Supporting Information

A nitrile solvent structure induced stable solid electrolyte interphase for wide-temperature lithium-ion batteries

Zhongming Wang¹, Zhiyuan He¹, Zhongsheng Wang¹, Jixu Yang¹, Kecheng Long¹, Zhibin Wu¹, Gang Zhou³, Lin Mei¹*, Libao Chen^{1,2}*

E-mail: meilin@csu.edu.cn, lbchen@csu.edu.cn

1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, P. R. China.

2 National Energy Metal Resources and New Materials Key Laboratory, Central South University, Changsha, 410083, P. R. China.

3 School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523000, P. R. China.

Keywords: lithium-ion battery; electrolyte; nitrile solvent; electrode interface; wide temperature

Solvent name	Ethylene Carbonate	Acetonitrile	Butyronitrile (Valeronitrile
/Physical property	(EC)	(AN)	BN)	(VN)
melting point/°C	39	-45	-112	-96.2
boiling point/°C	248	82	117	141.3
density (20°C) g/cm ³	1.41	0.786	0.794	0.795
Viscosity/mPa·S	1.9(40°C)	0.325 (30°C)	0.515 (30℃)	0.779 (25°C)
dielectric constant	89	38.8	20.7	21
c/v∙m		2310	_3.7	

Table S1. Physicochemical properties of different solvents

Figure S1. The viscosity of different electrolytes at room temperature.

Figure S2. The Li⁺ diffusion coefficients of different electrolytes at room temperature.

Figure S3. The image records of various electrolytes after being statically placed for over 10 hours under the conditions of 25°C and -50°C, respectively

Figure S4. The solvent coordination number of EC and VN electrolyte group

Figure S5. The capacity and voltage curves of various electrolytes during 3 cycles with 0.1C, (a) EC group, (b) AN group, (C) BN group, (d) VN group

Figure S6. The dQ/dV curves of various electrolytes during 3 cycles with 0.1C, (a) EC group, (b) AN group, (C) BN group, (d) VN group

Figure S7. Charging curves of different electrolytes with 3 C at room temperature.

Figure S8. (a) The electrochemical impedance spectroscopy (EIS) of each electrolyte,(b) Ohmic internal resistance values of different groups

Figure S9. Scanning Electron Microscopy (SEM) images of graphite electrode after 1 cycle(a-d) and 10 cycles(e-h) of cycling

Figure S10. TEM image of the anode of AN electrolyte after 1 cycle

Figure S11. N1s spectrum of anode XPS: (a) after capacity grading and (b) after 10 cycles

Figure S12. Scanning Electron Microscopy (SEM) images of NCM523 electrode after 1 cycle