Supplementary Information

Designer Pseudopeptides: Autofluorescent Polygonal Tubes via Phe-zipper and Triple Helix

V. Haridas*,^{a,b} Govind P. Maurya^a and Souvik Dutta^a

^aDepartment of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.

^bDepartment of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala- 678623, India.

* V. Haridas. Email: haridasv@chemistry.iitd.ac.in; haridasv@iitpkd.ac.in

General Information	S2-S4
Synthetic schemes	S5-S6
General Synthetic Procedures	S6-S19
NMR titration studies of peptide 1	S20
Possibilities of CO-NH hydrogen bonds in peptide 1	S21
Infrared (IR) spectra comparison of peptide 1 , 2 and 5	S22
Concentration dependent NMR studies of peptide 1	S23
Intermolecular H-bonded structure of peptide 1	S24
Intermolecular H-bonded supramolecular cylindrical structure of peptide 1	S25
AFM Images of peptide 1	S26
FESEM images of peptide 2	S27
Interplanar angle between two molecules of peptide 5	S28
UV-vis absorption and fluorescence emission spectra of	
peptide 1	S29
NMR titration studies of peptide 6	S30
UV-vis and CD spectra of peptides 6 and 7	S31
CD spectra comparison of peptides 6 and 9	S32
NMR titration studies of peptide 8	S33
CD spectra of peptides 1 and 8	S34
UV-vis spectra of peptide 7 on addition of different anions	S35
UV-vis and fluorescence spectra studies of peptides 6, 7 and 8	S36
Job plots and BH plots for peptides 6 , 7 and 8	S37
NMR titration studies of peptides 6 and 8	S38
Histograms showing vesicles' diameters of peptides 6, 7 and 8	S39
NMR and Mass spectral data of all synthesized compounds	S40-S84
Table S1: Crystal data of peptide 1	S85
Table S2: Crystal data of peptide 2	S86
Table S3: Crystal data of peptide 5	S87
Table S4: Table showing CSI values of peptide 1 , 2 and 8	S88
Table S5: H-bonding distances (Å) and angles (°) present in peptide 1	S88

1. General Information

1.1 Materials

All solvents used were distilled before use. All amino acids were of L-configuration. Reactions were monitored by thin layer chromatography (TLC) using TLC plates purchased from Merck, India. Silica gel 100-200 mesh (SRL, India) was used for purification in column chromatography. ¹H NMR was recorded using Brucker-DPX-400 and 500 MHz spectrometers. Tetramethylsilane (TMS) was used as an internal standard. Coupling constants are recorded in Hz, and the ¹H NMR data are reported as s (singlet), d (doublet), br (broad), t (triplet) and m (multiplet), dd (double of doublet). IR spectra (KBr) pellets was recorded on Nicolet, Protégé 460 spectrometer. Bruker MicrO-TOF-QII model High-resolution mass spectrometer (HRMS) was used for characterization. AVIV Model 410 and BioLogic MOS-500 spectrometers were used for circular dichroism (CD) measurements. Quartz cell of 1mm path length was used for all measurements. A scan speed of 1 nm/min and averaged over 3 scans are employed. Shimadzu UV-2400 double beam spectrophotometer was used for recording UV-visible spectra measurements. FluoroMax-4 spectrofluorometer (HORIBA JOBIN YVON Scientific), was used for recording fluorescence spectra. A slit width of 2 nm excitation and collection were used for data collection. Samples were taken in 3 mL quartz cuvette. Fisher-Scientific melting point apparatus was used for recording melting points. X-ray diffraction analysis was done on a Bruker SMART APEX diffractometer fitted with CCD area detector. Structure solving, and refinement were carried out using the SheIXTL program. All spectroscopic experiments were done at room temperature.

1.2 Methods

1.2.1 Scanning Electron Microscopy (SEM)

Solutions of compounds were prepared by dissolving 1 mg of each compound in 1 mL of acetonitrile (ACN). A glass coverslip was attached to a stub using carbon tape. About 10 µL of the solution was drop-casted onto the coverslip and left to dry at room temperature. Further, it was coated with gold (~10 nm) and analyzed by ZEISS EVO 50 Scanning Electron Microscope. The images captured at room temperature were processed using Image J software.

1.2.2 Transmission Electron Microscopy (TEM)

Samples for TEM were prepared by dissolving the compound in ACN. About 5 µL aliquot of the sample solution was placed on a 200 mesh copper grid and allowed to dry at room temperature. Samples were viewed using a TECHNAI G2 (20S-TWIN) electron microscope and were processed using Image J software.

1.2.3 Atomic Force Microscopy (AFM)

Solutions of compounds were prepared by dissolving 1 mg of each compound in 1 mL of ACN. About 100 μ L of the solution was drop-casted onto a glass slide and left to dry at room temperature. Further, it was analyzed by BRUKER Dimension Icon XR Atomic Force Microscope by tapping mode. The images captured at room temperature were processed using Image J software.

1.2.4 Field Emission Scanning Electron Microscopy (FESEM)

1mg of each compound was dissolved in 1 mL of ACN to make the corresponding solutions. Carbon tape was used to affix a glass coverslip to a stub. Approximately 10 microliters of the solution was drop-casted onto the coverslip, and allowed to air dry at room temperature. Then, a layer of gold (~10 nm) was applied to the sample, which

was then examined using a ZEISS EVO 18 Scanning Electron Microscope. The photos obtained at room temperature were analyzed using Image J program.

1.2.5 NMR titration study

To 10 mM host solutions, small amounts of $DMSO-d_6$ were added and the NMR spectra were recorded.

1.2.6 Confocal Microscopy

Solutions of compounds were prepared by dissolving 1 mg of each compound in 1 mL of ACN. About 10 µL of the solution was drop-casted onto a glass slide and left to dry at room temperature. Further, it was then covered with a cover slip and analyzed at room temperature by LEICA STELLARIS Stimulated Emission Depletion Microscope. The images captured at room temperature and Image J software was used for processing.

1.2.7 Job plot calculation

A series of solutions containing compounds (**6**, **7** and **8**) $(1x10^{-4} \text{ M})$ and anions $(1x10^{-4} \text{ M})$ were prepared in ACN. The mole fraction of the receptors was varied from 0.1 to 1 and the absorbance of each solution is measured at a suitable wavelength and a graph of the corrected absorbance versus mole fraction of X or P was plotted. Maximum absorbance is reached at the composition corresponding to the stoichiometry of the predominant complex.

Scheme S1: Synthesis of monourea-based peptides 1-5.

Scheme S2: Synthesis of compounds 6-9.

1.3 General Synthetic Procedure

1.3.1 Preparation of dipeptide A1

To an ice-cooled solution of Boc-Aib-OH, (600 mg, 2.95 mmol) in dry CH_2CI_2 was added NHS (407 mg, 3.54 mmol) and DCC (730 mg, 3.54 mmol) and stirred. After 5 minutes, Phe-OMe.HCl (763 mg, 3.54 mmol) in ~50 mL dry CH_2CI_2 and NEt_3 (0.49 mL, 3.54 mmol) were added stirred for 24 h. The reaction mixture was filtered, and the clear filtrate obtained was washed sequentially with 0.2N H_2SO_4 , aq. NaHCO₃ solution and finally with water. The organic part was dried over anhydrous Na₂SO₄, evaporated, and purified by silica gel column chromatography using ethyl acetate and hexane as eluents to afford about 86% yield of **A1**.

MP: 142-144 °C

¹H NMR (500 MHz, CDCl₃) δ 1.42 (s, 12H), 1.45 (s, 3H), 3.12 (m, 2H), 3.69 (s, 3H), 4.85 (m, 1H), 6.87 (s, 1H), 7.12 (d, *J* = 10 Hz, 2H), 7.16 – 7.30 (m, 4H).

¹³C NMR (CDCl₃ 125 MHz) δ 25.4, 28.3, 38.1, 52.2, 53.3, 56.7, 80.2, 127.0, 128.5, 129.3, 136.1, 154.6, 172.0, 174.2.

IR (KBr): 3329, 2982, 1754, 1688, 1658, 1522, 1453, 1367, 1284, 1167, 1087 cm⁻¹. HRMS: Calcd. for $C_{19}H_{28}N_2O_5Na$ m/z = 387.1896, found m/z = 387.1883.

1.3.2 Preparation of dipeptide A2

To an ice-cooled solution of Boc-Aib-OH, (300 mg, 1.48 mmol) in dry CH_2Cl_2 was added NHS (205 mg, 1.78 mmol) and DCC (367 mg, 1.78 mmol) and stirred. After 5 minutes, D-Phe-OMe.HCl (384 mg, 1.78 mmol) in ~50 mL dry CH_2Cl_2 and NEt₃ (0.25 mL, 1.78 mmol) were added stirred for 24 h. The reaction mixture was filtered, and the clear filtrate obtained was washed sequentially with 0.2N H_2SO_4 , aq. NaHCO₃ solution and finally with water. The organic part was dried over anhydrous Na_2SO_4 , evaporated, and purified by silica gel column chromatography using ethyl acetate and hexane as eluents to afford about 85% yield of **A2**.

MP: 142-144 °C

¹H NMR (500 MHz, CDCl₃) δ 1.42 (s, 12H), 1.45 (s, 3H), 3.12 (m, 2H), 3.70 (s, 3H), 4.85 (m, 1H), 6.86 (s, 1H), 7.12 (d, *J* = 10 Hz, 2H), 7.16 – 7.30 (m, 4H).

¹³C NMR (CDCl₃ 125 MHz) δ 25.4, 28.3, 38.1, 52.2, 53.3, 56.7, 80.2, 127.0, 128.5, 129.3, 136.0, 154.5, 172.0, 174.2.

IR (KBr): 3329, 2983, 2935, 1752, 1687, 1656, 1525, 1452, 1366, 1284, 1167, 1082 cm⁻¹.

HRMS: Calcd. for $C_{19}H_{28}N_2O_5Na m/z = 387.1896$, found m/z = 387.1897.

1.3.3 Preparation of dipeptide A3

To an ice-cooled solution of Boc-Phe-OH, (900 mg, 3.39 mmol) in dry CH_2Cl_2 was added NHS (468 mg, 4.07 mmol) and DCC (839 mg, 4.07 mmol) and stirred. After 5 minutes, Aib-OMe.HCl (625 mg, 4.07 mmol) in ~50 mL dry CH_2Cl_2 and NEt₃ (0.56 mL, 4.02 mmol) were added stirred for 24 h. The reaction mixture was filtered, and the clear filtrate obtained was washed sequentially with 0.2N H_2SO_4 , aq. NaHCO₃ solution and finally with water. The organic part was dried over anhydrous Na_2SO_4 , evaporated, and purified by silica gel column chromatography using ethyl acetate and hexane as eluents to afford about 92% yield of **A3**.

MP: 106-108 °C

¹H NMR (500 MHz, CDCl₃) δ1.42 (s, 9H), 1.44 (d, *J* = 10.5 Hz, 6H), 3.01 (dd, *J* = 13.8, 7.3 Hz, 1H), 3.08 (dd, *J* = 13.3, 5.8 Hz, 1H), 3.71(s, 3H), 4.30 (m, 1H), 5.14 (br s, 1H), 6.36 (s, 1H), 7.21 – 7.25 (m, 3H), 7.27 – 7.32 (m, 2H).

¹³C NMR (CDCl₃ 125 MHz) δ 24.5, 24.7, 28.3, 38.5, 52.6, 56.4, 80.1, 126.9, 128.6, 129.5, 136.8, 155.5, 170.3, 174.6.

IR (KBr): 3302, 2983, 1745, 1660, 1539, 1451, 1389, 1279, 1156, 1023 cm⁻¹. HRMS: Calcd. for $C_{19}H_{28}N_2O_5Na$ m/z = 387.1896, found m/z = 387.1889.

1.3.4 Preparation of dipeptide A4

To an ice-cooled solution of Boc-Phe-OH, (600 mg, 2.26 mmol) in dry CH_2CI_2 was added NHS (312 mg, 2.71 mmol) and DCC (559 mg, 2.71 mmol) and stirred. After 5 minutes, Gly-OMe.HCl (340 mg, 2.71 mmol) in ~50 mL dry CH_2CI_2 and NEt_3 (0.38 mL, 2.71 mmol) were added stirred for 24 h. The reaction mixture was filtered, and the clear filtrate obtained was washed sequentially with 0.2N H_2SO_4 , aq. NaHCO₃ solution and finally with water. The organic part was dried over anhydrous Na₂SO₄, evaporated, and purified by silica gel column chromatography using ethyl acetate and hexane as eluents to afford about 81% yield of **A4**.

MP: 84-86 °C

¹H NMR (500 MHz, CDCl₃) δ 1.40 (s, 9H), 3.03-3.15 (m, 2H), 3.73 (s, 3H), 3.96-4.05 (m, 2H), 4.42 (m, 1H), 5.03 (br s, 1H), 6.46 (br s, 1H), 7.16-7.32 (m, 5H).

¹³C NMR (CDCl₃ 125 MHz) δ 28.2, 38.3, 41.2, 52.4, 55.6, 80.3, 127.0, 128.7, 129.3, 136.5, 155.2, 169.9, 171.6.

IR (KBr): 3327, 2930, 2857, 1760, 1691, 1662, 1535, 1447, 1370, 1209, 1164, 1024 cm⁻¹.

HRMS: Calcd. for $C_{17}H_{24}N_2O_5Na m/z = 359.1583$, found m/z = 359.1575.

1.3.5 Preparation of dipeptide A5

To an ice-cooled solution of Boc-Phe-OH, (300 mg, 1.13 mmol) in dry CH_2Cl_2 was added NHS (156 mg, 1.36 mmol) and DCC (281 mg, 1.36 mmol) and stirred. After 5 minutes, Phe-OMe.HCl (293 mg, 1.36 mmol) in ~50 mL dry CH_2Cl_2 and NEt_3 (0.19 mL, 1.36 mmol) were added stirred for 24 h. The reaction mixture was filtered, and the clear filtrate obtained was washed sequentially with 0.2N H_2SO_4 , aq. NaHCO₃ solution and finally with water. The organic part was dried over anhydrous Na_2SO_4 , evaporated, and purified by silica gel column chromatography using ethyl acetate and hexane as eluents to afford about 88% yield of **A5**.

MP: 114-116 °C

¹H NMR (500 MHz, CDCl₃) δ 1.40 (s, 9H), 3.00-3.22 (m, 4H), 3.67 (s, 3H), 4.33 (m, 1H), 4.78 (m, 1H), 4.91 (br s, 1H), 6.24 (d, *J*= 6.5 Hz, 1H), 6.96-7.31 (m, 10H).
¹³C NMR (CDCl₃ 125 MHz) δ 28.2, 38.0, 38.2, 52.3, 53.3, 55.7, 80.2, 127.0, 127.1, 128.5, 128.7, 129.2, 129.4, 135.6, 136.5, 155.3, 170.8, 171.4.
IR (KBr): 3331, 3027, 2976, 2930, 1744, 1662, 1525, 1445, 1252, 1168, 1031 cm⁻¹.

HRMS: Calcd. for $C_{24}H_{30}N_2O_5Na m/z = 449.2052$, found m/z = 449.2042.

1.3.6 Preparation of tripeptide A6

To an ice cold solution of **A4** (400 mg, 1.19 mmol) in ~20 mL dry DCM was added TFA (8 mL) and kept stirred for 3 h. The reaction was monitored by TLC and after completion, the reaction mixture was evaporated under a high vacuum with a KOH trap to afford N-deprotected derivative **B4**.

To an ice-cooled solution of Boc-Aib-OH, (291 mg, 1.43 mmol) in dry CH_2Cl_2 was added NHS (164 mg, 1.43 mmol) and DCC (285 mg, 1.43 mmol) and stirred. After 5 minutes, an ice cold solution of N-deprotected derivative **B4** (1.19 mmol) with NEt₃ (0.37 mL, 2.62 mmol) were added and stirred for 24 h. The reaction mixture was filtered, and the clear filtrate obtained was washed sequentially with 0.2N H₂SO₄, aq. NaHCO₃ solution and finally with water. The organic part was dried over anhydrous Na₂SO₄, evaporated, and purified by silica gel column chromatography using ethyl acetate and hexane as eluents to afford about 86% yield of **A6**.

MP: 126-128 °C

¹H NMR (500 MHz, CDCl₃) δ 1.19 (s, 3H), 1.35 (s, 9H), 1.42 (s, 3H), 3.18 (dd, *J*= 14.3, 7.8 Hz, 1H), 3.28 (dd, *J*= 14.4, 5.6 Hz, 1H), 3.71 (s, 3H), 3.79 (dd, *J*= 17.6, 5.3 Hz, 1H), 4.15 (dd, *J*= 17.6, 6.1 Hz, 1H), 4.74-4.83 (m, 2H), 6.42 (d, *J*= 9.1 Hz, 1H), 7.21-7.33 (m, 5H), 7.53 (br s, 1H)

¹³C NMR (CDCl₃ 125 MHz) δ 24.0, 26.5, 28.2, 37.0, 41.2, 52.1, 53.4, 56.8, 81.0, 126.9, 128.7, 129.2, 136.7, 155.4, 170.0, 171.7, 173.9.

IR (KBr): 3320, 2928, 2853, 1758, 1694, 1659, 1512, 1453, 1367, 1288, 1166, 1079 cm⁻¹.

HRMS: Calcd. for $C_{21}H_{31}N_3O_6Na m/z = 444.2111$, found m/z = 444.2098.

1.3.7 Preparation of 1

To an ice cold solution of **A1** (400 mg, 1.10 mmol) in ~20 mL dry DCM was added TFA (8 mL) and kept stirred for 3 h. The reaction was monitored by TLC and after completion, the reaction mixture was evaporated under a high vacuum with a KOH trap to afford N-deprotected derivative.

To an ice cold solution of N-deprotected derivative **B1** (1.10 mmol) with NEt₃ (0.15 mL, 1.10 mmol) in ~50 mL dry DCM was added phenylisocyanate (131 mg, 1.10 mmol) dropwise and the reaction mixture was kept stirred for 12 h. The reaction was monitored by TLC and after completion, the reaction mixture washed with 0.2 N H_2SO_4 , saturated aqueous NaHCO₃, and water. Dried over anhydrous Na₂SO₄ followed by evaporation. The obtained crude product was further purified by washing several times with EtOAc to afford 358 mg of pure product.

Yield: 85%

MP: 204-206 °C

[α]²⁶_D: +16.

¹H NMR (500 MHz, CD₃CN) δ 1.30 (s, 3H), 1.32 (s, 3H), 2.94 (dd, 1H, *J* = 13.0, 7.5 Hz), 2.99 (dd, 1H, *J* = 14.0, 5.0 Hz), 3.56 (s, 3H), 4.57 (m, 1H), 5.51 (s, 1H), 6.91 (t, *J* = 7.0 Hz, 1H), 7.02 (d, *J* = 6.0 Hz, 1H), 7.08 (br s, 5H), 7.19 (t, *J* = 7 Hz, 3H), 7.31 (d, *J* = 7.5 Hz, 2H).

¹³C NMR (DMSO-d₆, 125 MHz), δ 24.9, 25.2, 36.5, 51.8, 53.5, 55.5, 117.5, 121.0, 126.4, 128.1, 128.6, 129.2, 137.2, 140.4, 154.0, 171.8, 174.6.

IR (KBr): 3387, 3348, 3266, 3025, 1737, 1671, 1644, 1600, 1546, 1519, 1438, 1363, 1316, 1238 cm⁻¹.

HRMS: Calcd. for $C_{21}H_{25}N_3O_4Na m/z = 406.1743$, found m/z = 406.1734.

1.3.8 Preparation of 2

To an ice cold solution of **A2** (400 mg, 1.10 mmol) in ~20 mL dry DCM was added TFA (8 mL) and kept stirred for 3 h. The reaction was monitored by TLC and after completion, the reaction mixture was evaporated under a high vacuum with a KOH trap to afford N-deprotected derivative.

To an ice cold solution of N-deprotected derivative **B2** (1.10 mmol) and NEt₃ (0.15 mL, 1.10 mmol) in dry DCM (~50 mL) was added phenylisocyanate (131 mg, 1.10 mmol) dropwise and the reaction mixture was kept stirred for 12 h. The reaction was monitored by TLC and after completion, the reaction mixture washed with 0.2 N H_2SO_4 , saturated aqueous NaHCO₃, and water. Dried over anhydrous Na₂SO₄ followed by evaporation. The obtained crude product was further purified by washing several time with EtOAc to afford 367 mg pure product.

Yield: 87%

MP: 204-206 °C

[α]²⁶_D: -16°

¹H NMR (500 MHz, CD₃CN) δ 1.30 (s, 3H), 1.32 (s, 3H), 2.94 (dd, *J* = 13.5, 7.0 Hz, 1H), 2.99 (dd, *J* = 14.0, 5.5 Hz, 1H), 3.56 (s, 3H), 4.57 (m, 1H), 5.54 (s, 1H), 6.91 (t, *J* = 7.5 Hz, 1H), 7.00 (d, *J* = 8.0 Hz, 1H), 7.08 (br s, 6H), 7.19 (t, *J* = 7.5 Hz, 2H), 7.31 (d, *J* = 7.5 Hz, 2H).

¹³C NMR (CDCl₃, 125 MHz), δ 25.5, 25.8, 37.8, 52.4, 53.3, 57.0, 120.7, 123.9, 127.1, 128.5, 129.2, 129.4, 135.8, 138.4, 154.6, 172.1, 174.8.

IR (KBr): 3385, 3352, 3270, 3013, 2987, 2947, 1737, 1668, 1647, 1597, 1547, 1518, 1439, 1390, 1362, 1316, 1263, 1241, 1216, 1108, 1019, 965, 883, 748, 696, 656, 585, 502 cm⁻¹.

HRMS: Calcd. for $C_{21}H_{25}N_3O_4Na m/z = 406.1743$, found m/z = 406.1742.

1.3.9 Preparation of 3

To an ice cold solution of **A3** (500 mg, 1.37 mmol) in ~20 mL dry DCM was added TFA (8 mL) and kept stirred for 3 h. The reaction was monitored by TLC and after completion, the reaction mixture was evaporated under a high vacuum with a KOH trap and afford N-deprotected derivative.

To an ice cold solution of N-deprotected derivative **B3** (1.37 mmol) with NEt₃ (0.19 mL, 1.37 mmol) in ~50 mL dry DCM was added phenylisocyanate (163 mg, 1.37 mmol) dropwise and the reaction mixture was kept stirred for 12 h. The reaction was monitored by TLC and after completion, the reaction mixture washed with 0.2 N H_2SO_4 , saturated aqueous NaHCO₃, and water, dried over anhydrous Na₂SO₄ and evaporated. The obtained crude product further purified by column chromatography using EtOAc /hexane solvent and afford 483 mg product.

Yield: 91%

MP: 162-164 °C

[α]²⁶_D: -8.

¹H NMR (500 MHz, CDCl₃) δ 1.41 (s, 6H), 2.92 (dd, *J* = 14.0, 8.0 Hz, 1H), 3.11 (dd, *J* = 13.5, 5.5 Hz, 1H), 3.63 (s, 3H), 4.53 (m, 1H), 5.74 (d, *J* = 7.5 Hz, 1H), 6.97 (t, *J* = 7.5 Hz, 1H), 7.17 (s, 1H), 7.24 (m, 4H), 7.32 (m, 5H), 7.40 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz), δ 24.8, 24.9, 39.0, 52.4, 55.5, 56.2, 119.8, 122.5, 126.8, 128.4, 128.6, 129.5, 137.1, 139.0, 156.0, 173.3, 174.8.

IR (KBr): 3285, 3069, 2946, 1741, 1645, 1551, 1442, 1289, 1234, 1152 cm⁻¹.

HRMS: Calcd. for $C_{21}H_{25}N_3O_4Na m/z = 406.1743$, found m/z = 406.1737.

1.3.10 Preparation of 4

To an ice cold solution of **A6** (400 mg, 0.95 mmol) in ~20 mL dry DCM was added TFA (8 mL) and kept stirred for 3 h. The reaction was monitored by TLC and after

completion, the reaction mixture was evaporated under a high vacuum with a KOH trap to afford N-deprotected derivative.

To an ice cold solution of N-deprotected derivative **B6** (0.95 mmol) with NEt₃ (0.13 mL, 0.95 mmol) in dry DCM (~50 mL) was added phenylisocyanate (113 mg, 0.95 mmol) dropwise and the reaction mixture was kept stirred for 12 h. The reaction was monitored by TLC and after completion, the reaction mixture washed with 0.2 N H_2SO_4 , saturated aqueous NaHCO₃, and water. Dried over anhydrous Na₂SO₄ and evaporated. The obtained crude product was further purified by washing several time with EtOAc to afford 368 mg pure product.

Yield: 88%

MP: 94-96 °C

[α]²⁶_D: +82.

¹H NMR (500 MHz, CD₃CN) δ 0.99 (s, 3H), 1.26 (s, 3H), 2.79 (dd, 1H, *J* = 18, 14 Hz), 3.29 (dd, 1H, *J* = 17.5, 5.0 Hz), 3.51 (s, 3H), 3.74 (m, 2H), 4.49 (m, 1H), 5.60 (br s, 1H), 6.92-7.31 (m, 12H), 7.97 (t, *J* = 8 Hz, 1H).

¹³C NMR (CD₃CN, 125 MHz), δ 23.9, 26.6, 36.6, 41.3, 52.1, 54.7, 56.9, 119.2, 123.0, 126.9, 128.8, 129.4, 129.7, 139.0, 140.0, 156.1, 170.6, 172.7, 175.4.

IR (KBr): 3531, 3435, 3326, 2929, 1748, 1675, 1648, 1600, 1547, 1312, 1211, 748, 697 cm⁻¹.

HRMS: Calcd. for $C_{23}H_{28}N_4O_5Na m/z = 463.1957$, found m/z = 463.1967.

1.3.11 Preparation of 5

To an ice cold solution of **A5** (400 mg, 0.94 mmol) in ~20 mL dry DCM was added TFA (8 mL) and kept stirred for 3 h. The reaction was monitored by TLC and after completion, the reaction mixture was evaporated under a high vacuum with a KOH trap and afford N-deprotected derivative.

To an ice cold solution of N-deprotected derivative **B5** (0.94 mmol) with NEt₃ (0.13 mL, 0.94 mmol) in ~50 mL dry DCM was added phenylisocyanate (112 mg, 0.94 mmol) dropwise and the reaction mixture was kept stirred for 12 h. The reaction was monitored by TLC and after completion, the reaction mixture washed with 0.2 N H_2SO_4 , saturated aqueous NaHCO₃, and water. Dried over anhydrous Na₂SO₄ followed by evaporation. The obtained crude product was further purified by washing several time with EtOAc to afford 360 mg pure product.

Yield: 86%

MP: 208-210 °C

[α]²⁶_D: -20°

¹H NMR (500 MHz, CD₃CN) δ 2.76 (dd, *J* = 14.0, 8.5 Hz, 1H), 2.90 (dd, *J* = 14.0, 8.0 Hz, 1H), 3.02 (m, 2H), 3.57 (s, 3H), 4.41 (m, 1H), 4.57 (m, 1H), 5.30 (d, *J* = 7.5 Hz, 1H), 6.89 (t, *J* = 7.5 Hz, 1H), 6.95 (t, *J*= 7.5 Hz, 1H), 6.99 (d, *J* = 7.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz), δ 37.8, 38.6, 52.3, 53.8, 55.1, 120.5, 121.1, 123.6, 124.2, 127.1, 128.6, 129.2, 129.4, 135.5, 136.6, 138.1, 138.4, 155.4, 171.3, 172.0 IR (KBr): 3333, 3076, 2930, 2857, 1743, 1646, 1603, 1556, 1497, 1443, 1374, 1318, 1214 cm⁻¹.

HRMS: Calcd. for $C_{26}H_{28}N_3O_4$ m/z = 446.2080, found m/z = 446.2100; for $C_{26}H_{27}N_3O_4Na$ m/z = 468.1899, found m/z = 468.1922, for $C_{26}H_{27}N_3O_4K$ m/z = 484.1639, found m/z = 484.1656.

1.3.12 Preparation of 6

To a stirred solution of Phe-OMe.HCl (500 mg, 2.32 mmol) and NEt₃ (0.32 mL, 2.32 mmol) in ~50 mL dry DCM under ice cold condition, 1,3-phenyldiisocyanate (185.8 mg 1.16 mmol) was added drop wise and stirred the reaction mixture for 12 h. After completion of reaction, reaction mixture was washed with 0.2N H_2SO_4 , saturated

NaHCO₃ and finally with water. The organic part was dried over anhydrous Na_2SO_4 and evaporated. The obtained crude product was purified by column chromatography using EtOAc/hexane solvent and afford 350 mg product.

Yield: 68%

MP: 194-196 °C.

[α]²⁶_D: +42.

¹H NMR (500 MHz, CD₃CN) δ 3.03 (dd, *J* = 14.0, 7.5 Hz, 2H), 3.14 (dd, *J* = 14.0, 5.5 Hz, 2H), 3.69 (s, 6H), 4.64 (m, 2H), 5.49 (d, *J* = 8.0 Hz, 2H), 6.95 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.11 (t, *J* = 8.0 Hz, 1H), 7.25 (m, 6H), 7.35 (m, 6H), 7.53 (br s, *J* = 2.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz), δ 38.2, 52.3, 54.2, 111.2, 114.7, 127.1, 128.5, 129.2, 129.3, 136.2, 139.0, 155.4, 173.9.

IR (KBr): 3330, 3029, 2949, 1740, 1644, 1555, 1492, 1441, 1357, 1210, 1074, 1023 cm⁻¹.

HRMS: Calcd. for $C_{28}H_{30}N_4O_6Na m/z = 541.2063$, found m/z = 541.2056.

1.3.13 Preparation of 7

To an ice cold solution of **A3** (500 mg, 1.37 mmol) in ~20 mL dry DCM was added TFA (8 mL) and kept stirred for 4 h. The reaction was monitored by TLC and after completion, the reaction mixture was evaporated under a high vacuum with a KOH trap to afford N-deprotected derivative.

To an ice cold solution of N-deprotected derivative **B3** (1.37 mmol) with NEt₃ (0.19 mL, 1.37 mmol) in dry DCM was added a solution of 1,3-phenyldiisocyanate (110 mg, 0.68 mmol) drop wise and the reaction mixture was kept stirred for 12 h. The reaction was monitored by TLC and after completion, the reaction mixture washed with 0.2 N H_2SO_4 , saturated aqueous NaHCO₃, and water. Dried over anhydrous Na₂SO₄

followed by evaporation. The obtained crude product was further purified by column chromatography using ethylacetate /hexane solvent to afford 311 mg product.

Yield: 66%

MP: 166-168 °C.

[α]²⁶_D: -20.

¹H NMR (500 MHz, CD₃CN) δ 1.48 (s+s, 12H), 2.86 (dd, *J* = 13.8, 9.2 Hz, 2H), 3.11 (dd, *J* = 14, 5.0 Hz, 2H), 3.60 (s, 6H), 4.58 (m, 2H), 6.81 (s, 2H), 7.22 (m, 5H), 7.28 (m, 9H), 7.39 – 7.71 (m, 2H).

¹³C NMR (DMSO, 125 MHz), δ 24.7, 25.1, 51.9, 53.3, 55.1, 106.7, 110.6, 126.3, 128.0, 128.9, 129.5, 137.4, 140.7, 154.4, 170.9, 174.3.

IR (KBr): 3356, 3300, 3065, 2928, 1740, 1650, 1550, 1492, 1387, 1288, 1235, 1154 cm⁻¹.

HRMS: Calcd. for $C_{36}H_{44}N_6O_8Na m/z = 711.3118$, found m/z = 711.3119.

1.3.14 Preparation of 8

To an ice cold solution of **A1** (500 mg, 1.37 mmol) in ~20 mL dry DCM was added TFA (8 mL) and kept stirred for 4 h. The reaction was monitored by TLC and after completion, the reaction mixture was evaporated under a high vacuum with a KOH trap to afford N-deprotected derivative.

To an ice cold solution of N-deprotected derivative **B1** (1.37 mmol) with NEt₃ (0.19 mL, 1.37 mmol) in dry DCM was added a solution of 1,3-phenyldiisocyanate (110 mg, 0.69 mmol) in DCM and the reaction mixture was kept stirred for 12 h. The reaction was monitored by TLC and after completion, the reaction mixture washed with 0.2 N H_2SO_4 , saturated aqueous NaHCO₃, and water. Dried over anhydrous Na₂SO₄ followed by evaporation. The crude product was further purified by column chromatography using EtOAc/hexane solvent and afford 304 mg product.

Yield: 64%

MP: 112-114 °C.

[α]²⁶_D: +5.

¹H NMR (500 MHz, CD₃CN) δ 1.40 (s+s, 12H), 3.1 (m, 4H), 3.65 (s, 19H), 4.67 (m, 2H), 5.58 (s, 2H), 7.05 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 7.18 (m, 13H), 7.33 (s, 2H), 7.64 (s, 1H).

¹³C NMR (CDCl₃, 125 MHz), δ 25.9, 37.9, 52.3, 53.6, 56.6, 127.1, 128.6, 129.5, 136.1, 139.9, 155.3, 172.2, 175.9.

IR (KBr): 3353, 2944, 1743, 1658, 1547, 1445, 1361, 1241, 1169, 1021 cm⁻¹.

HRMS: Calcd. for $C_{36}H_{44}N_6O_8Na m/z = 711.3118$, found m/z = 711.3137.

1.3.15 Preparation of 9

To a stirred solution of D-Phe-OMe.HCl, (500 mg, 2.32 mmol) and NEt₃ (0.32 mL, 2.32 mmol) in dry DCM under ice cold condition, a solution of 1,3-phenyldiisocyanate (185.8 mg 1.16 mmol) in dry DCM was added dropwise and stirred the reaction mixture for 12 h. After completion of reaction, reaction mixture was washed with 0.2N H_2SO_4 , saturated NaHCO₃ and finally with water. The organic part was dried over anhydrous Na₂SO₄ and evaporated. The crude product was purified by column chromatography using EtOAc/hexane solvent to afford 525 mg product.

Yield: 87%.

[α]²⁶_D: -46.

¹H NMR (500 MHz, CD₃CN) δ 3.03 (dd, *J* = 14.0, 7.5 Hz, 2H), 3.14 (dd, *J* = 14.0, 5.5 Hz, 2H), 3.69 (s, 6H), 4.64 (m, 2H), 5.49 (d, *J* = 8.0 Hz, 2H), 6.95 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.11 (t, *J* = 8.0 Hz, 1H), 7.25 (m, 6H), 7.35 (m, 6H), 7.53 (t, *J* = 2.5 Hz, 1H). ¹³C NMR (CD₃CN, 125 MHz), δ 37.6, 51.7, 54.1, 108. 4, 112.2, 126.8, 128.4, 129.1, 129.4, 136.9, 140.2, 154.5, 172.7. HRMS: Calcd. for $C_{28}H_{30}N_4O_6Na m/z = 541.2063$, found m/z = 541.2056

Figure S1: a) Partial ¹H NMR (500 MHz, CD₃CN) spectra of 1 upon the addition of various amounts of DMSO-d₆, b) Influence on NH protons of 1 in CD₃CN by the volume fraction of DMSO-d₆, c) Chemical structure of 1 showing β-turn.

Figure S2: Possibilities of CO-NH hydrogen bonds in peptide 1.

Figure S3: The infrared (IR) spectra comparison of peptide **1**, **2** and **5** showing stretching frequency of ester carbonyls in **1** and **2** at 1737 cm⁻¹, while that of peptide **5** at 1743 cm⁻¹.

Figure S4. Partial ¹H NMR (500 MHz, CD₃CN) spectra of **1** at different concentrations.

Figure S5: Crystal structure of peptide 1 showing N−H…O hydrogen bonds between Aib amide and urea carbonyls with urea NHs. The distances are 2.2 and 2.3 Å respectively.

Figure S6: a) Association of peptide **1** through intermolecular π-π interactions and H-bonding to form the tubular structure, b) Intermolecular hydrogen bonded supramolecular tubular structure of peptide **1**, with dimensions of the cavity are 5 Å and 14 Å.

Figure S7: a) AFM topological image of 1 showing microtubular assembly, b) height analysis of a single microtube formed by self-assembly of 1, c) 3D AFM topographical image of 1, d) amplitude image and e) phase image of 1 showing tubular assembly.

Figure S8: a) FESEM images of 2 taken at an angle of 10° from the surface showing

the open end of the microtubular assembly.

Figure S9: The interplanar angle between the aromatic rings of consecutive

molecules were found to be 60 °.

Figure S10: a) UV-visible absorption spectra of 1 at different concentrations. The inset shows partial absorption spectra indicating absorption at higher wavelengths,b) Fluorescence emission spectra for different concentrations of 1 upon excitation at

365 nm.

Figure S11: Partial ¹H NMR (500 MHz, CD₃CN) spectra of 6 upon the addition of

various amounts of DMSO- d_6 .

Figure S12: UV-vis spectra of a) 6 and b) 7, and CD spectra of c) 6 and d) 7.

Figure S13: CD spectra of 6 and 9 in acetonitrile.

Figure S14: a) Partial ¹H NMR (500 MHz, CD₃CN) spectra of **8** upon the addition of various amounts of DMSO-*d*₆. b) Change in the chemical shift of NH proton with the addition of DMSO-d₆.

Figure S15: CD spectra of a) 1 and b) 8, c) Concentration-dependent CD spectra of

8.

Figure S16: UV-vis spectra of 7 on addition of a) F⁻, b) Cl⁻, c) l⁻ and Br⁻, and d)

HSO₄-.

showing the band at 270-300 nm) and fluorescence spectra of d) 6, e) 7 and f) 8 on

addition of $H_2PO_4^-$ (λ_{ex} =290 nm).

Figure S18: Job Plots: a) 6, b) 7 and c) 8 and BH plot of a) 6, b) 7 and c) 8 upon

addition of $H_2PO_4^-$.

Figure S19: Partial ¹H NMR (500 MHz, CD₃CN) spectra of a) 6 and b) 8 at

increasing concentration of $H_2PO_4^-$ ions.

Figure S20: Histograms are based on SEM images. Diameters of vesicles obtained

from a) 6, b) 7 and c) 8.

Figure S21: ¹H NMR (500 MHz, CDCl₃) spectrum of A1.

Figure S22: ¹³C NMR (125 MHz, CDCl₃) spectrum of A1.

Figure S23: ESI-Mass spectrum of A1.

Figure S24: ¹H NMR (500 MHz, CDCl₃) of A2.

Figure S25: ¹³C NMR (125 MHz, CDCl₃) spectrum of A2.

Figure S26: ESI-Mass spectrum of A2.

Figure S27: ¹H NMR (500 MHz, CDCl₃) spectrum of A3.

Figure S28: ¹³C NMR (125 MHz, CDCl₃) spectrum of A3.

Figure S29: ESI-Mass spectrum of A3.

Figure S30: ¹H NMR (500 MHz, CDCl₃) spectrum of A4.

Figure S31: ¹³C NMR (125 MHz, CDCl₃) spectrum of A4.

Figure S32: ESI-Mass spectrum of A4.

Figure S33: ¹H NMR (500 MHz, CDCl₃) spectrum of A5.

Figure S34: ¹³C NMR (125 MHz, CDCl₃) spectrum of A5.

Figure S35: ESI-Mass spectrum of A5.

Figure S36: ¹H NMR (500 MHz, CDCl₃) spectrum of A6.

Figure S37: ¹³C NMR (125 MHz, CDCl₃) spectrum of A6.

Figure S38: ESI-Mass spectrum of A6.

Figure S39: ¹H NMR (500 MHz, CD₃CN) spectrum of 1.

Figure S40: ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of 1.

Figure S41: ESI-Mass spectrum of 1.

Figure S42: ¹H NMR (500 MHz, CD₃CN) spectrum of 2.

Figure S43: ¹³C NMR (500 MHz, CDCl₃) spectrum of 2.

Figure S44: ESI-Mass spectrum of 2.

Figure S45: ¹H NMR (500 MHz, CDCl₃) spectrum of 3.

Figure S46: ¹³C NMR (125 MHz, CDCl₃) spectrum of 3.

Figure S47: ESI-Mass spectrum of 3.

Figure S48: ¹H NMR (500 MHz, CD₃CN) spectrum of 4.

Figure S49: ¹³C NMR (125 MHz, CD₃CN) spectrum of 4.

Figure S50: ESI-Mass spectrum of 4.

Figure S51: ¹H NMR (500 MHz, CD₃CN) spectrum of 5.

Figure S52: ¹³C NMR (125 MHz, CDCl₃) spectrum of 5.

Figure S53: ESI-Mass spectrum of 5.

Figure S54: ¹H NMR (500 MHz, CD₃CN) spectrum of 6.

Figure S55: ¹³C NMR (125 MHz, CDCl₃) spectrum of 6.

Figure S56: ESI-Mass spectrum of 6.

Figure S57: ¹H NMR (500 MHz, CD₃CN) spectrum of 7.

Figure S58: ¹³C NMR (125 MHz, DMSO-*d*₆) spectrum of 7.

Figure S59: ESI-Mass spectrum of 7.

Figure S60: ¹H NMR (500 MHz, CD₃CN) spectrum of 8.

Figure S61: ¹³C NMR (125 MHz, CDCl₃) spectrum of 8.

Figure 62: ESI-Mass spectrum of 8.

Figure S63: ¹H NMR (500 MHz, CD₃CN) spectrum of 9.

Figure S64: ¹³C NMR (125 MHz, CD₃CN) spectrum of 9.

Figure S65: ESI-Mass spectrum of 9.

Table S1. Crystal data and struc	cture refinement for peptide 1 (CCDC 235449
Identification code	AibFurea
Empirical formula	$C_{21}H_{25}N_{3}O_{4}$
Formula weight	383.450
Temperature/K	304.00
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	5.3552(6)
b/Å	11.2241(13)
c/Å	33.850(4)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2034.6(4)
Z	4
ρ _{calc} g/cm ³	1.252
µ/mm ⁻¹	0.088
F(000)	902.0
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.354 to 56.666
Index ranges	-7 ≤ h ≤ 5, -14 ≤ k ≤ 14, -45 ≤ l ≤ 43
Reflections collected	18534
Independent reflections	5035 [R _{int} = 0.0667, R _{sigma} = 0.0689]
Data/restraints/parameters	5035/0/262
Goodness-of-fit on F ²	1.017
Final R indexes [I>=2σ (I)]	R ₁ = 0.0532, wR ₂ = 0.1078
Final R indexes [all data]	R ₁ = 0.1051, wR ₂ = 0.1260
Largest diff. peak/hole / e Å ⁻³	0.17/-0.21
Flack parameter	0.2(10)

1).

Table S2. Crystal data and strue	cture refinement for peptide 2 (CCDC 235449
Identification code	dFAibUrea
Empirical formula	$C_{21}H_{25}N_3O_4$
Formula weight	383.1845
Temperature/K	302.00
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	5.3547(2)
b/Å	11.2231(4)
c/Å	33.8405(11)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2033.69(12)
Z	4
ρ _{calc} g/cm ³	1.252
µ/mm ⁻¹	0.088
F(000)	816.0
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.356 to 56.51
Index ranges	-7 ≤ h ≤ 7, -13 ≤ k ≤ 14, -45 ≤ l ≤ 43
Reflections collected	19171
Independent reflections	5027 [R _{int} = 0.0630, R _{sigma} = 0.0691]
Data/restraints/parameters	5027/0/256
Goodness-of-fit on F ²	1.000
Final R indexes [I>=2σ (I)]	$R_1 = 0.0508$, $wR_2 = 0.0994$
Final R indexes [all data]	$R_1 = 0.1112$, $wR_2 = 0.1207$
Largest diff. peak/hole / e Å ⁻³	0.17/-0.18
Flack parameter	0.7(9)

Table S3. Crystal data and stru	icture refinement for peptide 5 (CCDC 235449
Identification code	FFUrea
Empirical formula	$C_{26}H_{27}N_3O_4$
Formula weight	445.51
Temperature/K	150(2)
Crystal system	hexagonal
Space group	P6 ₅
a/Å	12.7958(3)
b/Å	12.7958(3)
c/Å	26.2968(12)
α/°	90
β/°	90
γ/°	120
Volume/Å ³	3728.8(2)
Z	6
ρ _{calc} g/cm ³	1.190
µ/mm ⁻¹	0.081
F(000)	1416.0
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	3.988 to 52.768
Index ranges	-16 ≤ h ≤ 16, -16 ≤ k ≤ 16, -32 ≤ l ≤ 32
Reflections collected	166845
Independent reflections	5074 [R _{int} = 0.0811, R _{sigma} = 0.0216]
Data/restraints/parameters	5074/1/299
Goodness-of-fit on F ²	1.057
Final R indexes [I>=2σ (I)]	R ₁ = 0.0331, wR ₂ = 0.0791
Final R indexes [all data]	$R_1 = 0.0385$, $wR_2 = 0.0830$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.15
Flack parameter	0.1(3)

93).

Table S4. Table showing CSI values of peptide 1, 2 and 8

Compounds	δ (obs)		Reference	Residue	Chemical
	Residue I	Residue I Residue II		I	Shift
	CαH	C _α H		Δδ	Index
Peptide 1	X*	4.57	4.66 ± 0.10	0.09	0
Peptide 2	Х	4.57	4.66 ± 0.10	0.09	0
Peptide 8	Х	4.67	4.66 ± 0.10	0.01	0

* 'X' denotes residue doesn't contain $C_{\alpha}H.$

Fable S5. H-bonding distances	s (Å) and angles ('	°) present in peptide 1
-------------------------------	---------------------	-------------------------

Donor (D)	H Label (H)	Acceptor (A)	DH•••A (Å)	D•••A (Å)	<d••••h•••a angle<br="">(°)</d••••h•••a>
N1	H1	01	2.299	3.142	157.34
N2	H2	O3	2.159	2.825	134.01
N3	H3	O4	2.343	2.675	103.92