Supplementary Information

A Metabologenomics Strategy for Rapid Discovery of Polyketides

Derived from Modular Polyketide Synthases

Run-Zhou Liu^{1,2}, Zhihan Zhang², Min Li², Lihan Zhang^{*2,3,4}

Address:

¹Department of Chemistry, Fudan University, Shanghai 200433, China ²Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China ³Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China ⁴Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, China

* Corresponding author Email: zhanglihan@westlake.edu.cn

Table of Contents

Supplementary Tables Supplementary Table 1. Annotation of candidate ions screened by NegMDF window for oligomycins. Supplementary Table 2. The BGC prediction of S. cattleya NRRL 8057 by antiSMASH 7.0.0. Supplementary Table 3. Proposed biosynthetic gene cluster of cattlemycins. Supplementary Table 4. Proposed biosynthetic gene cluster of butyrolactols. Supplementary Table 5. Proposed biosynthetic gene cluster of cattlevatetronates. Supplementary Table 6. Summary of polyketides characterized in S. cattleya NRRL 8057 in this work. **Supplementary Table 7.** Annotation of candidate ions screened by NegMDF window for cattlemycins. Supplementary Table 8. Annotation of candidate ions screened by NegMDF window for butyrolactols. Supplementary Table 9. Annotation of candidate ions screened by NegMDF window for cattlevatetronates. Supplementary Table 10. The NMR data of cattlemycins A (1a) and D (1d) in DMSO-d₆. Supplementary Table 11. The NMR data of butyrolactols A (2a) and B (2b) in DMSO-d₆. Supplementary Table 12. The NMR data of cattleyatetronate A (3a) in MeOH-d4. **Supplementary Figures** Supplementary Fig. 1. The workflow for the structural prediction of T1PKs. **Supplementary Fig. 2.** The β -elimination reactions observed in T1PKs. **Supplementary Fig. 3.** The α -elimination reactions observed in T1PKs. **Supplementary Fig. 4.** The retro-aldol reactions observed in polyketides with 3-hydroxyl ketone. Supplementary Fig. 5. Other CID-reactions observed in polyketides. Supplementary Fig. 6. The retro-aldol reactions observed in polyketides with 3-hydroxyl acid. Supplementary Fig. 7. In-source fragmentation of 8 polyketide standards. Supplementary Fig. 8. In-source fragmentation mechanism in positive and negative ESI. Supplementary Fig. 9. The definition of NegMDF window for oligomycins. Supplementary Fig. 10. The NegMDF window definition and MS/MS features for cattlemycins. Supplementary Fig. 11. The NegMDF window definition and MS/MS features for butyrolactols. Supplementary Fig. 12. The definition of NegMDF window for cattleyatetronates. Supplementary Fig. 13. Detection of cattleyatetronate ions in A3M crude culture of S. cattleya. Supplementary Fig. 14. Proposed biosynthesis of cattleyatetronates. Supplementary Fig. 15. Two types of tetronate biosynthesis. Supplementary Fig. 16. Proposed biosynthesis of cattlemycins. Supplementary Fig. 17. Proposed biosynthesis of butyrolactols. Supplementary Fig. 18. Bioinformatic analysis of KR domains in cattlemycin BGC. Supplementary Fig. 19-30. Proposed MS/MS fragmentation pathway of cattlemycins (1a-1m). Supplementary Fig. 31-35. Proposed MS/MS fragmentation pathway of butyrolactols (2a-3g). Supplementary Fig. 36-37. Proposed MS/MS fragmentation pathway of cattleyatetronates (3a-3b). Supplementary Fig. 38-49. NMR spectra of cattlemycin A (1a) and D (1d). Supplementary Fig. 50-61. NMR spectra of butyrolactol A (2a) and B (2b). Supplementary Fig. 62-67. NMR spectra of cattleyatetronate A (3a). **Supplementary Methods** Supplementary References **Supplementary Datasets** Supplementary Datasets 1. MS/MS database of bacterial T1PKs. Supplementary Datasets 2. In-source fragmentation of bacterial T1PKs.

Supplementary Tables.

RT/min	m/z	Compounds	Formula	lon type	MS/MS pattern
3.03	817.4614	x			•
4.16	781.4381	х			
5.72	795.4533	х			
5.83	765.4429	х			
6.00	747,4681	x			
6.20	761.4844	X			
6.44	775.5000	x			
6.49	761.4844	x			-
0110		~			805 5066 777 4760 721 4536 703 4452 675 4426
		oligomycin			607 3848 579 3875 567 3547 243 1255 223 1006
7.22	823.5216	analoque 1	$C_{45}H_{76}O_{13}$	[M-H]⁻	195 1039 179 1079 157 1238 141 0556 113 0598
		analogue			97 0298 71 0139
		oligomycin			745 4896 549 3794 241 1066 213 1146 141 0553
7.24	763.5001	analoque 2	$C_{43}H_{72}O_{11}$	[M-H]⁻	127 0407 113 0619 83 0490
		oligomycin			777 5149 577 4129 463 3463 245 1033 217 1083
7.30	795.5249	analogue 3	$C_{44}H_{76}O_{12}$	[M-H]⁻	131 0356 113 0606 83 0504 69 0346
		analogue o			750 5010 677 4641 641 4455 563 3043 440 3266
7 37	777 5155	oligomycin	C.H.O.	[N/_H]-	2/1 108/ 213 1120 127 0/04 113 0608 00 0/52
1.51	111.0100	analogue 4	04411/4011		83 0505 57 0348
					701 5254 773 5100 577 4104 463 3400 445 3318
7 40	800 5400	oligomycin	C - H- O -		250 1180 231 1235 213 1142 145 0503 113 0607
7.49	009.0409	analogue 5	C45H78O12	[ואו-רו]	239.1100, 231.1233, 213.1142, 143.0303, 113.0007,
7 5 9	777 5152				
7.56	111.5155	oligomycin		[ואו-רו]	759.5002, 005.4404, 051.4597, 577.4105, 505.5990,
7.58	823.5213	analogue 6	C44H74O11	[M+HCOO] ⁻	112 0607 00 0451 60 0355 57 0345
7.62	927 4000	X			113.0007, 99.0431, 09.0333, 37.0343
1.03	037.4999	X			772 0274 004 4704 070 2550 577 4000 402 2424
7.65	701 5207	oligomycin			773.0371, 091.4794, 079.3009, 077.4089, 403.3431,
7.05	791.5507	analogue 7	C45H76O11	[ואו-רו]	241.1091, 213.1117, 127.0304, 113.0007, 99.0441,
7 70	721 4720				63.0495
7.70	731.4739 921 5065	X			
1.10	021.0000	Aligomusin			747 5020 577 4110 462 2428 445 2214 215 0014
7.72	765.5156		C ₄₃ H ₇₄ O ₁₁	[M-H]⁻	147.0022, 077.4112, 403.0420, 440.0014, 210.0914,
7.90	745 4020	analogue o			187.0965, 155.0920, 125.0972, 101.0251, 57.0546
7.60	745.4920	X			772 5400 604 4760 577 4407 550 2002 462 2400
7 90	701 5214	oligomycin			773.5189, 091.4700, 577.4107, 559.3983, 403.3420,
7.60	791.5514	analogue 9	C45H76O11	[IVI-[]	327.1005, 241.1079, 215.1129, 141.0550, 127.0400,
7.04	004 5057				113.0606, 99.0447, 63.0500, 57.0551
7.84	821.5057	X			CO4 4400 C70 4004 CE4 4404 CO7 0040 E00 0744
		aliaamuain			091.4433, 073.4294, 051.4104, 027.3910, 589.3741,
8.01	805.5110		$C_{45}H_{74}O_{12}$	[M-H]⁻	577.4065, 549.5441, 551.5515, 505.5592, 491.5026, 462.2057, 242.4220, 470.4068, 444.0560, 442.0642
		analogue 10			403.3057, 243.1239, 179.1008, 141.0500, 113.0013,
0.02	750 5040				101.0604, 57.0329
0.03	759.5042	X			704 4007 000 4405 050 4047 504 0750 570 0740
0.00	007 5000	oligomycin		IN A 1 11 -	761.4897, 693.4485, 653.4247, 591.3758, 573.3716,
8.08	807.5228	analogue 11	C45H76O12	[IVI-H]	213.1104, 163.0028, 141.0550, 127.0395, 113.0597,
		-			99.0448
0.44		oligomycin		IN A 1 11 -	691.4441, 591.4250, 571.3642, 531.3279, 477.3612,
8.14	805.5465	analogue 12	C ₄₆ H ₇₈ O ₁₁	[INI-H]⁼	241.1078, 213.1135, 141.0577, 127.0390, 113.0601,
					99.0442, 71.0128, 57.0349
0.05	004 4700	oligomycin		FN 4 1 17 -	783.4675, 741.5144, 663.4102, 657.4337, 601.4078,
8.25	801.4792	analogue 13	C45H70O12	[M-H]	561.3826, 479.3387, 239.0922, 211.0970, 151.0763,
		J J			99.0448, 73.0289, 59.0139
0.00	007 5055	oligomycin			/27.5159, 687.4845, 619.4202, 591.4255, 551.3967,
8.29	807.5255	analogue 14	C45H76O12	[M-H]	509.3838, 215.0920, 187.0974, 153.0923, 125.0973,
					101.0240, 99.0452, 59.0132, 57.0344
0.05	005 5407	oligomycin	0 11 0		/8/.49/2, /19.43/7, /01.42/0, 691.4428, 6/3.4311,
8.35	805.5107	analogue 15	C ₄₅ H ₇₄ O ₁₂	[IM-H]-	b51.4112, b09.3974, 591.3899, 573.3787, 561.3805,
0.40	744 4700	0			543.3684, 195.1018, 141.0556, 113.0609, 57.0341
8.40	/41.4/92	X	0 11 0	FR 4 1 17	
8.45	805.5107	oligomycin	$C_{45}H_{74}O_{12}$	[M-H]⁻	/8/.5000, /03.4415, 691.4415, 667.4225, 657.4396,

Supplementary Table 1. Annotation of candidate ions screened by NegMDF window for oligomycins.

		analogue 16			639.4257, 587.3750, 571.3620, 549.3439, 543.3689, 531.3322, 519.3301, 503.3363, 491.3374, 195.1024, 177.0921, 141.0555, 129.0555, 113.0613, 101.0603
					71.0138, 59.0140
8.67	805.5101	oligomycin analogue 17	C ₄₅ H ₇₄ O ₁₂	[M-H] ⁻	725.4918, 703.4394, 617.4073, 589.4109, 571.3662, 543.3631, 531.3314, 507.3689, 215.0931, 195.1039, 187.0973, 141.0553, 125.0972, 113.0590, 101.0247, 57.0347
8.67	835.5239	oligomycin analogue 18	C ₄₅ H ₇₄ O ₁₁	[M+HCOO] ⁻	789.5159, 771.546, 703.4388, 675.4473, 647.4544, 635.4130, 593.4033, 175.1116, 141.0572, 113.0618, 57.0350
8.68	761.4842	oligomycin analogue 19	$C_{43}H_{70}O_{11}$	[M-H]⁻	545.3515, 505.3164, 141.0557, 129.0555, 113.0607, 101.0611, 57.0345
8.72	803.4948	oligomycin analogue 20	$C_{45}H_{72}O_{12}$	[M-H]⁻	649.3905, 587.3579, 559.3652, 547.3281, 223.0975, 195.1026, 153.0538, 113.0622, 101.0611
8.92	775.4997			[M-H]⁻	757.4916, 673.4294, 661.4313, 655.4221, 627.4273,
8.92	821.5057	oligomycin analogue 21	C ₄₄ H ₇₂ O ₁₁	M+HCOO	621.4004, 571.3992, 559.3639, 533.3473, 531.3686, 519.3313, 505.3553, 491.3379, 449.3276, 427.3230, 243.1233, 209.0836, 185.0818, 141.0551, 129.0556, 121.0657, 113.0605, 101.0609, 71.0136, 59.0135
9.11	775.5002			[M-H] ⁻	673.4285, 661.4307, 655.4206, 627.4258, 621.3997,
9.11	821.5059	oligomycin analogue 22	C ₄₄ H ₇₂ O ₁₁	[M+HCOO] ⁻	573.3770, 559.3638, 531.3687, 519.3318, 491.3330, 449.3268, 195.1037, 185.0829, 167.0687, 141.0556, 135.0820, 129.0550, 113.0610, 101.0611, 99.0444, 71.0139, 59.0134
9.18	775.5001			[M-H] ⁻	661.4318, 655.4166, 641.4391, 621.3999, 573.3778,
9.19	821.5061	oligomycin analogue 23	$C_{44}H_{72}O_{11}$	[M+HCOO] ⁻	559.3632, 531.3663, 519.3306, 491.3374, 243.1267, 195.1023, 185.0818, 177.0913, 141.0559, 129.0553, 113.0607, 101.0614, 71.0148, 57.0345
9.29	789.5169			[M-H] ⁻	771.5045, 687.4470, 675.4470, 669.4372, 641.4413,
9.29	825.4924			[H+Cl] ⁻	635.4158, 585.4160, 573.3791, 545.3841, 533.3478,
9.29	835.5219	oligomycin A	$C_{45}H_{74}O_{11}$	[M+HCOO] ⁻	505.3529, 487.3418, 463.3425, 243.1237, 223.0970,
9.29	771.5057	(1221)		[M-H ₂ O-H] ⁻	129.0557, 113.0607, 101.0607, 99.0451, 81.0344, 71.0137, 59.0138, 57.0346
9.41	803.4950	oligomycin analogue 24	$C_{45}H_{72}O_{12}$	[M-H] ⁻	689.4266, 633.4013, 315.3877, 587.3720, 575.3599, 549.3390, 187.0973, 141.0551, 129.0558, 73.0285
9.46	805.5091	oligomycin analogue 25	C ₄₅ H ₇₄ O ₁₂	[M-H] ⁻	787.4944, 759.4989, 719.4353, 701.4238, 691.4410, 673.4329, 663.4456, 651.4084, 617.4037, 591.3859, 177.0934, 141.0567, 129.0561, 113.0609, 109.0285, 99.0456
9.49	803.5313	oligomycin analogue 26	C ₄₆ H ₇₆ O ₁₁	[M-H] ⁻	701.4647, 689.4627, 683.4510, 655.4587, 649.4325, 599.4308, 587.3946, 559.4012, 547.3632, 541.3873, 519.3707, 243.1250, 141.0560, 129.0555, 113.0611, 101.0612, 71.0144, 57.0343
9.64	739.4633	Х			
9.64	787.5000	oligomycin		[M-H] ⁻	/69.4994, 685.4285, 673.4318, 633.4040, 571.3630, 531.3205, 223.0076, 205.0115, 105.1012, 120.0556
9.64	833.5060	analogue 27	C45H72U11	[M+HCOO] ⁻	113.0619, 101.0606, 71.0147
9.80	773.5207			[M-H] ⁻	755.5084, 687.4464, 659.4522, 641.4489, 619.4184,
9.80	809.4987	oligomycin C		[H+CI] ⁻	557.4107, 573.3787, 545.3850, 533.3493, 505.3528,
9.80	819.5264	(r222)	U45H74U10	[M+HCOO] ⁻	113.0607, 109.0285, 99.0455, 85.0652, 81.0342, 57.0345
9.81	725.4833	x			
9.81	787 4999	X		[M-H]-	
9.86	823.4764	oligomycin	C45H72O11	[H+Cl] ⁻	589.3720, 545.3843, 527.3713, 241.1087, 213.1116,
9.86	833.5057	analogue 28		[M+HCOO]	141.0537, 111.0450, 99.0449
10.17	7 723.4669	Х			

Notes: 61 candidate ions were obtained from the A3M culture. According to the MS/MS checking, 42 ions from 30 oligomycin analogues were marked in color.

Regions	Туре	Reported products	This study
Region 1.1	butyrolactone		
Region 1.2	T1PKS, lassopeptide		
Region 1.3	T1PKS, CDPS		cryptic
Region 1.4	terpene		
Region 1.5	lanthipeptide-class-i		
Region 1.6	CDPS		
Region 1.7	Ectoine		
Region 1.8	lanthipeptide-class-iii		
Region 1.9	butyrolactone		
Region 1.10	T3PKS		
Region 1.11	NRPS		
Region 1.12	lanthipeptide-class-i		
Region 1.13	terpene		
Region 1.14	NRPS, T1PKS		
Region 1.15	trans-T1PKS, NRPS	L-681.217 (1a) ¹	new cattlemycin
		demethyl L-681.217 (1b) ²	congeners (1c-1m)
Region 1.16	RiPP-like		
Region 1.17	CDPS		
Region 1.18	NI-siderophore		
Region 1.19	terpene		
Region 1.20	T3PKS, terpene		
Region 1.21	NAPAA		
Region 1.22	hgIE-KS, NRPS		
Region 1.23	butyrolactone, T1PKS, NRPS-like		
Region 2.1	LAP		
Region 2.2	NRPS		
Region 2.3	Terpene		
Region 2.4	thiopeptide, thiamitides, NRPS		
Region 2.5	terpene, ranthipeptide		
Region 2.6	T1PKS		butyrolactols (2a-2g)
Region 2.7	hgIE-KS		
Region 2.8	terpene, NRPS		
Region 2.9	blactam		
Region 2.10	terpene		
Region 2.11	butyrolactone		
Region 2.12	NRPS		
Region 2.13	NI-siderophore		
Region 2.14	NAPAA		
Region 2.15	T1PKS		cattleyatetronates (3a-3b)
Region 2.16	T1PKS		

Supplementary ⁻	Table 2.	The BGC	prediction o	f S.	cattleya NRRL 8	3057 b	oy antiSMASH [·]	7.0.0.

Notes: L-681.217 and demethyl L-681.217 were renamed as cattlemycins A and B, respectively.

Name	Accession ID	Size	Proposed Function	Homologs	Source Strain
		(aa)		(identity/positive)	
CamF	WP_014144293.1	387	methionine adenosyltransferase	WP_200428941.1	Streptomyces
				(77%/85%)	<i>sp.</i> NE5-10
LcaD	WP_173405727.1	243	alpha/beta fold hydrolase	WP_014144294.1	Streptomyces
				(99%/100%)	<i>sp.</i> SID5468
LcaRx	WP_265736688.1	917	LuxR family transcriptional	WP_236572710.1	Streptomyces
			regulator	(58%/70%)	sp. GS7
LcaP	WP_014144296.1	259	4'-phosphopantetheinyl	WP_202447497.1	Streptomyces
			transferase superfamily protein	(99%/100%)	<i>sp.</i> SID5468
LcaAl	WP_014144297.1	2070	beta-ketoacyl synthase N-	WP_159503160.1	Streptomyces
			terminal-like domain-containing protein	(64%/71%)	sp. GS7
LcaAll	WP_014144298.1	4608	SDR family NAD(P)-dependent	WP_202446693.1	Streptomyces
			oxidoreductase	(99%/100%)	<i>sp.</i> SID5468
LcaAllI	WP_014144299.1	1586	non-ribosomal peptide	WP_066930895.1	Streptomyces
			synthetase	(74%/80%)	sp. NBRC 110611
LcaAIV	WP_014144300.1	6721	SDR family NAD(P)-dependent	WP_159503163.1	Streptomyces
			oxidoreductase	(67%/73%)	sp. GS7
LcaAV	WP_014144301.1	2501	SDR family NAD(P)-dependent	WP_106433187.1	Streptomyces
			oxidoreductase	(100%/100%)	<i>sp.</i> SID5468
LcaAVI	WP_014144302.1	2518	type I polyketide synthase	WP_159503164.1	Streptomyces
				(55%/61%)	sp. GS7
LcaE	WP_014144303.1	469	amidase	WP_066930887.1	Streptomyces
				(81%/86%)	<i>sp.</i> NBRC 110611
LcaOll	WP_014144304.1	407	cytochrome P450	WP_202447498.1	Streptomyces
				(99%/100%)	sp. SID5468
LcaCl	WP_014144305.1	1087	malonyl CoA-acyl carrier protein	WP_066930879.1	Streptomyces
1 14		200	transacylase	(73%/80%)	<i>sp.</i> NBRC 110611
LCalvi	VVP_014144306.1	322	class I SAM-dependent	WP_066930877.1	Streptomyces
		652		(69%/79%)	Sp. NBRC 110611
LCaCII	VVF_202447499.1	055		(600/ /750/)	on NPPC 110611
		404	ovtochromo P450	(00%/75%)	Sp. NBRC 110011
LCaOI	WF_014144309.1	404	Cytochiome F430	(78%/86%)	Shepionyces
l caRl	WP 231005110 1	222	TetR/AcrR family transcriptional	WP 23760/077 1	Strentomyces
LUAIN	<u>vvi _201000110.1</u>	LLL	regulator	(99%/100%)	sp SID5468
LcaT	WP 014144311 1	536	MDR family MFS transporter	WP 173158266 1	Phytohabitans
			· · · · · · · · · · · · · · · · · · ·	(62%/75%)	suffuscus

Supplementary Table 3. Proposed biosynthetic gene cluster of cattlemycins from *S. cattleya* NRRL 8057 (region 1.15).

Name	Accession ID	Size	Proposed Function	Homologs	Source Strain
		(aa)		(identity/positive)	
ButQ	WP_014150750.1	147	hypothetical protein	WP_181856666.1	Streptomyces
				(75%/85%)	reniochalinae
ButP	WP_014627076.1	75	biotin/lipoyl-binding carrier	WP_187828509.1	Streptomyces sp.
			protein	(82%/90%)	TRM68367
ButA	WP_014150752.1	5935	type I polyketide synthase	WP_245962286.1	Streptomyces
				(77%/82%)	ardesiacus
ButO	WP_014150753.1	473	propionyl-CoA carboxylase	WP_267715829.1	Streptomyces sp.
			subunit beta	(85%/89%)	CoH17
ButN	WP_014150755.1	239	class I SAM-dependent	WP_164368603.1	Streptomyces
			methyltransferase	(65%/74%)	diastaticus
ButM	WP_014150756.1	622	class I SAM-dependent	WP_108933445.1	Streptomyces
			methyltransferase	(82%/87%)	ardesiacus
ButT3	WP_014150757.1	308	ABC transporter ATP-binding	WP_079080699.1	Streptomyces sp.
			protein	(82%/89%)	NBRC 110030
ButT2	WP_014150758.1	253	ABC transporter permease	WP_267715814.1	Streptomyces sp.
				(77%/83%)	CoH17
ButL	WP_014150759.1	414	hypothetical protein	WP_055469556.1	Streptomyces sp.
				(79%/84%)	NBRC 110030
ButT1	WP_014150760.1	442	MFS transporter	NEB62850.1	Streptomyces
				(77%/84%)	diastaticus
ButG	WP_014150761.1	254	alpha/beta fold hydrolase	WP_164368023.1	Streptomyces
				(77%/82%)	diastaticus
ButK	WP_014150762.1	356	HAD-IIIC family phosphatase	WP_055469554.1	Streptomyces sp.
				(86%/91%)	NBRC 110030
ButJ	WP_014150763.1	381	acyl-CoA dehydrogenase	WP_203714514.1	Streptomyces
			family protein	(80%/87%)	diastaticus
Butl	WP_014150764.1	85	acyl carrier protein	WP_053638656.1	Streptomyces sp.
				(82%/90%)	NRRL F-4707
ButH	WP_014150765.1	302	3-hydroxybutyryl-CoA	KO198808.1	Streptomyces sp.
			dehydrogenase	(88%/91%)	NRRL F-4/11
ButF	WP_014150766.1	1154	SDR family NAD(P)-dependent	WP_108933441.1	Streptomyces
			oxidoreductase	(82%/86%)	ardesiacus
ButE	WP_014150767.1	3085	type I polyketide synthase	WP_053664160.1	Streptomyces sp.
		0.4.4.0		(81%/85%)	NRRL F-7442
ButD	WP_014150768.1	3413	type I polyketide synthase	WP_108933439.1	Streptomyces
		0004		(81%/86%)	ardesiacus
ButC	WP_014150769.1	3301	type I polyketide synthase	WP_055469548.1	Streptomyces sp.
D(D		0050		(72%/79%)	NBRC 110030
ButB	WP_014627073.1	2053	type i polyketide synthase	VVP_234353271.1	Streptomyces sp.
D (D		007		(71%/80%)	NBRC 110030
ButR	VVP_014150771.1	667	LuxR C-terminal-related	VVP_108934774.1	Streptomyces
			transcriptional regulator	(75%/81%)	ardesiacus

Supplementary Table 4. Proposed biosynthetic gene cluster of butyrolactols from *S. cattleya* NRRL 8057 (region 2.6).

Name	Accession ID	Size	Proposed Function	Homologs	Source Strain
itanio		(aa)		(identity/positive)	
CttT	WP_014151912.1	260	phytanoyl-CoA dioxygenase family	WP_267010547.1	Streptomyces
			protein	(83%/90%)	sp. NBC_00249
CttQ	WP_014151913.1	631	SDR family oxidoreductase	WP_235446340.1	Streptomyces
				(65%/74%)	sioyaensis
CttP	WP_014626738.1	420	nucleotide sugar dehydrogenase	WP_267010544.1	Streptomyces
				(89%/92%)	sp. NBC_00249
CttT3	WP_014151915.1	461	MFS transporter	WP_285569156.1	Streptomyces
				(63%/72%)	sp. RTGN2
CttO	WP_014151916.1	499	FAD-dependent monooxygenase	WP_281066940.1	Streptomyces
				(74%/82%)	inhibens
CttR2	WP_041823735.1	195	PadR family transcriptional regulator	WP_280720087.1	Kitasatospora
				(78%/87%)	sp. MAP5-34
CttN	WP_014151919.1	365	NAD(P)-dependent alcohol	WP_205369216.1	Streptomyces
			dehydrogenase	(74%/84%)	noursei
CttL	WP_014151920.1	402	cytochrome P450	WP_205369215.1	Streptomyces
				(81%/88%)	noursei
CttK	WP_014151921.1	65	ferredoxin	WP_205369214.1	Streptomyces
				(76%/87%)	noursei
CttA	WP_014151922.1	4492	type I polyketide synthase	WP_225930501.1	Streptomyces
				(54%/63%)	koyangensis
CttE	WP_014151923.1	350	3-oxoacyl-ACP synthase III family	WP_205371423.1	Streptomyces
			protein	(82%/88%)	noursei
CttF	WP_014151924.1	87	acyl carrier protein	WP_205369212.1	Streptomyces
				(56%/75%)	noursei
CttG	WP_014151925.1	317	thiamine pyrophosphate-dependent	WP_240167907.1	Streptomyces
			dehydrogenase E1 component	(78%/84%)	noursei
			subunit alpha		
CttH	WP_014151926.1	333	pyruvate dehydrogenase	WP_205369211.1	Streptomyces
				(80%/87%)	noursei
Cttl	WP_014151927.1	368	2-oxo acid dehydrogenase subunit	WP_205369210.1	Streptomyces
			E2	(70%/81%)	noursei
CttJ	WP_014151928.1	477	aldehyde dehydrogenase	WP_205369209.1	Streptomyces
~		004		(76%/84%)	noursei
CttM	WP_014151929.1	281	class I SAM-dependent	WP_205369208.1	Streptomyces
0 // D			metnyltransferase	(85%/90%)	noursei
CttB		388	type I polyketide synthase		o., ,
CttC	WP_014626734.1	3166	type I polyketide synthase	WP_205369207.1	Streptomyces
	MD 004004005 4	4057		(64%/72%)	noursei
CttD	VVP_231904995.1	1057	type i polyketide synthase	WP_205369206.1	Streptomyces
C++T4		400	MEC transportan	(74%/82%) ODX06520.4	noursei
Gali	vvP_014151932.1	438	INFS transporter	UKA90029.1	Sirepioinyces
C#T2	MD 01/151022 4	200	MES transporter	(10%/04%)	Strantomican
GUIZ	vvF_014151933.1	299	wro transporter	VVF_200009204.1	Sirepionyces
CHID1	MD 01/15102/ 4	057	LuxP family transcriptional regulator	(0170/0770)	Strontomycoc
GIRI	vvF_014131934.1	907		VVF_200009200.1	noursoi
				(0170/1170)	nourser

Supplementary Table 5. Proposed biosynthetic gene cluster of cattleyatetronates from *S. cattleya* NRRL 8057 (region 2.15).

Supplementary Table 6. Summary of polyketides characterized in *S. cattleya* NRRL 8057 in this work.

BCC	Compoundo	Formula	RT		Media		Characterization	
BGC	Compounds	Forniula	/min	MSF	A3M	ISP2	Characterization	
2.15	cattleyatetronate A (3a)	$C_{15}H_{14}O_{6}$	3.37		+		MS/MS, NMR	
2.15	cattleyatetronate B (3b)	$C_{15}H_{16}O_5$	3.62		+		MS/MS	
1.15	cattlemycin G (1g)	C36H55NO12	4.13			+	MS/MS	
1.15	cattlemycin E (1e)	C36H55NO11	4.49		+	+	MS/MS	
1.15	cattlemycin F (1f)	C36H53NO11	4.64			+	MS/MS	
1.15	cattlemycin C (1c)	C34H49NO10	4.77	+	+	+	MS/MS	
1.15	cattlemycin B (1b)	C35H51NO10	5.08		+	+	MS/MS, known	
1.15	cattlemycin A (1a)	C36H53NO10	5.31	+	+	+	MS/MS, NMR	
1.15	cattlemycin I (1i)	C35H51NO9	5.36		+		MS/MS	
1.15	cattlemycin H (1h)	C34H49NO9	5.51		+		MS/MS	
1.15	cattlemycin K (1k)	C35H51NO8	5.91		+		MS/MS	
1.15	cattlemycin L (1I)	C36H53NO9	5.91		+		MS/MS	
1.15	cattlemycin J (1j)	C36H53NO9	6.02		+		MS/MS	
1.15	cattlemycin M (1m)	$C_{36}H_{51}NO_9$	6.05		+		MS/MS	
1.15	cattlemycin D (1d)	C37H55NO10	6.13	+			MS/MS, NMR	
2.6	butyrolactol B2 (2d)	C ₂₇ H ₄₄ O ₁₀	7.12	+			MS/MS	
2.6	butyrolactol B isomer (2g)	C ₂₇ H ₄₄ O ₉	7.36	+			MS/MS	
2.6	butyrolactol A2 (2c)	$C_{28}H_{46}O_{10}$	7.46	+			MS/MS	
2.6	butyrolactol B (2b)	C ₂₇ H ₄₄ O ₉	7.49	+			MS/MS, NMR	
2.6	butyrolactol A isomer (2f)	$C_{28}H_{46}O_9$	7.69	+			MS/MS	
2.6	butyrolactol A (2a)	$C_{28}H_{46}O_9$	7.83	+			MS/MS, NMR	
2.6	butyrolactol C (2e)	$C_{28}H_{46}O_8$	7.99	+			MS/MS	

Supplementary Table 7a. Annotation of candidate ions screened by NegMDF window for cattlemycins.

Medium	RT/min	Obs <i>m/z</i>	Compounds	Formula	lon type	Calc <i>m/z</i>
MSF	3.45	610.2904	cattlemycin analogue	$C_{30}H_{45}NO_{12}$	[M-H]⁻	610.2928
MSF	3.58	662.2960	cattlemycin analogue	C37H45NO10	[M-H] ⁻	662.2971
MSF	3.75	662.2959	cattlemycin analogue	$C_{37}H_{45}NO_{10}$	[M-H]⁻	662.2971
MSF	3.75	708.4092			[H+CI] ⁻	708.4095
MSF	3.91	624.3061	cattlemycin analogue	$C_{31}H_{47}NO_{12}$	[M-H]⁻	624.3084
MSF	4.79	630.3271	cattlemycin C (1c)	C34H49NO10	[M-H] ⁻	630.3284
MSF	4.99	658.3583	cattlemycin analogue	C36H53NO10	[M-H]⁻	658.3570
MSF	5.34	658.3584	cattlemycin A (1a)	$C_{36}H_{53}NO_{10}$	[M-H] ⁻	658.3570
MSF	5.35	694.3349			[H+CI] ⁻	694.3363
MSF	5.74	672.3737	cattlemycin analogue	C37H55NO10	[M-H]⁻	672.3753
MSF	5.74	718.3792			[M+HCOO] ⁻	718.3808
MSF	6.13	672.3738	cattlemycin D (1d)	C37H55NO10	[M-H]⁻	672.3753
MSF	6.13	708.3508			[H+CI] ⁻	708.3520
MSF	6.13	718.3793			[M+HCOO] ⁻	718.3808
MSF	7.60	640.2821	Х			
MSF	9.43	644.3972	x			
MSF	11.14	580.3380	Х			

Notes: 17 candidate ions were obtained from the MSF culture. According to the MS/MS checking, 14 ions from 9 cattlemycin analogues were marked in color, including cattlemycins A, C and D.

Supplementary Table 7b. Annotation of candidate ions screened by NegMDF window for cattlemycins.

Medium	RT/min	Obs <i>m/z</i>	Compounds	Formula	lon type	Calc <i>m</i> /z
ISP2	2.54	586.3091	Х			
ISP2	2.65	616.3195	Х			
ISP2	2.71	618.3347	Х			
ISP2	2.72	600.3247	Х			
ISP2	2.83	602.3486	Х			
ISP2	2.84	662.3362	X			
ISP2	2.97	600.3251	X			
ISP2	4.13	692.3651	cattlemycin G (1g)	C36H55NO12	[M-H] ⁻	692.3651
ISP2	4.35	674.3541	cattlemycin analogue	$C_{36}H_{53}NO_{11}$	[M-H] ⁻	674.3546
ISP2	4.42	674.3544	cattlemycin analogue	$C_{36}H_{53}NO_{11}$	[M-H] ⁻	674.3546
ISP2	4.43	676.3683	cattlemycin analogue	C36H55NO11	[M-H] ⁻	676.3702
ISP2	4.49	676.3698	cattlemycin E (1e)	C ₃₆ H ₅₅ NO ₁₁	[M-H] ⁻	676.3702
ISP2	4.58	630.3283	cattlemycin analogue	C ₃₄ H ₄₉ NO ₁₀	[M-H] ⁻	630.3284
ISP2	4.64	674.3543	cattlemycin F (1f)	C ₃₆ H ₅₃ NO ₁₁	[M-H] ⁻	674.3546
ISP2	4.77	630.3280	cattlemycin C (1c)	C34H49NO10	[M-H] ⁻	630.3284
ISP2	4.77	644.3437	cattlemycin analogue	C35H51NO10	[M-H] ⁻	644.3440
ISP2	4.89	676.3699	cattlemycin analogue	C ₃₆ H ₅₅ NO ₁₁	[M-H] ⁻	676.3702
ISP2	4.92	642.3279	cattlemycin analogue	C35H49NO10	[M-H] ⁻	642.3284
ISP2	4.95	658.3594	cattlemycin analogue	C ₃₆ H ₅₃ NO ₁₀	[M-H] ⁻	658.3570
ISP2	5.08	644.3441	cattlemycin B (1b)	C35H51NO10	[M-H] ⁻	644.3440
ISP2	5.09	658.3597	cattlemycin analogue	C ₃₆ H ₅₃ NO ₁₀	[M-H] ⁻	658.3570
ISP2	5.31	658.3599	cattlemycin A (1a)	C ₃₆ H ₅₃ NO ₁₀	[M-H] ⁻	658.3570
ISP2	5.31	694.3360			[H+CI] ⁻	694.3363
ISP2	5.31	696.3349			[M+ ³⁷ Cl] ⁻	696.3333
ISP2	5.31	640.3487			[M-H ₂ O-H] ⁻	640.3491
ISP2	5.58	658.3593	cattlemycin analogue	C ₃₆ H ₅₃ NO ₁₀	[M-H] ⁻	658.3570
ISP2	9.55	644,4012	x			

Notes: 27 candidate ions were obtained from the ISP2 culture. According to the MS/MS checking, 19 ions from 16 cattlemycin analogues were marked in color, including cattlemycins A, B, C, E, F and G.

Supplementary Table 7c. Annotation of candidate ions screened by NegMDF window for cattlemycins.

Medium	RT/min	Obs <i>m/z</i>	Compounds	Formula	lon type	Calc <i>m/z</i>
A3M	2.84	662.3362	Х			
A3M	4.33	676.3704	cattlemycin analogue	C36H55NO11	[M-H]⁻	676.3702
A3M	4.42	610.3278	Х			
A3M	4.49	676.3703	cattlemycin E (1e)	C36H55NO11	[M-H]⁻	676.3702
A3M	4.77	630.3284	cattlemycin C (1c)	C34H49NO10	[M-H]⁻	630.3284
A3M	4.78	644.3440	cattlemycin analogue	C35H51NO10	[M-H]⁻	644.3440
A3M	4.82	646.3564	cattlemycin analogue	C35H53NO10	[M-H]⁻	646.3597
A3M	4.96	658.3597	cattlemycin analogue	C36H53NO10	[M-H]⁻	658.3570
A3M	4.96	694.3362			[H+CI]-	694.3363
A3M	4.96	696.3349			[M+ ³⁷ Cl]⁻	696.3333
A3M	5.07	660.3719	cattlemycin analogue	$C_{36}H_{55}NO_{10}$	[M-H]⁻	660.3753
A3M	5.08	644.3441	cattlemycin B (1b)	C35H51NO10	[M-H]⁻	644.3440
A3M	5.10	658.3596	cattlemycin analogue	C ₃₆ H ₅₃ NO ₁₀	[M-H]⁻	658.3570
A3M	5.15	644.3438	cattlemycin analogue	$C_{35}H_{51}NO_{10}$	[M-H]⁻	644.3440
A3M	5.31	658.3603	cattlemycin A (1a)	C36H53NO10	[M-H]⁻	658.3570
A3M	5.31	694.3363			[H+CI]-	694.3363
A3M	5.31	696.3353			[M+ ³⁷ Cl]⁻	696.3333
A3M	5.31	640.3488			[M-H₂O-H] ⁻	640.3491
A3M	5.36	628.3490	cattlemycin I (1i)	C ₃₅ H ₅₁ NO ₉	[M-H]⁻	628.3491
A3M	5.51	614.3335	cattlemycin H (1h)	C34H49NO9	[M-H]⁻	614.3335
A3M	5.52	628.3489	cattlemycin analogue	$C_{35}H_{51}NO_9$	[M-H]⁻	628.3491
A3M	5.61	628.3490	cattlemycin analogue	C35H51NO9	[M-H]⁻	628.3491
A3M	5.64	658.3598	cattlemycin analogue	C ₃₆ H ₅₃ NO ₁₀	[M-H]⁻	658.3570
A3M	5.69	642.3646	cattlemycin analogue	C ₃₆ H ₅₃ NO ₉	[M-H]⁻	642.3648
A3M	5.80	628.3487	cattlemycin analogue	C35H51NO9	[M-H]⁻	628.3491
A3M	5.91	612.3543	cattlemycin K (1k)	C35H51NO8	[M-H]⁻	612.3542
A3M	5.91	642.3648	cattlemycin L (11)	C ₃₆ H ₅₃ NO ₉	[M-H]⁻	642.3648
A3M	6.02	642.3654	cattlemycin J (1j)	$C_{36}H_{53}NO_9$	[M-H]⁻	642.3648
A3M	6.05	640.3493	cattlemycin M (1m)	$C_{36}H_{51}NO_{9}$	[M-H] ⁻	640.3491
A3M	8.89	724.3479	Х			
A3M	9.55	644.3999	Х			
A3M	9.74	724.3488	х			

Notes: 32 candidate ions were obtained from the A3M culture. According to the MS/MS checking, 27 ions from 22 cattlemycin analogues were marked in color, including cattlemycins A, B, C, E, and H-M.

Supplementary Table 8a. Annotation of candidate ions screened by NegMDF window for butyrolactols.

Medium	RT/min	Obs <i>m/z</i>	Compounds	Formula	lon type	Calc <i>m</i> /z
MSF	3.34	513.2540	х			
MSF	3.35	531.3012	x			
MSF	3.42	499.2749	x			
MSF	3.45	575.3271	x			
MSF	3.52	543.3010	x			
MSF	3.56	513.2906	x			
MSF	3.60	587.3274	x			
MSF	3.65	557.3168	x			
MSF	6.30	563.2841	x			
MSF	6.81	577.2993	x			
MSF	7.12	527.2852	butyrolactol B2 (2d)	C ₂₇ H ₄₄ O ₁₀	[M-H]⁻	527.2862
MSF	7.29	469.2563	x			
MSF	7.36	511.2903	butyrolactol B isomer (2g)	$C_{27}H_{44}O_{9}$	[M-H]⁻	511.2913
MSF	7.46	541.3007	butyrolactol A2 (2c)	$C_{28}H_{46}O_{10}$	[M-H]⁻	541.3018
MSF	7.49	511.2902	butyrolactol B (2b)	C ₂₇ H ₄₄ O ₉	[M-H]⁻	511.2913
MSF	7.49	547.2669	x			
MSF	7.50	469.2797	x			
MSF	7.56	469.2564	x			
MSF	7.59	561.3045	x			
MSF	7.69	525.3058	butyrolactol A isomer (2f)	$C_{28}H_{46}O_{9}$	[M-H]⁻	525.3069
MSF	7.83	525.3056	butyrolactol A (2a)	$C_{28}H_{46}O_{9}$	[M-H] ⁻	525.3069
MSF	7.83	561.2824	x			
MSF	7.84	483.2952	x			
MSF	7.99	509.3111	butyrolactol C (2e)	$C_{28}H_{46}O_8$	[M-H] ⁻	509.3120
MSF	8.14	495.2718	x			
MSF	8.25	465.2849	Х			
MSF	9.04	509.2873	Х			
MSF	9.37	485.2816	x			
MSF	9.69	497.2874	x			
MSF	9.73	497.3223	x			
MSF	11.28	473,2816	x			

Notes: 31 candidate ions were obtained from the MSF culture. According to the MS/MS checking, 7 butyrolactol ions were identified and marked in color.

Notes: 12 and 8 candidate ions were obtained from the ISP2 and A3M cultures, respectively. None of them was idenfidied as butyrolactols according to the MS/MS checking.

Supplementary Table 9. Annotation of candidate ions screened by NegMDF window for cattleyatetronates.

319.1662

х

ISP2

2.94

ISP2	7.63	311.1686	X
MSF	0.59	241.0926	x
MSF	0.63	247.0934	Х
MSF	0.63	257.0777	Х
MSF	0.81	241.0827	Х
MSF	0.91	267.0730	Х
MSF	0.94	257.0774	Х
MSF	1.16	301.0923	Х
MSF	1.30	245.1140	Х
MSF	1.32	331.1030	Х
MSF	1.34	277.0859	Х
MSF	1.95	259.1295	Х
MSF	2.03	295.1395	Х
MSF	2.41	291.0869	Х
MSF	2.46	287.0557	Х
MSF	2.82	275.0922	Х
MSF	2.82	307.0818	Х
MSF	2.94	271.0607	Х
MSF	2.98	301.0713	Х
MSF	3.21	287.1032	Х
MSF	3.75	255.1135	Х
MSF	3.87	255.1135	Х
MSF	4.40	253.1343	Х
MSF	4.59	313.1187	Х
MSF	5.25	269.1307	Х
MSF	5.43	251.0921	Х
MSF	6.23	309.1703	Х
MSF	6.96	265.1579	Х
MSF	7.01	297.1525	X
MSF	7.07	265.1474	Х
MSF	7.64	311.1680	X
MSF	7.91	309.1734	x
MSF	7.91	311.1681	Х
MSF	8.71	293.1786	Х
Notos: 15	6 and 33	condidate ior	a wore obtained from the A2M ISB2 and MSE cultures, respective

Notes: 15, 6 and 33 candidate ions were obtained from the A3M, ISP2 and MSF cultures, respectively. According to the MS/MS checking, cattleyatetronates A and B were identified and marked in color.

Supplementary Table 10. ¹H (500 MHz) and ¹³C (125 MHz) NMR data for cattlemycins A (**1a**) and D (**1d**) in DMSO- d_6 .

	cattlemycin A*			cattlemycin D				
No.	δΗ	δC	НМВС	¹ H- ¹ H NOESY	δΗ	δC	HMBC	¹ H- ¹ H NOESY
1		167.5				166.5		
2	5.89	121.7	1, 4	4	6.00	119.9	1, 4	4
3	7.22	144.0	1, 4, 5	5	7.30	144.7	1, 5	5
4	6.42	129.4	2, 3, 6	2	6.43	129.1	2, 6	2
5	6.73	140.1	3, 6, 7	3, 7	6.78	140.9	3, 7	3, 7
6	6.31	130.4	4, 5, 8	8	6.32	130.3	4, 8	8
7	6.01	136.7	5, 6, 8	5, 8	6.03	137.3	5, 8	5, 8
8	4.23	83.0	6	6, 7, 10	4.24	82.9	6	6, 7, 10
9	4.18	73.3		10	4.18	73.3		10
10	1.86	39.0	8, 9, 11	8, 11, 34	1.86	39.0	8, 9, 11	8, 11, 34
11	4.47	76.5	14, 34	8, 10, 13, 34	4.47	76.5	34	8, 10, 13, 34
12								
13	1.59	39.0	34	11, 14	1.59	39.0	34	11, 14
14	3.32	88.7	11,13,16,35,36		3.32	88.7	11,13,16,35,36	
15		135.3				135.2		
16	5.95	128.4	14, 17, 18, 36	18	5.95	128.4	14, 18, 36	18
17	6.45	126.3	19	19, 36	6.45	126.3	19	19, 36
18	5.64	130.0	16, 19	16, 19	5.64	130.0	16, 19	16, 19
19	3.97	40.2	17, 18, 21		3.97	40.2	17, 18, 21	
	3.74				3.74			
20	8.39		19, 21	22, 19	8.39		19, 21	22, 19
21		174.2				174.2		
22	2.32	55.0	20, 23, 37, 38	20, 24, 37, 38	2.32	55.0	20, 23, 37, 38	20, 37, 38
23		97.8				97.8		
24	1.88	39.0	23, 25, 26	37	1.88	39.0	23, 25, 26	37
	1.18				1.18			
25	3.74	70.8	26, 39	24, 27	3.74	70.8	26	24, 27
26		73.0				73.0		
27	4.14	73.5	26, 29, 30, 39	25	4.14	73.5		25
28		100.1	07.04	<u>.</u>		400.4	07.04	<u>.</u>
29	5.79	130.1	27, 31	31	5.79	130.1	27, 31	31
30	6.46	124.5	27, 32	33	6.46	124.5	~~~~~	33
31	6.01	129.3	29, 33	29, 32	6.00	129.3	29, 33	29, 32
32	5.41	124.3	30, 33	31, 33	5.40	124.3	30, 33	31, 33
33	1.70	13.1	31, 32	30, 32	1.69	13.1	31, 32	30, 32
34	0.62	9.9	11, 13, 14	10, 14, 36	0.62	9.9	11, 13, 14	10, 14, 36
35	3.06	55.4	14	47 04	3.06	55.4	14	47 04
36	1.56	10.4	14, 15, 16	17, 34	1.56	10.4	14, 15, 16	17, 34
31	1.57	20.4	21, 22, 23, 38	38 00 07	1.57	20.4	21, 22, 38	<u>کې</u>
38 20	0.84	11.8	22, 31 DE DE DZ	22, 31	0.84	11.8	22, 31	22, 31
39	0.82	13.3	23, 20, 27	29	0.82	13.3	20, 20, 27 1	29

* The NMR spectra of **1a** were consistent with the reported spectra in reference².

Supplementary Table 11. ¹H (600 MHz) and ¹³C (125 MHz) NMR data for butyrolactols A (**2a**) and B (**2b**) in DMSO-*d*₆.

butyrolactol B

butyrolactol A*			butyrolactol B			
No.	δC	δΗ (<i>J</i> in Hz)	δC	δΗ (<i>J</i> in Hz)		
1	174.8		174.8			
2	74.1	4.26 (1H, dd, 9.0, 5.2)	74.1	4.26 (1H, dd, 9.0, 5.2)		
3	72.4	4.16 (1H, m)	72.4	4.16 (1H, m)		
4	79.4	4.33 (1H, m)	79.4	4.33 (1H, m)		
5	66.3	3.63 (1H, m)	66.3	3.63 (1H, m)		
6	68.2	3.72 (1H, m)	68.2	3.72 (1H, m)		
7	68.3	3.72 (1H, m)	68.3	3.72 (1H, m)		
8	69.0	3.49 (1H, m)	69.0	3.49 (1H, m)		
9	72.5	3.35 (1H, m)	72.5	3.35 (1H, m)		
10	35.6	1.69 (1H, m)	35.6	1.69 (1H, m)		
11	35.9	2.44 (1H, m)	35.9	2.44 (1H, m)		
		1.86 (1H, m)		1.86 (1H, m)		
12	131.3	5.61-5.56 (1H, m)	131.3	5.61-5.56 (1H, m)		
13	131.4	5.98 (1H, m)	131.4	5.98 (1H, m)		
14	130.7	6.04 (1H, m)	130.7	6.04 (1H, m)		
15	130.7	5.57-5.51 (1H, m)	130.7	5.57-5.51 (1H, m)		
16	32.0	2.10 (2H, m)	32.0	2.10 (2H, m)		
17	26.9	2.22 (2H, m)	26.9	2.22 (2H, m)		
18	128.6	5.27 (1H, dt, 10.8, 7.4)	128.6	5.27 (1H, dt, 10.8, 7.4)		
19	128.9	5.93 (1H, m)	128.9	5.93 (1H, m)		
20	125.1	6.31 (1H, m)	125.4	6.31 (1H, m)		
21	135.3	5.66 (1H, dt, 14.6, 7.0)	134.7	5.65 (1H, dt, 14.5, 6.9)		
22	27.5	2.05 (2H, m)	30.0	2.09 (2H, m)		
23	43.1	1.24 (2H, m)	37.9	1.24 (2H, m)		
24	30.0		26.9	1.52 (1H, m)		
25-27	29.1	0.88 (9H, s)	22.3	0.87 (6H, d, 6.6)		
28	15.6	0.77 (3H, d, 6.7)	15.6	0.77 (3H, d, 6.7)		

* The NMR spectra of **2a** were consistent with the reported spectra in reference³.

Supplementary Table 12. ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) NMR data of cattleyatetronate A (**3a**) in MeOH- d_4 .

0	0 2 3 4 5 14 0H	6 7 8 9 10 11 12 О 13 ОН С	о о о о о о о о о о о о о о о о о о о	ОН
No.	δc	δ _H (<i>J</i> in Hz)	¹ H- ¹ H COSY	НМВС
1	179.1	· · · · ·		
2	98.2			
3	185.8			
4	131.0	7.51 (1H, dd, 15.1)	5	3, 6
5	140.8	7.30 (1H, dd, 15.1, 11.2)	4, 6	3, 7
6	133.6	6.54 (1H, m)	5, 7	5, 7, 8
7	140.9	6.67 (1H, dd,14.6, 10.7)	6, 8	5, 6, 8, 9
8	131.7	6.58 (1H, m)	7, 9	9
9	141.4	6.44 (1H, d, 15.1)	8	7, 8, 11, 13
10	142.2			
11	131.3	5.95 (1H, s)		9, 12, 13
12	176.3			
13	13.9	2.14 (3H, s)		9, 10, 11, 12
14	197.2			
15	71.2	4.26 (2H, s)		1, 14

Supplementary Figures.

Supplementary Fig. 1. The workflow for the structural prediction of T1PKs. a. The general steps for definition of the MDF window. **b**. The detailed steps for structural establishment *de novo* was performed according to loading module, extender modules, and chain release enzymes. The variation from tailoring enzymes and potential inaccurate prediction was considered, resulting in a specific region named NegMDF window.

а	KR			Fragmentation pattern				
	or Ox		+ H ₂ O	Туре	Unit	Mass shift	Examples	
	M _{KR}			а	H ₂ O	18.0106	148	
b		OMe CID		b	MeOH	32.0262	38	
	M _{KR} MT		+ MeOH	с	glycosyl		44	
					amicetose	(B-Y) 114.0681	e.g. r104	
с				4-	O-methyl rhodinose	(B-Y) 128.0837	e.g. r113, r115	
					digitoxose	(B-Y) 130.0630	e.g. r104	
					arabinose	(B-Y) 132.0424	e.g. r147, r148	
	ΥZ		polyketide Y-ion		forosamine	(B-Y) 141.1154	e.g. r206-r210	
	$-\ell$				chalcose	(B-Y) 144.0786	e.g. r218, r219	
					mycarose	(B-Y) 144.0786	e.g. r206-r209	
	вс				oleandrose	(B-Y) 144.0786	e.g. r216	
					mycosamine	(B-Y) 145.0739	e.g. r185, s6-s8	
			Z-ion		rhamnose	(B-Y) 146.0574	e.g. r144	
					desosamine	(B-Y) 157.1103	e.g. r216, r217	
					madpyranose	(B-Y) 158.0943	e.g. r112	
					glucose	(B-Y) 162.0524	e.g. r205, r64-r70	
d	(M _{KR}) (AT)	e (M _{KR}) (ST)	f (M _{KR}) (kinase)		mycaminose	(B-Y) 173.1052	e.g. r206-r210, s3	
	Y Z	z	Z		mycinose	(B-Y) 174.0892		
	6.6	l'	$\overline{\ell}$	4	I-O-acetyl arcanose	(B-Y) 200.1049	e.g. r218	
R-	O polyketide B C	O=S-O polyketide HO	HO-P-O polyketide HO	d	acyl		72	
					СН₃СООН	(B-Y) 42.0106 (C-Z) 60.0211		
					C ₂ H ₅ COOH	(B-Y) 56.0262 (C-Z) 74.0368		
a	Mel afferty type rearrangement				NH ₂ COOH	(B-Y) 43.0058		
y				е	SO4H2	(C-Z) 97.9674	1 (e.g. r143)	
	M _{KR} (TE)) + 0 ^{OH}	f	PO ₄ H ₃	(C-Z) 97.9769	1 (e.g. r71)	

Supplementary Fig. 2. The C-O cleavages observed in T1PKs. In most cases, this cleavage occurs through a β -elimination-like mechainsm, accompanied by the formation of new unsaturated bonds in the fragments. The McLafferty-type rearrangement was classified as the β -elimination of ester for simplification in this work.

Supplementary Fig. 3. The α -cleavages observed in T1PKs. The α -cleavage describes the C-C bond cleavage at the α -position of an oxygen-containing group due to the high polarity of C-O bonds. It is also known as α -elimination in some references.

cleavage of 3-hydroxyl ketone

Supplementary Fig. 4. The retro-aldol cleavages observed in polyketides with 3-hydroxyl ketone. The fragmentation reactions via charge migration fragmentation (CMF) and charge retention fragmentation (CRF) were introduced in the reference⁴. In CRF reaction, the cleavage of 3-hydroxyl ketone can also proceed with a retro-Diels-Alder(RDA)-like mechanism.

Supplementary Fig. 5. Other CID-reactions observed in polyketides.

Supplementary Fig. 6. The retro-aldol cleavages observed in polyketides with 3-hydroxyl acid.

Supplementary Fig. 7. In-source fragmentation of 8 polyketide standards.

Supplementary Fig. 8. In-source fragmentation mechanism in positive and negative ESI. The formal β -elimination is favored on the positive ESI mode due to the protonation of a hydroxyl group, while deprotonation blocks this process. For example, dehydration fragments are commonly observed in ESI(+) scan, which can be explained by charge migration fragmentation (CMF) from an oxonium cation. In contrast, under ESI(–) scan, the alkoxide anion could not dehydrate, and dehydration only takes place by the mechanism of less frequent charge retention fragmentation (CRF) of a neutral hydroxyl group. As shown in the fragmentation patterns of deuterated tetronasin⁵, charge migration fragmentation is favored over charge retention.

Supplementary Fig. 9. The definition of NegMDF window for oligomycins.

Supplementary Fig. 10. The NegMDF window definition and MS/MS features for cattlemycins.

Supplementary Fig. 11. The NegMDF window definition and MS/MS features for butyrolactols.

Supplementary Fig. 12. The definition of NegMDF window for cattleyatetronates.

Supplementary Fig. 13. Detection of cattleyatetronate ions in A3M crude culture of *S. cattleya*. (a) The total ion chromatogram (TIC) of A3M crude culture of *S. cattleya* in the ESI (-) mode. The EICs spectra of compounds **3b** (b) and **3a** (c) indicate relatively low intensities of cattleyatetronates. (d) The TIC of A3M crude culture of *S. cattleya* in the ESI (+) mode. The EICs spectra of **3b** (e) and **3a** (f) indicate almost undetectable signal of cattleyatetronates under ESI (+).

Supplementary Fig. 14. Proposed biosynthesis of cattleyatetronates. a. The *ctt* BGC from *S. cattleya* NRRL 8057. **b**. Proposed pathway for biosynthesis.

Supplementary Fig. 15. Two types of tetronate biosynthesis. a. Organization and comparison of the conserved gene clusters for tetronate moieties. Type A cluster includes *aby* BGC for abyssomicin (BGC0000001), *chl* BGC for chlorothricin (BGC0000036), *tmn* BGC for tetronomycin (BGC0000164), and *agg* BGC for agglomerin (reference⁶). Type B includes *tsn* BGC for tetronasin (BGC0000163) and *ctt* BGC discussed in this work. **b**. Biosynthetic pathway of type A tetronate moiety. **c**. Proposed biosynthetic pathway of type B tetronate moiety.

Supplementary Fig. 16. Proposed biosynthesis of cattlemycins. a. Comparison of *lca* BGC from *S. cattleya* NRRL 8057 and *kir* BGC from *S. collinus* Tü 365 for kirromycin (MIBiG ID: BGC0001070). **b**. Proposed pathway for cattlemycin (L-681,217) biosynthesis. The M8-KR and M8-MT domains were presumed to be iteratively used in M9 extender units. The function of LcaM, LcaOI and LcaOII were assigned based on their homologies in *kir* BGC.

Supplementary Fig. 17. Proposed biosynthesis of butyrolactols. a. Comparison of *but* BGC from *S. cattleya* NRRL 8057 and *orf10* BGC from *S. sp.* NBRC 110030 (MIBiG ID: BGC0001537). **b**. Proposed pathway for butyrolactol biosynthesis.

Supplementary Fig. 18. Bioinformatic analysis of KR domains in cattlemycin BGC. (a) The key motifs for KR classification in *cis*-AT PKS⁷. (b) The sequence alignment of KR domains from cattlemycin BGC (Lca) and kirromycin BGC (Kir), with position indicated by module number. The module 13 and 14 of them belong to *cis*-AT PKS, and the rest belong to *trans*-AT PKS. B-type KRs in *trans*-AT PKS tend to have the second D conserved in the LDD motif, and the sequence alignment suggests high sequence similarity between the corresponding KR domains of the two PKSs. The absolute stereoconfiguration of cattlemycins was proposed based on the absolute stereochemistry of kirromycin⁸ and NOESY correlation.

Supplementary Fig. 19. Proposed MS/MS fragmentation pathway of cattlemycin A (**1a**, *m/z* 658) and B (**1b**, *m/z* 644).

Supplementary Fig. 20. Proposed MS/MS fragmentation pathway of cattlemycin C (1c, m/z 630).

Supplementary Fig. 22. Proposed MS/MS fragmentation pathway of cattlemycin E (1e, *m/z* 676).

Supplementary Fig. 23. Proposed MS/MS fragmentation pathway of cattlemycin F (1f, m/z 674).

Supplementary Fig. 24. Proposed MS/MS fragmentation pathway of cattlemycin G (1g, m/z 692).

Supplementary Fig. 25. Proposed MS/MS fragmentation pathway of cattlemycin H (1h, *m*/z 614).

Supplementary Fig. 26. Proposed MS/MS fragmentation pathway of cattlemycin I (1i, m/z 628).

Supplementary Fig. 27. Proposed MS/MS fragmentation pathway of cattlemycin J (1j, *m/z* 642).

Supplementary Fig. 28. Proposed MS/MS fragmentation pathway of cattlemycin K (1k, *m/z* 612).

Supplementary Fig. 29. Proposed MS/MS fragmentation pathway of cattlemycin L (11, m/z 642).

Supplementary Fig. 30. Proposed MS/MS fragmentation pathway of cattlemycin M (1m, *m*/z 640).

Supplementary Fig. 31. Proposed MS/MS fragmentation pathway of butyrolactol A (**2a**) and its isomer (**2f**).

Supplementary Fig. 32. Proposed MS/MS fragmentation pathway of butyrolactol B (**2b**) and its isomer (**2g**).

Supplementary Fig. 33. Proposed MS/MS fragmentation pathway of butyrolactol A2 (2c).

Supplementary Fig. 34. Proposed MS/MS fragmentation pathway of butyrolactol B2 (2d).

Supplementary Fig. 35. Proposed MS/MS fragmentation pathway of butyrolactol C (2e).

Supplementary Fig. 36. Proposed MS/MS fragmentation pathway of cattleyatetronate A (3a).

Supplementary Fig. 37. Proposed MS/MS fragmentation pathway of cattleyatetronate B (3b).

Supplementary Fig. 39. ¹³C NMR spectrum (125 MHz, DMSO-*d*₆) of cattlemycin A (1a).

Supplementary Fig. 40. ¹H,¹H-COSY spectrum (500 MHz, DMSO-*d*₆) of cattlemycin A (1a).

Supplementary Fig. 41. ¹H,¹H-NOESY spectrum (500 MHz, DMSO-*d*₆) of cattlemycin A (**1a**).

Supplementary Fig. 42. HSQC spectrum (500 MHz, DMSO-*d*₆) of cattlemycin A (1a).

Supplementary Fig. 43. HMBC spectrum (500 MHz, DMSO-d₆) of cattlemycin A (1a)

Supplementary Fig. 45. ¹³C NMR spectrum (125 MHz, DMSO-*d*₆) of cattlemycin D (1d).

Supplementary Fig. 46. ¹H,¹H-COSY spectrum (500 MHz, DMSO-*d*₆) of cattlemycin D (**1d**).

Supplementary Fig. 47. ¹H,¹H-NOESY spectrum (600 MHz, DMSO-*d*₆) of cattlemycin D (1d).

Supplementary Fig. 48. HSQC spectrum (500 MHz, DMSO-*d*₆) of cattlemycin D (1d).

Supplementary Fig. 49. HMBC spectrum (500 MHz, DMSO-d₆) of cattlemycin D (1d).

Supplementary Fig. 51. ¹³C NMR spectrum (125 MHz, DMSO-*d*₆) of butyrolactol A (**2a**).

Supplementary Fig. 52. ¹H, ¹H-COSY spectrum (600 MHz, DMSO-*d*₆) of butyrolactol A (2a).

Supplementary Fig. 53. ¹H,¹H-NOESY spectrum (500 MHz, DMSO-*d*₆) of butyrolactol A (**2a**).

Supplementary Fig. 54. HSQC spectrum (600 MHz, DMSO-*d*₆) of butyrolactol A (2a).

Supplementary Fig. 55. HMBC spectrum (600 MHz, DMSO-*d*₆) of butyrolactol A (2a).

Supplementary Fig. 56. ¹H NMR spectrum (600 MHz, DMSO-*d*₆) of butyrolactol B (2b).

Supplementary Fig. 57. ¹³C NMR spectrum (125 MHz, DMSO-*d*₆) of butyrolactol B (2b).

Supplementary Fig. 58. ¹H,¹H-COSY spectrum (600 MHz, DMSO-*d*₆) of butyrolactol B (2b).

Supplementary Fig. 59. ¹H, ¹H-NOESY spectrum (500 MHz, DMSO-*d*₆) of butyrolactol B (**2b**).

Supplementary Fig. 60. HSQC spectrum (600 MHz, DMSO-*d*₆) of butyrolactol B (**2b**).

Supplementary Fig. 61. HMBC spectrum (600 MHz, DMSO-*d*₆) of butyrolactol B (2b).

Supplementary Fig. 62. ¹H NMR spectrum (600 MHz, MeOH-d₄) of cattleyatetronate A (3a).

Supplementary Fig. 63. ¹³C NMR spectrum (150 MHz, MeOH-*d*₄) of cattleyatetronate-A (3a).

Supplementary Fig. 65. ¹H, ¹H-COSY spectrum (600 MHz, MeOH-*d*₄) of cattleyatetronate A (3a).

Supplementary Fig. 66. HSQC spectrum (600 MHz, MeOH-d₄) of cattleyatetronate A (3a).

Supplementary Fig. 67. HMBC spectrum (600 MHz, MeOH-d4) of cattleyatetronate A (3a)

Supplementary Methods

Instruments and materials

HPLC–HRMS analyses were performed on an Agilent 1290 HPLC with 6546 QTOF MS system. HPLC–DAD-MS analyses were performed on an Agilent 1260 HPLC with a DAD detector and a 6125B MSD detector. Semipreparative HPLC was carried out using an Agilent 1260 or a Shimadzu LC-20AD system. In all HPLC analyses, a mobile phase of (A) H₂O with 0.1% formic acid and (B) acetonitrile with 0.1% formic acid were used unless otherwise specified. NMR spectra were acquired on Bruker 500 or 600 MHz AVANCE NEO spectrometers with tetramethylsilane as the internal standard. The strains *S. avermitilis* MA-4680 and *S. cattleya* NRRL 8057 were obtained from the China General Microbiological Culture Collection Center (CGMCC). Strain cultivation was performed at 28 °C in an incubator for agar plates or in a rotary shaker at 200 rpm for liquid media. Polyketide standards were purchased from Energy Chemical (Shanghai; for erythromycin), Bide Pharm (Shanghai; for rifamycin S, midecamycin, rapamycin, and natamycin), and Shanghai Yuanye Bio-Technology (Shanghai; for clarithromycin, amphotericin B, and nystatin).

Strain preparation and fermentation

Three media were utilized in this study, including ISP2 medium (yeast extract 0.4 g, malt extract 1 g, glucose 0.4 g, distilled water up to 100 mL, pH 7.2), A3M medium (soluble starch 0.2 g, glycerol 0.2 g, glucose 0.5 g, yeast extract 0.3 g, cotton seed powder 1.5 g, Diaion HP-20 1 g, distilled water up to 100 mL, pH 7.0) and MSF agar medium (mannitol 2 g, soy flour 2 g, agar 2 g, distilled water up to 100 mL). The seed culture of *S. avermitilis* was prepared by culturing in ISP2 medium for 3 days, which was then inoculated on MSF agar plates (20 mL medium/plate, 10 days incubation) with a 1% inoculation for polyketide production. The seed culture of *S. cattleya* was prepared by culturing in ISP2 medium (100 mL/flasks, 3 days), and MSF agar plates (20 mL/plate, 10 days) with a 1% inoculation for polyketide production.

Standard conditions for HPLC-HRMS analysis

Chromatographic analyses were performed using an Agilent Poroshell 120 EC-C18 column (2.1x100 mm, 2.7 μ m). The mobile phase consisted of phase A and B with gradient program (0-10 min, 5-100% B; 10-14 min, 100 % B; 14-14.1 min, 100-5% B; 14.1-16 min, 5% B) at a flow rate of 0.4 mL/min at 40 °C. Scan MS and MS/MS data were recorded on an Agilent 6546 QTOF MS system equipped with a Dual Auto Jet Stream ESI. The ESI was operated in both positive and negative modes, with the following parameters: Gas Temp: 325 °C; Drying Gas: 8 L/min; Nebulizer: 35 psi; Sheath Gas Temp: 350 °C; Sheath Gas Flow: 11 L/min; VCap: 3500 V; Nozzle Voltage: 1000V; Fragmentor: 175V; Skimmer: 65 V; Oct1 RF Vpp: 750V. For Scan MS detection, the mass range of m/z was set from 100 to 1700. For MS/MS detection, the energy for collision-induced dissociation (CID) was set to 10, 20, 30 and 40 eV, with mass range of m/z 50-1700.

Construction of an in-house MS/MS database of bacterial T1PKs.

The MS and MS/MS spectra of 8 commercially available polyketides (**s1-s8**) were manually analyzed for fragmentation assignment. The MS and MS/MS spectra of reported polyketides (**r1-r222**) were gathered from 59 references and were summarized in **Supplementary Dataset 1**. The references were selected under the criteria of: (i) polyketides produced by bacterial modular type I polyketide synthases;
(ii) the biosynthesis of the polyketides involve more than 5 PKS modules and less than two NRPS modules; (iii) MS analyses performed utilizing a soft ionization source such as ESI or MALDI, and MS/MS analyses employed collision techniques such as CID or HCD. A limited number of semi-synthetic polyketides were also included to facilitate accurate fragment assignments.

Bioinformatic structural prediction for NegMDF

The flow chart depicting the definition of the NegMDF window is presented in **Supplementary Fig. 1**. Genome mining of *S. avermitilis* MA-4680 (GenBank: GCF_000009765.2_ASM976v2) and *S. cattleya* NRRL 8057 (GenBank: GCF_000237305.1_ASM23730v1) was conducted using antiSMASH 7.0³⁸. BGC similarity search was performed by KnownClusterBlast in antiSMASH.

Structural prediction of a PKS BGC was performed by separating the biosynthesis into starter unit loading, PKS elongation, PKS offloading, and post-PKS modification. Predictions were made based on the domain types predicted by antiSMASH, or by CD-search and BLAST. Phylogenetic analyses were performed by the FastTree 2.1 plugin in Geneious Prime 2024.0.1 (https://www.geneious.com) using the amino acid alignment made by MAFFT G-INS-i algorithm.

Metabolomics data processing for NegMDF

For metabolomics analysis of strains in liquid media, 0.5 mL of each sample was taken and freezedried. Then, 0.5 mL MeOH was added and the mixture was treated with ultrasound for 15 min. For strains culturing on agar media, one plate of each sample was collected and extracted using 20 mL of MeOH with ultrasound for 15 min. After centrifugation, the supernatant was analyzed by HPLC-HRMS employing negative ESI and Scan MS modes. The obtained raw data were then transformed into an mzXML file using MSconvert⁶² and subsequently processed using MZmine 3 (version 3.2.8)⁶³ to extract all detected ions. The MZmine workflow and relevant parameters were as follows: (I) Mass detection. Polarity: negative. MS level: 1. (II) ADAP chromatogram builder. Retention time: 0.5-12.0 min. Group intensity threshold: 5.0E3. Min. highest intensity: 2.0E3. Scan to scan accuracy (m/z): 0.005 m/z or 20.0 ppm. (III) Local minimum resolver. Chromatographic threshold: 90%. Min. search range RT: 0.05. Min. relative height: 0.001%. Min. absolute height: 1.0E3. Min. ration of peak top/edge: 1.50. Peak duration range: 0-2. Min. of data point: 4. (IV) ¹³C isotope filter. m/z tolerance 0.005 m/z or 10.0 ppm. Retention tolerance 0.02. (V) Export feature list as CSV file. The resulting file should contain the retention time (RT), *m/z*, and peak area information of all ions. The ions with peak area less than 2.0E3 and ions from media were removed.

The extracted ions were then screened according to the structural prediction results by a script (for details, see "the Python script for NegMDF screening" section). To confirm the identity of each hit, targeted MS/MS analysis was conducted to examine the fragmentation patterns of each ion by manual inspection.

Isolation of polyketides

The fermentation culture of *S. cattleya* in ISP2 medium (500 mL, 9 days) was collected and extracted using EtOAc (500 mL x 3 times). After removing the solvent in vacuo, the crude extract was redissolved in MeOH and separated on a Shimadzu semipreparative HPLC system. Compounds **1a** was purified using a YMC C18 column (250 mm × 10 mm, 5 μ m, YMC) with isocratic 45% B at 4 mL/min. Cattlemycin A (**1a**): white solid, 5.0 mg; $[a]_{p}^{25}$ +112.8 (*c* 0.1, MeOH); for NMR spectral data, see **Supplementary Table 10** and **Supplementary Fig. 38-43**; for MS/MS data, see **Supplementary Fig. 19**.

The fermentation culture of S. cattleya on MSF agar medium (125 plates, 80 mL/plate each) was

collected and extracted using organic solvent (CH₂Cl₂/MeOH 1:1, *v/v*, 10 L x 2 times). After removing the solvent in vacuo, the crude extract was redissolved in methanol and separated by Sephdex LH-20 (GE healthcare) column chromatography using methanol as eluent. The fractions with cattlemycins were collected and further separated on a Shimadzu semipreparative HPLC system. Compound **1d** was isolated using a YMC C18 column (250 mm × 10 mm, 5 µm, YMC) with gradient program as follows: 0-15 min, 5-100% B; 15-15.5 min, 100 % B; 15.5-16 min, 100-5% B; 16-21 min, 5% B, with a flow rate at 5 mL/min. A second round of purification was then performed for **1d** with isocratic 60% B with a YMC C18 column (250 mm × 10 mm, 5 µm, C18) (α = 10 mm, 5 µm, YMC) at 4 mL/min. Cattlemycin D (**1d**): white solid, 1.1 mg; [α]²⁵ +110.4 (*c* 0.1, MeOH); for NMR spectral data, see **Supplementary Table 10** and **Supplementary Fig. 44-49**; for MS/MS data, see **Supplementary Fig. 21**.

The fermentation culture of *S. cattleya* on MSF agar medium (180 plates, 80 mL/plate each) was collected and extracted using organic solvent (CH₂Cl₂/MeOH 1:1, v/v, 15 L x 2 times). After removing the solvent in vacuo, the crude extract was redissolved in methanol and separated by Sephdex LH-20 column chromatography using methanol as eluent. The fractions with butyrolactols were collected and further separated on an Agilent 1260 semipreparative HPLC system. Compounds **2a** and **2b** were isolated using a Shim-pack GIST C18 column (250 mm × 14 mm, 5 μ m, Shimadzu) with gradient program as follows: 0-15 min, 5-100% B; 15-20 min, 100 % B; 20-20.1 min, 100-5% B; 20.1-25 min, 5% B, with a flow rate at 5 mL/min. A second round of purification was then performed for **2a** and **2b** with isocratic 70% and 60% B, respectively, with a YMCTriart Phenyl column (250 mm × 10 mm, 5 μ m, YMC) at 4 mL/min. Butyrolactol A (**2a**): white solid, 1.0 mg; for NMR spectral data, see **Supplementary Table 11** and **Supplementary Fig. 56-61**; for MS/MS data, see **Supplementary Fig. 31**. Butyrolactol B (**2b**): white solid, 0.8 mg; for NMR spectral data, see **Supplementary Fig. 36-61**; for MS/MS data, see **Supplementary Fig. 32**.

Co-culture of *S. cattleya* with *Tsukamurella pulmonis* TP-B0596 (gifted by Dr. Hiroyasu Onaka) was performed by 500-mL flask containing 100 mL of A3M medium, with a total of 4 L volume. 3 mL of *S. cattleya* seed culture and 1 mL of *T. pulmonis* seed culture were simultaneously added. After fermentation for 7 days, the fermentation broth was centrifuged at 8000 rpm for 30 min, and the precipitate was extracted using organic solvent (CH₂Cl₂/MeOH 1:1, *v*/*v*, 1 L x 2 times). After removing the solvent in vacuo, the crude extract was redissolved in methanol and separated by Sephdex LH-20 column chromatography using methanol as eluent. The fractions containing **3a** was detected by HPLC-DAD-MS and then combined. The result compound was analyzed by NMR without further purification. Cattleyatetronate A (**3a**): brown solid, 10 mg; for NMR spectral data, see **Supplementary Table 12** and **Supplementary Fig. 62-67**; for MS/MS data, see **Supplementary Fig. 36**.

The Python script for NegMDF screening.

prepare the NegMDF window in a csv file cattleyatetronate $[C_{15}H_{15}O_4]$ -, Odd, + $[O]^*[0,3]$, + $[CH_2]^*[0,2]$, + $[H_2O]^*[-1,0]$, [2H]*[0,2]butyrolactol $[C_{28}H_{45}O_9]$ -, Odd, + $[O]^*[-1,1]$, + $[CH_2]^*[-2,2]$, + $[H_2O]^*[-1,1]$, [2H]*[-1,1]cattlemycin $[C_{36}H_{52}NO_{10}]^-$, Even, + $[O]^*[-2,2]$, + $[CH_2]^*[-2,2]$, + $[H_2O]^*[-1,1]$, [2H]*[-1,1]

	A	В	С	D	E	F	G	H	1.1	J	K	L	M	N	0	P	Q	R	S
1	compound	odd_even	initial mcr	change_1	mcr_c1	change_2	mcr_c2	change_3	mcr_c3	change_4	mcr_c4	change_5	mcr_c5	change_6	mcr_c6	change_7	mcr_c7	change_8	mcr_c8
2	cattetronate	1	259.0976	3	15.99491	. 2	14.01565	1	-18.0106	2	2.01565								
3	butyrolactol	1	525.3069	1	-15.9949	1	15.99491	2	14.01565	2	-14.0157	1	18.01056	1	-18.0106	1	2.01565	1	-2.01565
4	cattlemucin	0	659 2507	2	-15 00/0	2	15 00/01	2	14.01565		-14.0157	1	19,01056	1	-18 0106	1	2.01565	1	-2.01565

prepare the ion list of the target strain culture in a csv file

Using the MSF culture of *S. cattleya* as an example, the initial ion list was exported by MZmine 3. The ions with peak area less than 2000 were removed for simplification. The ions from medium were removed by background subtraction. 828 ions were included in final csv file.

	A	В	C	D	E
1	id	rt	mz	Integer	decimal
2	3	0.52	146.9385	146	0.9385
3	5	0.53	102.9487	102	0.9487
4	6	0.53	114.9886	114	0.9886
5	10	0.53	158.9785	158	0.9785
6	15	0.53	304.9086	304	0.9086
7	19	0.54	272.9586	272	0.9586
8	30	0.55	190.9281	190	0.9281
9	31	0.55	421.0277	421	0.0277
10	34	0.56	112.9854	112	0.9854
11	44	0.57	128.9593	128	0.9593
12	49	0.57	437.0016	437	0.0016
10	F0	0.00	1010454	1.01	0.0454

run following Python script on PyCharm 2022.3 (Community Edition)

extract target ions

import os

import csv

import numpy as np

from scipy.spatial import ConvexHull

from shapely.geometry import Point, Polygon, LineString

```
# extract sample data
```

```
def sample_data_generator(sample_path):
```

```
sample_data = []
```

```
with open(sample_path, 'r', newline=", encoding='utf-8-sig') as f:
```

for row in f:

```
if row.split(',')[0] == 'id':
```

pass

else:

```
decimal = float(row.split(',')[4].strip())
```

```
list_tem = [row.split(',')[0], row.split(',')[1], row.split(',')[2], int(row.split(',')[3]), decimal]
sample_data.append(list_tem)
```

```
return sample_data
```

```
# extract compound name
```

```
def compounds_name_generator(target_compound_path):
    compounds_name = []
    with open(target_compound_path, 'r', newline=", encoding='utf-8-sig') as f:
    for row in f:
        if row.split(',')[0] == 'compound':
        pass
        else:
            compounds_name.append(row.split(',')[0].strip())
    return compounds_name
```

retain competition_name

extract compound feature

```
def compounds_feature_generator(target_compound_path):
    with open(target_compound_path, 'r', newline=", encoding='utf-8-sig') as f:
     compounds feature = {}
     for row in f:
       compound_feature = []
       if row.split(',')[0] == 'compound':
          pass
       else:
          i = 3
          while i+1 < len(row.split(',')):
            if row.split(',')[i].strip() == ":
               break
             else:
               compound_feature.append([int(row.split(',')[i].strip()), float(row.split(',')[i+1].strip())])
            i += 2
          compounds_feature[(float(row.split(',')[2]), row.split(',')[1])] = compound_feature
     return compounds feature
# generate data for convex hull
def hull_data_generator(initial_mcr, compound):
    compound arrays = []
  for array in compound:
     new array = []
     for i in range(array[0]+1):
       new_array.append(i * array[1])
     compound_arrays.append(new_array)
  cartesian_product = [[]]
  for array in compound arrays:
     new_result = []
     for x in cartesian product:
       for y in array:
          new_result.append(x + [y])
     cartesian_product = new_result
  hull data = []
  for item in cartesian_product:
     mcr = initial_mcr
     for num in item:
       mcr += num
     hull data.append([int(mcr), mcr - int(mcr)])
     return hull_data
# screen for each compound
def single_screening(compound_feature, sample_data, tolerance=2e-2):
  for key in compound feature:
```

```
sample_data_screening = [['id', 'rt', 'mz', 'Integer', 'decimal']]
     hull data = hull data generator(key[0], compound feature[key])
     hull array = np.array(hull data)
     hull = ConvexHull(hull_array)
     convex_hull_points = hull_array[hull.vertices]
     convex_hull_polygon = Polygon(convex_hull_points)
     for point in sample data:
       if int(point[3] % 2) == int(key[1]):
          test point = Point(point[3], point[4])
          test_point_shapely = Point(test_point)
         is inside = convex hull polygon.contains(test point)
          is touching edge = convex hull polygon.touches(test point)
         if is inside:
            sample_data_screening.append(point)
          elif is touching edge:
            sample data screening.append(point)
          else:
            check = 0
            convex hull vertices = np.array(convex hull points)
            for i in range(len(convex_hull_vertices)):
               p1 = convex hull vertices[i]
              p2 = convex_hull_vertices[(i + 1) % len(convex_hull_vertices)]
              line = LineString([p1, p2])
              distance = test point shapely.distance(line)
              if distance < tolerance:
                 check = 1
                 break
            if check == 1:
              sample_data_screening.append(point)
     return sample data screening
# screen for compounds
def multiple screening(sample path, compounds feature path):
  compounds_name = compounds_name_generator(compounds_feature_path)
  compounds_feature = compounds_feature_generator(compounds_feature_path)
  for root, dirs, files in os.walk(sample_path):
     for file in files:
       file_path = os.path.join(root, file)
       screening result = []
       if 'new' in file_path:
         sample_points = sample_data_generator(file_path)
         i = 0
         for key in compounds feature:
            screening result.append([compounds name[i]])
```

```
screening_result += single_screening({key: compounds_feature[key]}, sample_points)
i += 1
screening_result_path = file_path.strip('_new.csv') + '_' + f'{compounds_name}' + '.csv'
with open(screening_result_path, 'w', newline=", encoding='utf-8') as f:
    writer = csv.writer(f)
for row in screening_result:
    writer.writerow(row)
```

Supplementary Reference

- 1 Kempf, A. J. *et al.* L-681, 217, a new and novel member of the efrotomycin family of antibiotics. *The Journal of Antibiotics* **39**, 1361-1367 (1986).
- 2 Sugai, S., Komaki, H., Hemmi, H. & Kodani, S. Isolation and structural determination of a new antibacterial compound demethyl-L-681,217 from Streptomyces cattleya. *The Journal of Antibiotics* **69**, 839-842 (2016).
- 3 Wang, B., Guo, F., Dong, S.-H. & Zhao, H. Activation of silent biosynthetic gene clusters using transcription factor decoys. *Nature Chemical Biology* **15**, 111-114 (2019).
- 4 Demarque, D. P., Crotti, A. E., Vessecchi, R., Lopes, J. L. & Lopes, N. P. Fragmentation reactions using electrospray ionization mass spectrometry: an important tool for the structural elucidation and characterization of synthetic and natural products. *Natural Product Reports* **33**, 432-455 (2016).
- Fonseca, T., Lopes, N. P., Gates, P. J. & Staunton, J. Fragmentation studies on tetronasin by accuratemass electrospray tandem mass spectrometry. *Journal of the American Society for Mass Spectrometry* 15, 325-335 (2004).
- 6 Kanchanabanca, C. *et al.* Unusual acetylation–elimination in the formation of tetronate antibiotics. *Angewandte Chemie* **125**, 5897-5900 (2013).
- 7 Xiang, C., Yao, S., Wang, R., & Zhang, L., Bioinformatic prediction of the stereoselectivity of modular polyketide synthase: an update of the sequence motifs in ketoreductase domain. *Beilstein J. Org. Chem.* **20**, 1476–1485 (2024).
- 8 Dolle, R. E. and Nicolaou, K. C. Total synthesis of elfamycins: aurodox and effotomycin. 2. Coupling of key intermediates and completion of the synthesis. *J. Am. Chem. Soc.* **106**, 1695–1698 (1985).

Supplementary Dataset 1.

MS/MS database of bacterial T1PKs.

Part 1. MS/MS data from references

222 compounds from 59 references were collected here. Red and blue line represent proposed fragmentation pathways in +ESI and -ESI modes, respectively.

C-O cleavage, the most common MS/MS fragmentation for T1PKs, predominantly occurs through a β elimination mechanism in most cases. In this table, it is recorded according to its elimination type, including β elimination of hydroxy (β EH), methoxy (β EM), ester (β EE), ether (β EO), glycosyl (β EG), sulfonic acid (β ES), phosphoric acid (β EP), halogen (β EX). The β EH elimination can occur at any hydroxyl group in the structure and is therefore not labeled on the structure

The α -cleavage includes the elimination of hydroxy (α EH), ketone (α EK), carboxyl (α EC), and other oxogroup (α EO, including epoxy, ether, methoxy). For 3-hydroxy ketone moiety, α -cleavage is performed as retroaldol elimination (α E-RA),

Other CID cleavage reaction recorded in this table includes amide cleavage (Amide), Retro-Diels-Alder reaction (RDA), and allyl cleavage of polyene moiety.

No.	Compounds and Observed cleavages	Representatives Structure and proposed fragmentation	lon source	[Ref.] Data
				Location
r1-r7	premonensins A, B, Bu, Prg, All, Pr, Cl βEH, βEE αEH, αEK, αEC, αE-RA		+ESI	[1] FigS16 FigS42
	Polyene	premonensin B		
r8 r9	premonensin M10 _A premonensin M10 _B βEH		+ESI	[1] FigS19
	αEC, αE-RA	premonensin M10 _B		
r10 r11	premonensin M11 _A premonensin M11 _B αEK, αEO	HO C Premonensin M11 _B	+ESI	[1] FigS20
r12 r13	premonensin M12 _A premonensin M12 _B βEH αEH, αEC, αE-RA	но ОН ОН ОН ОН О но рremonensin M12 _в	+ESI	[1] FigS21
r14 r15	ER2 ⁰ -premonensin A ER2 ⁰ -premonensin B βEH, βEE αEH, αEK, αEC, αE-RA	HO H	+ESI	[1] FigS23
r16 r17	ER6 ⁰ -premonensin A ER6 ⁰ -premonensin B βEH, βEE αEH, αE-RA Polyene	HO HO ER6 ⁰ premonensin B	+ESI	[1] FigS25

r18 r19	ER8 ⁰ -premonensin A		+ESI	[1] FigS26
	βΕΕ	HOTTING		1 19020
	αEH, αEK, αE-RA	ER8 ⁰ premonensin B		
r20	KR4 ⁰ -premonensin A	9 1	+ESI	[1]
r21	KR4 ⁰ -premonensin B	О ОНО О О		FigS27
	αE-RA			
		KR4 ⁰ premonensin B		
r22	KR6 ⁰ -premonensin A		+ESI	[1]
r23	RR6°-premonensin B			FigS28
	αΕΗ, αΕΚ, αΕ-RΑ			
-24	KD110 promononoin A	KR6 ⁰ premonensin B		[4]
r24 r25	KR11 ^o -premonensin B		TEOI	['] FigS29
	βЕН			5
	αEC, αE-RA	KR11 ⁰ premonensin B		
r26 r27	KR12°-premonensin A KR12°-premonensin B	о он о	+ESI	[1] FigS30
	βΕΕ			
	αΕΗ, αΕΚ, αΕ-RA	KR12 ⁰ premonensin B		
r28	KR11 ⁰ -premonensin M11 _A	о он о	+ESI	[1]
r29	KR11 ⁰ -premonensin M11 _B			FigS32
		KR11 ⁰ premonensin M11 _B		
r30	KR12 ⁰ -premonensin M12 _A	о он он о	+ESI	[1]
r31	KR12 ⁰ -premonensin M12 _B			FigS33
	αΕΗ, αΕ-RA	KR12 ⁰ premonensin M12 _B		
r32	DH2º-premonensin A		+ESI	[1]
r33	DH2 ⁰ -premonensin B			FigS34
r34	DH4 ⁰ -premonensin A		+ESI	[1]
r35	DH4 ⁰ -premonensin B	ОНООНООНО		FigS35
	αE-RA	но		
		DH4 ⁰ premonensin B		
r36	DH5 ⁰ -premonensin B		+ESI	[1] FigS26
	αΕΗ, αΕ-RA			Fig330
		DH5 ⁰ premonensin B		
r37	DH7 ⁰ -premonensin A	0 1	+ESI	[1]
r38	DH7 ⁰ -premonensin B			FigS37
	βEH ge-BA			
		DH7 ⁰ premonensin B		[4]
r39 r40	DH8°-premonensin A DH8°-premonensin B	о сно он	+ESI	[1] FigS38
	αE-RA			
•	1	DH8° premonensin B	1	1

r41-	piericidins A1 and 16	он	+ESI	[2]
r57	analogues	ОН		DatasetS1
	βEH			No.4, 6, 8-
	αEH			14, 16, 19-
	Polyene			25
		piericidin A1		
r58-	piericidins B1 and 5		+ESI	[2]
r63	analogues			DatasetS1
	βEM Delvene			NO. 5, 7,15,
	Polyene			17, 10, 20
		piericidin B1		
r64-	glucopiericidin A1a and 6	ОН	+ESI	[2]
r70	glycosyl piericidins	он но Он		DatasetS1
	βEG	ОДОН		No. 28-33,
	αΕΟ			35
	Polyene			
		glucopiericidin A1a		
r71	phospho-piericidin A1	ОН НО ОН	+ESI	[2]
	βΕΡ			DatasetS1
	αEO			No. 34
	Polyene			
		phospho-piericidin A1		
r72	mer-A2026-0	ОН	+ESI	[2]
	αEH	ОН		DatasetS1
	Polyene			No.41
		mer-A2026-0	501	
r73-	10-MeO-mer-A2026-0		+ESI	[2] Datasat01
r/4	REM			No 42 43
	ρEM αEO	HONN		110.42-43
	Polvene			
-75		10-MeO-mer-A2026-0		
r/5	actinopyrone A	10-MeO-mer-A2026-0 O	+ESI	[2]
r/ə	actinopyrone A Polyene	0 0 0 0 0 0 0 0 0 0 0 0	+ESI	[2] DatasetS1
175	actinopyrone A Polyene	O O O O O O O O O O O O O O O O O O O	+ESI	[2] DatasetS1 No.46
175	actinopyrone A Polyene	OH OH OCOCICICATION	+ESI	[2] DatasetS1 No.46
1/5	actinopyrone A Polyene	OH OH	+ESI	[2] DatasetS1 No.46
1/5	actinopyrone A Polyene	OH OH OCONTRACTION OH Actinopyrone A	+ESI	[2] DatasetS1 No.46
r75	actinopyrone A Polyene 10-MeO-actinopyrone A	OH OH OCONTRACTION Actinopyrone A	+ESI +ESI	[2] DatasetS1 No.46 [2]
r75 r76 r77	actinopyrone A Polyene 10-MeO-actinopyrone A 10-MeO-actinopyrone B	OH OH Actinopyrone A	+ESI +ESI	[2] DatasetS1 No.46 [2] DatasetS1
r76 r77	actinopyrone A Polyene 10-MeO-actinopyrone A 10-MeO-actinopyrone B βEM	OH OH actinopyrone A	+ESI +ESI	[2] DatasetS1 No.46 [2] DatasetS1 No.47-48
r76 r77	actinopyrone A Polyene 10-MeO-actinopyrone A 10-MeO-actinopyrone B βEM Polyene	10-MeO-mer-A2026-0	+ESI +ESI	[2] DatasetS1 No.46 [2] DatasetS1 No.47-48
r76 r77	actinopyrone A Polyene 10-MeO-actinopyrone A 10-MeO-actinopyrone B βEM Polyene	Image: Organization of the second	+ESI +ESI	[2] DatasetS1 No.46 [2] DatasetS1 No.47-48

r78 r79	bongkrekic acid and deoxybongkrekic acid βEM αEC	HO HO HO HO HO HO HO HO HO HO	-ESI	[3] FigS3
r80- r84	lagunapyrones A-E βEH αEH	O O O O O O O O O O O O O O O O O O O	+ESI	[4] FigS6
r85- r87	fulvuthiacenes A-C βEM	S N O O O O O O O	+ESI	[5] Fig2
r88 r89	malyngamide I malyngamide C βEX Amide	CI CI OH NOH malyngamide I	+ESI	[6] FigS1/S6
r90 r91	malyngamide C acetate N-methyl malyngamide C acetate βEX, βEE Amide	NH O O O O O O O O O O O O O O O O O O O	+ESI	[6] FigS1/S6
r92- r94	azabicyclenes B-D Amide	azabicyclene A	+ESI	[7] Extended Data Fig2
r95	pellasoren A αEO Amide, Polyene	Pellasoren A	+ESI	[8] FigS3
r96- r98	aurantinins B-D βEH, βEG Polyene	HO OH aurantinin B HO OH	+ESI	[9] Fig4

r99	spectinabilin βEM, βEO αEO Polyene	O ₂ N O OMe	+ESI	[10] FigS7
		spectinabilin		
r100	tetronate intermediate 4 αEK		+ESI	[11] Fig4
r101	agglomerin A βEH αEK	and omerin A	-ESI	[12] FigS11 FigS12
r102	hydroxy-agglomerin A αΕΚ, αΕΗ	HO HO HO hydroxy-agglomerin A	-ESI	[12] FigS11 FigS12
r103	acetyl-agglomerin A βΕΕ αΕΚ		-ESI	[12] FigS11 FigS12
-104	totroporain A	Acetyi-aggiomenn A	+ESI	[12]
	βEG	$O = \left(\begin{array}{c} O = \left($	TESI	FigS1 TableS1
r105	tetronasin βΕΗ, βΕΜ, βΕΟ αΕΚ, αΕΟ	HO $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ESI	[14] Full text [15] FigS9
r106	tetronasin intermediate 3 βΕΗ, βΕΜ	HO $+$ HO $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ESI	[15] FigS9

r107	tetronasin intermediate 4 βEH, βEM		+ESI	[15] FigS13
r108	nocamycin Ι βΕΗ, βΕΜ, βΕΟ	tetronasin intermediate 4	+ESI	[16] FigS1
	αΕΚ, αΕΟ			
r109	nocamycin V βΕΗ, βΕΜ, βΕΟ αΕΚ, αΕΗ, αΕΟ	HO O O O NH	+ESI	[17] FigS1
r110	lydicamycin βEH αEH	-32 nocamycin V $HN \bigvee NH_2$ $N \downarrow OH$ OH OH OH OH OH OH OH OH OH	+ESI	[18] FigS4
r111	30-demethyllydicamycin βΕΗ αΕΗ	$HN \downarrow NH_{2} \\ \downarrow HN \downarrow OH $	+ESI	[19] FigS6
r112	maduramicin βEG, βEM αEC	HO + O + O + O + O + O + O + O + O + O +	+ESI	[20] Fig1
r113	octacyclomycin βEH, βEG αEC	-128 O	+ESI	[21] FigS15

r114	g-770		+ESI	[21]
		-306	. 201	Fig5
		HO V		rigo
	dEO			
		0 0H		
		α-770		
r115	a-823	\ 0−	+ESI	[21]
1113		-116 -160	1LOI	[2]]
	рен, рес, рем, рео	///		FIG3
	αΕС, αΕΟ			
		-44 O OH		
		α-823		
r116-	nonactin and 7 analogues		+ESI	[22]
r123	βEE			Full text
		× 10, ↓ 10, ∞ 10, ↓		
		nonactin		
r124	lasalocid A	HO	+ESI	[23]
r125	iso-lasalocid A			Fig2/3
	βΕΗ, βΕΟ	0.		Ű
	aEC aEH aE-RA			
	,, ,			
		ОНО		
		-44 lasalocid A		
r126	monensin A	ОН	+ESI	[24]
r127	monensin B		. 201	Eull toxt
1121				T UII TOXE
	реп, рео	ОН		
	αEH			
r120	nonohonomusin and 1		TESI	[25]
1120			TEOI	
r129	analogue			TableS2
	βЕН, βEG, βEO			TableS3
	αEH			
		· · · · · · · · · · · · · · · · · · ·		
		' OH		
		nanchangmycin		

r145	azalomycin F3a ßEH		+ESI	[33] FigS6
	αΕC			
		NH OII		
		H ₂ N H		
		-CH ₂ N ₂ azalomycin F3a		
r146	azalomycin F4a		+ESI	[36] FigS7
	αEC			1 1907
		но о но		
		но		
		NH I I I		
		azalomycin F4a		[20]
r147 r148	deguanidino-amino-		TEOI	[36] FigS5
	primycin A			
	βΕΗ, βEG	HO -Gly		
		но		
		он он		
		H_2N N O OH H H H H H H H H H		
		O, L L OH		
		primycin A		
r149 r150	kanchanamycin C deguanidino-amino-		+ESI	[36] FigS6
	kanchanamycin C	сны		Ŭ
	βЕН			
	αΕC	NH kanchanamycin C		

r151	desertomycin A	ОН	+ESI	[36]
r152	desertomycin B	но		FigS4
	βEH, βEG			
		-Gly		
		OH Y		
		ОН НО		
		ОН		
		но		
		O OH		
		ОСОСН		
		decenterwin A		
r152	aalbanalida A	desentomychi A	1E81	[27]
1155	galboriolide A	0 -44	TEOI	[37] Fig4
	βΕΗ, βΕΕ			9 .
	αΕС, αΕΗ			
		·0·		
		galbonolide A		
r154	galbonolide B		+ESI	[37]
	βΕΗ, βΕΕ	183 HO		Fig4
	αΕΟ, αΕΗ	ОН		
		<u>\30</u>		
		galbonolide B		
r155	galbonolide C		+ESI	[37]
	βΕΕ			Fig4
	αΕС, αΕΟ			
		galbonolide C		
r156-	stambomycin shunt		-ESI	[38]
r159	metabolites 9-12			FigS13/S14
	αΕC			
		НО		
		ОН		
		ОН		
		о он он		
		но		
		stambomvcin shunt metabolite 9		
r160	oocydin A	Q ⁻⁶⁰	+ESI	[39]
	βΕΕ	Ŭ, o		FigS2
	αEC			
		СІСТСІСТОН		
		oocydin A		

r161-	Cmc-thuggacin A and 4	H0 0 0	+ESI	[40]
r165	analogues			Fig5/S5
	αΕΗ			
		Cmc-thuggacin A		
r166	JBIR-100		+ESI	[41]
	βΕΜ, βΕΕ			Fig2
	αΕΗ	О ОН О О О		
		O OH		
		IRIR-100		
r167	actinoallolide A	0	+ESI	[42]
	βЕН	о он он он он		FigS6
	αEH, αE-RA			
r168-	misakinolide A and 4		+FSI	[43]
r172	analogues	HO	. 201	FigS8
	βΕΗ, βΕΕ			
	RDA			
		ОН		
		misakinolide A		
r173-	swinholide A and 5	ОН	+ESI	[44]
r178	analogues	ОН		Fig2/S3
	αΕΗ			
	RDA			
		но		
		swinholide A		

r179	necroxime A	,o	+ESI	[45]
r180	necroxime B	Ň		FigS8/
1101	BEH			511/515
	Amide	0=		
		NH_{120} H_{2} H_{2}		
		ОН О 233		
		necroxime A OH		
r182	necroxime C	-32	+ESI	[45]
	βEH	EN EN	-ESI	FigS10/S12
	Amide	348		
	βΕΗ, βΕΕ, βΕΜ	HN		
	αEH	ОНО, П		
	Amide			
		233 OH		
		161		
		но́ о		
		necroxime C		
r183	ovimidino III	-37		
			-ESI	[45] Fig\$9
1100	βΕΗ, βΕΕ, βΕΜ	Nto	-ESI	[45] FigS9
	βΕΗ, βΕΕ, βΕΜ αΕΗ, αΕC, αΕΟ	N+0	-ESI	[45] FigS9
	βΕΗ, βΕΕ, βΕΜ αΕΗ, αΕC, αΕΟ Amide	OH 0 144 295 0 0 0H	-ESI	[45] FigS9
	βΕΗ, βΕΕ, βΕΜ αΕΗ, αΕC, αΕΟ Amide	OH 0 NH 312	-ESI	[45] FigS9
	βΕΗ, βΕΕ, βΕΜ αΕΗ, αΕC, αΕΟ Amide	OH 0 NH 0 NH 312	-ESI	[45] FigS9
	βΕΗ, βΕΕ, βΕΜ αΕΗ, αΕC, αΕΟ Amide	OH 0 NH 312	-ESI	[45] FigS9
	βΕΗ, βΕΕ, βΕΜ αΕΗ, αΕC, αΕΟ Amide	OH 0 NH 0 NH 0 NH 312 189	-ESI	[45] FigS9
-194	βEH, βEE, βEM αEH, αEC, αEO Amide	OH 0 H 0 H 12 H 312 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0	-ESI	[45] FigS9
r184	βΕΗ, βΕΕ, βΕΜ αΕΗ, αΕC, αΕΟ Amide everninomicin N βΕΗ, βEG	$\begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	-ESI +ESI	[45] FigS9 [46] FigS3
r184	βEH, βEE, βEM αEH, αEC, αEO Amide everninomicin N βEH, βEG	$\begin{array}{c} OH & H^{44} & 295 \\ OH & O & H^{1} \\ OH & OH^{1} \\ OH & OH^{1} \\ OH & OH^{1} \\ OH & OH \\ OH \\ OH & OH \\ OH$	-ESI +ESI	[45] FigS9 [46] FigS3
r184	βΕΗ, βΕΕ, βΕΜ αΕΗ, αΕC, αΕΟ Amide everninomicin N βΕΗ, βEG	$\begin{array}{c} OH & ^{44} & ^{295} \\ OH & ^{44} & ^{295} \\ OH & ^{312} \\ ^{312} \\ OH & ^{312} \\ OH & ^{312} \\ OH$	-ESI +ESI	[45] FigS9 [46] FigS3
r184	βΕΗ, βΕΕ, βΕΜ αΕΗ, αΕC, αΕΟ Amide everninomicin N βΕΗ, βΕG	$ \begin{array}{c} $	+ESI	[45] FigS9 [46] FigS3
r184	βEH, βEE, βEM αEH, αEC, αEO Amide	$\begin{array}{c} \begin{array}{c} & & \\ $	-ESI +ESI	[45] FigS9 [46] FigS3
r184	βEH, βEE, βEM αEH, αEC, αEO Amide everninomicin N βEH, βEG	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & &$	-ESI +ESI	[45] FigS9 [46] FigS3
r184	βEH, βEE, βEM αEH, αEC, αEO Amide	$\begin{array}{c} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	-ESI +ESI	[45] FigS9 [46] FigS3
r184	βEH, βEE, βEM αEH, αEC, αEO Amide everninomicin N βEH, βEG	$\begin{array}{c} & & & \\ OH & 44 & 295 \\ H & 0 \\ H & 0 \\ H & 0 \\ H \\$	+ESI	[45] FigS9 [46] FigS3
r184	βEH, βEE, βEM αEH, αEC, αEO Amide everninomicin N βEH, βEG	$\begin{array}{c} & & & \\ OH & & \\ HO & & \\ HO & & \\ HO & & \\ OH & & \\ HO & & \\ OH & & \\ HO & & \\ OH & & \\ OH & & \\ HO & & \\ OH & & \\ OH & & \\ OH & & \\ HO & & \\ OH & \\$	-ESI +ESI	[45] FigS9 [46] FigS3
r184	βEH, βEE, βEM αEH, αEC, αEO Amide everninomicin N βEH, βEG	$ \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ $	-ESI +ESI	[45] FigS9 [46] FigS3

r185	lucensomycin	-Gly O OH -44	+ESI	[47]
	βEH, βEG			FigS6
	αEC			_
		ОН		
		lucensomycin		
s5	rapamycin		+ESI	[48]
r186-	8 rapamycin derivatives			FigS4/S8
r193				
	βΕΗ, βΕΕ			
	αΕΟ, αΕ-RΑ	о= он		
	Amide			
		ŐH		
		rapamycin		
r194	tartrolon E	_665 _607 Na ⁺	+ESI	[49]
	βΕΕ			FigS2
	αΕС, αΕΟ, αΕ-RA			
		-44 tratrolon E		
r195	tartrolon D	_635 _577 Na ⁺	+ESI	[49]
	βEE			FigS2
	αΕС, αΕΟ, αΕ-RA			
		655 597		
		tratrolon D		
r196	trinartilactam		+FSI	[50]
1130	ßFH	С С С С С С С С С С С С С С С С С С С	. 201	Fig4
	αΕΗ. αΕΚ			
	-,			
		U U O O OH tripartilactam		
		upaulacian	1	

r197	myxovirescin A		+ESI	[51] Fig4
	קבויו, קבו ו			1194
		OF OH NH		
		-32 OH		
		OH myxovirescin A		
r198	geldanamycin		-ESI	[52] FigS21
	pee			1 1902 1
		HN		
		geldanamycin		
r199- r201	chaxamycins A-C BEH	HOHO	-ESI	[53] Fig3
	αEH	HO		5
	Amide	но Го Сон		
		HONN		
		chaxamycin A		
r202	chaxamycin D		-ESI	[53]
	Amide	ОН		Fig3
		о о о о о о о о о о о о о о о о о о о		
		chaxamycin D		
r203 r204	strecacansamycin A		+ESI	[54] FigS12
	βΕΕ			FigS21
		но ОМе		
		$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $		
		[M+Na] [*] m/z 222 strecacansamycin A		
r205	strecacansamycin C		+ESI	[54] FigS32
	βEE, βEG			5
		-199		
		strecacansamycin C		

r206-	spiramycins I, II, III, IV	N N	+ESI	[55]
r209		forosamine OH		Fig2
	рсп, рсо, рсм			
		mycarose		
		mycaminose		
		spiramycin l		
r210	neospiramycin I	forosamine	+ESI	[55] Fig10
	βΕΗ, βEG, βΕΜ			rigito
		о он он		
		-32 O OH		
		neospiramycin I		
r211-	tylosins A, B, C, D	ОН	+ESI	[56]
r214				Fig3
	рен, рес			
		mycinose		
		OH O O OH		
		нототон		
		mycaminose N / mycarose		
		tylosin A		
r215	novonestmycin A		+ESI	[57] Fia5
	βΕΗ, βEG			5.
		тон но о		
		O O O O O O O O O O O O O O O O O O O		
		novonestmycin A		
		5		
r216	oleandomycin		+ESI	[58]
	βEG	γ		DatasetS4
	r-~			
		desosamine		
		oleandomycin		

r217	megalomicin		+ESI	[58] DatasetS4
	βEG			
		O desosamine O mycarose		
		ОН		
		megalomicin		
r218	lankamycin		+ESI	[58] DatasetS4
	βEG			
		HO		
		lankamycin		
r219	chalcomycin	chalcose OH HO, I , O	+ESI	[58]
	βEG			Dalasel34
		O Mycinose		
		0		
		chalcomycin HN-		1501
r220	βEH, βEO, βEM		+ESI	[59] Fig2
	αE-RA Amide	он он он он		Scheme1
		kirromycin		
r221	oligomycin A	НО	+ESI	[59] Table3
1222	βΕΗ, βΕΕ	СН	-201	Fig4
	αE-RA			Scheme2 Scheme3
		oligomycin A		

Part 2. MS/MS data from polyketide standards

Part 2-1. MS/MS data of erythromycin A (s1).

Part 2-2. MS/MS data of clarithromycin (s2).

Part 2-3. MS/MS data of midecamycin (s3).

Part 2-4. MS/MS data of rifamycin S (s4).

Part 2-5. MS/MS data of rapamycin (s5).

Part 2-6. MS/MS data of natamycin (s6).

Part 2-7. MS/MS data of amphotericin B (s7).

Part 2-8. MS/MS data of nystatin (s8).

Reference

- 1. Grote, M., et al., *Identification of crucial bottlenecks in engineered polyketide biosynthesis*. Organic & biomolecular chemistry, 2019. **17**(26): p. 6374-6385.
- 2. Engl, T., et al., *Evolutionary stability of antibiotic protection in a defensive symbiosis*. Proceedings of the National Academy of Sciences, 2018. **115**(9): p. E2020-E2029.
- 3. Moebius, N., et al., *Biosynthesis of the respiratory toxin bongkrekic acid in the pathogenic bacterium Burkholderia gladioli.* Chemistry & biology, 2012. **19**(9): p. 1164-1174.
- 4. Paulus, C., et al., *New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18.* Scientific Reports, 2017. **7**(1): p. 42382.
- Panter, F., D. Krug, and R. Müller, Novel methoxymethacrylate natural products uncovered by statistics-based mining of the Myxococcus fulvus secondary metabolome. ACS chemical biology, 2018.
 14(1): p. 88-98.
- 6. Moss, N.A., et al., *Ketoreductase domain dysfunction expands chemodiversity: malyngamide biosynthesis in the cyanobacterium Okeania hirsuta.* ACS chemical biology, 2018. **13**(12): p. 3385-3395.
- 7. Culp, E.J., et al., *ClpP inhibitors are produced by a widespread family of bacterial gene clusters.* Nature Microbiology, 2022. **7**(3): p. 451-462.
- Jahns, C., et al., *Pellasoren: structure elucidation, biosynthesis, and total synthesis of a cytotoxic secondary metabolite from Sorangium cellulosum.* Angewandte Chemie International Edition, 2012.
 21(51): p. 5239-5243.
- Yang, J., et al., *Genomics-inspired discovery of three antibacterial active metabolites, aurantinins B, C, and D from compost-associated Bacillus subtilis fmb60.* Journal of agricultural and food chemistry, 2016. 64(46): p. 8811-8820.
- 10. Shao, Z., et al., *Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold.* ACS synthetic biology, 2013. **2**(11): p. 662-669.
- 11. He, H.-Y., et al., *Quartromicin biosynthesis: two alternative polyketide chains produced by one polyketide synthase assembly line.* Chemistry & Biology, 2012. **19**(10): p. 1313-1323.
- 12. Kanchanabanca, C., et al., *Unusual acetylation–elimination in the formation of tetronate antibiotics.* Angewandte Chemie, 2013. **125**(22): p. 5897-5900.
- 13. Fang, J., et al., *Cloning and characterization of the tetrocarcin A gene cluster from Micromonospora chalcea NRRL 11289 reveals a highly conserved strategy for tetronate biosynthesis in spirotetronate antibiotics.* Journal of bacteriology, 2008. **190**(17): p. 6014-6025.
- 14. Fonseca, T., et al., *Fragmentation studies on tetronasin by accurate-mass electrospray tandem mass spectrometry.* Journal of the American Society for Mass Spectrometry, 2004. **15**(3): p. 325-335.
- 15. Little, R., et al., *Unexpected enzyme-catalysed [4+ 2] cycloaddition and rearrangement in polyether antibiotic biosynthesis.* Nature Catalysis, 2019. **2**(11): p. 1045-1054.
- 16. Cogan, D.P., J. Ly, and S.K. Nair, *Structural basis for enzymatic off-loading of hybrid polyketides by dieckmann condensation.* ACS chemical biology, 2020. **15**(10): p. 2783-2791.
- 17. Hansen, K.A., et al., *Bacterial Associates of a Desert Specialist Fungus-Growing Ant Antagonize Competitors with a Nocamycin Analog.* ACS Chemical Biology, 2022. **17**(7): p. 1824-1830.
- 18. Sosio, M., et al., *Analysis of the pseudouridimycin biosynthetic pathway provides insights into the formation of C-nucleoside antibiotics.* Cell chemical biology, 2018. **25**(5): p. 540-549. e4.
- 19. Krespach, M.K., et al., Streptomyces polyketides mediate bacteria-fungi interactions across soil

environments. Nature Microbiology, 2023: p. 1-14.

- Liu, R., et al., Genomics-driven discovery of the biosynthetic gene cluster of maduramicin and its overproduction in Actinomadura sp. J1-007. Journal of Industrial Microbiology and Biotechnology, 2020. 47(2): p. 275-285.
- 21. Iorio, M., et al., *Novel polyethers from screening Actinoallomurus spp.* Antibiotics, 2018. **7**(2): p. 47.
- Crevelin, E.J., et al., Dereplication of Streptomyces sp. AMC 23 polyether ionophore antibiotics by accurate - mass electrospray tandem mass spectrometry. Journal of Mass Spectrometry, 2014. 49(11): p. 1117-1126.
- 23. Wills, R.H., M. Tosin, and P.B. O'Connor, *Structural characterization of polyketides using high mass accuracy tandem mass spectrometry*. Analytical chemistry, 2012. **84**(20): p. 8863-8870.
- 24. Lopes, N.P., et al., *Fragmentation studies on monensin A and B by accurate mass electrospray tandem mass spectrometry.* Rapid Communications in Mass Spectrometry, 2002. **16**(5): p. 414-420.
- 25. Wang, H., et al., *Genetic screening strategy for rapid access to polyether ionophore producers and products in actinomycetes.* Applied and environmental microbiology, 2011. **77**(10): p. 3433-3442.
- 26. Harvey, B.M., et al., *Insights into polyether biosynthesis from analysis of the nigericin biosynthetic gene cluster in Streptomyces sp. DSM4137.* Chemistry & biology, 2007. **14**(6): p. 703-714.
- 27. Lee, B., et al., *Isolation of new streptimidone derivatives, glutarimide antibiotics from Streptomyces sp. W3002 using LC-MS-guided screening.* The Journal of Antibiotics, 2020. **73**(3): p. 184-188.
- Niehs, S.P., et al., Insect associated bacteria assemble the antifungal butenolide gladiofungin by non canonical polyketide chain termination. Angewandte Chemie International Edition, 2020. 59(51): p. 23122-23126.
- 29. Ueoka, R., et al., *Genome Based Identification of a Plant Associated Marine Bacterium as a Rich Natural Product Source.* Angewandte Chemie, 2018. **130**(44): p. 14727-14731.
- Park, J.-S., et al., Genome Analysis of Streptomyces nojiriensis JCM 3382 and Distribution of Gene Clusters for Three Antibiotics and an Azasugar across the Genus Streptomyces. Microorganisms, 2021. 9(9): p. 1802.
- 31. Guerrero-Garzón, J.F., et al., *Streptomyces spp. from the marine sponge Antho dichotoma: analyses of secondary metabolite biosynthesis gene clusters and some of their products.* Frontiers in microbiology, 2020. **11**: p. 437.
- Zhang, L., et al., Characterization of giant modular PKSs provides insight into genetic mechanism for structural diversification of aminopolyol polyketides. Angewandte Chemie International Edition, 2017.
 56(7): p. 1740-1745.
- 33. Hong, H., T. Fill, and P.F. Leadlay, *A common origin for guanidinobutanoate starter units in antifungal natural products.* Angewandte Chemie International Edition, 2013. **52**(49): p. 13096-13099.
- 34. Covington, B.C., et al., *Response of secondary metabolism of hypogean actinobacterial genera to chemical and biological stimuli.* Applied and Environmental Microbiology, 2018. **84**(19): p. e01125-18.
- Park, H.-S., et al., Screening and isolation of a novel polyene-producing Streptomyces strain inhibiting phytopathogenic fungi in the soil environment. Frontiers in bioengineering and biotechnology, 2021. 9: p. 692340.
- 36. Hong, H., et al., *An amidinohydrolase provides the missing link in the biosynthesis of amino marginolactone antibiotics.* Angewandte Chemie International Edition, 2016. **55**(3): p. 1118-1123.
- Kim, H.-J., et al., A single module type I polyketide synthase directs de novo macrolactone biogenesis during galbonolide biosynthesis in Streptomyces galbus. Journal of Biological Chemistry, 2014. 289(50): p. 34557-34568.

- 38. Song, L., et al., *Cytochrome P450-mediated hydroxylation is required for polyketide macrolactonization in stambomycin biosynthesis.* The Journal of Antibiotics, 2014. **67**(1): p. 71-76.
- Matilla, M.A., et al., Bacterial biosynthetic gene clusters encoding the anti-cancer haterumalide class of molecules: biogenesis of the broad spectrum antifungal and anti-oomycete compound, oocydin A. Journal of Biological Chemistry, 2012. 287(46): p. 39125-39138.
- 40. Buntin, K., et al., *Biosynthesis of thuggacins in myxobacteria: comparative cluster analysis reveals basis for natural product structural diversity.* Chemistry & biology, 2010. **17**(4): p. 342-356.
- 41. Molloy, E.M., et al., *Biological characterization of the hygrobafilomycin antibiotic JBIR-100 and bioinformatic insights into the hygrolide family of natural products.* Bioorganic & medicinal chemistry, 2016. **24**(24): p. 6276-6290.
- 42. Inahashi, Y., et al., *Identification and heterologous expression of the actinoallolide biosynthetic gene cluster.* The Journal of Antibiotics, 2018. **71**(8): p. 749-752.
- 43. Ueoka, R., et al., *Metabolic and evolutionary origin of actin-binding polyketides from diverse organisms.* Nature chemical biology, 2015. **11**(9): p. 705-712.
- 44. Humisto, A., et al., *The swinholide biosynthesis gene cluster from a terrestrial cyanobacterium, Nostoc sp. strain UHCC 0450.* Applied and Environmental Microbiology, 2018. **84**(3): p. e02321-17.
- 45. Niehs, S.P., et al., *Mining symbionts of a spider transmitted fungus illuminates uncharted biosynthetic pathways to cytotoxic benzolactones.* Angewandte Chemie International Edition, 2020. **59**(20): p. 7766-7771.
- 46. Limbrick, E.M., et al., *Bifunctional nitrone-conjugated secondary metabolite targeting the ribosome.* Journal of the American Chemical Society, 2020. **142**(43): p. 18369-18377.
- 47. Yushchuk, O., et al., *Eliciting the silent lucensomycin biosynthetic pathway in Streptomyces cyanogenus S136 via manipulation of the global regulatory gene adpA.* Scientific reports, 2021. 11(1): p. 3507.
- 48. Kudo, K., et al., *In vitro Cas9-assisted editing of modular polyketide synthase genes to produce desired natural product derivatives.* Nature communications, 2020. **11**(1): p. 4022.
- 49. Elshahawi, S.I., et al., *Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills.* Proceedings of the National Academy of Sciences, 2013. **110**(4): p. E295-E304.
- 50. Hwang, S., et al., *Structure revision and the biosynthetic pathway of tripartilactam.* Journal of natural products, 2020. **83**(3): p. 578-583.
- 51. Simunovic, V., et al., *Myxovirescin A Biosynthesis is Directed by Hybrid Polyketide Synthases/Nonribosomal Peptide Synthetase, 3 - Hydroxy - 3 - Methylglutaryl - CoA Synthases, and trans - Acting Acyltransferases.* ChemBioChem, 2006. **7**(8): p. 1206-1220.
- 52. Thaker, M.N., et al., *Identifying producers of antibacterial compounds by screening for antibiotic resistance*. Nature biotechnology, 2013. **31**(10): p. 922-927.
- 53. Castro, J.F., et al., *Identification and heterologous expression of the chaxamycin biosynthesis gene cluster from Streptomyces leeuwenhoekii.* Applied and Environmental Microbiology, 2015. **81**(17): p. 5820-5831.
- 54. Liu, L.-L., et al., *Molecular networking-based for the target discovery of potent antiproliferative polycyclic macrolactam ansamycins from Streptomyces cacaoi subsp. asoensis.* Organic Chemistry Frontiers, 2020. **7**(24): p. 4008-4018.
- 55. Pendela, M., et al., *Characterization of impurities in spiramycin by liquid chromatography/ion trap mass spectrometry.* Rapid Communications in Mass Spectrometry: An International Journal Devoted to the

Rapid Dissemination of Up - to - the - Minute Research in Mass Spectrometry, 2007. **21**(4): p. 599-613.

- 56. Chopra, S., et al., *Characterization of impurities in tylosin using dual liquid chromatography combined with ion trap mass spectrometry.* Talanta, 2013. **106**: p. 29-38.
- 57. Velasco-Alzate, K.Y., et al., *Marine bacteria from Rocas Atoll as a rich source of pharmacologically active compounds.* Marine Drugs, 2019. **17**(12): p. 671.
- Kersten, R.D., et al., *Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules.* Proceedings of the National Academy of Sciences, 2013. **110**(47): p. E4407-E4416.
- 59. Fredenhagen, A., C. Derrien, and E. Gassmann, An MS/MS library on an ion-trap instrument for efficient dereplication of natural products. Different fragmentation patterns for [M+ H]+ and [M+ Na]+ ions. Journal of natural products, 2005. **68**(3): p. 385-391.

oxazoltetraen e acid		strong	10.1038/s41589- 018-0187-0	Supplementa ry Note 2
oxazoltriene acid		moderate	10.1038/s41589- 018-0187-0	Supplementa ry Note 2
lagunapyrone A	Lagenzyme A - <	strong	10.1038/srep4238 2	Figure S6
lagunapyrone B		strong	10.1038/srep4238 2	Figure S6
lagunapyrone C		strong	10.1038/srep4238 2	Figure S6
lagunapyrone D		strong	10.1038/srep4238 2	Figure S6
lagunapyrone E		strong	10.1038/srep4238 2	Figure S6
fulvuthiacene A	[M-MeOH+H]* 350.17667 [M+H]* [M-2MeOH+H]* 388.13251	strong	10.1021/acschem bio.8b00948	Figure S22
fulvuthiacene B	[M-MeOH+H]" 378.2095 [M+H]" 450.23638 [M-2MeOH+H]" 346.18359 320 540 360 380 400 420 440 m/z	strong	10.1021/acschem bio.8b00948	Figure S23
α-lipomycin	ана страна стра	strong	10.1038/ja.2013.1 10	Figure S1
21-methyl-α- lipomycin	00 01 02 02 02 02 02 02 02 02 02 02	strong	10.1038/ja.2013.1 10	Figure S1
TM-123	Allo ² ¹ 231 Share off: 0.11-0.14 min, 3 some) Freq-100.0V 2.2 2.3 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	strong	10.1021/acschem bio.0c00775	Figure S5
TM-124	A 10 May - 180 May - 180 May 1 2 S 10 May - 180 May 1 3 S 10 May - 180 May 1 4 S 10 May - 180 May - 180 May - 180 May 1 4 S 10 May - 180 May - 180 May - 180 May - 180 May 1 4 S 10 May - 180 May 1 4 S 10 May - 180 May - 1	moderate	10.1021/acschem bio.0c00775	Figure S15
TM-125	All Page 100 Apr - 100 Apr	moderate	10.1021/acschem bio.0c00775	Figure S23
TM-126	All The Program Hillow V 13 All Program Hillow V 14 All Program Hillow V 15 All Program Hillow V 16 All Program Hillow V 17 All Program Hillow V 18 All Program Hillow V 19 All Program Hillo	weak	10.1021/acschem bio.0c00775	Figure S30
clipibicyclene	e (M+Na) ⁺ 369.1369	moderate	10.1038/s41564- 022-01073-4	Figure 3

janustatins A		strong			10.1038/s41557- 022-01020-0	Figure S38
ent-janustatin A	100 403.2673 405.2479 405.2479 405.2408 475.2408 475.2408 475.2408 475.2408 475.2408	strong			10.1038/s41557- 022-01020-0	Figure S38
janustatins B	PTER 2012/2014 - 2017	weak			10.1038/s41557- 022-01020-0	Figure S24
janustatins C		weak			10.1038/s41557- 022-01020-0	Figure S31
piericidin A1	• 0 - Restandant data (fundamental fundamental fundam	strong	• • • • • • • • • • • • • • • • • • •	weak	10.1021/ol403417 6	Figure S1
piericidin E1	(a) IRR-ESI-MS	weak			10.1021/ol403417 6	Figure S6
piericidin analogue 4	The second secon	moderate	19	weak	10.1021/ol403417 6	Figure S13
mer-A2026B		strong			10.1021/ol403417 6	Figure S5
microbimicin	Pgure 513. IRESIMS of compound 1	weak			10.1016/j.phytoch em.2021.112700	Figure S13
abyssomicin Z1	10 10 10 10 10 10 10 10 10 10	weak			10.1016/j.phytoch em.2021.112700	Figure S24
abyssomicin M		weak	Mar De santante en la constante en la constant	weak	10.1021/acs.jnatpr od.7b00108	Figure S15
abyssomicin N		weak		weak	10.1021/acs.jnatpr od.7b00108	Figure S23
abyssomicin O	Martinia Mar	weak	M-H)	weak	10.1021/acs.jnatpr od.7b00108	Figure S31

abyssomicin P		weak		weak	10.1021/acs.jnatpr od.7b00108	Figure S39
abyssomicin Q		weak		moderate	10.1021/acs.jnatpr od.7b00108	Figure S47
abyssomicin S		strong		strong	10.1021/acs.jnatpr od.7b00108	Figure S75 Figure S76
abyssomicin T		moderate		moderate	10.1021/acs.jnatpr od.7b00108	Figure S89
abyssomicin U		moderate		weak	10.1021/acs.jnatpr od.7b00108	Figure S97
abyssomicin V	all for the law fragment of the second secon	weak		weak	10.1021/acs.jnatpr od.7b00108	Figure S105
abyssomicin W		strong		moderate	10.1021/acs.jnatpr od.7b00108	Figure S113
abyssomicin X		moderate	P C C C C C C C C C C C C C C C C C C C	weak	10.1021/acs.jnatpr od.7b00108	Figure S125
streptaspirona te A		moderate			10.1021/acs.joc.0 c01210	Figure S8
streptaspirona te B		weak			10.1021/acs.joc.0 c01210	Figure S18
streptaspirona te C		strong			10.1021/acs.joc.0 c01210	Figure S28
tetromadurin		weak			10.3390/molecule s28114276	Figure 9
tetronasin	100 ii cc ^{525,89} 101 AL 31364 Tetronasin 1 102 S50 560 570 60 ⁵ 77 60 ⁵ 771 647 51 103 550 550 550 550 550 550 550 550 550 5	moderate			10.1038/s41929- 019-0351-2	Figure S8

macrolactin 1e		weak	10.1111/1462- 2920.13367	Figure S7
macrolactin 1f		weak	10.1111/1462- 2920.13367	Figure S8
bacillaenes 4c		moderate	10.1111/1462- 2920.13367	Figure S9
macrolactin 3a		weak	10.1111/1462- 2920.13367	Figure S10
macrolactin 3b		weak	10.1111/1462- 2920.13367	Figure S11
aldgamycin P		moderate	10.1002/cbic.2016 00118	Figure S5
borrelidin	[M+H-H ₂ O]* 472.3075 [M+H-2H ₂ O]* 454.2985 490.3179 440 460 480 500 520 m/z	strong	10.1128/AEM.013 83-16	Figure S6
ibomycin		moderate	10.1016/j.chembio I.2016.08.015	Figure S2
reedsmycin A		moderate	10.1186/s12934- 018-0943-6	Figure S4
reedsmycin 2		moderate	10.1186/s12934- 018-0943-6	Figure S4
reedsmycin 3		moderate	10.1186/s12934- 018-0943-6	Figure S4
reedsmycin 4		moderate	10.1186/s12934- 018-0943-6	Figure S4

reedsmycin 5		moderate		10.1186/s12934- 018-0943-6	Figure S4
caniferolide A		strong		10.1039/c8ob0311 5k	Figure S9
caniferolide B	$ F_{pr} S3. (15.107 M of classified D2) indiang equations being into interms interms into interms interms into interms into interms into interms i$	strong		10.1039/c8ob0311 5k	Figure S20
caniferolide C		strong		10.1039/c8ob0311 5k	Figure S31
caniferolide D		strong		10.1039/c8ob0311 5k	Figure S42
cyphomycin		strong		10.1038/s41467- 019-08438-0	Figure S3
nargenicin- precursors 4	2014 2015	weak		10.1038/s41586- 019-1021-x	Figure S3
nargenicin- precursors 5	103 5 44 45 45 45 45 45 45 45 45 4	weak		10.1038/s41586- 019-1021-x	Figure S4
nargenicin- precursors 6	14 48 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7	weak		10.1038/s41586- 019-1021-x	Figure S5
nargenicin- precursors 7	1413 3 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	weak		10.1038/s41586- 019-1021-x	Figure S6
nargenicin- precursors 8	1415 6 44 55 56 57 57 67 57 67 67 77 77 77 77 77 77 77 7	weak		10.1038/s41586- 019-1021-x	Figure S7
lobatamide A		strong		10.1002/anie.2019 16005	FigFigure S5
palmerolide A	unit +15 Son (M0) Fay-155/L/1-54 (M-+Q-+Q (b) (M-+Q-+Q-+Q S2/20 (M-+Q-+Q-+Q S2/20 (b) (M-+Q-+Q S2/20 (b) (b)	strong		10.3390/md18060 298	Figure 2
epemicin A	(Marina and Carlos and	strong		10.1021/acschem bio.1c00318	Figure S4
epemicin B	To the second of	strong		10.1021/acschem bio.1c00318	Figure S10
venturicidin A		strong	weak	10.1021/acs.jnatpr od.0c01177	Figure S2

tetramycin A $\underbrace{\int_{0}^{10} \int_{0}^{10} \int_{0}$	moderate			10.1007/s00253- 020-10391-8	Figure S2
tetramycin B	moderate			10.1007/s00253- 020-10391-8	Figure S2
nystatin	moderate			10.1007/s00253- 020-10391-8	Figure S2
12- Decarboxy- 12-methyl Tetramycin B	strong			10.1007/s00253- 020-10391-8	Figure S5
12- Decarboxy- 12-methyl Tetramycin A	strong			10.1007/s00253- 020-10391-8	Figure S5
2-Hydro-3- hydroxy-12- decarboxy-12- methyl Tetramycin A	strong			10.1007/s00253- 020-10391-8	Figure S5
tartrolon E	weak	82/24 May 1-14 III TO DOBO-18 AV 14 NL 5.1487 00 00 00 00 00 00 00 00 00 0	weak	10.1073/pnas.121 3892110	Figure S1-S2
hygrocin K		figure 5:::IBUESIMS spectrum of hyprosin K (5)	weak	10.3390/antibiotic s11111455	Figure S17
hygrocin L		rigure Sa. IBRESIMS spectrum of hyproxin L (6)	weak	10.3390/antibiotic s11111455	Figure S34
hygrocin M			weak	10.3390/antibiotic s11111455	Figure S50
hygrocin N	weak		weak	10.3390/antibiotic s11111455	Figure S66
hygrocin O		01 0 11111111 6 1 7 1111111 1 1111111 1 11111111 1 11111111	weak	10.3390/antibiotic s11111455	Figure S86
hygrocin P		101 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	weak	10.3390/antibiotic s11111455	Figure S102
hygrocin Q	,	101 6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	weak	10.3390/antibiotic s11111455	Figure S116

hygrocin R			401 1 40 10 10 10 10 10 10 10 10 10 10 10 10 10	weak	10.3390/antibiotic s11111455	Figure S130
hygrocin S			1137 1137 1137 1137 1137 1137 1137 1137	weak	10.3390/antibiotic s11111455	Figure S144
hygrocin T				weak	10.3390/antibiotic s11111455	Figure S158
hygrocin U				weak	10.3390/antibiotic s11111456	Figure S167
AP-2	Intens. x10 ⁷ 1.25 1.00 0.75 0.50 0.25 500 550 600 m/z 643.2 [M+Na] [*] 643.2 [M+Na] [*] 659.1 [M+K] [*] 659.2 [M+K] [*]	weak			10.1039/c1mb050 36b	Figure S6
AP-3	x10 ⁷ 2.5 2.0 1.5 1.0 0.5 0.0 500 550 600 550 600 1.5 0.0 576.1 616.0 657.2 [M+H]* 673.2 [M+K]* 673.2 [M+K]* 673.2 [M+K]* 673.2 [M+K]* 657.7 [M+K]*	weak			10.1039/c1mb050 36b	Figure S6
AP-4	Intens. x10 ⁷ 2.5 2.0 AP-4 671.2[M+H] ⁺ 1.5 1.0 0.5 631.0661.680.5 0.0 550 m/z 600 650 700	weak			10.1039/c1mb050 36b	Figure S6
naphthomycin E	Naphthomycin E Inters. x10 ⁷ 1.5 0.6 668.4 0.6 668.4 0.6 668.4 0.6 668.4 0.6 668.4 0.6 668.4 0.6 668.4 668.2 724.1 [M+K] [*] 600 750 800	strong			10.1039/c1mb050 36b	Figure S6
naphthomycin A	Intering x10 ⁰ 742.2 [M+Na] [*] 1.0 698.3 0.5 614.8 630.6 [M+H1] 0.0 650 m/z 700 750.2 0.0 650	strong			10.1039/c1mb050 36b	Figure S6
8-deoxy- rifamycin derivative 1		strong			10.3390/biom1009 1265	Figure S9
8-deoxy- rifamycin derivative 2		moderate			10.3390/biom1009 1265	Figure S18
8-deoxy- rifamycin derivative 3		weak			10.3390/biom1009 1265	Figure S24
8-deoxy- rifamycin derivative 4		moderate			10.3390/biom1009 1265	Figure S30

8-deoxy- rifamycin derivative 5	moderate	10.3390/biom1009 1265	Figure S36
8-deoxy- rifamycin derivative 6	weak	10.3390/biom1009 1265	Figure S42
8-deoxy- rifamycin derivative 7	weak	10.3390/biom1009 1265	Figure S48
8-deoxy- rifamycin derivative 8	moderate	10.3390/biom1009 1265	Figure S49
8-deoxy- rifamycin derivative 9	moderate	10.3390/biom1009 1265	Figure S50
8-deoxy- rifamycin derivative 10	weak	10.3390/biom1009 1265	Figure S66
8-deoxy- rifamycin derivative 11	weak	10.3390/biom1009 1265	Figure S67
8-deoxy- rifamycin derivative 11 rifamycin W congener 1	weak strong	10.3390/biom1009 1265 10.3390/biom1107 0920	Figure S67 Figure S14
8-deoxy- rifamycin derivative 11 rifamycin W congener 1 rifamycin W congener 2	weak strong strong	10.3390/biom1009 1265 10.3390/biom1107 0920 10.3390/biom1107 0920	Figure S67 Figure S14 Figure S21
8-deoxy- rifamycin derivative 11 rifamycin W congener 1 rifamycin W congener 2 rifamycin W congener 3	weak strong strong	10.3390/biom1009 1265 10.3390/biom1107 0920 10.3390/biom1107 0920 10.3390/biom1107 0920	Figure S67 Figure S14 Figure S21
8-deoxy- rifamycin derivative 11 rifamycin W congener 1 rifamycin W congener 3 rifamycin W congener 4	weak strong strong weak weak	10.3390/biom1009 1265 10.3390/biom1107 0920 10.3390/biom1107 0920 10.3390/biom1107 0920	Figure S67 Figure S14 Figure S21 Figure S28

