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A. Extraction procedure of the main parameters shown in Table 1.

The main objectives of this work were: (i) to propose a realistic model accounting for the existence 

of amperometric spikes displaying one or two exponential decay tails; (ii) to use this model to 

extract the parameters which govern the shape and intensity of the current of each amperometric 

spike (see Table 1). Point (i) has been described in detail in the main text, so this section is devoted 

to describe the principle of the computation procedure developed to answer point (ii).

The script performing the extraction procedure described in the main text and hereafter was 

implemented in Python 3.8 and ran in Spyder 5.5. The script implementing the extraction 

procedure developed here and illustrated in section A of Supporting Information is available from 

the authors on reasonable request.

A.1. Theoretical framework

As follows from our previous work 1 and the discussion in the main text the function , is 𝑘𝑑𝑖𝑓𝑓
𝜌 (𝑡)

very important in shaping the monitored spikes. For single exponential spikes these functions reach 

their plateaus rather quickly after the spike peak, a mandatory behavior for the observation of one 

exponential spikes.1-3 However, as was discussed in the main text, during the second mode of a 

two-exponential spike the kinetics of release is essentially governed by . This means that the 𝑘1𝑞0
𝑓

fusion pore size does not contribute directly in sustaining the spike current time variations during 

this second mode of release. For simplicity it is thus assumed that the pore keeps its maximal size 

that it achieved at the end of the first exponential mode (see main text). Note that would the pore 

close during this phase this would lead to a sudden and easily observable decrease of the current 

as reported in a few instances by Ewing et al.4
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This allows to formalize the extraction procedure as the optimization problem defined by:

(A.1)
min

𝑞0, 𝑞0
𝑓,𝑘1

Φ

Φ =
1

𝑘𝑑𝑖𝑓𝑓,𝑎𝑣
𝜌

2

𝑡 𝑓𝑖𝑛
2𝑒𝑥𝑝

∫
𝑡𝑠𝑡𝑎𝑟𝑡

1𝑒𝑥𝑝

(𝑘𝑑𝑖𝑓𝑓
𝜌 (𝜏) ‒  𝑘𝑑𝑖𝑓𝑓,𝑎𝑣

𝜌 )2𝑑𝜏

subject to: , 𝑞0, 𝑞0
𝑓,𝑘1 > 0 𝑞0 ≥  𝑞0

𝑓

where  is the objective function indicating deviation of  from its average value  Φ 𝑘𝑑𝑖𝑓𝑓
𝜌 (𝑡) 𝑘𝑑𝑖𝑓𝑓,𝑎𝑣

𝜌

during the time range of the first and second exponential regimes:

𝑘𝑑𝑖𝑓𝑓,𝑎𝑣
𝜌 =

1

𝑡 𝑓𝑖𝑛
2𝑒𝑥𝑝 ‒ 𝑡 𝑠𝑡

1𝑒𝑥𝑝

𝑡 𝑓𝑖𝑛
2𝑒𝑥𝑝

∫
𝑡𝑠𝑡𝑎𝑟𝑡

1𝑒𝑥𝑝

𝑘𝑑𝑖𝑓𝑓
𝜌 (𝜏)𝑑𝜏

where  and  are the times reflecting beginning of the first and end of the second exponential 𝑡𝑠𝑡𝑎𝑟𝑡
1𝑒𝑥𝑝 𝑡 𝑓𝑖𝑛

2𝑒𝑥𝑝

regimes, correspondingly. It should be noted that we found the average value  worked well 𝑘𝑑𝑖𝑓𝑓,𝑎𝑣
𝜌

for most of the cases. However, for some noisy spikes an average value was too sensitive to some 

too large or too small values imposed by noise. In that cases (and in general) using a median value 

instead of average one provided very good results since it is more robust with respect to outliers.

A.2. Numerical details of the procedure

A.2.1. Algorithm

The Nelder-Mead method was used to solve the optimization problem given above. In order to 

start optimization procedure, one has to supply initial approximations of the unknown parameters 

as detailed in the left branch in algorithm shown in Fig.A1.
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Fig.A1. Algorithm for parameter evaluation required for quantitative treatment of one- and two-

exponential spikes with procedures developed here and in previous work.1 
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A.2.2. Description of the steps in the algorithm in Fig.A1 for the two-exponential problem

Step 1. The ranges of the first and second exponential regimes were automatically identified. For 

this the derivative of the spike was obtained and the width of the minimum well at the level of 

75% of its amplitude  was selected as a duration of the first exponential regime (see [𝑡 𝑠𝑡
1𝑒𝑥𝑝,𝑡 𝑓𝑖𝑛

1𝑒𝑥𝑝]

Fig.A2). The slope  was then evaluated from the linear regression of the spike in this range. In 𝑠𝑙1

principle, the boundaries of the second exponential range can be defined from the signal derivative. 

However, practically this part is generally saturated with a noise which is amplified even more by 

differentiation. Thus, we used an alternative approach by performing continuation of the first 

exponent and noting where it drops to negligible level (ca. 1% of the spike peak) allows to obtain 

beginning of the second exponential regime,  (Fig.A2a,b). A  value was then defined as𝑡 𝑠𝑡
2𝑒𝑥𝑝 𝑡 𝑓𝑖𝑛

2𝑒𝑥𝑝

𝑡 𝑓𝑖𝑛
2𝑒𝑥𝑝 = 𝑡 𝑠𝑡

2𝑒𝑥𝑝 + 0.8 ∙ (𝑡𝑠𝑝𝑖𝑘𝑒 ‒ 𝑡 𝑠𝑡
2𝑒𝑥𝑝)

where  is the duration of the spike, in order to reduce the influence of the noise generally 𝑡𝑠𝑝𝑖𝑘𝑒

encountered at the very end of the signal. The  value was then computed from a linear regression 𝑠𝑙2

of the spike at the  range.[𝑡 𝑠𝑡
2𝑒𝑥𝑝,𝑡 𝑓𝑖𝑛

2𝑒𝑥𝑝]

Where necessary, the automatically identified ranges were manually adjusted.

Step 2. Knowing  value  was evaluated by using exponential continuation of the spike as it 𝑠𝑙2 𝑄0

was done for single exponential spikes, but now applied to a second exponential regime.

𝑄0 =
∞

∫
0

𝑖(𝑡)𝑑𝑡 =

𝑡𝑠𝑝𝑖𝑘𝑒

∫
0

𝑖(𝑡)𝑑𝑡 +
∞

∫
𝑡𝑠𝑝𝑖𝑘𝑒

𝑖(𝑡)𝑑𝑡 =

(A.2)
=

𝑡𝑠𝑝𝑖𝑘𝑒

∫
0

𝑖(𝑡)𝑑𝑡 +
1

𝑠𝑙2
∙ 𝑒

‒ 𝑠𝑙2 𝑡𝑠𝑝𝑖𝑘𝑒 + 𝑏2 = 𝑛𝐹𝑞0
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where  is the equation of the linear fit of second exponential segment in semi-log ( ‒ 𝑠𝑙2 𝑡𝑠𝑝𝑖𝑘𝑒 + 𝑏2)

plot. Thus, initial approximation for  is obtained.𝑞0

a)  b) 

c) 

Fig.A2. Automatic determination of the first and second exponential regimes ranges. (a) Current 

spike; (b) current spike in a semi-log scale; (c) the first derivative of the current.

Step 3. Initial approximation for  can then be set based on  value, e.g. , where  𝑞0
𝑓 𝑞0 𝑞0

𝑓 = 𝑎 × 𝑞0 𝑎 < 1

and whose value may depend on a dataset to be analyzed.

75% of the peak

𝑡 𝑠𝑡
1𝑒𝑥𝑝

𝑡 𝑓𝑖𝑛
1𝑒𝑥𝑝

𝑡 𝑠𝑡
2𝑒𝑥𝑝

𝑡 𝑓𝑖𝑛
2𝑒𝑥𝑝

𝑡 𝑠𝑡
1𝑒𝑥𝑝

𝑡 𝑓𝑖𝑛
1𝑒𝑥𝑝

𝑡 𝑠𝑡
2𝑒𝑥𝑝

𝑡 𝑓𝑖𝑛
2𝑒𝑥𝑝



7

Step 4. As discussed in the main text the asymptotic value for the slope during second exponential 

regime in a semi-log plot is , hence, initial value of the parameter  was set as 𝑠𝑙2 = 𝑘1𝑞0
𝑓 𝑘1

.𝑘1 =‒ 𝑠𝑙2/𝑞0
𝑓

For making the extraction procedure more robust with respect to experimental noise inevitably 

present in the analyzed signal, we used in step 3 a set of initial approximations for  (and hence 𝑞0
𝑓

of  in step 4 which is evaluated from ) in the range  with the step of  𝑘1 𝑞0
𝑓 0.4𝑞0 ‒ 0.85𝑞0 0.05𝑞0.

Optimization procedure was repeated for each of the set of initial approximations and the outcome 

with the smallest  value was then selected.Φ

It worth to note that the last term in Eq.(12b), i.e. , is the flux of the neurotransmitter 𝑘𝑑𝑖𝑓𝑓
𝜌 (𝑡) 𝑞𝑓

flowing through the vesicle pore (see definition in Eq.(12c)). Hence for the reconstruction 

procedure one may substitute experimental current directly into Eq.(12b) removing the necessity 

of providing unknown function .𝑘𝑑𝑖𝑓𝑓
𝜌 (𝑡)

A.2.3. Schematics representation of the procedures for analysis of one- and two-

exponential spikes

The essence of the one- and two-exponential spike procedures corresponding to the algorithm are 

shown below in Figs.A3 and A4.
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Fig.A3. Schematic depiction of the procedure used to analyze the spikes with one-exponential 

decay tail.
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Fig.A4. Schematic depiction of the procedure used to analyze the spikes with two-exponential 

decay tail.

B. Distribution of  values𝑘1

The volumes of the highly compacted domains are imposed by local competition between free 

energy and entropic factors,5 so they should not vary drastically since the ionic composition of the 

intravesicular loaded matrices is assumed to be roughly constant. Evaluating analytically their 

mean volume, , hence their number, , as may be performed in the conceptually 𝑉𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑁𝑐𝑜𝑚𝑝𝑎𝑐𝑡

analogous problem of the Debye sphere for colloidal dispersions seems almost impossible except 

by ad-hoc extended molecular level approaches 6 because of the length and conformation of the 

chromogranins and the involvement of ionic and non-ionic interactions such as hydrogen bonds. 

Nonetheless, as a first approximation  can be considered as a constant.𝑉𝑐𝑜𝑚𝑝𝑎𝑐𝑡
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On the other hand, for each of these domains the rate constant of interfacial exchange with the 

surrounding less compacted compartment has to scale with the domains surface, viz., be 

proportional to . Therefore,  as defined in the main text in Eq.(11a) has to be proportional 𝑉 2/3
𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑘1

to , so within this framework one expects that the distribution of  values 𝑁𝑐𝑜𝑚𝑝𝑎𝑐𝑡 × 𝑉 2/3
𝑐𝑜𝑚𝑝𝑎𝑐𝑡 𝑘1

represents that of .𝑁𝑐𝑜𝑚𝑝𝑎𝑐𝑡

C. General case of reversible exchange between intravesicular domains

As discussed in the text the exchange between the two compartments in general is reversible and 

prior to the onset of the release (i.e. formation of an initial fusion pore) the exchange between two 

compartments is necessarily in dynamic equilibrium, but is progressively displaced while the less 

compacted compartment NT content is released. Hence the exchange between the two phases and 

extracellular environment in Eqs.(11a,b) is thus replaced by the following kinetic scheme

(C.1a)
𝑞𝑠 + ∅𝑓

   𝑘1   
→
←

   𝑘2   

  ∅𝑠 + 𝑞𝑓

(C.1b)𝑞𝑓

   𝑘𝑑𝑖𝑓𝑓
𝜌    

→ 𝑞𝑜𝑢𝑡

where all notations keep their meaning as in the main text and  is the rate constant characterizing 𝑘2

reverse exchange from fast to slow compartments. Note that since the interactions between the NT 

cations and the polyelectrolyte are much stronger in the slow compartment than in the fast one, 

 features an up-hill reaction while  features down-hill step of the same reaction, hence . 𝑘1 𝑘2 𝑘1 ≪ 𝑘2

In addition, before release one has necessarily  in mature vesicles, so the ∅0
𝑓/∅0

𝑠 = (𝑘2/𝑘1) × (𝑞0
𝑓/𝑞0

𝑠)
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relatively small amounts of empty sites in the fast and slow compartments are thermodynamically 

linked to that of NT quantities in each domain.

Within the same framework and assumptions the governing system of differential equations will 

take the following view:

(C.2)
𝑑𝑞𝑠

𝑑𝑡
=‒ 𝑘1 (𝑞0

𝑓 ‒ 𝑞𝑓)𝑞𝑠 + 𝑘2 (𝑞0
𝑠 ‒ 𝑞𝑠)𝑞𝑓

(C.3)
𝑑𝑞𝑓

𝑑𝑡
= 𝑘1 (𝑞0

𝑓 ‒ 𝑞𝑓)𝑞𝑠 ‒ 𝑘2(𝑞0
𝑠 ‒ 𝑞𝑠)𝑞𝑓 ‒ 𝑘𝑑𝑖𝑓𝑓

𝜌 (𝑡)𝑞𝑓

(C.4)

𝑑𝑞𝑜𝑢𝑡

𝑑𝑡
=

𝑖(𝑡)
𝑛𝐹

=  ‒ (𝑑𝑞𝑠

𝑑𝑡
+

𝑑𝑞𝑓

𝑑𝑡 ) = 𝑘𝑑𝑖𝑓𝑓
𝜌 (𝑡)𝑞𝑓

associated to the same initial conditions:

,  (C.5)𝑞𝑡 = 0
𝑠 = 𝑞0

𝑠  𝑞𝑡 = 0
𝑓 = 𝑞0

𝑓,   𝑞𝑡 = 0
𝑜𝑢𝑡 = 0

Similarly, to the case considered in the main text the system (C.2, C.3) has two limits depending 

on the time. At short times,  and  and  thus, the same limit is attained 
‒

𝑑𝑞𝑓

𝑑𝑡
≫‒

𝑑𝑞𝑠

𝑑𝑡
≈ 0 𝑞𝑠 ≈ 𝑞0

𝑠 𝑑𝑞𝑠 𝑑𝑡 ≈ 0

as in Eq.(13a) in the main text:

(C.6)
 
𝑑𝑞𝑜𝑢𝑡

𝑑𝑡
=‒

𝑑𝑞𝑓

𝑑𝑡
≈ 𝑘𝑑𝑖𝑓𝑓

𝜌 (𝑡)𝑞𝑓

and the same time constant  controls the release during first exponential regime.𝜏1 = 1/𝑘𝑑𝑖𝑓𝑓
𝑚𝑎𝑥 

Conversely, when the fast compartment is almost emptied, viz. when  and , release 𝑞𝑓 ≪ 𝑞0
𝑓 𝑞0

𝑠 ≫ 𝑞𝑠

is essentially commanded kinetically by the transfer of NT molecules from the slow compartment 

into the fast one in which they rapidly exit the vesicle through the fusion pore. In other words, NT 
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quantity in the fast compartment is under steady state, so that:

(C.7)
   𝑞𝑓⟶ 

𝑘1𝑞0
𝑓

[𝑘2𝑞0
𝑠 + 𝑘𝑑𝑖𝑓𝑓

𝜌 (𝑡)]
 𝑞𝑠

Hence the current at long times:

(C.8)
 
𝑖(𝑡)
𝑛𝐹

=
𝑑𝑞𝑜𝑢𝑡

𝑑𝑡
≈‒

𝑑𝑞𝑠

𝑑𝑡
≈

𝑘1𝑞0
𝑓𝑘𝑑𝑖𝑓𝑓

𝜌 (𝑡)

[𝑘2𝑞0
𝑠 + 𝑘𝑑𝑖𝑓𝑓

𝜌 (𝑡)]
 𝑞𝑠

controlled by the following time constant . Equation (C.7), hence also 𝜏2 = [𝑘2𝑞0
𝑠 + 𝑘𝑑𝑖𝑓𝑓

𝑚𝑎𝑥]/(𝑘1𝑞0
𝑓𝑘𝑑𝑖𝑓𝑓

𝑚𝑎𝑥)

Eq. (C.8), admits two limits depending on the relative magnitude of  vs. . Would  𝑘2𝑞0
𝑠 𝑘𝑑𝑖𝑓𝑓

𝜌 (𝑡) 𝑘2𝑞0
𝑠

be much larger than , the initial equilibrium between the slow and fast compartments would 𝑘𝑑𝑖𝑓𝑓
𝜌 (𝑡)

always be maintained during release so that:

(C.9)
 
𝑑𝑞𝑜𝑢𝑡

𝑑𝑡
≈

𝑘1𝑞0
𝑓

𝑘2𝑞0
𝑠

 𝑘
𝑑𝑖𝑓𝑓

𝜌 (𝑡)𝑞𝑠

However, the latter does not seem to be the case. Indeed, although polyelectrolyte/neurotransmitter 

condensed state is thermodynamically favorable (as discussed above), this step necessarily 

requires numerous local molecular rearrangements (e.g. change in polyelectrolyte conformation, 

expel of the solvent molecules during polyelectrolyte condensation etc.) which might determine 

the kinetics of the exchange process making diffusion controlled release a prevailing process. 

Under these conditions the opposite limiting case likely takes place, i.e. when  and 𝑘𝑑𝑖𝑓𝑓
𝜌 (𝑡) ≫ 𝑘2𝑞0

𝑠

again the limit identical to the one in Eq.(8c) is attained:

(C.10)
 
𝑑𝑞𝑜𝑢𝑡

𝑑𝑡
≈‒

𝑑𝑞𝑠

𝑑𝑡
≈ 𝑘1𝑞0

𝑓 𝑞𝑠

with a time constant  controlling the release.𝜏2 = 1/(𝑘1𝑞0
𝑓)
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