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Experimental section
Materials

All chemicals, reagents and solvents of analytical grades were used without any purification unless
otherwise stated. The precursor, methyl(E)-3-(4-aminophenyl)acrylate was synthesized as per the

literature report.!
Synthesis
Synthesis of ligand

H,Lp-COOMe (L), Pyridine-2,6-dicarboxylic acid (1.00 g, 5.98 mmol) and methyl-(E)-3-(4-
aminophenyl)acrylate (2.12 g, 11.96 mmol) were taken in 10 mL pyridine and the resulting mixture
was refluxed with stirring for 30 min at 85 °C. Triphenyl phosphite (4.08 g, 13.16 mmol) was
added drop-wise over 10 min to the aforementioned reaction mixture. The reaction mixture was
finally stirred at 100 °C for 8 h. After cooling to room temperature, a colourless precipitate resulted
that was filtered and washed with ice-cold water, followed by diethyl ether, and dried under
vacuum. Yield: 2.78 g (96 %). 'H NMR spectrum (400 MHz, DMSO-d;) 8 11.20 (s, 2H), 8.44 (d,
J=17.7Hz, 2H), 8.36 — 8.31 (m, 1H), 8.05 (d, J = 8.4 Hz, 4H), 7.81 (d, J = 8.4 Hz, 4H), 7.61 (d, J
=15.9 Hz, 2H), 6.53 (d, J = 16.0 Hz, 2H), 3.60 (s, 6H). 3C NMR spectrum (100 MHz, DMSO-dy)
0 168.23, 162.24, 149.10, 143.87, 140.60, 140.30, 130.60, 129.49, 126.07, 121.30, 118.59, 47.06.
FTIR spectrum (selected peaks, v/em™): 3366 (N-H), 1702 (COOCH3), 1511 (C=0). Anal. Calc.
for C,7H,3N504: C, 66.80; H, 4.78; N, 8.66. Found: C, 66.42; H, 4.58; N, 8.42 (Figs. 1 — 3, ESIY).

Synthesis of metalloligand

Na[Co(Lr-€00Me),] (1?). Ligand L (100.00 mg, 0.20 mmol) was dissolved in a N, flushed DMF
(10 mL) and treated with solid NaH (11.00 mg, 0.45 mmol). After stirring the resultant mixture
for 30 minutes at room temperature, solid Co(OAc),.2H,0 (25.65 mg, 0.10 mmol) was added.
After 30 minutes, dry O, was purged for 10 minutes to the above reaction mixture and the reaction
mixture was stirred for further 4 h. The reaction mixture was filtered followed by the removal of
solvent under the reduced pressure. The crude product was isolated after washing with diethyl
ether. The crude product was re-dissolved in DMF and subjected to the vapour diffusion of diethyl
ether which afforded a crystalline product within 3-4 days. Yield: 190.00 mg (90 %). '"H NMR
spectrum (400 MHz, DMSO-dy) & 7.95 (d, J = 3.5 Hz, 1H), 7.61 (d, J = 7.7 Hz, 2H), 7.43 (d, J =
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16.0 Hz, 2H), 7.27 (d, ] = 8.3 Hz, 4H), 6.67 (d, J = 8.3 Hz, 4H), 6.45 (d, ] = 16.0 Hz, 2H), 3.68 (s,
6H). 13C NMR spectrum (100 MHz, DMSO-d;s ) 8 167.34, 167.05, 149.16, 144.99, 140.18, 138.67,
129.72, 128.59, 126.95, 124.18, 116.46, 51.81. FTIR spectrum (selected peaks, v/em™): 1684
(COOCH3), 1532 (C=0). Anal. Calc. for Cs4sH4,CoNgNaOy,. Calc: C 63.22; H 4.13; N 8.19.
Found: C 63.25; H 4.05; N 8.18 (Figs. 4 — 6, ESI¥).

Na[Co(Lr-€9%H),] (1). The metalloligand 1 was obtained after the base-assisted hydrolysis of 1P.
The compound 1* (100.00 mg, 0.47 mmol) was dissolved in a mixture of THF/H,O (3:1, v/v) and
treated with 4 equiv. of NaOH (77.00 mg, 1.91 mmol). The said reaction mixture was stirred for 8
h at room temperature. The resulting solution was neutralized using 4 N HCI. Removal of THF
under vacuum resulted in the precipitation of a product which was filtered and air-dried. This
product was recrystallized from DMSO-H,0, which produced a highly crystalline product within
4-5 days. Yield: 88.00 mg (93 %). '"H NMR spectrum (400 MHz, DMSO-dy) 8 8.01 (s, 1H), 7.66
(s, 2H), 7.39 (s, 2H), 7.26 (s, 4H), 6.72 (s, 4H), 6.36 (s, 2H). *C NMR spectrum (100 MHz,
DMSO-d6) 6 168.22, 167.10, 156.41, 148.90, 144.40, 140.16, 129.94, 128.45, 127.01, 124.28,
117.84. FTIR spectrum (selected peaks, v/em™'): 1554 (C=0). Anal. Calc. for C5oH3,CoNgNaO,.
Calc: C 61.93; H 3.53; N 8.67. Found: C 61.88; H 3.48; N 8.52 (Figs. 7 -9, ESIT).

Synthesis of lanthanide MOF's

[{(1)Th(DMSO)(H,0);}-8H,0-DMSO] (1-Tb). An aqueous solution of Tb(CF;S03); (60.61 mg,
0.10 mmol) was layered over a DMSO solution of metalloligand 1 (50.00 mg, 0.05 mmol) with an
intermediate layer of fert-butanol. Dark green coloured, needle shaped crystals were obtained in a
week which were filtered, washed with diethyl ether and dried under vacuum. Yield: 72.00 mg (93
%). FTIR spectrum (selected peaks, (v/em™): 1562 (C=0), v(H,0): 3299, v(S=0, DMSO): 1002.
Anal. Calc. for Cs4;HgCoTbN¢O,5S,. Cale.: C, 43.94; H, 4.17; N, 5.69; S, 4.34. Found C, 43.81;
H, 4.14; N, 5.68; S, 4.23. Absorption spectrum (solid state, Ayax/nm): 625, 433.

[{(DEu(DMSO)(H20),}-2H,0] (1-Eu). 1-Eu was synthesized following a same procedure as
mentioned for 1-Th; however, using Eu(CF3;S03); (59.92mg, 0.10 mmol). Green colored, needle
shaped crystals were obtained after 4-5 days which were filtered, washed with diethyl ether and
dried under vacuum. Yield: 60.00 mg, 91.00 %. FTIR spectrum (selected peaks, (v/em™): 1564
(C=0), v(H,0): 3288, v(S=0, DMSO): 1003. Anal. Calc. for Cs;H4;CoEuNO,;S. Calc.: C 48.89;
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H 3.30; N 6.71; S 2.56. Found C 48.70; H 3.05; N 6.88; S 2.68. Absorption spectrum (solid state,
Amax/nm): 620, 425.

General Procedure for the Photocatalytic Oxidation Reactions

Typically, 0.92 mmol substrate and 10 mg 1-Tb were suspended in 2 ml H,O in a 25 ml round-
bottom flask for the oxidation of alcohols. Oxygen was bubbled into the mixture for 5 min using
an oxygen balloon and the reaction vessel was then irradiated with a white LED lamp under
magnetic stirring. The progress of the reaction was monitored by thin-layer chromatography
(TLC). After the reaction was completed, catalyst was removed by centrifugation. The product(s)
were isolated and characterized with the help of 'H and 13C NMR spectroscopy and ESI" mass
spectrometry. Similarly, the photocatalytic experiments for the oxidation of sulfides were carried
using 0.80 mmol substrate and 10 mg of 1-Tb suspended in 2 ml MeOH.

Physical methods

Elemental analysis data were obtained with an Elementar Analysen Systeme GmbH Vario EL-III
instrument. FTIR spectra were recorded with an Agilent Cary 630 spectrometer having a diamond
ATR. UV-Vis diffuse reflectance spectra were measured on a PerkinElmer Lambda-35
spectrophotometer while solution absorption spectra were recorded using the PerkinElmer
Lambda-950 spectrophotometer. NMR spectroscopic measurements were carried out with a Jeol
400 MHz spectrometer. Thermal gravimetric analysis (TGA) and differential scanning calorimetry
(DSC) were performed with Shimadzu DTG-60 and TA-DSC Q200 instruments, respectively at
10 °C/min™! heating rate under a nitrogen atmosphere. Gas chromatography studies were
performed with a PerkinElmer Clarus 580 equipped with an RTX-5SIL-MS column. X-ray
powder diffraction (PXRD) studies were performed with a Bruker AXS D8 Discover instrument
(Cu Ka radiation, A = 1.54184 A). The samples were ground and subjected to the range of 6 = 5—
50° at a slow scan rate at room temperature. Optical images of the crystals were taken with an
OLYMPUS BX53 M optical microscope using the software OLYMPUS stream basic 2.3 (Build
16979). SEM and EDX measurements were performed with a Jeol SM 6610 LV instrument. EPR
spectral studies were carried out with a Bruker A300-9.5/12/S/W instrument. X-ray photoelectron
spectroscopy (XPS) studies were carried out using Kratos Analytical Axis Supra model.
Fluorescence spectral studies were performed with a Cary Eclipse fluorescence spectrometer.
Photoluminescence studies were performed using a QM-8450-11 Quanta master Up-conversion

and down-conversion fluorescence spectrometer with a 450W Xe source lamp. ESI*-MS spectra
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were recorded on an Agilent G6530AA spectrometer. EIS measurements were performed using a
Broadband dielectric spectrometer. The steady-state phosphorescence spectra were collected on
HORIBA DeltaFlex TM spectrophotometer. Mott—Schottky measurements were conducted using
a CHI 660E electrochemical workstation equipped with Pt and Ag/AgCl electrodes as the counter
and reference electrodes, respectively. The working electrode was prepared on a graphite sheet
while 0.2 M of Na,SO, solution was used as an electrolyte and the measurements were carried out
at two different frequencies (0.5 and 1.0 kHz). A 5SW LED lamp (450 lumens, 35.81 cd) was used

as the light source for the photocatalytic experiments.
X-ray diffraction studies

X-ray diffraction data for 1-Tb and 1-Eu were collected either on a Bruker SMART APEX-II
CCD or a Rigaku Oxford XtaLAB Synergy-DW diffractometer equipped with a graphite
monochromatic MoKa radiation (4 = 0.71073 A). The frames were collected at 273 and 298 K for
1-Tb and 1-Eu, respectively. SMART was used for collecting frames of data, indexing reflections,
and determining lattice parameters; SAINT was used for integration of the intensity of reflections
and scaling; and SADABS was used for absorption correction.? The crystal structures were solved
and refined by full-matrix least-squares refinement techniques on F? by using the program
SHELXL-97 incorporated in WinGX crystallographic collective package version 1.70.> Further
structure refinements were performed using Olex2 programme.* The crystallographic data
collection and structure solution parameters for 1-Tbh and 1-Eu are presented in Table 1, ESIf
whereas selected bond distances and bond angles are described in Tables 2-5, ESIT. CCDC Nos.
2288468 (1-Tb) and 2288469 (1-Eu) contain the supplementary crystallographic data for this

paper.
Transient absorption spectroscopy

Ultrafast transient absorption spectral measurements were conducted using a commercial one-box
ultrafast Ti: Sapphire amplifier (Astrella 1K-F, Coherent Inc.) coupled to a femtosecond transient
absorption spectrometer (Helios Fire UV-VIS, Ultrafast Systems). The amplified pulses of 100 fs
duration were obtained after seeding with 20 femtosecond 70 nm bandwidth laser pulses obtained
from an integrated oscillator (Vitara-S, 400 mW at 800 nm, 80 MHz) pumped by Verdi-G. The
amplified output of central wavelength 800 nm (5mJ/pulse, 1 kHz) was divided into two parts.

One part (~200 mW) was used to produce the femtosecond probe pulse by focusing it either on a
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CaF, (for UV probe: 310 — 600 nm) or a 2-mm thick sapphire crystal for generating white light
continuum (400-800 nm) while the other part (3.25 mW) was used to generate a tunable
femtosecond pump pulse using an optical parametric amplifier (Coherent OPeraASolo, 290-2600
nm). After the sample, the probe beam (1 kHz) was collimated and then focused onto a fiber-optics
coupled multichannel spectrometer equipped with CMOS sensor (1024 pixels). The pump power
of the pump pulse used in the experiment was controlled by a variable neutral-density filter wheel
and was kept at ~1 mW. Both the pump and probe beams were overlapped at the sample cuvette
and the delay between the pump and probe pulses was controlled by a motorized delay stage. The
pump pulses were chopped by a synchronized chopper at 500 Hz and the absorbance change was
calculated with two time-adjacent probe pulses (pump-blocked and pump-unblocked).
Calculation of Band Gap

The band gap energy of Ln-MOFs (1-Tb and 1-Eu) was calculated using the Tauc plot, according
to the energy dependence relationship of ahv = (hv — E,)" where a and E, are the absorption
coefficient and the energy gap of a semiconductor, respectively. The value of » depends on whether
the optical transition of a semiconductor is direct (n = %) or indirect (n = 1). The band gap is then
calculated by fitting linearly the plot of (a/v)" versus photon energy (Av).

Kinetic Studies

The kinetics for the photo-oxidation of benzyl alcohol and thioanisole were studied under the first-
order conditions and monitored by using the gas chromatography, with respect to the concentration
of a respective substrate. The rate constant (k) was calculated from the slope of the linear plot of
In(C¢/C,) against time, where, (C/C,) is the ratio of concentration of the substrate at a certain time
‘t’ to that of initial time ‘0’. For these studies, a standard calibration curve was generated for the
photo-oxidation of benzyl alcohol and thioanisole using phenol and dimethylsulfide, respectively.
Assay for the Detection of Hydroxyl Radicals

A 10 mg sample of 1-Tb was suspended in an aqueous solution (containing 0.5 % MeCN) of 0.5
mM coumarin and was subjected to visible light irradiation. The hydroxyl radical concentration
was measured by evaluating a change in the emission spectra for the generation of 7-
hydroxycoumarin as a function of time (Aex = 350 nm).° The hydroxyl radical concentration for 1-
Zn was calculated in a similar manner, however, using a 2 mg sample of 1-Zn.

Assay for the Detection of Superoxide Radicals
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A 10 mg sample of 1-Tb was suspended in a DMSO solution of 0.5 mM NBT and was subjected
to visible light irradiation. The concentration of superoxide radicals was measured by evaluating
a change in the absorption spectra as a function of time. The molar extinction coefficient of
monoformazan in DMSO was 12x10* M-'cm-!.”
Assay for the Detection of Singlet Oxygen
To evaluate the generation of singlet oxygen by 1-Tb upon visible light irradiation, two classical
probes were employed.
(i) 9,10-Dimethylanthracene (DMA)
A 10 mg sample of 1-Tb was suspended in an aqueous solution (containing 1 % MeCN) of 2 mM
DMA and was subjected to visible light irradiation. The concentration of !0, was measured by
evaluating a change in the emission spectra as a function of time.®
(ii) 1,5-Dihydroxynapthalene (DHN)
A 10 mg sample of 1-Tb was suspended in an aqueous solution (containing MeCN/MeOH (4:1),
v/v) of 2 mM DHN and was subjected to visible light irradiation. The concentration of singlet
oxygen was measured by evaluating a change in the absorption spectra as a function of time. The
molar extinction coefficient of 5-hydroxy-1,4-napthalenedione (juglone) was 3811 M-lem.°
Additionally, rate constant (k) for the formation of juglone was calculated from the slope of the
linear plot of In(Cy/C,) against time, where, (C,/C,) is the ratio of concentration (absorbance) at a
certain time ‘t’ to that of initial time ‘0’. All C, and C; values were obtained by the maximum
absorption (absorbance at A.,y) in the entire absorption spectrum.
Detection of Hydrogen Peroxide
Two classical methods were employed to evaluate the generation of H,O,.
(i) By UV-Vis Spectroscopy
When an excess amount of I is added to a solution containing H,O,, I is oxidized to I, by H,0,.
Subsequently, I, further reacts with the I ion to form tri-iodide ion (I3 ), which shows two
characteristic spectral features at ca. 300 and 350 nm in its UV-Vis spectrum. Thus, formation of
H,0, was monitored by the formation of tri-iodide in aqueous solution.'”

I L%» IZH2_O2> I3
(ii) Titration with KMnQ,
The highly oxidizing purple colored MnO,4 ion can be reduced by H,O, to generate colorless Mn?*

ion under an acidic condition, according to the following equation:
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5H,0, +2MnO4 + 6H  —2Mn?" + 50, + 8H,0
(purple) (colourless)
The concentration of H,O, can be calculated according to the following equation:
Ci202 = Cimnoa X Vimno4/ Vireaction mixture
In this case, 0.1 mL of a 2uM KMnOQO, solution was used to reduce 1 mL of a reaction mixture
containing H,O,. Accordingly, the concentration of H,O, was estimated.'!
Transient Absorption Spectroscopy Experiments
A sample was taken in DMSO in a 2 mm quartz cuvette and stirred constantly by a magnetic stirrer
during the measurements. For transient absorption spectral measurements, 375 nm was used as the
pump wavelength, and sapphire crystal for visible range white light as the probe. Concentrations
of the freshly prepared samples were adjusted to 2-4 mOD in a 2mm quartz cuvette. To check
charring or any damage to the sample during transient absorption spectral measurements, ground
state absorption spectra were taken before and after laser exposure and there was no change in the
spectra. Surface Xplorer version 4.5 and Glotaran version 1.5.1.1,2 were used to analyse the
transient absorption spectral data.
Calculations of Decay Time
The transient decays were fitted by using equation (1), using a deconvoluting IRF of ~150 fs with
the help of Surface Xplorer software and averaged lifetimes were calculated according to equation
(2), where AA (A, t) is the observed change in absorbance at time ¢ and wavelength 4, A is amplitude

and 7, is the time constant of /" components.'?
t

B = Mg+ Y Ae
L (eqn. 1)

i (eqn. 2)
Global Analyses
Global analyses of the ultrafast decay kinetics were carried out with the help of fitting software
Glotaran.'>!* The global analyses are based on the singular value decomposition (SVD) method

and the fitted global decays were used to plot the decay associated spectra (DAS). Independent
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single wavelength kinetic fits for a series of such decays along with the global fits were also

compared to ascertain the reliability of the global analyses.

Characterization data for organic products

1. Benzaldehyde (1a). Colorless liquid, "TH NMR spectrum (400 MHz, CDCl;) & 10.01 (s,
1H), 7.90 — 7.87 (m, 2H), 7.66 — 7.60 (m, 1H), 7.52 (t, ] = 7.5 Hz, 2H). 3C NMR spectrum
(100 MHz, CDCl5): 8 192.58, 136.36, 134.54, 129.79, 129.02.

2. 4-(trifluoromethyl)benzaldehyde (1b). Yellow liquid, "H NMR spectrum (400 MHz,
CDCl3) 6 10.11 (s), 8.02 (d, J = 7.9 Hz), 7.82 (d, J = 7.8 Hz). 3C NMR spectrum (100
MHz, CDCly): 6 191.05, 141.37, 130.62, 125.57, 106.74.

3. Fluorobenzaldehyde (1¢). Yellow liquid, "TH NMR spectrum (400 MHz, CDCl3): 6 9.97 (s,
1H), 7.95-7.89 (m, 2H), 7.26-7.19 (m, 2H). 13C NMR spectrum (100 MHz, CDCl3): &
190.60, 167.78, 132.29, 132.20, 116.45.

4. Chlorobenzaldehyde (1d). Yellow liquid, "TH NMR spectrum (400 MHz, CDCl;): 6 9.99
(s, 1H), 7.85-7.81 (m, 2H), 7.55-7.49 (m, 2H). 13C NMR spectrum (100 MHz, CDCls): &
190.94, 141.01, 134.71, 130.94, 129.49.

5. Bromobenzaldehyde (1e). White solid, 'TH NMR spectrum (400 MHz, CDCls): 8 9.98 (s,
1H), 7.75 (d, J = 8.5 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H). 13C NMR spectrum (100 MHz,
CDCls): 6 191.12, 135.06, 132.46, 131.00, 129.80.

6. Anisaldehyde (1f). Colorless liquid, "H NMR spectrum (400 MHz, CDCls): 8 9.88 (s, 1H),
7.88-7.80 (m, 2H), 7.04-6.98 (m, 2H), 3.88 (s, 3H). 3C NMR spectrum (100 MHz,
CDCl3): 6 190.94, 164.70, 132.07, 130.01, 114.39, 55.65.

7. Salicaldehyde (1g). Yellow liquid, "TH NMR spectrum (400 MHz, CDCl5): 8 11.03 (s, 1H),
9.88 (s, 1H), 7.57-7.49 (m, 2H), 7.04-6.97 (m, 2H). 3C NMR spectrum (100 MHz,
CDCls): 6 196.67, 161.61, 137.02, 133.77, 119.88, 117.60.

8. P-toulenealdehyde (1h). Colorless liquid, "TH NMR spectrum (400 MHz, CDCls): & 9.94
(s, 1H), 7.76 (d, J = 8.1 Hz, 2H), 7.31 (d, ] = 8.0 Hz, 2H), 2.42 (s, 3H). 13C NMR spectrum
(100 MHz, CDCl5): 8 192.10, 145.60, 134.16, 129.86, 129.72, 21.86.

9. Cuminaldehyde (1i). Colorless liquid, 'TH NMR spectrum (400 MHz, CDCl;): & 9.96 (s,
1H), 7.83 — 7.79 (m, 2H), 7.38 (d, ] = 8.2 Hz, 2H), 3.02-2.94 (m, 1H), 1.27 (d, ] = 6.9 Hz,
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10.

11.

12.

13.

14.

15.

16.

6H). 3C NMR spectrum (100 MHz, CDCls): & 192.09, 156.26, 134.69, 130.03, 127.16,
34.48, 23.63.

2-nitrobenzaldehyde (1j). White solid, '"H NMR spectrum (400 MHz, CDCls): 6 10.43 (s,
1H), 8.16-8.12 (m, 1H), 7.99 — 7.95 (m, 1H), 7.84-7.75 (m, 2H). 3C NMR spectrum (100
MHz, CDCl5): 6 188.19, 149.61, 134.11, 133.73, 131.36, 129.65, 124.52.
3-nitrobenzaldehyde (1K). White solid, 'TH NMR spectrum (400 MHz, CDCl5): 8 10.14
(s, 1H), 8.73 (d, J = 3.7 Hz, 1H), 8.53-8.49 (m, 1H), 8.25 (d, J = 7.6 Hz, 1H), 7.78 (t,] =
7.9 Hz, 1H). BC NMR spectrum (100 MHz, CDCls): 8 189.77, 148.79, 137.39, 134.65,
130.41, 128.63, 124.53.

4-nitrobenzaldehyde (11). White solid, "TH NMR spectrum (400 MHz, CDCls): 6 10.17 (s,
1H), 8.41 (d, J = 8.6 Hz, 2H), 8.09 (d, J = 8.7 Hz, 2H). 13C NMR spectrum (100 MHz,
CDCls): 6 190.31, 151.17, 140.05, 130.51, 124.34.

2,4-dimethylbenzaldehyde (1m). White solid, 'TH NMR spectrum (400 MHz, CDCl;): &
9.92 (s, 1H), 7.63 (s, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 2.33 (s, 3H),
2.33 (s, 3H). 13C NMR spectrum (100 MHz, CDCl;): § 192.36, 144.37, 137.51, 134.58,
130.58, 130.26, 127.77, 20.27, 19.66.

3,4, 5-trimethoxybenzaldehyde (1n). White solid, "TH NMR spectrum (400 MHz, CDCl;):
3 9.88 (s, 1H), 7.14 (s, 2H), 3.94 (d, J = 2.5 Hz, 9H). 13C NMR spectrum (100 MHz,
CDCl,): 6 191.14, 153.66, 143.59, 131.71, 106.71, 61.03, 56.29.

1, 1-biphenyl-4-carbaldehyde (10). White solid, 'TH NMR spectrum (400 MHz, CDCl5): 6
10.06 (s, 1H), 7.98-7.92 (m, 2H), 7.78-7.73 (m, 2H), 7.64 (d, ] = 8.6 Hz, 2H), 7.52 — 7.38
(m, 3H). BC NMR spectrum (100 MHz, CDCls): 4 192.01, 147.22, 139.73, 135.20, 130.31,
129.05, 128.51, 127.72, 127.40.

2-napthaldehdye (1p). White solid, '"H NMR spectrum (400 MHz, CDCl3): 6 10.16 (s,
1H), 8.34 (s, 1H), 8.02 — 7.89 (m, 4H), 7.68-7.57 (m, 2H). 13C NMR spectrum (100 MHz,
CDCl3): 6 192.35,136.48, 134.63, 134.12, 132.66, 129.56, 129.16, 129.14, 128.07, 127.13,
122.78.

17. Benzil (1q). Pale yellow solid, "TH NMR spectrum (400 MHz, CDCl3): 6 7.98 (d, J = 7.1

Hz, 4H), 7.69-7.64 (m, 2H), 7.52 (t, ] = 7.8 Hz, 4H). 3C NMR spectrum (100 MHz,
CDCLy): & 194.63, 134.94, 132.99, 129.93, 129.06.
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18.

19.

20.

21.

22.

23.

24.

25.

Isophthalaldehyde (1r). White solid, "TH NMR spectrum (400 MHz, CDCls): & 10.13 (s,
2H), 8.39 (s, 1H), 8.17 (d, J = 6.0 Hz, 2H), 7.75 (t, J = 7.6 Hz, 1H). 13C NMR spectrum
(100 MHz, CDCl3): 6 191.09, 137.01, 134.67, 131.06, 129.95.

Cinnamaldehyde (1s). Red liquid, "TH NMR spectrum (400 MHz, CDCls): 6 9.68 (d, J =
7.7 Hz, 1H), 7.55 (d, J = 7.7 Hz, 2H), 7.46-7.38 (m, 4H), 6.76-6.69 (m, 1H). 3C NMR
spectrum (100 MHz, CDCl;): 6 194.08, 153.15, 133.98, 131.39, 129.15, 128.59, 128.37.
Undecanal (1t). Colorless liquid, "TH NMR spectrum (400 MHz, CDCl;): 8 9.76 (t, J =
1.9 Hz, 1H), 2.45-2.40 (m, 2H), 1.31-1.26 (m, 14H), 1.70 — 1.57 (m, 2H), 0.88 (t, J =16
Hz, 3H). BC NMR spectrum (100 MHz, CDCls): 6 203.05, 43.90, 33.89, 31.87, 29.53,
29.35,29.16, 24.71, 22.66, 22.06, 14.09.

4-Formylmorpholine (1u). Colorless liquid, "TH NMR spectrum (400 MHz, CDCl;): &
8.06 (s, 1H), 3.60-3.52 (m, 2H), 3.45-3.39 (m,2H). 3C NMR spectrum (100 MHz,
CDCls): 6 160.85, 66.30, 45.70.

Camphor (1v). White solid, "TH NMR spectrum (400 MHz, CDCl;): 4 2.09 (t, J = 4.5 Hz,
1H), 1.85 (d, J = 18.2 Hz, 2H), 1.72-1.65 (m, 2H), 1.38 (s, 2H), 0.96 (s, 3H), 0.91 (s, 3H),
0.84 (s, 3H). 13C NMR spectrum (100 MHz, CDCls): 6 57.73, 46.82, 43.32, 27.05, 19.80,
19.15, 9.26. Peak at ca. 6 216 could not be marked since the spectrum was only recorded
up to 210 ppm.

2-octanone (1w). Colourless liquid, "TH NMR spectrum (400 MHz, CDCls):  2.43 (t, ] =
7.5 Hz, 2H), 2.14 (s, 3H), 1.62-1.52 (m, 2H), 1.28 (s, 6H), 0.88 (t, J = 6.8 Hz, 3H). 13C
NMR spectrum (100 MHz, CDCl3): 6 209.20, 43.68, 31.52, 29.71, 28.77, 23.73, 22.41,
13.92.

3-pyridinecarboxaldehyde (1x). Yellow liquid, "TH NMR spectrum (400 MHz, CDCl5): §
10.15 (s, 1H), 9.11 (s, 1H), 8.87 (d, J = 4.8 Hz, 1H), 8.23 — 8.19 (m,1H), 7.55-7.51 (m,
1H). 3C NMR spectrum (100 MHz, CDCl;): 6 190.80, 154.67, 151.99, 135.85, 131.40,
124.11.

Furaldehyde (1y). White solid, '"H NMR spectrum (400 MHz, CDCls): 6 9.67 (s, 1H),
7.71 (d, J = 0.8 Hz, 1H), 7.28 (d, J = 3.1 Hz, 1H), 6.62 (d, J = 1.9 Hz, 1H). 3C NMR
spectrum (100 MHz, CDCls): 6 177.94, 152.97, 148.13, 121.12, 112.62.
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26.

27.

5-nitro-2-furaldehyde (1z). Red solid, '"H NMR spectrum (400 MHz, CDCI;): 6 9.84 (s,
1H), 7.42 (d, J = 3.9 Hz, 1H), 7.36 (d, J = 3.8 Hz, 1H). 13C NMR spectrum (100 MHz,
CDCl5): 6 178.37,150.97, 118.80, 111.78. one peak doubt in spectra, require total 5 peaks.
5-(3-chloro-4-methoxyphenyl)furan-2-carbaldehyde (1aa). White solid, 'H NMR
spectrum (400 MHz, CDCl;): 8 9.54 (s, 1H), 7.76 (s, 1H), 7.65-7.61 (m, 1H), 7.24 (d, ] =
3.7 Hz, 1H), 6.91 (d, J = 8.7 Hz, 1H), 6.67 (d, J = 3.7 Hz, 1H), 3.88 (s, 3H). 3C NMR
spectrum (100 MHz, CDCls): 6 177.02, 158.22, 156.12, 151.88, 127.29, 125.06, 123.31,
122.58, 112.21, 107.04, 56.32.

28. Progesterone (1ab). White solid, 'H NMR spectrum (400 MHz, CDCl5): 6 5.74 (s, 1H),

2.54 (t,J=9.0 Hz, 1H), 2.41 —2.07 (m, 8H), 2.06-2.01 (m, 1H), 1.73 — 1.41 (m, 9H), 1.19
(s, 7H), 0.67 (s, 3H). 3C NMR spectrum (100 MHz, CDCLy): & 209.41, 199.55, 171.03,
123.95, 63.51, 56.03, 53.64, 43.94, 38.67, 38.58, 35.72, 35.55, 33.96, 32.79, 31.89, 31.54,
24.37,22.83,21.02, 17.38, 13.35. ESI-MS, m/z 315.2338 [M + H]*

29. Estrone (1ac). White solid, "TH NMR spectrum (400 MHz, CDCls): & 9.09 (s, 1H), 7.04

(d, J=8.5 Hz, 1H), 6.54 — 6.44 (m, 1H), 6.45 (d,J = 2.5 Hz, 1H), 2.74 (d, ] = 4.9 Hz, 2H),
2.47-2.39 (m, 1H), 2.30 (s, 1H), 2.11 — 2.01 (m, 4H), 1.74 (d, J = 11.0 Hz, 1H), 1.56-1.27
(m, 6H), 0.82 (s, 3H). 3C NMR spectrum (100 MHz, CDCLy): & 160.22, 142.22, 135.02,
131.15, 120.14, 117.97, 54.84, 52.52, 48.68, 43.20, 40.56, 36.56, 35.84, 34.30, 31.36,
30.78, 26.35, 18.73. ESI-MS, m/z 271.1710 [M + H]*

30. Stanolone (1ad). White solid, 'H NMR spectrum (400 MHz, CDCls): 6 7.27 (s, 1H), 3.65

31.

(t, ] = 8.6 Hz, 1H), 2.33 — 2.07 (m, 8H), 1.85 — 1.79 (m, 1H), 1.65 (s, 7H), 1.39-1.24 (m,
5H), 1.02 (s, 4H), 0.76 (s, 3H). 13C NMR spectrum (100 MHz, CDCl;): 3 212.14, 81.86,
53.92, 50.83, 46.75, 44.70, 43.00, 38.17, 36.65, 35.76, 35.45, 31.26, 30.95, 30.52, 28.81,
23.40,21.04, 11.51, 11.15. ESI-MS, m/z 291.2336 [M + H]*

(methylsulfinyl)benzene (2a). White solid, "TH NMR spectrum (400 MHz, CDCl;): 8 7.69—
7.62 (m, 2H), 7.58-7.46 (m, 3H), 2.73 (s, 3H). 13C NMR spectrum (100 MHz, CDCl;): &
145.58, 131.02, 129.34, 123.45, 43.89.

32. Sulfinyldibenzene (2b). White solid, "TH NMR spectrum (400 MHz, CDCls): 6 7.70-7.61

(m, 4H), 7.50-7.39 (m, 6H). 3C NMR spectrum (100 MHz, CDCls): 5 145.61, 131.07,
129.34, 124.80.
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33.

34.

35.

1-nitro-4-(phenylsulfinyl)benzene (2¢). White solid, 'H NMR spectrum (400 MHz,
CDCly): 6 8.31 (d, J = 8.8 Hz, 2H), 7.85 (d, ] = 8.7 Hz, 2H), 7.72-7.65 (m, 2H), 7.55 —
7.46 (m, 3H). 3C NMR spectrum (100 MHz, CDCl5): 8 152.95, 149.26, 144.39, 132.04,
129.83, 125.30, 124.90, 124.45.

1-methyl-4-(phenylsulfinyl)benzene (2d). White solid, "H NMR spectrum (400 MHz,
CDCly): 6 7.68-7.57 (m, 2H), 7.53 (d, J = 8.2 Hz, 2H), 7.47-7.37 (m, 3H), 7.25 (d, ] = 8.2
Hz, 2H), 2.35 (s, 3H). 13C NMR spectrum (100 MHz, CDCl;): 4 145.72, 142.38, 141.69,
130.92, 130.06, 129.29, 125.00, 124.69, 21.42.

(sulfinylbis(methylene))dibenzene (2e). White solid, 'TH NMR spectrum (400 MHz,
CDCls): 8 7.42-7.22 (m, 10H), 3.85 (s, 4H). 3C NMR spectrum (100 MHz, CDCls): &
130.17, 129.02, 128.40, 127.54, 57.23.

36. Diethyl-4,4'-(sulfinylbis(methylene))dibenzoate (2f). White solid, "TH NMR spectrum

37.

38.

39.

40.

41.

(400 MHz, CDCl;): 6 8.09 (d, J = 8.2 Hz, 4H), 7.38 (d, ] = 8.2 Hz, 4H), 4.38 (q, ] = 7.1
Hz, 4H), 4.21 (s, 4H), 1.40 (t, J = 7.1 Hz, 6H). 13C NMR spectrum (100 MHz, CDCls): &
166.09, 134.82, 130.88, 130.16, 130.14, 61.20, 57.15, 14.32.
Tetrahydrothiophene-1-oxide (2g). White solid, "TH NMR spectrum (400 MHz, CDCl5): 6
3.03-2.82 (m, 4H), 2.56 — 2.37 (m, 1H), 2.10 — 2.01 (m, 2H). 3C NMR spectrum (100
MHz, CDCly): 6 54.19, 25.62.

1-(butylsulfinyl)butane (2h). White solid, "TH NMR spectrum (400 MHz, CDCls): § 2.84—
2.60 (m, 4H), 1.81-1.71 (m, 4H), 1.56-1.44 (m, 4H), 0.97 (t, J = 7.3 Hz, 6H). 13C NMR
spectrum (100 MHz, CDCls): 6 51.73, 24.55, 21.97, 13.61.

1-(octylsulfinyl)octane (2i). White solid, "TH NMR spectrum (400 MHz, CDCl;): & 2.74—
2.57 (m, 4H), 1.83 — 1.71 (m, 4H), 1.52—1.39 (m, 4H), 1.37-1.26 (m, 16H), 0.88 (t, J = 6.9
Hz, 6H). 3C NMR spectrum (100 MHz, CDCly): 6 52.43, 31.73, 29.16, 29.02, 28.88,
22.60, 14.06.

1-(decylsulfinyl)decane (2j). White solid, "TH NMR spectrum (400 MHz, CDCls): 6 2.70—
2.59 (m, 4H), 1.82 — 1.70 (m, 4H), 1.53—1.38 (m, 4H), 1.36—1.24 (m, 24H), 0.88 (t, J = 6.9
Hz, 6H). 3C NMR spectrum (100 MHz, CDCls): 6 52.37, 31.86, 29.49, 29.37, 29.27,
29.21, 28.88, 22.67,22.61, 14.11.

1-chloro-2-(ethylsulfinyl)ethane (2k). White solid, "TH NMR spectrum (400 MHz,
CDCls): 6 4.04-3.88 (m, 2H), 3.28-3.18 (m, 1H), 3.09 — 3.04 (m, 1H), 2.94-2.83 (m, 2H),
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1.38 (t, J = 7.5 Hz, 3H). 3C NMR spectrum (100 MHz, CDCls): & 53.66, 45.58, 36.93,
6.80. ESI-MS, m/z 141.0143 [M + H]*
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Fig. S1 FTIR spectrum of ligand L.
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Fig. S3 13C NMR spectrum of ligand L in DMSO-d4 solvent where * represents the residual
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Fig. S11 Core level XPS spectrum for Co 2p in 1.
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Fig. S12 Core level XPS spectra for (a) Co 2p and (b) Tb 3d in 1-Tb.
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Fig. S13 Core level XPS spectra for (a) Co 2p and (b) Eu 3d in 1-Eu.
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Fig. S14 (a) Stick representation of the crystal structure of 1-Th. Color code: Orange, Co; yellow,
Tb; pink, S; blue, N; red, O; gray, C. Hydrogen atoms and solvent molecules have been omitted
for clarity. (b) Thermal ellipsoidal plot of the crystal structure of 1-Tb. Color code: Orange, Co;
yellow, Tb; pink, S; blue, N; red, O; gray, C. Hydrogen atoms and solvent molecules have been
omitted for clarity. (c) Crystal structure of 1-Tb displaying arrangements of metalloligands (shown
in pink, golden and green colors) and Tb** ions generating a 1D chain when viewed along b axis.
(d) Crystal structure of 1-Tb displaying arrangements of metalloligands (shown in pink, green,
olive and dark blue colors) and Tb3" ions generating the double 1D chains when viewed along a
axis. () A view of 2D network created due to H-bonding interactions between O,niq. and lattice
water molecules (shown as blue balls) connecting various double 1D chains (shown in pink and
green colors). (f) Spacefill diagram of 1-Tb when viewed along a axis. (g) Stick representation of
the crystal structure of 1-Eu. Color code: Orange, Co; cyan, Eu; pink, S; blue, N; red, O; gray, C.
Hydrogen atoms and solvent molecules have been omitted for clarity. (h) Thermal ellipsoidal plot
of the crystal structure of 1-Eu. Color code: Orange, Co; cyan, Eu; pink, S; blue, N; red, O; gray,
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C. Hydrogen atoms and solvent molecules have been omitted for clarity. (i) Crystal structure of 1-
Eu displaying arrangements of metalloligands (shown in pink, golden and green colors) and Eu?*
ions generating a 1D chain when viewed along b axis. (j) Crystal structure of 1-Eu displaying
arrangements of metalloligands (shown in pink, green, olive and dark blue colors) and Eu?* ions
generating the dimeric chains when viewed along a axis. (k) A view of 2D network created due to
H-bonding interactions between O,niqe and lattice water molecules (shown as blue balls)
connecting various dimeric chains (shown in pink and green colors). (1) Spacefill diagram of 1-Eu
when viewed along a axis.
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Fig. S15 FTIR spectra of 1-Tb (black trace) and 1-Eu (blue trace).
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Fig. S16 (a) Thermal Gravimetric Analysis (TGA, black trace) and Differential Scanning
Calorimetric (DSC, red trace) plots for (a) 1-Th and (b) 1-Eu.
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Fig. S17 (a) N, gas sorption isotherms measured at 77 K for (a) 1-Tb and (b) 1-Eu. Black and red

traces respectively denote sorption and desorption plots. Insets show the pore size distribution
graph.
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Fig. S18 (a) Powder X-ray diffraction patterns for as-synthesized 1-Tb (upper) and the one
simulated from Mercury 3.0 using the single crystal diffraction data (lower). (b) Powder X-ray
diffraction patterns for as-synthesized 1-Eu (upper) and the one simulated from Mercury 3.0 using
the single crystal diffraction data (lower).
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Fig. S19 Tauc plots for 1-Tb (green trace) and 1-Eu (red trace) with n = 1 (indirect band gap
model).
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Fig. S20 Calibration plot for the gas chromatographic studies using benzyl alcohol as the substrate
and phenol as the internal standard, where ‘R’ represents reactant (benzyl alcohol) while ‘IC’ refers
to internal used (phenol).
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Fig. S21 Plot of In(C/C,) versus time representing first-order kinetics for the generation of 5-
hydroxy-1,4-napthalenedione upon photo-oxidation of 1,5-dihydroxynapthalene in the presence of

1-Tb as a photocatalyst.
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Fig. S22 'H NMR spectrum of benzaldehyde in CDCI; solvent where * represents the residual
solvent and/or adventitious water peaks.

S27



s

*
* l
| L

© 6«-&\»&
i MmN Qo
I oY
a MmN
- e

T T T T T T
190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 O
ppm

Fig. S23 13C NMR spectrum of benzaldehyde in CDCl; solvent where * represents the residual
solvent and/or adventitious water peaks.

J

22
o

0.96

O%\@\
CF

3

10.14F——

=1
M= M-
co®®
0O NN
T T T T T T T T T T T T T T T
10.5 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 1.0 05 0.0
ppm

Fig. S24 '"H NMR spectrum of 4-(trifluoromethyl)benzaldehyde in CDCIl; solvent where *
represents the residual solvent and/or adventitious water peaks.
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Fig. S25 BC NMR spectrum of 4-(trifluoromethyl)benzaldehyde in CDCIl; solvent where *
represents the residual solvent and/or adventitious water peaks.
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Fig. S26 'H NMR spectrum of fluorobenzaldehyde in CDCI; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S27 3C NMR spectrum of fluorobenzaldehyde in CDCl; solvent where * represents the
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Fig. S28 'H NMR spectrum of chllorobenzaldehyde in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S29 3C NMR spectrum of chlorobenzaldehyde in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S30 '"H NMR spectrum of bromobenzaldehyde in CDCIl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S31 3C NMR spectrum of bromobenzaldehyde in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S32 '"H NMR spectrum of anisaldehyde in CDCl; solvent where * represents the residual
solvent and/or adventitious water peaks.
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Fig. S33 13C NMR spectrum of anisaldehyde in CDCI; solvent where * represents the residual
solvent and/or adventitious water peaks.
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Fig. S34 '"H NMR spectrum of salicaldehyde in CDCI; solvent where * represents the residual
solvent and/or adventitious water peaks.
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Fig. S35 13C NMR spectrum of salicaldehyde in CDCI; solvent where * represents the residual

solvent and/or adventitious water peaks.
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Fig. S36 'H NMR spectrum of p-toulenealdehyde in CDCl; solvent where *
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Fig. S37 BC NMR spectrum of p-toulenealdehyde in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S38 'H NMR spectrum of cuminaldehyde in CDCl; solvent where * represents the residual
solvent and/or adventitious water peaks.
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Fig. S39 13C NMR spectrum of cuminaldehyde in CDCI; solvent where * represents the residual
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Fig. S40 'H NMR spectrum of 2-nitrobenzaldehyde in CDCl; solvent where * represents the

residual solvent and/or adventitious water peaks.
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Fig. S41 3C NMR spectrum of 2-nitrobenzaldehyde in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S42 "H NMR spectrum of 3-nitrobenzaldehyde in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S43 '3C NMR spectrum of 3-nitrobenzaldehyde in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S44 "H NMR spectrum of 4-nitrobenzaldehyde in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S45 13C NMR spectrum of 4-nitrobenzaldehyde in CDCIl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S46 '"H NMR spectrum of 2,4-dimethylbenzaldehyde in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S47 3C NMR spectrum of 2,4-dimethylbenzaldehyde in CDCl; solvent where * represents
the residual solvent and/or adventitious water peaks.
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Fig. S48 'H NMR spectrum of 3,4,5-trimethoxybenzaldehyde in CDC]l; solvent where * represents
the residual solvent and/or adventitious water peaks.
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Fig. S49 3C NMR spectrum of 3,4,5-trimethoxybenzaldehyde in CDCl; solvent where *
represents the residual solvent and/or adventitious water peaks.
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Fig. S50 '"H NMR spectrum of 1,1-biphenyl-4-carbaldehyde in CDClI; solvent where * represents
the residual solvent and/or adventitious water peaks.
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Fig. S51 3C NMR spectrum of 1,1-biphenyl-4-carbaldehyde in CDCl; solvent where * represents

the residual solvent and/or adventitious water peaks.
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Fig. S52 '"H NMR spectrum of 2-napthaldehyde in CDCl; solvent where * represents the residual

solvent and/or adventitious water peaks.
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Fig. S53 3C NMR spectrum of 2-napthaldehyde in CDCl; solvent where * represents the residual
solvent and/or adventitious water peaks.
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Fig. S54 'H NMR spectrum of benzil in CDCI; solvent where * represents the residual solvent
and/or adventitious water peaks.
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Fig. S55 3C NMR spectrum of benzil in CDCI; solvent where * represents the residual solvent
and/or adventitious water peaks.
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Fig. S56 '"H NMR spectrum of isophthalaldehyde in CDCl; solvent where * represents the residual
solvent and/or adventitious water peaks.
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Fig. S57 3C NMR spectrum of isophthalaldehyde in CDCl; solvent where * represents the residual
solvent and/or adventitious water peaks.
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Fig. S58 '"H NMR spectrum of cinnamaldehyde in CDCl; solvent where * represents the residual
solvent and/or adventitious water peaks.
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Fig. S59 3C NMR spectrum of cinnamaldehyde in CDCI; solvent where * represents the residual

solvent and/or adventitious water peaks.
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Fig. S60 '"H NMR spectrum of undecanal in CDCl; solvent where * represents the residual solvent

and/or adventitious water peaks.
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Fig. S61 3C NMR spectrum of undecanal in CDCl; solvent where * represents the residual solvent
and/or adventitious water peaks.
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Fig. S62 'H NMR spectrum of 4-formylmorpholine in CDCI; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S63 '3C NMR spectrum of 4-formylmorpholine in CDCl; solvent where * represents the

residual solvent and/or adventitious water peaks.
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Fig. S64 '"H NMR spectrum of camphor in CDCl; solvent where * represents the residual solvent

and/or adventitious water peaks.
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Fig. S65 3C NMR spectrum of camphor in CDCI; solvent where * represents the residual solvent
and/or adventitious water peaks.
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Fig. S66 'H NMR spectrum of 2-octanone in CDCl; solvent where * represents the residual solvent
and/or adventitious water peaks.
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Fig. S67 '3C NMR spectrum of 2-octanone in CDCl; solvent where * represents the residual
solvent and/or adventitious water peaks.
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Fig. S68 '"H NMR spectrum of 3-pyridinecarboxaldehyde in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S69 3C NMR spectrum of 3-pyridinecarboxaldehyde in CDCI; solvent where * represents
the residual solvent and/or adventitious water peaks.
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Fig. S70 'H NMR spectrum of furaldehyde in CDCl; solvent where * represents the residual
solvent and/or adventitious water peaks.
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Fig. S71 13C NMR spectrum of furaldehyde in CDCI; solvent where * represents the residual
solvent and/or adventitious water peaks.
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Fig. S72 'H NMR spectrum of 5-nitro-2-furaldehyde in CDCI; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S73 13C NMR spectrum of 5-nitro-2-furaldehyde in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S74 '"H NMR spectrum of 5-(3-chloro-4-methoxyphenyl)furan-2-carbaldehyde in CDCl;
solvent where * represents the residual solvent and/or adventitious water peaks.
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Fig. S75 13C NMR spectrum of 5-(3-chloro-4-methoxyphenyl)furan-2-carbaldehyde in CDCl;
solvent where * represents the residual solvent and/or adventitious water peaks.
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Fig. S76 '"H NMR spectrum of Progesterone in CDCI; solvent where * represents the residual
solvent and/or adventitious water peaks.
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Fig. S77 13C NMR spectrum of Progesterone in CDCI; solvent where * represents the residual
solvent and/or adventitious water peaks.
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Fig. S78 ESI-MS spectrum of progesterone in CHCl;.
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Fig. S79 '"H NMR spectrum of estrone in CDCl; solvent where * represents the residual solvent
and/or adventitious water peaks.
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Fig. S80 3C NMR spectrum of estrone in CDCI; solvent where * represents the residual solvent
and/or adventitious water peaks.
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Fig. S81 ESI-MS spectrum of estrone in CHCl;.
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Fig. S82 'H NMR spectrum of stanolone in CDCl; solvent where * represents the residual solvent
and/or adventitious water peaks.
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Fig. S83 *C NMR spectrum of stanolone in CDCl; solvent where * represents the residual solvent
and/or adventitious water peaks.
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Fig. S84 ESI-MS spectrum of stanolone in CHCl;.

H H
102 . X
O)\OH o) ©/\OH
—0OH « >
OH . OH 0
(i) (lin) = (H,0,)

Fig. S85 Proposed reaction mechanism for the selective oxidation of benzyl alcohol using Ln-
MOFs as the photocatalyst.
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Fig. S86 UV-Vis spectra of the tri-iodide ion formed by H,O, oxidation.
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Fig. S87 A bar graph displaying the recyclability of 1-Tb for fifteen consecutive catalytic cycles
for the photo-oxidation of benzyl alcohol.
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Fig. S88 FTIR spectra of as-synthesized 1-Tb (black trace) and after the photocatalytic oxidation
of benzyl alcohol (red trace).

10 20 30 40 50
20 (degrees)

Fig. S89 Powder X-ray diffraction patterns for as-synthesized 1-Tb (black trace) and after the
photocatalytic oxidation of benzyl alcohol (red trace).
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Fig. S90 (a, ¢) SEM images of as-synthesized 1-Tb and after fiffteen cycles of photocatalytic
oxidation of benzyl alcohol. (b, d) Optical images of as-synthesized 1-Tb and after fiffteen cycles
of photocatalytic oxidation of benzyl alcohol.
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Fig. S91 'H NMR spectrum of (methylsulfinyl)benzene in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S92 3C NMR spectrum of (methylsulfinyl)benzene in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S93 '"H NMR spectrum of sulfinyldibenzene in CDCl; solvent where * represents the residual
solvent and/or adventitious water peaks.
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Fig. S94 13C NMR spectrum of sulfinyldibenzene in CDCl; solvent where * represents the residual
solvent and/or adventitious water peaks.
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Fig. S95 'H NMR spectrum of 1-nitro-4-(phenylsulfinyl)benzene in CDCIl; solvent where *
represents the residual solvent and/or adventitious water peaks.
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Fig. S96 3C NMR spectrum of 1-nitro-4-(phenylsulfinyl)benzene in CDCl; solvent where *
represents the residual solvent and/or adventitious water peaks.
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Fig. S97 'H NMR spectrum of 1-methyl-4-(phenylsulfinyl)benzene in CDCl; solvent where *
represents the residual solvent and/or adventitious water peaks.
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Fig. S98 '3C NMR spectrum of 1-methyl-4-(phenylsulfinyl)benzene in CDCl; solvent where *
represents the residual solvent and/or adventitious water peaks.
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Fig. S99 'H NMR spectrum of (sulfinylbis(methylene))dibenzene in CDCIl; solvent where *
represents the residual solvent and/or adventitious water peaks.
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Fig. S100 13C NMR spectrum of (sulfinylbis(methylene))dibenzene in CDCl; solvent where *
represents the residual solvent and/or adventitious water peaks.
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Fig. S101 '"H NMR spectrum of diethyl-4,4'-(sulfinylbis(methylene))dibenzoate in CDCl; solvent
where * represents the residual solvent and/or adventitious water peaks.
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Fig. S102 '3C NMR spectrum of diethyl-4,4'-(sulfinylbis(methylene))dibenzoate in CDCl; solvent
where * represents the residual solvent and/or adventitious water peaks.
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Fig. S103 '"H NMR spectrum of tetrahydrothiophene-1-oxide in CDCl; solvent where * represents
the residual solvent and/or adventitious water peaks.
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Fig. S104 3C NMR spectrum of tetrahydrothiophene-1-oxide in CDCI; solvent where * represents
the residual solvent and/or adventitious water peaks.
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Fig. S105 'H NMR spectrum of 1-(butylsulfinyl)butane in CDCI; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S106 3C NMR spectrum of 1-(butylsulfinyl)butane in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.

S70



16.16

6.14

4.00
4.04

Fig. S107 '"H NMR spectrum of 1-(octylsulfinyl)octane in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S108 '*C NMR spectrum of 1-(octylsulfinyl)octane in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S109 'H NMR spectrum of 1-(decylsulfinyl)decane in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S110 3C NMR spectrum of 1-(decylsulfinyl)decane in CDCl; solvent where * represents the
residual solvent and/or adventitious water peaks.
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Fig. S111 'H NMR spectrum of 1-chloro-2-(ethylsulfinyl)ethane in CDCl; solvent where *
represents the residual solvent and/or adventitious water peaks.
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Fig. S112 3C NMR spectrum of 1-chloro-2-(ethylsulfinyl)ethane in CDCl; solvent where *
represents the residual solvent and/or adventitious water peaks.

S73



10 6 /Cpd 1: C4 H8 CI O S: + FBF Spectrum (0.070, 0.170-0.220 min) AS-31.d Subtract

25+ 141.0143
. (MyH)~+ .
21 9 cl
i /\S/\/
15 '_
1 | |
|
- 162.9961
CJ.S-!E (M+Na)+
[
0- I

115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190
Counts vs. Mass-to-Charge (m/z)

Fig. S113 ESI"-MS spectrum of 1-chloro-2-(ethylsulfinyl)ethane in MeOH.
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Fig. S114 Calibration plot for the gas chromatographic studies using thioanisole as the substrate
and dimethylsulfide as the internal standard, where ‘R’ represents reactant (thioanisole) and ‘IC’
refers to internal used (dimethylsulfide).
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Fig. S115 Global analyses of (a) L, (b) 1 and (c) 1-Tb obtained from the Glotaran and Surface
Xplorer software (tgr = Timescale of electron transfer, tp= timescale of intramolecular vibrational
relaxation, and tigc = timescale of inter-system crossing).
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Fig. S116 Combined decay kinetics (probed at the maximum of the excited state absorption
spectra) of L at 565 nm, 1 at 590 nm and 1-Tb at 560 nm.
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Fig. S117 (a-d) Decay kinetics of 1-Tb at different probe wavelengths indicating the rise trend.
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Fig. S118 (a-d) Decay kinetics of 1-Tb at different probe wavelengths indicating the decay-only

trend.
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Fig. S120 EDX spectrum of 1-Zn.
Fig. S121 SEM image of 1-Zn.
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Fig. S122 Powder X-ray diffraction pattern for 1-Zn.
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Fig. S123 (a) Stick representation of the preliminary crystal structure of 1-Zn. Color code: Orange,
Co; green, Zn; pink, S; blue, N; red, O; gray, C. Hydrogen atoms and solvent molecules have been
omitted for clarity. (b) Preliminary crystal structure of 1-Zn displaying arrangements of
metalloligands (shown in pink and green colors) and Zn?" ions generating a double chain when
viewed along b axis. (¢) Preliminary crystal structure of 1-Zn displaying arrangements of
metalloligands (shown in pink, green, olive and dark blue colors) and Zn?' ions generating the
double chains when viewed along a axis. (d) A view of 2D network connecting various double
chains (shown in pink and green colors). (e) Spacefill diagram of 1-Zn when viewed along a axis.
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Fig. S124 Global analysis of 1-Zn obtained from the Glotaran and Surface Xplorer software.
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Fig. S125 Emission spectrum for the generation of 7-hydroxycoumarin from coumarin during a
photocatalysis experiment in the presence of 1-Zn under visible light irradiation at different time
(0-45 min at an interval of 5 min).
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Fig. S126 Emission spectrum of a standard sample of 7-hydroxycoumarin.
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Table S1 Crystallographic data collection and structure refinement parameters for 1-Tb and 1-Eu.

Coordination Polymer 1-Tb 1-Eu

Empirical formula C54H61CON602582Tb C51H41CON6017SEU
Formula weight 1476.07 1252.86
Temperature/ K 273.15 298.15

Radiation Wavelength/ A 0.71073 0.71073

Crystal system Triclinic Triclinic

Space group PI PI

al A 13.609(8) 12.760(10)

b/ A 13.904(8) 16.813(14)

c/ A 18.595(11) 17.885(14)

a/® 68.205(2) 64.977(3)

p° 70.537(2) 78.609(3)

v/° 81.543(2) 87.398(3)

Volume/ A3 3079.7(3) 3405.6(5)

VA 2 2

PealeMg/m? 1.592 1.222

wmm-! 1.563 1.246

F(000) 1502 1262

Crystal size/ mm? 0.09 x 0.06 x 0.02 0.08 x 0.06 x 0.01
20 range for data collection/° 4.416 to 56.746 4.304 to 56.594
Reflections collected 15412 16924

Data/ restraints/ parameters 15370/ 1/ 835 16853/ 0/ 714
Goodness-of-fit on F? 1.102 1.046

Final R indices [[>2sigma(I)] R;=0.0650, wR,=0.1682 R;=0.0936, wR,=0.2608
R indices (all data) R;=0.0822, wR,=0.1871 R;=0.1238, wR, = 0.2873
Largest diff. peak and hole/ e.A3 4.55 and -1.85 7.90 and -2.18
CCDC No. 2288468 2288469

Table S2 Selected bond distances (A) for 1-Th.

Bond Distance (A)
To(1)-0(16) 2.329(5)
Tb(1)-0(6) 2257(4)
Tb(1)-0(12)! 2.477(4)
Th(1)-O(15) 2.421(4)
Tb(1)-0(14) 2.507(5)
Tb(1)-O(4)? 2.249(4)
Tb(1)-O(11)! 2392(4)
Tb(1)-0(13) 2.405(4)
Tb(1)-C(41)! 2.805(6)
Co(1)-N(3) 1.954(5)
Co(1)-N(4) 1.868(5)
Co(1)-N(2) 1.969(5)
Co(1)-N(6) 1.974(5)
Co(1)-N(5) 1.952(5)
Co(1)-N(1) 1.864(5)
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Table S3 Selected bond distances (A) for 1-Eu.

Bond Distance (A)
Eu(1)-Eu(l)! 4.2562(3)
Eu(1)-0(5) 2.479(6)
Eu(1)-0(11)? 2.444(6)
Eu(1)-0(11)} 2.568(5)
Eu(1)-0(14) 2.451(6)
Eu(1)-0(6) 2.436(6)
Eu(1)-0(12)3 2.446(6)
Eu(1)-C(41)} 2.890(8)
Eu(1)-0(13) 2.445(7)
Eu(1)-C(32) 2.826(9)
Eu(1)-0(15) 2.427(8)
Co(1)-N(6) 1.968(7)
Co(1)-N(1) 1.858(6)
Co(1)-N(4) 1.854(6)
Co(1)-N(5) 1.936(6)
Co(1)-N(2) 1.959(6)
Co(1)-N(3) 1.948(6)

Table S4 Selected bond angles (°) for 1-Tb.

Atom-Atom-Atom

Angle (°)

O(16)-Tb(1)-O(12)!
0(16)-Tb(1)-O(15)
0(16)-Tb(1)-O(14)
0(16-Tb(1)-O(11)!
0(16)-Tb(1)-O(13)
0(16)-Tb(1)-C(41)!
0(6)-Tb(1)-0(16)
0(6)-Tb(1)-0(12)!
0(6)-Tb(1)-0(15)
0(6)-Tb(1)-O(14)
0(6)-Tb(1)-O(11)!
0(6)-Tb(1)-0(13)
0(6)-Tb(1)-C(41)!
0(12)'-Tb(1)-0(14)
0(12)'-Tb(1)-C(41)!
0(15)-Tb(1)-O(12)!
O(15)-Tb(1)-O(14)
O(15)-Tb(1)-C(41)!
O(14)-Tb(1)-C(41)!
O(4)2-Tb(1)-0(16)
O(4)2-Tb(1)-0(6)
O(4)>-Tb(1)-0(12)!
O(4)2-Tb(1)-0(15)
O(4)2-Tb(1)-0(14)

80.80(15)
143.67(17)
127.33(16)
132.18(15)
69.32(16)
105.61(17)
81.45(16)
162.17(16)
77.41(15)
72.93(17)
142.65(16)
96.28(17)
167.16(17)
117.32(16)
26.44(16)
118.70(15)
73.43(16)
101.24(16)
94.38(17)
76.54(16)
95.55(17)
81.99(15)
76.50(17)
149.46(16)

S82



O(4)2-Tb(1)-O(11)!
O(4)2-Tb(1)-0(13)
O(4)>Tb(1)-C(41)!
O(11)!-Tb(1)-0(12)!
O(11)!-Tb(1)-O(15)
O(11)'-Th(1)-O(14)
O(11)'-Tb(1)-0(13)
O(11)!-Tb(1)-C(41)!
0(13)-Tb(1)-O(12)!
O(13)-Tb(1)-O(15)
O(13)-Tb(1)-O(14)
0(13)-Tb(1)-C(41)!
N(3)-Co(1)-N(2)
N(3)-Co(1)-N(6)
N(4)-Co(1)-N(3)
N(4)-Co(1)-N(2)
N(4)-Co(1)-N(6)
N(4)-Co(1)-N(5)
N(2)-Co(1)-N(6)
N(5)-Co(1)-N(3)
N(5)-Co(1)-N(2)
N(5)-Co(1)-N(6)
N(1)-Co(1)-N(3)
N(1)-Co(1)-N(4)
N(1)-Co(1)-N(2)
N(1)-Co(1)-N(6)
N(1)-Co(1)-N(5)
S(1)-0(16)-Th(1)
C(32)-0(6)-Th(1)
C(41)-0(12)-Tb(1)?
C(13)-0(4)-Tb(1)?
C(6)-N(3)-Co(1)
C(15)-N(3)-Co(1)
C(41)-O(11)-Tb(1)?
C(10)-N(4)-Co(1)
C(11)-N(4)-Co(1)
C(24)-N(2)-Co(1)
C(7)-N(2)-Co(1)
C(13)-N(6)-Co(1)
C(33)-N(6)-Co(1)
C(14)-N(5)-Co(1)
C(42)-N(5)-Co(1)
C(3)-N(1)-Co(1)
C(4)-N(1)-Co(1)
0(12)-C(41)-Tb(1)?
O(11)-C(41)-Tb(1)?
C(40)-C(41)-Tb(1)3

106.80(16)
141.58(16)
96.54(16)
53.61(14)
79.21(15)
72.70(16)
84.60(16)
27.34(16)
75.78(16)
141.84(17)
68.80(15)
76.78(17)
163.12)
90.7(2)
94.8(2)
102.12)
81.7(2)
81.2(2)
92.9(2)
91.6(2)
89.8(2)
162.9(2)
81.4(2)
176.02)
81.7(2)
99.8(2)
97.4(2)
134.1(3)
166.1(4)
91.6(4)
164.3(4)
116.4(4)
124.3(4)
94.4(3)
118.5(4)
119.0(4)
126.9(4)
115.0(4)
114.4(4)
128.3(4)
116.1(4)
122.6(4)
118.4(4)
118.4(4)
62.0(3)
58.2(3)
170.1(4)
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Table S5 Selected bond angles (°) for 1-Eu.

Atom-Atom-Atom Angle (°)
O(5)-Eu(1)-Eu(1)! 72.42(12)
O(5)-Eu(1)-O(11)? 77.56(18)
O(5)-Eu(1)-C(41)? 79.8(2)
O(5)-Eu(1)-C(32) 27.0(2)

O(112-Eu(1)-Eu(l)  31.01(12)
O(113-Eu(1)-Eu(l)!  32.78(12)
O(11)3-Eu(1)-0(5) 72.57(19)
O(11-Eu(1)-O(112  63.79(19)
O(11)3-Eu(1)-O(14) 72.5(2)
O(113-Eu(1)-0(12)2  113.6(2)
O(11):-Bu(1)-C(41)>  25.83(19)
O(11)-Eu(1)-C(41)>  89.2(2)
O(11)3-Eu(1)-0(13) 143.7(3)
O(11)3-Eu(1)-C(32) 70.8(2)
O(11)2-Eu(1)-C(32) 100.6(2)
O(14)-Eu(1)-Eu(1)! 70.09(15)
0(14)-Eu(1)-0(5) 141.9(2)
O(14)-Eu(1)-O(11)2 73.85(19)
O(14)-Eu(1)-C(41)? 85.1(2)

0(14)-Eu(1)-C(32) 141.1(2)
0(6)-Eu(1)-Eu(1)! 99.96(17)
0(6)-Eu(1)-0(5) 53.21(18)
0(6)-Eu(1)-0(11)2 122.9(2)
0(6)-Eu(1)-0(11)} 74.3(2)
0(6)-Eu(1)-0(14) 128.2(2)
0(6)-Eu(1)-0(12)2 130.4(2)
0(6)-Eu(1)-C(41)? 132.8(2)
0(6)-Eu(1)-0(13) 74.5(3)
0(6)-Eu(1)-C(32) 26.2(2)
O(12)2-Eu(1)-Eu(1)!  81.53(16)
O(12)2-Eu(1)-0(5) 81.4(2)

O(12)2-Eu(1)-O(112  51.26(19)
0(12)2-Eu(1)-O(14) 99.2(2)
O(12)2-Eu(1)-C(41)2  25.5(2)
0(12)2-Eu(1)-C(32) 106.8(3)
C(41)>Eu(1)-Eu(l)!  56.54(16)

O(13)-Eu(1)-Eu(1)! 141.2(2)
0(13)-Eu(1)-0(5) 74.1(3)

0(13)-Eu(1)-O(11)2 121.7(2)
O(13)-Eu(1)-O(14) 143.2(3)

0(13)-Eu(1)-0(12)2 74.7(2)
O(13)-Eu(1)-C(41)? 98.7(2)
0(13)-Eu(1)-C(32) 73.0(3)
C(32)-Eu(1)-Eu(1)! 85.54(17)
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O(11)-C(41)-Eu(1)*
0(12)-C(41)-Eu(1)*
C(40)-C(41)-Eu(1)*
0(5)-C(32)-Eu(1)
0(6)-C(32)-Eu(1)
C(32)-Eu(1)-C(41)2
O(15)-Eu(1)-Eu(1)!
0(15)-Eu(1)-0(5)
O(15)-Eu(1)-0(11)3
O(15)-Eu(1)-O(11)2
O(15)-Eu(1)-0(14)
0(15)-Eu(1)-0(6)
O(15)-Eu(1)-0(12)2
O(15)-Eu(1)-C(41)?
O(15)-Eu(1)-0(13)
0(15)-Eu(1)-C(32)
N(1)-Co(1)-N(6)
N(1)-Co(1)-N(5)
N(1)-Co(1)-N(2)
N(1)-Co(1)-N(3)
N(4)-Co(1)-N(6)
N(4)-Co(1)-N(1)
N(4)-Co(1)-N(5)
N(4)-Co(1)-N(2)
N(4)-Co(1)-N(3)
N(5)-Co(1)-N(6)
N(5)Co(1)-N(2)
N(5)-Co(1)-N(3)
N(2)-Co(1)-N(6)
N(3)-Co(1)-N(6)
N(3)-Co(1)-N(2)
C(32)-0(5)-Eu(1)
Eu(1)3-0O(11)-Eu(1)*
C(41)-0(11)-Eu(1)*
C(41)-O(11)-Eu(1)?
C(32)-0(6)-Eu(1)
C(13)-N(6)-Co(1)
C(33)-N(6)-Co(1)
C(3)-N(1)-Co(1)
C(4)-N(1)-Co(1)
C(10)-N(4)-Co(1)
C(11)-N(4)-Co(1)
C(42)-N(5)-Co(1)
C(31)-C(32)-Eu(1)
S(1)-0(15)-Eu(1)
C(14)-N(5)-Co(1)
C(24)-N(2)-Co(1)
C(7)-N(2)-Co(1)

62.7(4)
57.0(4)
174.3(6)
61.3(4)
59.2(4)
106.7(2)
130.7(3)
141.3(3)
144.9(3)
107.6(3)
72.5(3)
128.5(3)
74.0(3)
89.6(3)
70.9(3)
142.2(3)
100.1(3)
97.0(3)
81.7(3)
81.8(3)
81.4(3)
178.4(3)
81.5(3)
99.0(3)
97.6(3)
162.9(3)
89.9(3)
92.2(3)
93.0(3)
89.8(3)
163.5(3)
91.7(5)
116.21(19)
91.5(5)
150.2(5)
94.6(5)
116.0(5)
125.0(5)
118.8(5)
118.7(5)
118.1(5)
118.7(5)
123.3(5)
179.7(7)
140.2(7)
117.0(5)
123.0(5)
115.6(5)
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C(41)-O(12)-Eu(1)* 97.4(5)
C(15)-N(3)-Co(1) 122.8(5)
C(6)-N(3)-Co(1) 116.0(5)

Table S6 Kinetic parameters for the photo-oxidation of 1,5-dihydroxynapthalene in the presence
of different photocatalysts and the present Ln-MOF 1-Tb.

Entry Photocatalyst k& x 102 (min-') Reference

1 Ir-1 0.62 9

2 Ir-2 0.95 9

3 Ir-3 3.05 9

4 Ir-4 2.40 9

5 CTC-1 1.50 15

6 1-Tb 5.42 This work

Table S7 Comparison of photo-oxidation of benzyl alcohol with different photocatalysts and the
present Ln-MOF 1-Tb.

Entry Photocatalyst Time Yield (%) Conditions/Remarks Reference
(h)

1 Cu()W-DPNDI 16 75 EtOH/H,0, H,0, 16

2 Pt/PCN-224(Zn) 0.83 99 H,0, O, 8

3 Pt/PCN-224(Ni) 1 97 H,0, O, 8

4 Pt/PCN-224(Co) 1 83 H,0, O, 8

5 Pt/PCN-224(Mn) 1 81 H,0, O, 8

6 0.1%Cu@UiO- 3 50 MeCN, O,, low conversion 17

66

7 Zn-OFDC 12 90 DMSO, 0,, low 18
conversion with  other
substrates

8 Bi-TATB 5 38 Hexane, 0O,, low 19
conversion

9 1-Th 0.25 99 H,0, O, This work

Table S8 Control experiments for the photocatalytic oxidation of thioanisole.

‘ :

H;C~ 0, L
1-Tb,hv

Entry* Solvent Isolated Yield (%)
1 DMF 62
2 CH;CN 68
3 THF 78
4 H,0 84
5 MeOH-H,0 92
6 CH;0H >99
7 C,H;OH >99

@Reaction conditions: thioanisole (0.80 mmol), photocatalyst (1 mol%), MeOH (2 mL),
temperature (25 °C).
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Table S9 Comparison of photo-oxidation of thioanisole with different photocatalysts and the
present Ln-MOF 1-Tb.
Entry Photocatalyst Time Yield (%) Remarks Reference
(h)
1 CTC-1 8 99 EtOH/H,0, air 15
2 Ir(ppy)s 8 7 EtOH/H,0, air 15
3 Oxidized g-C5sNy 8 99 MeCN, O, 20
(CNO)
4 Zr-TCA 10 100 MeOH, air, low 21
selectivity with other
substrates
5 CPOP-29 10 99 MeOH/air 22
6 1-Tb 0.25 99 MeCN, O, This work

Table S10 The bi-exponential fitting parameters of decay kinetics probed at a single wavelength
(at maximum of the excited state absorption spectra) of L, 1, 1-Tb and 1-Zn.

Component a; 7 (ps) a2 2(PS)  Tav(PS)

L
1
1-Thb
1-Zn

028 022 0.72 34.0 24.5
0.09 048 091 642 58.9
0.52 534 048 2150.0 1034.6
033 794  0.67 529 38.1
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