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NOTES

Note S1. Spin point group representations.
The theory of spin groups in crystals was first proposed by Litvin and Opechowski in 1974,1 and the
598 classes of nontrivial spin point groups were derived and tabulated in 1977.2 Considering the element
[Ri | |Rj], the left component of the double vertical bar Ri affects only the spin space (B) while the right
component Rj affects only the crystalline real space (R).

The spin point group (Rs) can be derived as

Rs = [E | |r] + [B2 | |R2][E | |r] + · · · + [Bn | |Rn][E | |r], (S1)

where r represents a normal subgroup of a specific crystallographic point group R, and the notation of BR
in the spin point groups represents the element [B| |R]. Taking the altermagnetic KRu4O8 as an example,3

the spin point group can be defined as

Rs = [E | |2/m] + [C2 | |C4z][E | |2/m]. (S2)

Since R = 4/m, and [C2 | |C4z] and [E | |2/m] are elements of Rs, the spin point group of KRu4O8 is denoted
by 24/1m.

The spin point group representations of different types of magnetism were summarized by Šmejkal et
al. in 2022 as below.3

RI
s = [E | |G], for ferromagnets and ferrimagnets; (S3a)

RII
s = [E | |G] + [C2 | |G], for conventional antiferromagnets; (S3b)

RIII
s = [E | |H] + [C2 | |A][E | |H] = [E | |H] + [C2 | |G 	 H], for altermagnets. (S3c)

In Eq. S3c, H is a halving subgroup of the crystallographic Laue group G and the coset G 	 H = AH is
generated by transformations A that can be only real-space rotations (R) and cannot be translation (t) or
inversion (i).

The spin point group representations can provide a good explanation for the band structrues to different
types of magnetism as follows.

(1) For ferromagnets and ferrimagnets (Eq. S3a), Rs do not imply spin degeneracy of E(s,k) at any k-
point, thus describing the spin-splitting with broken time-reversal (T ) symmetry and nonzero macroscopic
magnetization. Note that the notation E(s,k) represents the spin (s) and crystal momenta (k) dependent
energy isosurfaces (E).

(2) For conventional antiferromagnets (Eq. S3b), due to the real space identity E is contained in G,
the [C2 | |E] symmetry in Rs results in the spin degeneracy E(s,k) for all k-vectors in the Brillouin zone,
indicating the spin-degenerate band structures with T invariance and a macroscopic zero magnetization.

(3) For altermagnets in this work (Eq. S3c), the representation of Rs corresponds to the crystal structure
in which the sublattices with opposite spins are connected by rotation and not by translation or inversion,
and the real space inversion in G is always contained in H. The coset G 	 H does not contain E , thus the
spin groups of altermagnets do not contain the T -symmetry element, and the lifted spin degeneracies in Rs

are allowed for k with AHk = k′ , k and

E(s,k) = [C2 | |AH]E(s,k) = E(−s,k′). (S4)

indicating that the energy isosurfaces of different spins are split but with the same number of states. Thus,
altermagnets show a macroscopic zero magnetization with partial spin-splitting.
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Note S2. Anisotropic spin conductivity.
Under a general electric field, the conductivity of a semiconductor follows Ohm’s law, i.e. J = σE, thus the
anisotropy of spin current can be represented by conductivity. The direct current conductivity tensor (σi j)
for an anisotropic 2D material can be derived from Boltzmann transport equation as4

σi j =
∑
n

[
e2τ

∫
d2k
4π2 f (En(k))

1
~2
∂2En(k)
∂ki∂k j

]
, (S5)

where i, j = x or y, and n and En(k) represents the band index and energy, respectively. The relaxation time
τ can be taken as a constant under a steady state of constant E and f is the Fermi-Dirac distribution function

f (E) =
1

exp
{
E − EF

kBT

}
+ 1

. (S6)

Since the rotation of the pyrazine ligands is around the 〈110〉 direction of the 3D real space with the
same angle, the symmetries of sublattices on the (001) surface with the same spin are the same. Therefore,
for the sake of simplicity, we can select the kx-axis in the direction of a certain arrangement of sublattices
with the same spin at the level of 2D spin space, as shown in the illustration below.

The energy of the spin valley along the kx-axis (α) can be written as

Eα =
~2

2m1
k2
x +

~2

2m2
k2
y . (S7)

For another valley β which is related with α by a rotation operation Cn, where n =
2π
θ

is the axis order with
the angle of θ, defining β = Cnα, the k ′x and k ′y for β can be derived by[

k ′x
k ′y

]
= C−1

n

[
kx
ky

]
=

[
cos θ sin θ
− sin θ cos θ

] [
kx
ky

]
. (S8)

Thus,

Eβ =
~2

2m1
k ′2x +

~2

2m2
k ′2y =

~2

2m1

(
kx cos θ + ky sin θ

)2
+

~2

2m2

(
−kx sin θ + ky cos θ

)2
. (S9)

Based on Eq. S5, f (E) = 1 when T = 0 K, and the conductivity can be written as

σ =
ne2τ

m∗
, (S10)
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which can also be derived from the classic Sommerfeld’s free electron theory. Here, n is the carrier density,

and m∗ =
~2

d2E/dk2 is the effective mass. For an anisotropic 2D material, m∗ is usually presented in the form

of a reciprocal tensor [
1

m∗

]
=

1
~2


∂2E

∂k2
x

∂2E

∂kx∂ky
∂2E

∂ky∂kx

∂2E

∂k2
y

 . (S11)

For an electric field E with a direction of an angle ϕ from the kx-axis as shown in the illustration below, the
contributions of kx and ky to the direction along (k ′′x ) and perpendicular (k ′′y ) to E can also be written as[

k ′′x
k ′′y

]
=

[
cos ϕ sin ϕ
− sin ϕ cos ϕ

] [
kx
ky

]
. (S12)

The solution of effective mass should be transferred to the k ′′x Ok ′′y plane rectangular coordinate system, i.e.,
kx and ky in Eq. S11 are transformed into k ′′x and k ′′y , respectively. Thus, Eα and Eβ in Eqs. S7 and S9 will
be derived as

Eα =
[
kx ky

] 
~2

2m1
0

0
~2

2m2


[
kx
ky

]

=
[
k ′′x k ′′y

] [
cos ϕ − sin ϕ
sin ϕ cos ϕ

]−1

~2

2m1
0

0
~2

2m2


[

cos ϕ sin ϕ
− sin ϕ cos ϕ

]−1 [
k ′′x
k ′′y

]

=
[
k ′′x k ′′y

] [
cos ϕ sin ϕ
− sin ϕ cos ϕ

] 
~2

2m1
0

0
~2

2m2


[
cos ϕ − sin ϕ
sin ϕ cos ϕ

] [
k ′′x
k ′′y

]

=
[
k ′′x cos ϕ − k ′′y sin ϕ k ′′x sin ϕ + k ′′y cos ϕ

] 
~2

2m1
0

0
~2

2m2


[
k ′′x cos ϕ − k ′′y sin ϕ
k ′′x sin ϕ + k ′′y cos ϕ

]
=

~2

2m1

(
k ′′x cos ϕ − k ′′y sin ϕ

)2
+

~2

2m2

(
k ′′x sin ϕ + k ′′y cos ϕ

)2
(S13)
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and

Eβ =
[
k ′x k ′y

] 
~2

2m1
0

0
~2

2m2


[
k ′x
k ′y

]

=
[
k ′′x k ′′y

] [ cos ϕ sin ϕ
− sin ϕ cos ϕ

] [
cos θ − sin θ
sin θ cos θ

] 
~2

2m1
0

0
~2

2m2


[

cos θ sin θ
− sin θ cos θ

] [
cos ϕ − sin ϕ
sin ϕ cos ϕ

] [
k ′′x
k ′′y

]

=
[
k ′′x k ′′y

] [
cos(ϕ − θ) sin(ϕ − θ)
− sin(ϕ − θ) cos(ϕ − θ)

] 
~2

2m1
0

0
~2

2m2


[
cos(ϕ − θ) − sin(ϕ − θ)
sin(ϕ − θ) cos(ϕ − θ)

] [
k ′′x
k ′′y

]
=

~2

2m1

[
k ′′x cos(ϕ − θ) − k ′′y sin(ϕ − θ)

]2
+

~2

2m2

[
k ′′x sin(ϕ − θ) + k ′′y cos(ϕ − θ)

]2
, (S14)

respectively. The σ tensors of α and β spins at 0 K can be then derived from the second-order partial
derivative of E from Eq. S11, i.e.,

σα =
ne2τ

m1m2


m1 sin2 ϕ + m2 cos2 ϕ

1
2
(m1 − m2) sin(2ϕ)

1
2
(m1 − m2) sin(2ϕ) m1 cos2 ϕ + m2 sin2 ϕ

 (S15)

and

σβ =
ne2τ

m1m2


m1 sin2(ϕ − θ) + m2 cos2(ϕ − θ)

1
2
(m1 − m2) sin(2ϕ − 2θ)

1
2
(m1 − m2) sin(2ϕ − 2θ) m1 cos2(ϕ − θ) + m2 sin2(ϕ − θ)

 . (S16)

The diagonal and off-diagonal elements refer to the longitudinal and transverse (or Hall) part of the conduc-
tivity. Thus, the charge (σ) and spin (σs) conductivities are

σ = σα + σβ =
ne2τ

m1m2

[
m1ψ1(ϕ, θ) + m2ψ2(ϕ, θ) (m1 − m2) cos θ sin(2ϕ − θ)
(m1 − m2) cos θ sin(2ϕ − θ) m1ψ2(ϕ, θ) + m2ψ1(ϕ, θ)

]
(S17)

and

σs = σα − σβ =
ne2τ

m1m2

[
(m1 − m2) sin θ sin(2ϕ − θ) (m1 − m2) sin θ cos(2ϕ − θ)
(m1 − m2) sin θ cos(2ϕ − θ) −(m1 − m2) sin θ sin(2ϕ − θ)

]
, (S18)

where ψ1 = sin2 ϕ + sin2(ϕ − θ) and ψ2 = cos2 ϕ + cos2(ϕ − θ). The charge-spin conversion ratio (δ) can be
then defined as

δ(θ, ϕ) =

����σs, xy

σxx

���� = ����� (m1 − m2) sin θ cos(2ϕ − θ)
m1

[
sin2 ϕ + sin2(ϕ − θ)

]
+ m2

[
cos2 ϕ + cos2(ϕ − θ)

] ����� . (S19)

Particularly, when E is just along the angular bisector of α and β spins, i.e., ϕ =
θ

2
,

σ =
ne2τ

m1m2

[
(m1 + m2) − (m1 − m2) cos θ 0

0 (m1 + m2) − (m1 − m2) cos θ

]
, (S20)
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σs =
ne2τ

m1m2

[
0 (m1 − m2) sin θ

(m1 − m2) sin θ 0

]
, (S21)

and

δ(θ) =

���� (m1 − m2) sin θ
(m1 + m2) − (m1 − m2) cos θ

���� . (S22)

It can be seen that for ϕ =
θ

2
, the transverse spin current is pure and there is no charge Hall current.

Additionally, we discuss the difference of charge and spin conductivities for antiferromagnets and alter-
magnets, both of which show a macroscopic zero magnetization. The key is the effective mass from different
k-directions. Unlike alermagnets, m1 is always equal to m2 in antiferromagnetic materials as shown in the
illustration below, thus the off-diagonal elements in Eqs. S15 and S16 is always zero, and there is no σs.
Note that spin-orbit coupling (SOC) has not taken into account in any of the above results.

Now we can substitute the derived results into M(pyz)2 (M = Ca and Sr). The sublattices are connected
with C4z rotation, i.e., θ =

π

2
. Thus, the band energy of α and β spins at 2D level are

Eα =
~2

2m1
k2
x +

~2

2m2
k2
y (S23)

and

Eβ =
~2

2m1
k2
y +

~2

2m2
k2
x, (S24)

respectively. And the conductivity tensors contributed from two spins at 0 K for E with a direction of an
angle ϕ from the kx-axis are

σα(ϕ) =
ne2τ

m1m2


m1 sin2 ϕ + m2 cos2 ϕ

1
2
(m1 − m2) sin(2ϕ)

1
2
(m1 − m2) sin(2ϕ) m1 cos2 ϕ + m2 sin2 ϕ

 (S25)

and

σβ(ϕ) =
ne2τ

m1m2


m1 cos2 ϕ + m2 sin2 ϕ −

1
2
(m1 − m2) sin(2ϕ)

−
1
2
(m1 − m2) sin(2ϕ) m1 sin2 ϕ + m2 cos2 ϕ

 . (S26)

Thus, the charge and spin conductivities and the charge-spin conversion ratio are

σ = σα + σβ =
ne2τ

m1m2

[
m1 + m2 0

0 m1 + m2

]
, (S27)
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σs(ϕ) = σα − σβ =
ne2τ

m1m2

[
−(m1 − m2) cos(2ϕ) (m1 − m2) sin(2ϕ)
(m1 − m2) sin(2ϕ) (m1 − m2) cos(2ϕ)

]
, (S28)

and

δ(ϕ) =

����σs, xy

σxx

���� = ����m1 − m2
m1 + m2

sin(2ϕ)
���� . (S29)

The altermagnetic 2D M(pyz)2 (M = Ca and Sr) is anisotropic, thus m1 , m2, and δ . 0 is a function of ϕ.
Particularly, when ϕ =

π

4
, the transverse spin current is pure with no Hall charge current since

σs(ϕ =
π

4
) = σα − σβ =

ne2τ

m1m2

[
0 m1 − m2

m1 − m2 0

]
, (S30)

and the charge-spin conversion ratio is the largest with the value of

δ(ϕ =
π

4
) =

����σs, xy

σxx

���� = ����m1 − m2
m1 + m2

���� . (S31)

Based on Eq. S4, the energy isosurfaces of different spins in altermagnetic 2D M(pyz)2 (M = Ca and
Sr) are split but with the same number of states. Thus, m∗xx at α valley is equal to m∗yy at β valley, and
m∗yy at α valley is equal to m∗xx at β valley. According to Eqs. S23 and S24, the energy isosurface is a
quadratic function of k-point coordinates. Therefore, taking the HSE06 band structure at CBM of Ca(pyz)2
as an example (Fig. 2f), two curves can be obtained by interpolating from M towards the Σ′ and Σ directions
(Fig. S23). Here, each curve is fitted using a total of nine points, and the spins on the two sides of the
stationary point (which is also the vertex) of the curve are opposite.

Fitted by the quadratic function y = Ax2 + Bx + C, where y and x are the energy isosurface and k-
point coordination, respectively, the effective masses of kx and ky directions can be derived from the second
derivative of y, i.e., m∗ can be represented by the value of A. As shown in Fig. S23a, the A values of two
curves are 1.2252 (R2

adj = 0.9974) and 0.3371 (R2
adj = 0.9986), respectively. Thus,

m1
m2
=

1/1.2252
1/0.3371

=
1

3.6345
, (S32)

and the maximal value of δ at ϕ =
π

4
is δmax = 0.5685, which corresponds to the angle between the two

types of spin transport channels of 59.24◦ [= 2 × arctan(0.5685)] for Ca(pyz)2. For Sr(pyz)2 (Fig. S23b),
m1
m2
=

1
13.3291

[R2
adj(m1) = 0.9978, R2

adj(m2) > 0.9999] and δmax = 0.8604, corresponding to the angle of

84.42◦.
The spin Hall conductivity (SHC, σspinz

xy ) can be calculated with Kubo formula5

σ
spinz
xy = ~

∫
BZ

d3k
(2π)3

∑
n

fnk
∑
m,n

2Im[〈nk| ĵspinz
x |mk〉〈mk| − e3̂y |mk〉]

(εnk − εmk)2 − (~ω + iη)2
, (S33)

where n and m are band indexes, εn and εm are eigenvalues, fnk is the Fermi-Dirac distribution function,

ĵspinz
x =

1
2
{Ŝz, 3̂x} is the spin current operator where Ŝz =

~
2
σ̂z , 3̂y =

1
~
∂H(k)
∂ky

is the velocity operator, and

ω and η are frequencies. Here, x and y denote Cartesian directions and z denotes the direction of spin which
is obtained from the calculations with SOC (Table S7).
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FIGURES

Fig. S1. Machine learning synthesis predictions of 2D altermagnetic MOFs with the MOF Synthesis Predic-
tion Tool.6 (a) Temperature, reaction time, solvent, and additive predictions for M(pyz)2 (M = Ca and Sr)
based on their structures. The certainty of prediction is based on the agreement or disagreement between
10 different models trained on different subsets of the SynMOF dataset. (b, c) 2D visualization of principal
component analysis for solvent predictions. The predicted solvent is highlighted in bold. (b) Ca(pyz)2. (c)
Sr(pyz)2. The toolkit website: https://mof-synthesis.aimat.science.
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Fig. S2. Phonon band structures representing dynamic stabilities. (a) Ca(pyz)2. (b) Sr(pyz)2. (c) Ba(pyz)2.
Ba(pyz)2 is not dynamically stable due to the soft phonon modes at about 20i cm−1, corresponding to the
relative vibration of Ba atoms along c-axis.
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Fig. S3. AIMD simulations representing thermal stabilities of Ca(pyz)2. (a) 300 K. (b) 600 K. (c) 900 K.
The illustration in each subfigure represents the structural snapshot of the corresponding temperature at 5
ps. Green, gray, blue, and white balls represent Ca, C, N, and H atoms, respectively.
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Fig. S4. AIMD simulations representing thermal stabilities of Sr(pyz)2. (a) 300 K. (b) 600 K. (c) 900 K.
The illustration in each subfigure represents the structural snapshot of the corresponding temperature at 5
ps. Orange, gray, blue, and white balls represent Sr, C, N, and H atoms, respectively.
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Fig. S5. Relative energies with different torsion angles according to the corresponding most stable structure.
(a) Ca(pyz)2. (b) Sr(pyz)2. The self-consistent-field energies with PBE functional and the same lattice scale
are investigated with a torsion angle step of 10◦, including a flat structure (0◦ and 180◦) and a structure with
upright pyrazine ligands (90◦, see them in subfigures). The solid dots denote the most stable structure with
the relative energy of 0 eV, and the corresponding torsion angle are labeled with dash lines. Green, orange,
gray, blue, and white balls represent Ca, Sr, C, N, and H atoms, respectively.
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Fig. S6. Spin configurations at N atom level. Three different antiferromagnetic configurations of Ca(pyz)2
and Sr(pyz)2 are considered, where the two N atoms in each pyrazine ligand have opposite spins. The
calculated energies and atomic magnetic moments of three antiferromagnetic types are completely consistent
with the nonmagnetic type.
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Fig. S7. Spin configurations at pyrazine level. Four different magnetic configurations of Ca(pyz)2 and
Sr(pyz)2 based on pyrazine ligands as spin units are considered, where the altermagnetic state is the most
stable.
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Fig. S8. Density of states (DOS). (a, b) Ca(pyz)2. (c, d) Sr(pyz)2. (a, c) Total and atomically resolved DOS.
(b, d) DOS of N projected to s, px , py , and pz orbitals. The Fermi level (EF) is set to 0 eV.
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Fig. S9. HSE06 band structure of Sr(pyz)2. (a) The band structure of the altermagnetic 2D Sr(pyz)2 with
HSE06 functional passes through the k-path in Fig. 2d, with (b) spin-splitting effect around CBM. The gray
shadows in (a) and (b) represent the band gap (Eg = 1.79 eV) and the energy gap (18.22 meV) between the
spin-splitting bands near the CBM, respectively. The Fermi level (EF) is set to 0 eV.
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Fig. S10. Orbital-resolved band structure with HSE06 functional. (a, b) Ca(pyz)2. (c, d) Sr(pyz)2. (a, c)
Spin up. (b, d) Spin down. The larger the dots, the greater the contribution of corresponding orbitals. The
Fermi level (EF) is set to 0 eV.
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Fig. S11. Altermagnetic exchange. (a) Magnetic pathways. (b, c) Energy levels of metal’s d orbitals and
N’s p orbitals, where the number of each orbital represents the electron occupation calculated from

∫ EF
−∞
E ×

g(E)dE. (b) Ca(pyz)2. (c) Sr(pyz)2. The Fermi level (EF) is set to 0 eV.
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Fig. S12. Altermagnetic transition temperatures. Specific heat is a function of temperature from Monte
Carlo simulations based on the HSE06 energies, where the transition temperature is extracted from the peak
point of each curve.
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Fig. S13. HSE06 band structures without (red and blue lines) and with (black lines) SOC. (a) Ca(pyz)2. (b)
Sr(pyz)2. SOC does not induce weak ferromagnetism and additional spin-splitting. Gray shadows denote
band gaps and the Fermi level (EF) is set to 0 eV.
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Fig. S14. Structure and dynamic stability of the P4/nmm (#129) Ca(pyz)2. (a) Structure of the P4/nmm
(#129) Ca(pyz)2 from the top (top panel) and front (bottom panel) views where the C4z rotation axis is
located at the edge center of the tetragonal phase. Green, gray, blue, and white balls represent Ca, C, N,
and N atoms, respectively. (b) Band structure of the P4/nmm (#129) Ca(pyz)2 with HSE06 functional via
the k-path in Fig. 2d. The Fermi level (EF) is set to 0 eV. (c) Phonon band structure of the P4/nmm (#129)
Ca(pyz)2 with obvious imaginary frequencies, indicating the P4/nmm (#129) phase is dynamically unstable.
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Fig. S15. Σ-centered 3D band structure of Ca(pyz)2. Details of the Σ-centered 3D energy band structure for
the altermagnetic spin-splitting around CBM in Ca(pyz)2 with PBE functional are shown from (a) X-X and
(b) M-Γ directions. The range of energy gap is labeled in (b).
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Fig. S16. Topological properties of Sr(pyz)2. (a) Σ-centered 3D band structure of the altermagnetic spin-
splitting near CBM for Sr(pyz)2. (b, c) Topological edge states on the (b) (100) and (c) (110) surfaces of BZ
for Sr(pyz)2, where the k-points Γ, X, and X′ are the corresponding projections along the surfaces of BZ.
The red color indicates a higher stage along the edge. The topological properties are investigated with PBE
functional and the Fermi level (EF) is set to 0 eV.
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Fig. S17. Orbital-resolved band structure with PBE functional for orbital selection in TBA calculations. (a,
b) Ca(pyz)2. (c, d) Sr(pyz)2. (a, c) Spin up. (b, d) Spin down. The larger the dots, the greater the contribution
of corresponding orbitals. The Fermi level (EF) is set to 0 eV.
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Fig. S18. TBA approximated band structures. (a, b) Ca(pyz)2. (c, d) Sr(pyz)2. (a, c) Spin up. (b, d) Spin
down. The calculated band structures based on DFT and TBA of different spins are implemented in VASP
and Wannier90, respectively. The PBE functional is adopted in the DFT calculations and the p orbitals of N
and C are employed to perform the tight-binding Hamiltonian. The Fermi level (EF) is set to 0 eV.

SI-26



Fig. S19. Band structures around the Fermi level (EF) when doping with electrons and holes in Ca(pyz)2.
(a-e) Doping with holes. (f) No doping. (g-l) Doping with electrons. Band shifts down when the amount of
electron in unit cell increases. The Fermi level (EF) is set to 0 eV.
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Fig. S20. Topological points and lines when doping with electrons and holes in Ca(pyz)2. (a-d) Doping with
0.5 holes. (e-h) Doping with 0.6 electrons. (a, b, e, f) TBA approximation. (c, d, g, h) Topological edge
states on the (c, g) (100) and (d, h) (110) surfaces of BZ. The Fermi level (EF) is set to 0 eV.
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Fig. S21. Mechanical anisotropies of Ca(pyz)2. (a) Young’s modulus and (b) Poisson’s ratio of the altermag-
netic 2D Ca(pyz)2 as a function of the in-plane angle where 0◦ corresponds to the a-axis. The maximum
and minimum values are labeled.
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Fig. S22. Mechanical anisotropies of Sr(pyz)2. (a) Young’s modulus and (b) Poisson’s ratio of the altermag-
netic 2D Sr(pyz)2 as a function of the in-plane angle where 0◦ corresponds to the a-axis. The maximum and
minimum values are labeled.
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Fig. S23. Electrical anisotropies and effective mass fitting. (a) Ca(pyz)2. (b) Sr(pyz)2. The HSE06 band
interpolation of Ca(pyz)2 along Σ′ and Σ directions at CBM starting at M are introduced to fit the effective
mass by the quadratic function y = Ax2+Bx+C, where y and x represent the energy isosurface and k-point
coordinate, respectively. The red and blue arrows below the horizontal axis represent the corresponding
k-paths as shown in Fig. 2d, and the values in the plot are A of each curve for the effective mass calculation
as mentioned in Note S2.
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TABLES

Table S1. Crystallographic details and Wyckoff positions of the P4/nbm (#125) Ca(pyz)2.

Formula Space group Unit cell parameters

Ca(C4H4N2)2 P4/nbm (#125)
a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦)

10.86 10.86 18.00 90.00 90.00 90.00

Sites Wyckoff position Site symmetry Fractional coordinates (x, y, z)
C1 16n 1 (0.233105, 0.356114, 0.463150)
H1 16n 1 (0.057422, 0.282630, 0.433702)
N1 8 j ..2 (0.155685, 0.155685, 0.500000)
Ca1 2b 422 (0.000000, 0.000000, 0.500000)
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Table S2. Crystallographic details and Wyckoff positions of the P4/nbm (#125) Sr(pyz)2.

Formula Space group Unit cell parameters

Sr(C4H4N2)2 P4/nbm (#125)
a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦)

11.34 11.34 18.00 90.00 90.00 90.00

Sites Wyckoff position Site symmetry Fractional coordinates (x, y, z)
C1 16n 1 (0.146323, 0.268180, 0.465939)
H1 16n 1 (0.061973, 0.285125, 0.438592)
N1 8 j ..2 (0.159504, 0.159504, 0.500000)
Sr1 2b 422 (0.000000, 0.000000, 0.500000)
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Table S3. Total and local magnetic moments (in µB) on each element of Ca(pyz)2 in different magnetic
states with HSE06 functional. The "+" and "−" symbols represent the up and down spins corresponding to
the red and blue colors in Fig. S5, respectively. The bold column represents the magnetic ground state and
its magnetic moments. "AFM" in the fourth column is the abbreviation for "antiferromagnetic".

Altermagnetic Ferromagnetic Stripe AFM Nonmagnetic

µCa 0.000 0.000 0.000 0.000
µC +0.030 −0.030 0.030 +0.030 −0.030 0.000
µN +0.232 −0.232 0.233 +0.233 −0.233 0.000
µH +0.001 −0.001 −0.001 +0.001 −0.001 0.000
µtotal 0.000 4.000 0.000 0.000
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Table S4. Total and local magnetic moments (in µB) on each element of Sr(pyz)2 in different magnetic states
with HSE06 functional. The "+" and "−" symbols represent the up and down spins corresponding to the
red and blue colors in Fig. S5, respectively. The bold column represents the magnetic ground state and its
magnetic moments. "AFM" in the fourth column is the abbreviation for "antiferromagnetic".

Altermagnetic Ferromagnetic Stripe AFM Nonmagnetic

µSr 0.000 0.016 0.000 0.000
µC +0.029 −0.029 0.029 +0.030 −0.030 0.000
µN +0.234 −0.234 0.235 +0.235 −0.235 0.000
µH +0.001 −0.001 −0.001 +0.001 −0.001 0.000
µtotal 0.000 4.000 0.000 0.000
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Table S5. Crystallographic details and Wyckoff positions of the P4/nmm (#129) Ca(pyz)2.

Formula Space group Unit cell parameters

Ca(C4H4N2)2 P4/nmm (#129)
a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦)

10.86 10.86 18.00 90.00 90.00 90.00

Sites Wyckoff position Site symmetry Fractional coordinates (x, y , z)
C1 16k 1 (0.329905, 0.259314, 0.443692)
H1 16k 1 (0.394182, 0.264434, 0.397075)
N1 8h ..2 (0.344515, 0.344515, 0.500000)
Ca1 2b 4̄m2 (0.000000, 0.000000, 0.500000)
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Table S6. Relative energy differences (in meV per unit cell) of Ca(pyz)2 according to the altermagnetic phase
when doping electrons (positive doping values) and holes (negative doping values) with PBE functional. The
altermagnetic ground state can be maintained within a doping range of up to 0.5 holes or 0.6 electrons. Bold
values denote their corresponding magnetic ground states.

Doping Altermagnetic Ferromagnetic Stripe AFM Nonmagnetic

−0.7 0.00 −2.38 −3.38 216.35
−0.6 0.00 2.27 −0.59 234.42

−0.5 0.00 7.43 3.75 252.61
−0.4 0.00 15.71 4.17 271.31
−0.3 0.00 17.30 4.14 287.75
−0.2 0.00 23.53 7.66 308.09
−0.1 0.00 30.62 11.38 325.64
0.0 0.00 40.26 16.63 340.20
0.1 0.00 33.84 13.15 325.02
0.2 0.00 28.64 10.29 305.89
0.3 0.00 23.05 7.45 287.48
0.4 0.00 18.88 5.16 267.74
0.5 0.00 13.26 2.00 251.38
0.6 0.00 10.35 3.50 230.33

0.7 0.00 6.77 −4.03 215.91
0.8 0.00 3.66 −1.83 198.02
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Table S7. Relative energies (in µeV per unit cell) of different magnetization directions and easy axes (EA).

[100] [010] [110] [001] EA

Ca(pyz)2 0.21 0.21 0.32 0.00 Out-of-plane
Sr(pyz)2 0.95 0.95 0.99 0.00 Out-of-plane
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