Supplemental Information

Key Developments in Magnesiothermic Reduction of Silica: Insights into Reactivity and Future Prospects

Maximilian Yan^{a,b‡}, Sarah Martell^{a‡}, Siddharth V. Patwardhan^b, and Mita Dasog^{a*}

^aDepartment of Chemistry, Dalhousie University, 6243 Alumni Crescent, Halifax, NS B3H4R2, Canada.

^bDepartment of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom.

*Corresponding author: <u>mita.dasog@dal.ca</u>

[‡]*These authors contributed equally to the work and their names can be listed in any order.*

Figure S1: Schematic showing high volume production routes to making porous Si, and the energy requirement of each step, normalised to 1 kg of Si.

Table S1: Chemical process occurring in each step described in Figure S1, along with associated energy cost and reference source.

Step	Process	Energy cost	doi
		(kWh/kg Si)	
А	Carbothermal	76	https://doi.org/10.1016/j.jpowsour.2023.233720
	reduction		*
В	Silane	363	https://doi.org/10.1016/j.resconrec.2012.10.002
	production		
С	Siemens process	55	https://doi.org/10.1016/j.applthermaleng.2021.11
			7522
			https://doi.org/10.1016/j.jcrysgro.2014.05.020
MgTR	Magnesiothermi	19	https://doi.org/10.1016/j.jpowsour.2023.233720
_	c reduction		*
Electrolysi	Molten salt	72	Calculated here, see Table S3
s	electrolysis		

*Energy cost was calculated with the model used in our previous work¹ under the following conditions:

- Rotary tube furnace with L/D ratio of 5:1
- Ramp rate of 10°C/min
- 1 hour dwell time
- Thermal efficiency of 80%
- Heat capacity of C = 0.71 J/gK
- Mole ratio of $C:SiO_2 = 1:1$
- Tap density of C:SiO₂ mixture = 1000 kg/m^3
- Mole ratio of Mg:SiO₂ mixture = 2:1
- Tap density of Mg:SiO₂ mixture = 1000 kg/m^3

Electrolysis was calculated as follows:

Figure S2: Schematic showing the steps of recycling MgCl₂ into Mg.

Table S2: Physical process occurring in each step described in Figure S2, and associated energy requirements

Step	Process	Energy requirement (kWh/kg		
		Si)		
А	Sensible heating	1.02		
В	Enthalpy of fusion	0.85		
С	Electrolysis	69.3*		

*This value was calculated assuming an energy efficiency of 20% for the electrolysis process.

Reaction	Reaction	Year	Author	doi
800	6 time (ii)	2024	Andriavani <i>et al</i>	10 1016/i mset 2023 09 003
800	3	2024	Tildilayalli et at.	10.1010/j.iii.set.2023.09.005
750	2		Andriayani <i>et al</i> .	10.14716/ijtech.v6i7.1493
850	3	2015		
800	3	2015		
950	3			
700	15			
700	0		Hamedani <i>et al</i> .	10.1002/celc.202100683
700	3	2021		
700	6			
650	3	2017 Arunmetha at al		10 1007/s11664-017-5794-0
600	1	2017		10.1016/0025-5416(82)90046-5
750	1	1982	Banerjee et al.	
850	1	1702		
650	2.5		Bao <i>et al</i> .	10.1038/nature05570
650	2	2007		
650	3	2023	Klinbumrung <i>et al.</i>	10.1007/s12633-023-02380-z
800	0.5	2022	Guo <i>et al.</i>	10.1021/acssuschemeng.2c00632
680	3	2023	Jaswal <i>et al.</i>	10.1016/j.jenyman.2022.116912
650	6	2023	Wang <i>et al.</i>	10.1016/j.electacta.2023.141950
680	3	2023	Su <i>et al</i> .	10.1016/j.cej.2022.138394
750	2	2024	Ma <i>et al</i> .	10.1016/j.cej.2024.148542
700	5			
660	5	2023	Ma <i>et al</i> .	10.3390/ molecules28073274
650	6	2021	Entwistle et al.	10.1039/d0ra09000j
600	1			J
750	1	1982	Banerjee et al.	10.1016/0025-5416(82)90046-5
850	1			
700	3	2014	Zhang <i>et al</i> .	10.1002/adma.201402813
675	0.5	2014	Yoo <i>et al</i> .	10.1002/aenm.201400622
900	4			10.1002/1521-
		2002	Sandhage et al.	4095(20020318)14:6<429::AID-
				ADMA429>3.0.CO;2-C
600	5	2017	Jiang <i>et al</i> .	10.1016/j.cej.2017.08.061
650	5	2019	Xing <i>et al</i> .	10.1007/s42452-019-0196-y
700	6	2016	Li et al.	10.1038/s41598-017-01086-8
700	1			
700	2	2014	Chen at al	$10.1007/s12274_012.0374$ v
700	3	2014	Chen <i>et al</i> .	10.1007/S12274-015-0574-y
700	4			

Table S3. Data for Figure 4A regarding reaction time and temperatures in 50 literature sources.

700	5			
680	3	2021	Wang <i>et al</i> .	10.1016/j.jallcom.2020.157955
700	6	2016	Zhou <i>et al</i> .	10.1016/j.jpowsour.2016.05.058
650	7	2013	Xing <i>et al</i> .	10.1039/c3ra41889h
750	3	2016	Xu et al.	10.1039/c6ta01344a
800	12	2014	Xie et al.	10.1039/c4nj00752b
500	7	2015	Shuhe et al.	10.1007/s11595-016-1476-7
800	2	2016	Gao et al.	10.1016/j.electacta.2017.01.119
700	6	2014	Favors <i>et al</i> .	10.1038/srep05623
650	7	2011	Jia <i>et al</i> .	10.1002/aenm.201100485
650	6	2015	Liu <i>et al</i> .	10.1002/ange.201503150
500	1	2012	Vin a st al	10.1039/c3cc43134g
500	12	2013	Aing et al.	
700	6	2015	Wang <i>et al</i> .	10.1038/srep08781
700	16			
800	16	2022	Zuo <i>et al</i> .	10.3390/molecules27217486
900	16			
800	5	2019	Falk <i>et al</i> .	10.1016/j.ceramint.2019.07.157
675	2	2012	Yoo <i>et al</i> .	10.1002/adma.201201601
700	1	2026	Waitzinger <i>et al</i> .	10.1007/s00706-015-1611-8
750	1	2020		
600	1	2012	Batchelor et al.	10.1007/s12633-012-9129-8
600	12		Liu <i>et al</i> .	10.1016/j.jmmm.2015.06.074
700	12	2015		
800	12			
800	10			10.1007/s12613-019-1900-z
800	6	2020	Cup at al	
800	2	2020	Guo <i>el al</i> .	
800	14			
700	4	2023	Seroka et al.	10.3390/coatings13020221
650	6	2018	Khanna <i>et al</i> .	10.1139/cjc-2018-0165
650	4	2019	Miao <i>et al</i> .	10.1007/s11581-019-03256-2
650	2	2016	Uehira et al.	10.1246/cl.160544
700	2	2021	Sekar <i>et al</i> .	10.3390/nano11030613
650	3	2018	Tang <i>et al</i> .	10.1016/j.clay.2018.07.004
700	6			
700	3	0.001	Hamedani <i>et al</i> .	10.1002/celc.202100683
700	1.5	2021		
700	0			
650	2.5			10.1149/1.3611433
600	3	2011	Chen et al.	
500	3.5			
800	10	2019	Sun <i>et al</i> .	10.1016/j.ijhydene.2019.01.270

References

1. M. Yan, S. Martell, M. Dasog, S. Brown and S. V. Patwardhan, *Journal of Power Sources*, 2023, **588**, 233720.