Electronic Supplementary Information (ESI) for

Strategically designed metal-free deep-ultraviolet birefringent crystals

with superior optical properties

Yang Li,^a Xinglong Chen^{b,*} and Kang Min Ok^{a,*}

^a Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea ^b Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States

*E-mail: kmok@sogang.ac.kr

Formula	$C(NH_2)_3CH_3SO_3$
Formula weight	155.18
Temperature/K	299.15
Crystal system	monoclinic
Space group	l2/m
a/Å	10.0029(11)
b/Å	7.3514(5)
c/Å	10.4776(7)
a/°	90
β/°	102.800(7)
γ/°	90
Volume/Å ³	751.33(11)
Ζ	4
$ ho_{ m calc} m g/cm^3$	1.372
µ/mm ⁻¹	0.382
F(000)	328.0
Crystal size/mm ³	0.392 × 0.378 × 0.058
Radiation	ΜοΚα (λ = 0.71073)
2θ range for data collection/°	6.382 to 55.2
Index ranges	-13 ≤ <i>h</i> ≤ 12, -9 ≤ <i>k</i> ≤ 9, -13 ≤ <i>l</i> ≤ 13
Reflections collected	6829
Independent reflections	940 [<i>R</i> _{int} = 0.0735, <i>R</i> _{sigma} = 0.0455]
Data/restraints/parameters	940/0/49
Goodness-of-fit on <i>F</i> ²	1.202
Final <i>R</i> indexes [l≥2σ (I)]	$R_1 = 0.0680, wR_2 = 0.1393$
Final <i>R</i> indexes [all data]	$R_1 = 0.0775, wR_2 = 0.1432$

Table S1. Crystallographic data for C(NH₂)₃CH₃SO₃.

 ${}^{[a]}R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o| \text{ and } wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2} \text{ for } F_o^2 > 2\sigma (F_o^2)$

Table	S2.	Atomic	coordinates	(×10 ⁴)	and	equivalent	isotropic	displacement
param	neters	$(Å^{2} \times 10)$	³) for C(NH ₂)	₃ CH ₃ SO ₃ .	$U_{ m eq}$	is defined as	1/3 of the	e trace of the
orthog	gonali	zed U _{ij} te	nsor.					

Atom	X	У	Z	U _(eq)
S1	9534.4(11)	0	2311.7(11)	31.3(3)
01	872(3)	0	3209(3)	45.4(9)
02	9207(3)	8361(3)	1522(2)	49.9(7)
C2	8297(7)	0	3290(7)	79(2)
N1	2262(3)	6559(4)	4032(3)	44.8(8)
N2	714(4)	5000	2480(4)	52.9(13)

Table S3. Interatomic distances (Å) for C(NH₂)₃CH₃SO₃.

Atom	Atom	Length	Atom	Atom	Length
S1	01	1.455(3)	S1	C2	1.774(6)
S1	O21	1.451(2)	N1	C1	1.320(3)
S1	02	1.451(2)	N2	C1	1.327(6)

¹+X, 2-Y, +Z

Table S4. Bond Angles (°) for C(NH₂)₃CH₃SO₃.

Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
01	S1	C2	106.7(3)	02	S1	C2	106.32(18)
02	S1	01	112.37(13)	N1	C1	N1 ²	120.6(4)
O21	S1	01	112.37(13)	N1 ²	C1	N2	119.7(2)
02	S1	O21	112.3(2)	N1	C1	N2	119.7(2)
O2 ¹	S1	C2	106.32(18)				

¹+X,2-Y,+Z; ²+X,1-Y,+Z

Table S5. Hydrogen Bonds for C(NH₂)₃CH₃SO₃.

	,	0	•	275 5 5			
D	Н	А	<i>d</i> (D-H)/Å	<i>d</i> (H-A)/Å	<i>d</i> (D-A)/Å	D-H-A/°	
N1	H1A	02 ¹	0.79	2.15	2.932(3)	166.2	
N1	H1B	01	0.80	2.13	2.923(3)	171.0	
N2	H2	O2 ²	0.81	2.11	2.915(3)	174.8	

¹1/2+X,3/2-Y,1/2+Z; ²+X,1-Y,+Z

Parameters ($Å^2 \times 10^3$) for C(NH ₂) ₃ CH ₃ SO ₃ .							
Atom	x	y	Z	U _(eq)			
H2A	8571.58	8930	3732.17	94			
H2B	7521.68	0	2612.17	94			
H1A	2908.85	6549.87	4629.68	54			

3729.58

2189.84

54

63

Table S6. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement

Table S7. Calculated bandgap for $C(NH_2)_3CH_3SO_3$, β -/ γ - $C(NH_2)_3Cl$ and NH_2COF .

7479.87

4050

H1B

H2

1908.85

359.96

	$C(NH_2)_3CH_3SO_3$	<i>β</i> -C(NH ₂) ₃ Cl	γ-C(NH₂)₃Cl	NH ₂ COF
GGA	5.21 eV	4.96 eV	4.93 eV	6.15 eV
HSE06	6.71 eV	6.49 eV	6.51 eV	7.87 eV

, ,	λ_{cutoff} (nm)	Bandgap (eV)	Δn	Reference				
Metal containing compounds								
α -BaB ₂ O ₄	189	4.96	0.116 ¹	1				
LiBO ₂	164	6.49	0.136 ²	2				
$Ca(BO_2)_2$	169	7.34	0.124 ²	3				
KF∙B(OH)₃	<190	7.63 ^a	0.114 ²	4				
$Na_3F(B_3O_6)_2$	175	7.09	0.102 ³	5				
$Ba_2Mg(B_3O_6)_2$	187	6.63	0.098 ³	6				
BaZnB ₄ O ₈	180	6.89	0.14 ⁴	7				
LiB ₅ O ₅ F ₂ (OH) ₄	<190	7.99 ^a	0.124 ⁵	8				
$Rb[B_3O_3F_2(OH)_2]$	<200	7.46 ^a	0.09 ⁶	9				
$KB_3O_4F_2$	/	6.80 ^a	0.096 ⁵	10				
$LiNaB_6O_9F_2$	<190	7.47 ^a	0.067 ²	11				
NaB ₄ O ₆ F	<180	7.57	0.12 ²	12				
CsB ₄ O ₆ F	155	8.01	0.115 ⁷	13				
$SrB_5O_7F_3$	<180	8.58 ^a	0.07 ²	14				
RbB ₄ O ₆ F	<190	7.73 ^a	0.102 ²	15				
$NH_4[LiC_3H(CH_3)O_4]$	<190	7.58 ^b	0.06 ⁶	16				
NaZnCO₃(OH)	200	6.20	0.114 ²	17				
Li ₂ CsB ₇ O ₁₀ (OH) ₄	<190	6.35	0.0612 ²	18				
$Cs_3[(BOP)_2(B_3O_7)_3]$	165	7.52	0.075 ⁸	19				
$Sr(NH_2SO_3)_2$	<190	7.32	0.03 ²	20				
$Ba(CH_3SO_3)_2$	159	7.80	0.04 4	21				
$Ba_3P_3O_{10}CI$	180	6.89	0.023 ²	22				
	Metal-	free compounds						
NHABAOGE	156	7 95	0 1184 ⁷	23				
$C(NH_2)_2SO_2F$	200	6.20	0.133 2	23				
GRF1	190	6 53	0.133 0.173 ²	25				
GBF2	195	6 36	0.162 ²	25				
C(NH ₂) ₂ BE ₄	193	6 42	0.102 0.113 ³	26				
$(N_2H_2)[HPO_2F]_2$	<200	6 51	0.077 ²	20				
$(NH_{4})_{4}[B_{12}O_{12}F_{4}(OH)_{4}]$	<200	7.10	0.116 6	28				
$(NH_4)_2B_4SO_{10}$	184	6.74	0.056^{2}	29				
$(NH_{2})_{2}$	160	7.75	0.07 4	30				
NH ₂ BH ₂	<190	7.48	0.055 9	31				
C(NH ₂) ₃ CH ₃ SO ₂	<190	6.71 ^a	0.166 ²	This work				
β-C(NH ₂) ₃ Cl	~191	6.49 ^a	0.201 ²	This work				
v-C(NH ₂) ₃ Cl	~190	6.51 ^ª	0.211 ²	This work				
NH ₂ COF	~159	7.85 ^a	0.241 ²	This work				

Table S8. Birefringence of selected DUV metal-free compounds and metal-containing optical crystals.

^a By HSE06 functional; ^b by PBE0 functional.

¹ @1064 nm; ² @1064 nm (calculated); ³ @1014 nm; ⁴ @589.3 nm; ⁵ @546 nm (calculated); ⁶ @546 nm; ⁷ @964.8 nm; ⁸ @532 nm; ⁹ @550 nm.

Fig. S1 (a) Functional basic building blocks of $C(NH_2)_3CH_3SO_3$; (b) Hydrogen bonds around $[C(NH_2)_3]^+$ and $CH_3SO_3^-$; (c) Single layer of $[C(NH_2)_3\cdot CH_3SO_3]$; and (d) Structures of $C(NH_2)_3CH_3SO_3$.

Fig. S2 Crystal plane of $[C(NH_2)_3]^+$ located in the structure of $C(NH_2)_3CH_3SO_3$.

Fig. S3 Phonon dispersion of (a) β -C(NH₂)₃Cl and (b) γ -C(NH₂)₃Cl.

Fig. S4 Ball-and-stick representations of (a) $[C(NH_2)_3]^+$; (b) and (c) Structure of β - $C(NH_2)_3Cl$.

Fig. S5 Ball-and-stick representations of (a) $[C(NH_2)_3]^+$; (b) and (c) Structure of γ -C(NH₂)₃Cl.

Fig. S6 Independent gradient model based on Hirshfeld partition (IGMH) analyses of NH_2COF .

Fig. S8 UV-vis-NIR transmittance spectrum for C(NH₂)₃CH₃SO₃.

Fig. S9 TGA diagram for $C(NH_2)_3CH_3SO_3$.

Fig. S10 The chemical stability and air stability test of $C(NH_2)_3CH_3SO_3$.

Fig. S11 Calculated band structure by GGA (a) and HSE06 (b) for C(NH₂)₃CH₃SO₃.

Fig. S12 Calculated band structure by GGA (a) and HSE06 (b) for NH₂COF.

Fig. S14 Calculated band structure by GGA (a) and HSE06 (b) for γ -C(NH₂)₃Cl.

Fig. S15 Density of states for C(NH₂)₃CH₃SO₃.

Fig. S16 Density of states for (a) β -C(NH₂)₃Cl and (b) γ -C(NH₂)₃Cl.

Fig. S17 Density of states for NH_2COF .

Fig. S18 ELF diagram for C(NH₂)₃CH₃SO₃.

Fig. S19 ELF diagram for NH₂COF.

Fig. S20 Unit sphere representations of polarizability for (a) $[C(NH_2)_3]^+$ and (b) $CH_3SO_3^-$ under a static electric field. Longer and redder radial arrows indicate a larger tensor value in the corresponding direction.

Fig. S21 Birefringence measurement on $(10^{\overline{1}})$ crystal plane of $C(NH_2)_3CH_3SO_3$ crystal. (a) and (b) achieving complete extinction under a polarizing microscope; (c) thickness of selected crystal and (d) crystal orientation observed via the single-crystal XRD.

Fig. S22 (a) HOMO energy gap and (b) LUMO energy gap for NH₂COF.

References

- 1 G. Zhou, J. Xu, X. Chen, H. Zhong, S. Wang, K. Xu, P. Deng and F. Gan, *J. Cryst. Growth*, 1998, **191**, 517–519.
- 2 F. Zhang, X. Chen, M. Zhang, W. Jin, S. Han, Z. Yang and S. Pan, *Light Sci. Appl.*, 2022, **11**, 0–7.
- 3 X. Chen, B. Zhang, F. Zhang, Y. Wang, M. Zhang, Z. Yang, K. R. Poeppelmeier and S. Pan, *J. Am. Chem. Soc.*, 2018, **140**, 16311–16319.
- 4 Y. Li, X. Chen and K. M. Ok, *Chem. Commun.*, 2022, **58**, 8770-8773.
- H. Zhang, M. Zhang, S. Pan, Z. Yang, Z. Wang, Q. Bian, X. Hou, H. Yu, F. Zhang, K. Wu, F. Yang, Q. Peng, Z. Xu, K. B. Chang and K. R. Poeppelmeier, *Cryst. Growth Des.*, 2015, 15, 523–529.
- 6 X. Lv, P. Wang, H. Yu, Y. Hu, H. Zhang, C. Qiu, J. Li, X. Wang, B. Liu and Y. Zhang, *Opt. Mater. Express*, 2019, **9**, 3835.
- 7 J. Han, K. Liu, L. Chen, F. Li, Z. Yang, F. Zhang, S. Pan and M. Mutailipu, *Chem. A Eur. J.*, 2023, **29**, 4–10.
- 8 Z. Chen, H. Zeng, D. Chu, F. Zhang, M. Cheng, Z. Yang and S. Pan, *Sci. China Mater.*, 2022, **2**, 1–6.
- 9 Z. Chen, F. Li, Y. Liu, C. Cui and M. Mutailipu, *Inorg. Chem.*, 2023, **62**, 14512– 14517.
- 10 B. Cheng, W. Ma, A. Tudi, F. Zhang, Z. Chen, X. Hou, Z. Yang and S. Pan, *Chem. Mater.*, 2023, **35**, 5671–5679.
- 11 X. Li, Z. Chen, F. Li, F. Zhang, Z. Yang and S. Pan, *Adv. Opt. Mater.*, 2023, **11**, 2202195.
- 12 Z. Zhang, Y. Wang, B. Zhang, Z. Yang and S. Pan, *Angew. Chem. Int. Ed.*, 2018, **57**, 6577–6581.
- 13 X. Wang, Y. Wang, B. Zhang, F. Zhang, Z. Yang and S. Pan, *Angew. Chem. Int. Ed.*, 2017, **56**, 14119–14123.
- 14 M. Mutailipu, M. Zhang, B. Zhang, L. Wang, Z. Yang, X. Zhou and S. Pan, *Angew. Chem. Int. Ed.*, 2018, **57**, 6095–6099.
- 15 Y. Wang, B. Zhang, Z. Yang and S. Pan, *Angew. Chem. Int. Ed.*, 2018, **57**, 2150–2154.
- 16 H. Tian, C. Lin, Y. Zhou, X. Zhao, H. Fan, T. Yan, N. Ye and M. Luo, *Angew. Chem. Int. Ed.*, 2023, **62**, e202304858.
- 17 G. Peng, C. Lin and N. Ye, J. Am. Chem. Soc., 2020, 142, 20542–20546.
- 18 J. H. Huang, C. C. Jin, P. L. Xu, P. Gong, Z. Lin, J. W. Cheng and G. Y. Yang, *Inorg. Chem.*, 2019, **58**, 1755–1758.
- 19 H. Liu, H. Wu, Z. Hu, J. Wang, Y. Wu and H. Yu, *J. Am. Chem. Soc.*, 2023, **145**, 12691–12700.
- 20 X. Hao, M. Luo, C. Lin, G. Peng, F. Xu and N. Ye, *Angew. Chem. Int. Ed.*, 2021, **60**, 7621–7625.
- 21 H. Tian, C. Lin, X. Zhao, F. Xu, C. Wang, N. Ye and M. Luo, CCS Chem., 2023, 2, 1–9.
- 22 P. Yu, L. M. Wu, L. J. Zhou and L. Chen, J. Am. Chem. Soc., 2014, **136**, 480–487.

- 23 G. Shi, Y. Wang, F. Zhang, B. Zhang, Z. Yang, X. Hou, S. Pan and K. R. Poeppelmeier, *J. Am. Chem. Soc.*, 2017, **139**, 10645–10648.
- 24 M. Luo, C. Lin, D. Lin and N. Ye, Angew. Chem. Int. Ed., 2020, 59, 15978–15981.
- 25 C. Jin, H. Zeng, F. Zhang, H. Qiu, Z. Yang, M. Mutailipu and S. Pan, *Chem. Mater.*, 2022, **34**, 440–450.
- 26 M. Mutailipu, J. Han, Z. Li, F. Li, J. Li, F. Zhang, X. Long, Z. Yang and S. Pan, *Nat. Photonics*, 2023, **17**, 694–701.
- 27 H. Qiu, F. Li, C. Jin, J. Lu, Z. Yang, S. Pan and M. Mutailipu, *Chem. Commun.*, 2022, 5594–5597.
- 28 C. Jin, F. Li, B. Cheng, H. Qiu, Z. Yang, S. Pan and M. Mutailipu, *Angew. Chem. Int. Ed.*, 2022, **61**, e202203984.
- 29 Z. Li, W. Jin, F. Zhang, Z. Chen, Z. Yang and S. Pan, *Angew. Chem. Int. Ed.*, 2021, **61**, e202112844.
- 30 H. Tian, N. Ye and M. Luo, Angew. Chem. Int. Ed., 2022, 61, e202200395.
- 31 Y. Zhou, N. He, Z. Lin, X. Shang, X. Chen, Y. Li, W. Huang, M. Hong, S. Zhao and J. Luo, *Small*, 2024, **20**, 1–7.