Supporting Information

Water splitting over transition metal-doped SrTiO₃

photocatalysts with response to visible light up to 660 nm

Kyohei Kaiya,^a Yoshiya Ueki,^a Hiromasa Kawamoto,^a Kenta Watanabe,^a Shunya Yoshino,^a Yuichi Yamaguchi,^{a,b} and Akihiko Kudo^{a,b*}

^aDepartment of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

^bCarbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken, 278-8510, Japan

Email: a-kudo@rs.tus.ac.jp

SrCO ₃ , TiO ₂ , IrO ₂ , Rh ₂ O ₃ , RuO ₂ , Cr ₂ O ₃ , MnO ₂ , Fe ₂ O ₃ , Co ₃ O ₄ , NiO, Sb ₂ O ₃
 Mixing Calcination in an alumina crucible at 1173 K for 1 h and at 1273 K for 10 h
SrTiO ₃ :M(x%),Sb(y%)(M=Ir, Rh, Ru, Cr, Mn, Fe, Co, Ni)
 Mixing with SrCl₂•6H₂O (10 mol eq.) and Al₂O₃ (z mol% as Al to Ti) Flux treatment in an alumina crucible at 1373 K for 10 h Washing with pure water
SrTiO ₃ :M(x%),Sb(y%),Al (M=Ir, Rh, Ru, Cr, Mn, Fe, Co, Ni)

Figure S1. Flowchart of preparation of $SrTiO_3:M(x\%),Sb(y\%),Al$ (M=Ir, Rh, Ru, Cr, Mn, Fe, Co, Ni) by the $SrCl_2$ -flux treatment with/without Al_2O_3 addition after SSR.

Figure S2. Raman spectra of SSR-prepared $SrTiO_3$:Ir(x%),Sb(2x%),Al with the flux treatment without Al_2O_3 addition. Samples were doped with (a) x=0, (b) x=0.001, (c) x=0.008, (d) x=0.009, (e) x=0.01, (f) x=0.025, (g) x=0.05, (h) x=0.1, (i) x=0.2, (j) x=0.3. Excitation wavelengths of (A) and (B) were 532 nm and 785 nm, respectively.

Photocatalyst	SrCl ₂ -flux treatment	Molar ratio %		
		[Ir]/([Ti]+[Ir]+[Sb])	[Sb]/([Ti]+[Ir]+[Sb])	
SrTiO ₃	×	0	0	
SrTiO ₃ :Ir(0.025%),Sb(0.05%)	×	Trace	Trace	
SrTiO ₃ :Ir(0.05%),Sb(0.1%)	×	0.016	0.078	
SrTiO ₃ :Ir(0.1%),Sb(0.2%)	×	0.046	0.16	
SrTiO ₃ :Ir(0.2%),Sb(0.4%)	×	0.13	0.31	
SrTiO ₃ :Ir(0.3%),Sb(0.6%)	×	0.26	0.52	
SrTiO ₃	0	0	0	
SrTiO ₃ :Ir(0.025%),Sb(0.05%)	\bigcirc	Trace	Trace	
SrTiO ₃ :Ir(0.05%),Sb(0.1%)	\bigcirc	0.015	0.081	
SrTiO ₃ :Ir(0.1%),Sb(0.2%)	\bigcirc	0.047	0.16	
SrTiO ₃ :Ir(0.2%),Sb(0.4%)	\bigcirc	0.14	0.37	
SrTiO ₃ :Ir(0.3%),Sb(0.6%)	\bigcirc	0.24	0.49	

Table S1. Molar ratio of Ir and Sb in SSR-prepared SrTiO₃:Ir,Sb with or without the flux treatment without Al₂O₃ addition determined by XRF

Figure S3. SEM images of SSR-prepared $SrTiO_3$:Ir(0.009%),Sb(y%) with the flux treatment without Al_2O_3 addition. Samples were doped with (a) y=0, (c) y=0.009, (e) x=0.018, (g) x=0.027. (b), (d), (f), (h) are the magnified images of (a), (c), (e), (g), respectively.

Amount of Al ₂ O ₃ addition	Water splitting activity/ μ mol h ⁻¹		
(mol% as Al to Ti)	$\overline{\mathrm{H}_{2}}$	O ₂	
0	41	21	
0.5	47	23	
1	62	30	
1.5	56	26	
2	60	28	
3	53	25	
5	50	23	

Table S2. Effect of an amount of Al_2O_3 addition in the flux on photocatalytic water splitting over $SrTiO_3$:Ir(0.009%),Sb(0.018%),Al prepared by the flux treatment after SSR under visible light irradiation.

Photocatalyst: 0.2 g, cocat.: RhCrO_x(Rh 0.1 mol%, Cr 0.1 mol%) impregnation, reactant solution: Pure water (120 mL), light source: a 300 W Xe lamp ($\lambda > 440$ nm), cell: a top-irradiation cell with a Pyrex window, system: a gas-tight circulation system.

Entry	Cocatalyst (mol% as metal)	Water splitting activity/ μ mol h ⁻¹		
_		H ₂	O ₂	
1	none	0.01	0.005	
2	$RhCrO_{x}(0.05)$	46	21	
3	$RhCrO_{x}$ (0.08)	54	26	
4	$RhCrO_{x}(0.1)$	62	30	
5	$RhCrO_{x}(0.2)$	18	8.8	
6	IrO ₂ (0.2)	0.009	0	
7	CoO_x (0.9)	0.05	0.02	
8	$RuO_{2}(0.5)$	0.5	0.2	
9	Rh ₂ O ₃ (0.1)	12	5.6	
10	$Cr_2O_3(0.1)$	0.13	0.07	

Table S3. Photocatalytic water splitting under visible light irradiation over various cocatalysts-loaded $SrTiO_3$: Ir(0.009%), Sb(0.018%), Al prepared by the flux treatment with Al₂O₃ (1%) addition after SSR

Photocatalyst: 0.2 g, cocatalyst: RhCrO_x, Rh₂O₃, and Cr₂O₃ (Impregnation in air at 623 K for 1 h), IrO₂, CoO_x, and RuO₂ (Impregnation in air at 673 K for 2 h), reactant solution: pure water (120 mL), light source: a 300 W Xe lamp ($\lambda > 440$ nm), cell: a top-irradiation cell with a Pyrex window, system: a gas-tight circulation system.

Figure S4. Photocatalytic water splitting over RhCrO_x-loaded SrTiO₃:Ir(0.009%),Sb(0.018%),Al prepared by the flux treatment with Al₂O₃ (1%) addition after SSR. Photocatalyst: 0.2 g, cocat.: RhCrO_x (Rh 0.1 mol%, Cr 0.1 mol%) impregnation, reactant solution: pure water (120 mL), light source: a 300 W Xe lamp, system: a gas-tight circulation system.

Photocatalyst	Responsive wavelength/nm	AQY % at 420 nm	STH %		
			Full ^a	Vis ^b (λ>440 nm)	
SrTiO ₃ :Ir(0.009%),Sb(0.018%)	660	0.73	0.33	0.030	
SrTiO ₃ :Rh(0.02%),Sb(0.04%)	570	0.31	0.16	0.020	
SrTiO ₃ :Ru(0.03%),Sb(0.06%)	600	0.33	0.16	0.019	
SrTiO ₃ :Cr(0.01%)	660	_	0.31	0.0093	

Table S4. Responsive wavelength, AQY and STH of various transition metals-doped SrTiO₃:Al and representative visible-light-driven single particulate photocatalysts for overall water splitting.

^aSTH (%) (Full)

= $(100 \times ([\Delta G^{o}(H_2O)/J \text{ mol}^{-1}] \times [\text{rate of } H_2 \text{ evolution}(\text{under full arc from a solar simulator})/\text{mol} h^{-1}]))/([3600 / \text{s} h^{-1}] \times [\text{solar energy}/W \text{ cm}^{-2}] \times [\text{irradiation area/cm}^2])$

^{*b*}STH (%) (Vis(λ>440 nm))

 $= (100 \times ([\Delta G^{\circ}(H_2O)/J \text{ mol}^{-1}] \times [\text{rate of } H_2 \text{ evolution(under visible light from a solar simulator)/ mol} h^{-1}]))/([3600/s \text{ h}^{-1}] \times [\text{solar energy/W cm}^{-2}] \times [\text{irradiation area/cm}^2])$