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Model

To study the collective dynamics of trapped spin-states, we recently developed a semi-

classical approach to model spin-crossover materials.1 In this method, the single-molecular

quantum chemistry, essential to describe the photoexcitation and relaxation behaviors, is

combined with classical elastic interactions between molecules. We consider d6 transition

metal complexes with octahedral inner coordination spheres – archetypal spin-crossover com-

pounds. For the effective theory, we include the three lowest energy states within the crystal

field theory: 1A1,
3T1 and 5T2, which we label LS, HS, and IS respectively. Many electron

energies are parameterized with the Racah parameter, B, and ligand-field, Dq.2 The spin-

orbit coupling, ζ, allows the transition between the HS and LS states, mediated by the high

energy IS state. Moreover, ζ introduces zero-field splittings between the 15-fold degenerate

HS states.1 We explicitly include the symmetric breathing coordinate of the metal-ligand

octahedron, which is strongly coupled with the spin-states.3 A harmonic potential, with
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a spring constant κA1 , is assumed for the symmetric molecular vibration. The minima of

potential energies are chosen to occur at Q = −δ for LS, Q = 0 for IS and Q + δ for

HS. The minimum energy of each state is obtained from crystal field theory (i.e., the d6

Tanabe-Sugano diagram).

Typically, the LS and HS manifolds are much lower in energy than the IS state. Treating

the spin-orbit coupling perturbatively, we integrate out high-energy IS state and diagonalize

the resulting low-energy manifold of the system to obtain effective potential surfaces (PES);

plotted, for typical parameter values (Table S1), in Fig. 1a. This, results1 in a double well

PES (red) with mixed LS, IS, and HS character, and 14 pure HS states (gray) split into three

levels with degeneracies 3, 5 and 6. Double well potentials have been previously proposed

as models of SCO materials4,5 on purely phenomenological grounds. However, such models

neglect the pure HS levels that are a vital part of our theory and lack the connection to

microscopic quantum theory that we make.

In SCO materials, elastic interactions6 arise from a variety of competing intermolecular

interactions; this can include covalent bonds in frameworks but also includes weak inter-

actions. Indeed, in molecular crystals weak interactions hold the crystal together and are

responsible for elasticity. Weak interactions have also been shown to play a crucial role in

deriving collective SCO behaviors even in framework materials.7–11 Generally, the interaction

between a pair of SCO molecules will be anharmonic. In equilibrium structures, intermolec-

ular forces are not individually minimized – rather the total free energy is minimized. This

induces elastic frustration into structures. Nevertheless, arbitrary intermolecular interactions

can be represented as harmonic potentials at the lowest non-trivial order, figure S1; however,

elastic frustration leads to some force constants being negative.11,12 This representation of in-

termolecular interactions as a network of springs allowed the discovery of structure-property

relationships between crystal structures and the intermediate spin-state orders that appear

during thermal SCO in framework materials.11 These predictions are consistent with all

experimental observations to date. This emphasizes that, even in framework materials, be-
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yond the nearest neighbor, weak interactions play a crucial role in understanding collective

SCO phenomena and, therefore, cannot be neglected. Therefore, in this work, we include

elastic interactions up to the third nearest neighbors and a harmonic potential for angular

distortions.

Figure S1: Spring constants as effective potentials. Here we compare interactions governed
by a Moorse potential (black) with approximate spring-like (i.e., harmonic) potentials at
first (blue), second (red), third (green), and forth (orange) nearest neighbour distances,
taking nearest neighbours to be at the minimum of the potential. Note that except for
nearest neighbors the spring constants are negative and the third nearest neighbor spring
constant is larger than the second nearest neighbor spring constant. Explicitly κ2/κ1 =
−0.06, κ3/κ1 = −0.10, and κ2/κ1 = −0.07. A similar analysis holds for other chemically
reasonable potentials, e.g., the Lennard-Jones potential.11

We place N such spin-crossover centers on a square lattice with classical elastic interac-

tions between neighbors, as sketched in Fig. 1. The model Hamiltonian is thus

H =
N∑
i

 p2
i

2m
+

P2
i

2M
+ Vν(Qi) +

∑
<i,j>n

Un(Qi, Qj, ri, rj) +
∑

<i,j,k>1

Uθ(ri, rj, rk)

 , (S1)

where Vν(Qi) is an internal potential energy surface, ri is position of the ith molecule, with

mass m and conjugate momentum pi, and M is mass associated with the momentum, P , of

the breathing coordinate, Q. The elastic interaction between two nth nearest neighbors is
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given by

Un =
κn

2

(
|ri − rj| − µn(2d̄+Qi +Qj)

)2
, (S2)

where µ1 = 1, µ2 =
√
2, and µ3 = 2, and the harmonic potential associated with angular

distortions is

Uθ =
κθ

2
sin2

(π
2
− θ

)
, (S3)

where θ is the angle between the nearest neighbor bonds, Fig. 1.

Typical parameters for SCO materials have previously been estimated.1 Except as ex-

plicitly noted these parameters are used for all calculations in the paper and are listed in

table S1. We solve the model on a 30× 30 lattice using molecular dynamics . As the model

has 30 × 30 × 3 = 2700 degrees of freedom, explicit, direct mapping of free energy is not

possible.

Table S1: “Typical” values of the parameters in the model, based on previous analysis of
experiments on SCO materials.1 Except as explicitly noted, these parameters are used in all
calculations in this paper.

Parameter Value
B 100 meV

C/B 4.81
Dq/B 2.039

ζ 14.6 meV

κA1 10.34 eV/Å2

δ 0.1 Å
ωHS 5× 1013 s−1

ωLS 8× 1013 s−1

κ1 0.86 eV/Å2

κ2 0.2 κ1

κ3 0
κθ 0
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Molecular Dynamics Methods

We simulate the system with molecular dynamics (MD) at a constant temperature, a constant

pressure and a constant number of molecules on a 30 × 30 square lattice, using the Nose-

Hoover thermostat and the Anderson barostat.13 Separate thermostats are applied for lattice

and internal coordinates to circumvent the flying ice cube problem.14 We assume barrierless

transitions within HS states, and the thermal occupancy of the internal PESs is determined

by applying 20 Metropolis Monte Carlo steps after every 50 MD steps.

To simulate isothermal kinetic experiments, we initialize the simulation in an all-HS state

at the set temperature, then we let the ensemble evolve in time at constant temperature for

2.5 × 106 MD steps. The change in the magnetic response, χT , of a sample with time and

temperature is calculated, where χ is magnetic susceptibility. In the thermally accelerated

approach, light is used to prepared a sample in a trapped phase at 10 K, once the light

is switched off, the sample is heated until it decays to LS.15 To simulate this, we initialize

at HS and let the molecular dynamics evolve to 5.5 × 105 MS steps at a set temperature

and increase the temperature by 0.5 K. Experimentally, HS→LS relaxation timescales vary

widely: from extremely fast to many hours.16–23 The microscopic variation of the model

parameters allows us to set a small single molecular energy barrier to the trapped states

(shown in Fig. 1a) without significantly changing the other physics of the problem. This

allows us to probe the dynamics of these materials within computable timescales and without

numerically accelerating the calculations.

For thermal SCO, the sample is initialized in the all-HS state at a high temperature,

cooled down to 10 K, and then heated to the initial high temperature. For thermal SCO,

the temperature is changed in 1.0 K intervals.

We calculate structure factor, S(q) = ⟨I(q)I∗(q)⟩, where ⟨...⟩ indicates ensemble averag-
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ing,

I(q) =
1√
N

N∑
j

(
eiq.Rj + eiq.(Rj+(r̄+Qj)x̂) + eiq.(Rj+(r̄+Qj)ŷ) + eiq.(Rj+(r̄−Qj)x̂) + eiq.(Rj+(r̄−Qj)ŷ)

)
,

(S4)

is Fourier transform of positions of the metals and ligands, and r̄ = 2.0 Å is the average of

LS and HS metal-ligand bond length.3 The positions of four ligands and one metal centre

per spin-crossover complex are considered to calculate the 2D structure factor.

(a) (b)

Figure S2: Cooperative thermally activated decay from the trapped HS state corresponding
to Fig. 2. (a) Thermally accelerated relaxation of the trapped HS state (black circles) and
the (first-order) thermal SCO transition (black lines), for the parameters given in Table S1.
∂(χT )/∂T (red line) has a negative peak at TLIESST = 52 K. (b) Decreasing the intermolecular
interactions (here κ2 = 0.06κ1, versus κ2 = 0.2κ1 in (a)) drives the first order thermal SCO
phase transition to a crossover and decreases TLIESST to 43 K.
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(a) (c)

(b) 28 K,   t= 14 (d) 234 K

checkerboard

Figure S3: Two-step relaxation involving checkerboard intermediate spin-state order is sim-
ilar to two-step relaxation with stripe intermediate order (Fig. 3). (a) Isothermal relaxation
is sigmoidal for both steps (black lines). (b) A typical snapshot of the short-range checker-
board state that appears at the intermediate plateau during isothermal reactions. (c) The
two-step thermal transition with a long-range ordered, symmetry-breaking, checkerboard
phase in the intermediate plateau. Similarly, the thermally accelerated relaxation of the
trapped HS state is two step. Thus, ∂(χT )/∂T has two negative peaks. (d) A typical spin-
state configuration at the intermediate step during the cooling sweep of thermal SCO. Here
κ2 = 0.15κ1, κ3 = −0.20κ1 and Dq/B = 2.0503.
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Figure S4: Complete, three-step relaxation involving two intermediate plateaus. Multiple
steps are also found in the isothermal relaxation. Here Dq/B = 2.0459 κ1 = 1.55eV/Å2,
κ2 = −0.21κ1, κ3 = 0.1κ1, and κθ = 0.56κ1.
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(a) (b)

qx=0.486

Figure S5: Time averaged structured factor, S(q) (see Eq S4), of complex relaxation kinetics
shows simultaneously existing peaks related to the stripe, checkerboard, HS3/4 and HS1/4

states. (a) Structure factor for isothermal relaxation at 40 K corresponding to the parameters
used in Fig. 6a. The average ⟨S(q)⟩ is taken over five simulation runs and from 0 to 25×105

MD steps for each run. 2d̄ is the mean of the all-LS and all-HS unit cell lengths. For the
all-HS and all-LS states, the unit cell is square and S(q) has a single Bragg peak at the
Brillion zone center q = (0, 0). For stripe order, an additional peak appears in S(q) at
q = (0, π/2d̄) or q = (π/2d̄, 0) for horizontally or vertically arranged stripes, respectively.
For the checkerboard state, an additional peak appears at q = (π/2d̄, π/2d̄). HS3/4 and
HS1/4 give additional peaks at q = (π/2d̄, 0), (0, π/2d̄) and (π/2d̄, π/2d̄). S(q) clearly shows
additional peaks at all of these points, indicating that correlations are present for each of
these orders. The inherent disorder and mismatch of unit cell lengths of different states
broadens and splits the peaks, indicating that the order is short-range and short-lived. The
splitting and broadening can be seen more clearly in (b), where we plot S(q) for fixed
qx = π/2d̄.
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