018, 115, 10582–10587.