### **Supporting Information for**

# Carbon-metal versus Metal-metal Synergistic Mechanism of Ethylene Electrooxidation via Electrolysis Water on TM<sub>2</sub>N<sub>6</sub> sites in Graphene

Yun-Jie Chu,<sup>a</sup> Chang-Yan Zhu,<sup>a</sup> Chun-Guang Liu,<sup>b\*</sup> Yun Geng,<sup>a</sup> Zhong-Min Su<sup>c</sup> and

#### Min Zhang<sup>a\*</sup>

<sup>a</sup>Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local

United Engineering Laboratory for Power Batteries, Northeast Normal University,

Changchun 130024, China;

<sup>b</sup>Department of Chemistry, Faculty of Science, Beihua University, Jilin City 132013,

P. R. China

<sup>c</sup>State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130021 P. R. China

Email: <u>liucg407@163.com; mzhang@nenu.edu.cn</u>

#### Table of contents

(Total Number of Pages: 24, Total Number of Figures: 18, Total Number of Tables: 3)

| <b>Table S1.</b> Free energy difference ( $\Delta G$ , eV) of O atom adsorbed at                  | Page S4  |  |  |
|---------------------------------------------------------------------------------------------------|----------|--|--|
| difference sites for 19 $TM_2N_6$ (a) graphenes, the "0 eV" represents the                        | U        |  |  |
| most stable O adsorption site, and "-" represents no corresponding                                |          |  |  |
| configurations obtained during their optimization.                                                |          |  |  |
| Table S2. Total Gibbs free energy changes of ethylene oxidation                                   | Page S5  |  |  |
| reaction initiated by stable *O intermediates to AA and EO on various                             | -        |  |  |
| $TM_2N_6@$ graphenes.                                                                             |          |  |  |
| <b>Table S3.</b> Gibbs free energy difference ( $\Delta G$ , eV) of OH adsorbed at                | Page S6  |  |  |
| difference sites on 12 TM <sub>2</sub> N <sub>6</sub> @graphenes, the "0 eV" represents the       | -        |  |  |
| most stable OH adsorption site, and "-" represents no corresponding                               |          |  |  |
| configurations obtained during their optimization.                                                |          |  |  |
| <b>Fig. S1</b> Top and side views of various homonuclear TM <sub>2</sub> N <sub>6</sub> @graphene | Page S7  |  |  |
| DMACs with distances between two metal atoms in angstroms (Å).                                    | -        |  |  |
| Fig. S2 Top and side views of O atom absorbed at the site-1 on various                            | Page S8  |  |  |
| $TM_2N_6@$ graphenes.                                                                             | -        |  |  |
| Fig. S3 Top and side views of O atom absorbed at site-2 on various                                | Page S9  |  |  |
| $TM_2N_6@$ graphenes.                                                                             |          |  |  |
| Fig. S4 Top and side views of O atom absorbed at site-3 on various                                | Page S10 |  |  |
| $TM_2N_6@$ graphenes.                                                                             |          |  |  |
| Fig. S5 Top and side views of O atom absorbed at site-4 on various                                | Page S11 |  |  |
| $TM_2N_6@$ graphenes.                                                                             |          |  |  |
| Fig. S6 Top and side views of OH absorbed at site-1 on various                                    | Page S12 |  |  |
| $TM_2N_6@$ graphenes.                                                                             |          |  |  |
| Fig. S7 Top and side views of OH absorbed at site-2 on various                                    | Page S13 |  |  |
| $TM_2N_6@$ graphenes.                                                                             |          |  |  |
| Fig. S8 Top and side views of OH absorbed at site-4 on various                                    | Page S14 |  |  |
| $TM_2N_6@$ graphenes.                                                                             |          |  |  |
| Fig. S9 Top and side views of OOH absorbed on various                                             | Page S15 |  |  |
| $TM_2N_6@$ graphenes.                                                                             |          |  |  |
| Fig. S10 Top and side views of OO absorbed on various                                             | Page S16 |  |  |
| $TM_2N_6@graphenes.$                                                                              |          |  |  |
| Fig. S11 Gibbs free energy change diagrams for ethylene electro-                                  | Page S17 |  |  |
| oxidation on Co <sub>2</sub> N <sub>6</sub> @graphenes at the lowest applied potential to         |          |  |  |
| generate *O intermediates at pH=0.                                                                |          |  |  |
| Fig. S12 Top and side views of acetaldehyde absorbed on various                                   | Page S18 |  |  |
| $TM_2N_6@$ graphenes.                                                                             |          |  |  |
| Fig. S13 Top and side views of ethylene oxide absorbed on various                                 | Page S19 |  |  |
| $TM_2N_6@$ graphenes.                                                                             |          |  |  |
| Fig. S14 Kinetic energy barriers and transition state structures of AA                            |          |  |  |
| and EO generation through C-TM mechanism on Co <sub>2</sub> N <sub>6</sub> @graphenes.            |          |  |  |

| Fig. S15 Projected density of states (PDOS) of the d orbitals of the two                       |          |  |
|------------------------------------------------------------------------------------------------|----------|--|
| metals in $TM_2N_6$ @graphenes.                                                                |          |  |
| Fig. 16 Linear relationship between d-band center of metals in                                 | Page S22 |  |
| TM <sub>2</sub> N <sub>6</sub> @graphenes and energy difference of the most stable OH          |          |  |
| adsorption sites between metal and C sites.                                                    |          |  |
| Fig. S17 Evolution of the total energy of 9 TM <sub>2</sub> N <sub>6</sub> @graphene at 300 K, |          |  |
| and the total times duration 10 ps. Snapshots of structures at the end of                      |          |  |
| AIMD simulations are also shown.                                                               |          |  |
| Fig. S18 Evolution of the total energy of 9 $TM_2N_6$ @graphene at 500 K,                      |          |  |
| and the total times duration 10 ps. Snapshots of structures at the end of                      |          |  |
| AIMD simulations are also shown.                                                               |          |  |

| metal | site-1 | site-2 | site-3 | site-4 |
|-------|--------|--------|--------|--------|
| TiTi  | 0      | _      | 3.42   | _      |
| VV    | 0.17   | 0      | 4.21   | —      |
| CrCr  | 0.77   | 0      | 3.28   | 3.23   |
| MnMn  | 0.43   | 0      | 1.74   | 1.61   |
| FeFe  | 0      | 0.03   | 0.63   | 0.61   |
| CoCo  | 0.17   | 0.17   | 0.17   | 0      |
| NiNi  | 0.90   | 0.77   | 0.13   | 0      |
| CuCu  | 0.93   | 0.88   | 0.09   | 0      |
| ZnZn  | 0      | _      | 0.43   | 0.39   |
| МоМо  | 0.76   | 0      | 3.87   | _      |
| RuRu  | 0.44   | 0      | 1.23   | 1.20   |
| RhRh  | 1.11   | 0.50   | 0.23   | 0      |
| PdPd  | 1.20   | 0.84   | 0.09   | 0      |
| ТаТа  | 0      | 0.18   | 4.39   | _      |
| WW    | 0.73   | 0      | 4.11   | _      |
| ReRe  | 0.92   | 0      | 2.65   | 2.61   |
| OsOs  | 1.56   | 0      | 1.48   | 1.43   |
| IrIr  |        | 0.27   | 0.30   | 0      |
| PtPt  | 1.44   | 0.62   | 0.20   | 0      |

**Table S1.** Free energy difference ( $\Delta G$ , eV) of O atom adsorbed at difference sites for 19 TM<sub>2</sub>N<sub>6</sub>@graphenes, the "0 eV" represents the most stable O adsorption site, and "-" represents no corresponding configurations obtained during their optimization.

| metal type                        | Ti    | V     | Cr    | Mn    | Fe    |
|-----------------------------------|-------|-------|-------|-------|-------|
| $\Delta G_{AA} \left( eV \right)$ | 0.88  | 2.25  | 0.78  | -0.98 | -2.18 |
| $\Delta G_{EO} \left( eV \right)$ | 2.09  | 3.46  | 1.99  | 0.23  | -0.97 |
| metal type                        | Co    | Ni    | Cu    | Zn    | Мо    |
| $\Delta G_{AA} \left( eV \right)$ | -2.80 | -2.95 | -2.65 | -2.01 | 1.67  |
| $\Delta G_{EO} \left( eV \right)$ | -1.60 | -1.74 | -1.44 | -0.80 | 2.88  |
| metal type                        | Ru    | Rh    | Pd    | Ta    | W     |
| $\Delta G_{AA} (eV)$              | -1.44 | -1.49 | -2.58 | 2.12  | 1.68  |
| $\Delta G_{EO} \left( eV \right)$ | -0.23 | -2.70 | -1.37 | 3.33  | 2.83  |
| metal type                        | Re    | Os    | Ir    | Pt    |       |
| $\Delta G_{AA} \left( eV \right)$ | 0.32  | -1.08 | -2.51 | -2.32 |       |
| $\Delta G_{EO} \left( eV \right)$ | 1.53  | 0.13  | -1.31 | -1.11 |       |

**Table S2.** Total Gibbs free energy changes of ethylene oxidation reaction initiated bystable \*O intermediates to AA and EO on various  $TM_2N_6@$  graphenes.

| metal | site-1 | site-2 | site-3 | site-4 |
|-------|--------|--------|--------|--------|
| MnMn  | _      | 0      |        | 1.30   |
| FeFe  | 0.09   | 0      | —      | 0.66   |
| CoCo  | _      | 0      |        | 0.48   |
| NiNi  | _      | 0      |        | 0.19   |
| CuCu  | 0.02   | 0.02   | _      | 0      |
| ZnZn  | 0.09   | 0      |        | 1.25   |
| RuRu  | 1.12   | 0      |        | 1.21   |
| RhRh  | _      | 0      | _      | 0.18   |
| PdPd  | _      | 0.06   | _      | 0      |
| OsOs  | 1.54   | 0      | _      | 1.29   |
| IrIr  | _      | 0      | _      | 0.07   |
| PtPt  | _      | 0.16   | _      | 0      |

12 TM<sub>2</sub>N<sub>6</sub>@graphenes, the "0 eV" represents the most stable OH adsorption site, and "-" represents no corresponding configurations obtained during their optimization.

**Table S3.** Gibbs free energy difference ( $\Delta G$ , eV) of OH adsorbed at difference sites on



Fig. S1 Top and side views of various homonuclear  $TM_2N_6$ @graphene DMACs with distances between two metal atoms in angstroms (Å).



Fig. S2 Top and side views of O atom absorbed at site-1 on various  $TM_2N_6$ @graphenes.



Fig. S3 Top and side views of O atom absorbed at site-2 on various  $TM_2N_6@$  graphenes.



Fig. S4 Top and side views of O atom absorbed at site-3 on various  $TM_2N_6@$  graphenes.



Fig. S5 Top and side views of O atom absorbed at site-4 on various  $TM_2N_6@$  graphenes.



Fig. S6 Top and side views of OH absorbed at site-1 on various  $TM_2N_6@$  graphenes.



Fig. S7 Top and side views of OH absorbed at site-2 on various  $TM_2N_6@$  graphenes.



Fig. S8 Top and side views of OH absorbed at site-4 on various  $TM_2N_6@$  graphenes.



Fig. S9 Top and side views of OOH absorbed on various  $TM_2N_6@$  graphenes.



Fig. S10 Top and side views of OO absorbed on various  $TM_2N_6@$  graphenes.



## **Reaction Path**

Fig. S11 Gibbs free energy change diagrams for ethylene electro-oxidation on  $Co_2N_6$ @graphenes at the lowest applied potential to generate \*O intermediates at pH=0.



Fig. S12 Top and side views of acetaldehyde absorbed on various  $TM_2N_6@$  graphenes.



Fig. S13 Top and side views of ethylene oxide absorbed on various  $TM_2N_6@$  graphenes.



# **Reaction coordinate**

Fig. S14 Kinetic energy barriers and transition state structures of AA and EO generation through C-TM mechanism on  $Co_2N_6$ @graphenes.



Fig. S15 Projected density of states (PDOS) of the d orbitals of the two metals in

 $TM_2N_6@graphenes.\\$ 



Fig. S16 Linear relationship between d-band center of metals in  $TM_2N_6$ @graphenes and energy difference of the most stable OH adsorption sites between metal and C sites.



Fig. S17 Evolution of the total energy of 9  $TM_2N_6$ @graphene at 300 K, and the total times duration 10 ps. Snapshots of structures at the end of AIMD simulations are also shown.



Fig. S18 Evolution of the total energy of 9  $TM_2N_6$ @graphene at 500 K, and the total times duration 10 ps. Snapshots of structures at the end of AIMD simulations are also shown.