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1 Model Selection

For this study, we performed fine-tuning experiments using three different large language
models (LLMs): GPT-J-6B, Llama-3.1-8B-Instruct, and Mistral-7B-Instruct.

Firstly, we used the open-source GPT-J 6B parameter model,1,2 which was trained on the
Pile, a large-scale curated dataset created by EleutherAI.3 From pretests, we know that the
results generally match the ones we find using GPT-3 models available via the OpenAI API.
However, the GPT-J models tend to be more sensitive to the tuning parameters.

In addition, we benchmarked a model from the Llama family, provided by Meta.4 We
did initial comparison experiments between the Llama-3.1-8B model and the Llama-3.1-8B-
Instruct model to explore the opportunities of the Instruct model for our task. An Instruct
model is developed on a pre-trained model to improve the practical use of the LLM, e.g., to
follow instructions and question-answering. Indeed, from eight preliminary tests, we do see
that, on average, the Llama-3.1-8B-Instruct model performs 6% better (Table 1). We, there-
fore, went forward with the LLama-3.1-8B-Instruct model for more in-depth experiments of
all the case studies.

As a third model, we also performed our experiments with a Mistral model.5 Similarly
to the Llama model, we used the Instruct fine-tuned version Mistral-7B-Instruct.

In the text from now on, the models GPT-J-6B, Llama-3.1-8B-Instruct, and Mistral-7B-
Instruct are referred to as GPT-J, Llama, and Mistral, respectively.

We benchmarked the fine-tuned LLMs against “traditional” ML models. Two commonly
used models were selected for this purpose: random forest (RF) and XGBoost. The features
of the provided datasets were converted into numeric values when required and used as
input for these models. The original numerical values were used as is. Categorical values
were converted using one-hot encoding. SMILES notations of molecules were converted into
Morgan fingerprints.
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Table 1. Overview of accuracy (%) results of fine-tuning Llama-3.1-8B and Llama-3.1-8B-
Instruct on different datasets. For each dataset, all hyperparameters were kept constant for
fair comparison (see specific dataset in SI for details on hyperparameters).

Dataset Llama-3.1-8B Llama-3.1-8B-
Instruct

Adhesive Free Energy 0.80 0.96
Density (monomers) 0.84 0.85
Cohesive Energy (monomers) 0.80 0.96
Squared radius of gyration
(monomers)

0.85 0.91

Glass Transition Temperature
(monomers)

0.85 0.90

Melting Point 0.55 0.59
Grain Size (Mg alloys) 0.92 0.89
Dynamic Viscosity 0.73 0.71

Average 0.79 0.85

2 Methods

We used 8-bit quantization6 and 8-bit optimizers7 in addition to the Low-Rank Adaptation
of Large Language Models (LoRA) technique8 (LoRA parameters: r=16, lora alpha=32, and
lora dropout=0.05) to use the models on our hardware. We follow the same fine-tuning
method as in our previous work.9 The datasets and Jupyter Notebooks with the results can
be found in https://github.com/JorenBE/GPT-Challenge. In these Notebooks, we used
the fine-tuning framework of Jablonka et al. 9 , using the chemlift package, which can be
installed from https://github.com/lamalab-org/chemlift.

As a base case, we trained binary classification models using balanced datasets to predict
whether the target value is above or below the median. To train these binary classification
models, the dataset was split into two classes of equal size based on the target variable using
the qcut function of the pandas Python library. Where the dataset size was sufficient, we
set the test set constant to 50 while varying the size of the training set. Rather than seeking
to optimize every individual case study, we looked for trends over the wide range of case
studies. For the fine-tuning hyperparameters, we used 20 epochs and a learning rate of
0.0003 unless otherwise specified. The temperature was set to 0.0 for all experiments.
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3 Materials and Properties

This section describes the case studies regarding the properties of materials.

3.1 Adhesive Energy of Polymers

The dataset was provided by: Jiale Shi and Jonathan Whitmer1

3.1.1 Scientific Background

Figure 1. AI generated representa-
tion of a polymer chain adhering to a
surface.

The realm of polymers is a complex playing ground.
Finding an optimal material requires a deep under-
standing of the building blocks, i.e., monomers, and
rigorous investigations into the physical parameters.
One such feature that needs to be properly tuned is
the material’s interactions with various surfaces. Its
importance can be noticed in various aspects of ev-
eryday life; think of the paintings on the wall or the
coatings on our cars. Various forces and phenomena
drive all these interactions and profoundly affect how
the polymeric material adheres to or is repelled by a
surface (Figure 2).

Understanding these interactions is thus crucial
for tailoring material properties and improving prod-
uct performance for specific applications. Multiple
computational studies suggest a strong correlation
between the polymer sequence and the surface adhe-
sion. Also, various machine learning methods have
been utilized to predict polymer properties based on
the polymer structure. Shi et al. 10 combined both methodologies to quantitatively study the
effect of the polymer sequence on the adhesive free-energy with a surface. Using molecular
dynamics simulations, the authors created an extensive database of 20,000 AB copolymers,
unique in their sequence and respective adhesion properties. With support vector regres-
sion models, they successfully predicted the adhesion free-energy from the sequence infor-
mation of the copolymer. Our GPT approach focused on the classification of this adhesive
free-energy.

1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
46556, United States.
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Figure 2. Illustration of the adhesive free-energy ∆F. Different types of beads created
unique copolymer sequences. MD simulations were used to compute the adhesive free-
energy ∆F of the sequences.

3.1.2 Dataset

The dataset contains copolymer sequences. The polymer chains are sequences of 20 monomers
of type A or type B (e.g., for ABBABAABBBABABBABBBA). These polymer chains are modeled as
flexible 20-bead linear chains, with 202 unique structures. A square lattice of 20 beads was
created to study the polymer-surface interaction.

The adhesive free-energy ∆F was calculated using molecular dynamics simulations for
the polymer chains interacting with the surface (see Shi et al. 10 for details on the simula-
tions). We obtained 16,000 entries for initial testing, further referred to as Dataset I (see the
distribution of the adhesive free-energy values in Figure 3). An unseen subset of 4,000 poly-
mer sequences (Dataset II) was later used as a hold-out dataset to validate the performance
of previously trained models.

We used a simple prompt template shown in Table 2 for experiments to predict adhesive
free-energy.

Table 2. Example prompts and completions for predicting the adhesive free-energy ∆F of
block copolymers. <copolymer> is the placeholder for the sequence of the polymer chain.

prompt completion experimental

Example of training data

What is the ∆F of <copolymer>? 0 Low
What is the ∆F of <copolymer>? 1 High

3.1.3 LLM Results

Base Case For the binary classification models, we split the dataset I into two equally sized
classes based on their adhesive free-energy ∆F values as an initial test. Entries with values
higher than the median of 8.20 kBT are labeled “1”, and entries with lower values are labeled
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Figure 3. Distribution of adhesive free-energies in the dataset. The median adhesive free-
energy is 8.20 kBT.

“0”. We performed a learning curve analysis on this binary classification. In contrast to the
original work, where the sequence was converted to numeric values, we trained the models
of the original representation of “A” and “B” beads. Dataset I was relatively large in num-
bers, which made it possible to train the model on 5,000 entries. The number of test data
remained constant over all runs, i.e., 50. The number of epochs was set to 4 since we have
a large dataset. Three unique runs were performed for every pair of training size/epoch ex-
periments to get the average metrics. As the dataset is balanced, we can assume an accuracy
of 50% as the zero-rule baseline, i.e., random guessing.

Three LLMs, i.e., GPT-J, Llama, and Mistral, were fine-tuned. We notice that all three
models are comparable in performance. A maximum accuracy of 96% was reached with the
Llama model (Figure 4 and Table 3). In addition, the fine-tuned LLMs were compared with
“traditional” ML models (XGBoost and random forest (RF)). We can conclude that LLMs can
in general compete with these models.

We tested the GPT-J model (training set size of 5,000 and 4 epochs) on a holdout dataset
(Dataset II) to eliminate the possibility of data leakage. Our models never saw these 4,000
sequences. Figure 5 shows the confusion matrix of the experiment. The performance on the
predictions of these adhesive free energies was similar to the initial test data, i.e., accuracy
of 88.1%.
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Table 3. Overview of results of LLMs and “traditional” ML predicting the binary class
of the adhesive free-energy. Three runs were performed to get the metrics average. All
LLMs were fine-tuned with 4 epochs and a learning rate of 0.003. For the random forest
(RF) and XGBoost models, optuna was used for hyperparameter optimization. Maximum
performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

500 GPT-J (LLM) 0.88 0.88 0.88 0.76
Llama (LLM) 0.86 0.86 0.86 0.72
Mistral (LLM) 0.84 0.85 0.85 0.69
RF 0.81 0.81 0.81 0.62
XGBoost 0.85 0.85 0.85 0.69
Zero-rule 0.50 0.50 0.50 0.00

5000 GPT-J (LLM) 0.93 0.93 0.93 0.85
Llama (LLM) 0.96 0.96 0.96 0.92
Mistral (LLM) 0.89 0.89 0.89 0.79
RF 0.90 0.90 0.90 0.80
XGBoost 0.94 0.94 0.94 0.87
Zero-rule 0.50 0.50 0.50 0.00
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Figure 4. Learning curve analyses of binary classifications of the adhesive free-energy
using different models. Three LLMs (GPT-J, Llama, and Mistral) and two “traditional”
models (XGBoost and random forest (RF) were trained to predict the binary class of the
adhesive free-energy of polymers. We used 50% as a random guess accuracy (dashed line),
representing the zero rule baseline, i.e., a model that always predicts the most common
class. Three runs were performed for each model to get the metric’s average and standard
deviation. Subsets of Dataset I were used to train and test the models, with only the sequence
of the polymer chain as input. The fine-tuned Llama model reached the maximum accuracy
of 96% (training set size of 5,000 and 4 epochs).
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Figure 5. Normalized confusion matrix on the hold-out test data. The GPT-J model
was trained on 5,000 training examples from Dataset I. Polymer sequences of the complete
Dataset II (n = 4,000) were used to validate the model. An overall accuracy of 88.1% was
reached.
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3.2 Properties of Monomers

The dataset was provided by: KJ Schmidt, Ben Blaiszik and Ian T. Foster2

3.2.1 Scientific Background

Figure 6. AI generated representa-
tion of designing polymers.

A challenge in designing polymers is that there
are a near-infinite number of monomers to choose
from. One can expect that some of these polymers’
key performance indicators are correlated with their
monomers’ properties. However, to discover these re-
lations, one needs a database with a diverse set of dif-
ferent properties of potential monomers.

The first steps towards generating such a database
for monomers that can be used to synthesize poly-
mers of the (meth)acrylate and (meth)acrylamide
families was reported by Schneider et al. 11 . They
used molecular dynamics simulations to predict a
range of properties of these monomers. In particular,
they focused on cohesive energy density, glass tran-
sition temperature, squared radius of gyration, and
density (see Schneider et al. 11 for details).

In addition, Schneider et al. 11 used these simula-
tion results to develop an active learning approach to
generate data more efficiently for new monomers. We are interested in developing a model
that could predict these properties of a given monomer. In our approach, the monomers
will be represented in the Simplified Molecular Input Line-Entry System (SMILES) nota-
tion. This textual string captures the atomic composition, bonds, branches, aromaticity, and
stereochemistry of the chemical. It serves as an ideal test case to search for the limits of
Large Language Models (LLMs).

3.2.2 Dataset

The dataset generated by Schneider et al. 11 has 410 small molecules of the methacrylate and
methacrylamide families, of which the molecular properties were calculated using molecu-
lar dynamics simulations. From the eight properties that were computed by Schneider et
al., four were selected to validate our LLM approach: glass transition temperature, cohesive
energy, squared radius of gyration, and density (see the original publication11 for details on
these simulations). The distribution of these data is shown in Figure 7.

2Department of Computer Science, University of Chicago, Chicago, IL 60637, United States
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Figure 7. Distribution of the four properties in the dataset used in this work. The median
of cohesive energy, glass transition temperature, squared radius of gyration, and density is
550 MPa, 319 K, 9.7× 10−20 Å, and 1132 kgm−3, respectively.

For our simple binary classification models, every property was split into two equally
sized bins. Here, the threshold was the median of the different properties, i.e., 550 MPa,
319 K, 9.7 × 10−20 Å, and 1132 kgm−3 for the cohesive energy, glass transition temperature,
squared radius of gyration, and density, respectively.

Table 4 shows the prompt template we used to fine-tune our models.

Table 4. Example prompts and completions for predicting the properties of monomers.
property> serves as a placeholder for glass transition temperature, cohesive energy, squared
radius of gyration, or density. <SMILES> represents the SMILES notation of the monomer.

prompt completion experimental

Example of training data

What is the <property> of <SMILES>? 0 Low
What is the <property> of <SMILES>? 1 High
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3.2.3 LLM Results

Base case As initial tests, we created separate binary classifications for every property of
interest. We split the dataset into two equally sized classes based on the median of the re-
spective property: class ‘0,’ if lower than the median, and class ‘1,’ if higher than the median.
We performed learning curve analyses for all four properties. We used the SMILES notation
as the representation of the molecules and trained separate models to predict this binary
class of a single monomer property. As the total dataset contained 410 entries, our maxi-
mum number of training data was set to 300. The number of test data remained constant
over all runs, i.e., 50. The number of epochs was set to 20 for all experiments. For every pair
of training size experiments, three unique runs were performed to get the average metrics
(Figures 8a, 8b, 9a and 9b).

Table 5. Overview of results of LLMs and “traditional” ML predicting the binary class
of the density of monomers. Three runs were performed to get the metrics average. All
LLMs were fine-tuned with 20 epochs and a learning rate of 0.003. For the random forest
(RF) and XGBoost models, optuna was used for hyperparameter optimization. Maximum
performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

300 GPT-J (LLM) 0.88 0.88 0.88 0.76
Llama (LLM) 0.87 0.87 0.87 0.75
Mistral (LLM) 0.84 0.84 0.85 0.69
RF 0.76 0.76 0.76 0.52
XGBoost 0.75 0.75 0.75 0.51
Zero-rule 0.50 0.50 0.50 0.00

Three LLMs, i.e., GPT-J, Llama, and Mistral, were fine-tuned. We notice that all three
models are comparable in performance. Maximum accuracies of 88% and 91% were reached
with the GPT-J model for the prediction of the density and the squared radius of gyration,
respectively (Table 5 and Table 7). Maximum accuracies of 78% and 84% were reached with
the Mistral model for the prediction of the cohesive energy and the glass transition temper-
ature, respectively (Table 6 and Table 8). Still, all LLMs gave similar performances, with
no large differences. In addition, the fine-tuned LLMs were compared with “traditional”
ML models (XGBoost and random forest (RF)). We can conclude that LLMs can in general
compete with these models, as almost all LLMs performed better than these ML models.
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Table 6. Overview of results of LLMs and “traditional” ML predicting the binary class of
the cohesive energy of monomers. Three runs were performed to get the metrics average.
All LLMs were fine-tuned with 20 epochs and a learning rate of 0.003. For the random forest
(RF) and XGBoost models, optuna was used for hyperparameter optimization. Maximum
performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

300 GPT-J (LLM) 0.77 0.77 0.77 0.54
Llama (LLM) 0.75 0.75 0.75 0.50
Mistral (LLM) 0.78 0.78 0.78 0.56
RF 0.64 0.64 0.65 0.30
XGBoost 0.70 0.70 0.70 0.40
Zero-rule 0.50 0.50 0.50 0.00

Table 7. Overview of results of LLMs and “traditional” ML predicting the binary class of
the squared radius of gyration of monomers. Three runs were performed to get the metrics
average. All LLMs were fine-tuned with 20 epochs and a learning rate of 0.003. For the
random forest (RF) and XGBoost models, optuna was used for hyperparameter optimization.
Maximum performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

300 GPT-J (LLM) 0.91 0.91 0.91 0.82
Llama (LLM) 0.91 0.91 0.91 0.81
Mistral (LLM) 0.86 0.86 0.86 0.72
RF 0.89 0.89 0.89 0.79
XGBoost 0.88 0.88 0.88 0.76
Zero-rule 0.50 0.50 0.50 0.00

18



Table 8. Overview of results of LLMs and “traditional” ML predicting the binary class of
the glass transition temperature of monomers. Three runs were performed to get the met-
rics average. All LLMs were fine-tuned with 20 epochs and a learning rate of 0.003. For the
random forest (RF) and XGBoost models, optuna was used for hyperparameter optimization.
Maximum performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

300 GPT-J (LLM) 0.80 0.80 0.80 0.60
Llama (LLM) 0.79 0.79 0.79 0.59
Mistral (LLM) 0.84 0.84 0.84 0.68
RF 0.74 0.74 0.74 0.48
XGBoost 0.80 0.80 0.80 0.60
Zero-rule 0.50 0.50 0.50 0.00
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(a) Density of monomers.

0.0

0.5

1.0 LlamaGPT-J

mistralzero-rule

RFXGBoost
accuracy

0.0

0.5

1.0
f1_macro

0.0

0.5

1.0
f1_micro

30
0

10
05010

training set size

0.0

0.5

1.0
kappa

(b) Squared radius of gyration of monomers.

Figure 8. Learning curve analysis of predictions for the density (a) and the squared ra-
dius of gyration (b) of monomers using different models. Three LLMs (GPT-J, Llama, and
Mistral) and two traditional ML models (XGBoost and random forest (RF)) were validated
on predicting the binary class of the monomer’s property. We used 50% as a random guess
accuracy (dashed line), representing the zero rule baseline, i.e., a model that always predicts
the most common class. Three runs were performed for each model to get the metric’s aver-
age and standard deviation. A maximum accuracy of 88% of the GPT-J model and 91% of the
GPT-J model were reached for the density and the squared radius of gyration, respectively,
using a training set size of 300 and 20 epochs.
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(a) Glass Transition Temperature.
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(b) Cohesive Energy.

Figure 9. Learning curve analysis of glass transition temperature (a) and cohesive energy
(b) of monomers using different models. Three LLMs (GPT-J, Llama, and Mistral) and two
traditional ML models (XGBoost and random forest (RF)) were validated on predicting the
binary class of the monomer’s property. We used 50% as a random guess accuracy (dashed
line), representing the zero rule baseline, i.e., a model that always predicts the most common
class. Three runs were performed for each model to get the metric’s average and standard
deviation. A maximum accuracy of 84% of the Mistral model and 78% of the Mistral model
were reached for the glass transition temperature and the cohesive energy, respectively, using
a training set size of 300 and 20 epochs.
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3.3 Melting Point of Molecules

The dataset was provided by: Igor Tetko and Guillaume Godin3

3.3.1 Scientific Background

Figure 10. AI generated represen-
tation of a metallic material transi-
tioning from solid to liquid under in-
tense heat.

The melting point of molecules holds great signif-
icance in chemistry in particular due to their im-
portance for characterisation of chemical solubility.
Accurately predicting these values is, therefore, a
focus of many research groups. Due to the com-
plexity of the process, computational methods are
still struggling with the task at hand. On the other
hand, given a set of experimentally obtained melting
points, machine-learning approaches could circum-
vent the need for tedious measurements. Still, de-
scriptors, often hard to obtain, need to be included
to represent the small molecules. Tetko et al. 12 com-
bined various datasets and ML models in a compre-
hensive study which was further extended by melt-
ing points mined from patents.13 They reported an
average RMSE of 31 ◦C to 36 ◦C on melting point pre-
dictions of small molecules. Here, we aimed to pre-
dict melting points solely from the name and chemi-
cal structures of molecules using LLMs.

3.3.2 Dataset

The dataset contains 274,983 small molecules represented in the SMILES notation, their
common chemical name, and their melting points. The distribution of the melting point
values is shown in Figure 11. The dataset was split on the median of the melting point
(147 ◦C) to create a balanced binary classification.

An example of the prompt template used in the experiments is shown in Table 9. Table 10
shows the different representations of the molecules used in the experiments.

3.3.3 LLM Results

GPT-3.5 benchmark We first benchmarked the chemical knowledge of OpenAI’s GPT-3.5
on melting points via ChatGPT. For 20 randomly selected entries, we prompted: “What is the
estimated melting point of <name of molecule > ?” The average absolute difference between

3BIGCHEM GmbH, Valerystraße 49, 85716 Unterschleißheim, Germany
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Figure 11. Distribution of the melting points of the dataset. The median melting point is
147 ◦C.

Table 9. Example prompts and completions for predicting the melting point of
molecules. <molecule> serves as a placeholder for the representation of the molecule as
shown in Table 10.

prompt completion experimental

What is the Melting point of <molecule>? 0 Low
What is the Melting point of <molecule>? 1 High

the reported value and the output of GPT-3.5 was 60.4 ◦C. If we classify this estimated GPT-
3.5 output, i.e., higher or lower than 147 ◦C, we notice that, compared to the reported values,
there was an agreement in < 50% of the cases. These results motivated the fine-tuning of
LLMs in an attempt to increase the predictive power.

Base Case As an initial test, we split our dataset into two equally sized classes based on the
melting point values. Entries with values higher than the median of 147 ◦C are labeled ‘1’,
and entries with lower values are labeled ‘0’. We performed learning curve analyses for this
binary classification of the melting point using different models (Figure 12 and Table 11).
For all models, the number of epochs is constant, i.e., 20. Three LLMs, i.e., GPT-J, Llama,
and Mistral, were fine-tuned on the SMILES notation of the molecules. We notice that a
maximum accuracy of 69% was reached with the GPT-J model. In addition, the fine-tuned
LLMs were compared with “traditional” ML models (XGBoost and random forest (RF)). For
these experiments, the SMILES of the molecules were converted into Morgan fingerprints.
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Table 10. Representation of the molecules. Two example entries illustrate the different
representations of the molecules.

Representation Example 1 Example 2

Name N-morpholinomethyl-2-(2-pyridyl)thiopropanamide 1-(3-Chloro-4-ethylcinnamamido)hydantoin
SMILES O1CCN(CC1)CNC(C(C)C2=NC=CC=C2)=S ClC=1C=C(C=CC(=O)NN2C(=O)NC(=O)C2)C=CC1CC

shuffled SMILES OCNC2CNCCCCC)=(1)==C((C)CCN12SC= =C))C(CC2C2CCNC=CCCCC==O=((1)lCNN=1)C=OO(
Length 32 41

Melting Point / °C (reported) 69.0 232.5
Bin 0 1

Melting Point / °C (GPT-3.5) 90-120 200

We can conclude that LLMs can in general compete with these models.
We then compared the influence of different representations of the molecules using the

GPT-J model. We notice that the model trained on 1,000 training points with the SMILES
as the molecule’s descriptor reaches an accuracy of 69% (Figure 13). Models trained on the
chemical name performed slightly worse, with a maximum accuracy of 66%. If we combine
both the name and the SMILES in one prompt, we even get a slight increase in accuracy to
71% (Figure 14).

Table 11. Overview of results of LLMs and “traditional” ML predicting the binary class
of the melting point of small molecules. Three runs were performed to get the metrics
average. All LLMs were fine-tuned with 20 epochs and a learning rate of 0.003. For the
random forest (RF) and XGBoost models, optuna was used for hyperparameter optimization.
Maximum performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

1000 GPT-J (LLM) 0.69 0.69 0.68 0.37
Llama (LLM) 0.59 0.57 0.59 0.17
Mistral (LLM) 0.57 0.56 0.57 0.13
RF 0.68 0.67 0.68 0.34
XGBoost 0.66 0.66 0.66 0.31
Zero-rule 0.50 0.50 0.50 0.00

Learning chemistry Next, we checked whether the models truly learn from the chemistry,
i.e., the elemental and structural information from the SMILES. We used the length of the
SMILES string to train the binary classifier. This description holds no chemical information,
rather it represents the number of individual atoms and thus the size of the molecule. In-
deed, the lower accuracy obtained (58%) hints that the LLMs could make better predictions
when a chemically relevant context is given. An accuracy of 61% was obtained from models
trained on shuffled SMILES notation for each entry (see Table 10) (i.e., the elements present,
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Figure 12. Learning curve analyses of binary classification of the melting point using
different models. Three LLMs (GPT-J, Llama, and Mistral) and two traditional ML mod-
els (XGBoost and random forest (RF)) were validated on predicting the binary class of the
adhesive free-energy of polymers. We used 50% as a random guess accuracy (dashed line),
representing the zero rule baseline. Three runs were performed for each model to get the
metric’s average and standard deviation. The fine-tuned GPTJ model reached the maximum
accuracy of 69% (training set size of 1,000 and 20 epochs).

without any info of the bonds), which further underpins the need for a chemical context to
make useful predictions (Figure 14). Figure 15 shows the confusion matrices for the models
trained using a training set of 1,000 data points and 20 epochs. We can also see the worse
prediction when using the length of the SMILES string, as well as when using the shuffled
SMILES notation.
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Figure 13. Learning curve analysis for predictions on the melting point of the small
molecules. For all experiments, the GPT-J model was fine-tuned. The small molecules were
represented in SMILES (blue), a common chemical name (green), or the length of the SMILES
(orange). Three separate models were trained and tested, where the average and the stan-
dard deviation were plotted. All models were trained with 25 epochs. A maximum accuracy
of 69% was reached for a training set size of 1,000 and 25 epochs when the GPT-J model was
trained on the SMILES of the molecules.
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3.4 Dynamic Viscosity of Molecules

The dataset was provided by: Mahyar Rajabi-Kochi and Mohamad Moosavi4

3.4.1 Scientific Background

Figure 16. AI generated representa-
tion of the viscosity of molecules.

The dynamic viscosity of fluids is a critical param-
eter in numerous scientific and engineering disci-
plines. Understanding and predicting this property
is essential for designing and optimizing various pro-
cesses, such as fluid transport in pipelines, cooling
applications, and lubrication systems. Due to the
complex behavior of fluids under different tempera-
ture and pressure conditions, experimental measure-
ments of dynamic viscosity are invaluable. However,
these data can inform and refine theoretical mod-
els or computational simulations aimed at predicting
fluid behavior. Machine learning techniques, when
applied to well-curated datasets of dynamic viscosity,
can bypass complex rheological computations, which
are often resource-intensive. For instance, by lever-
aging such datasets, we can develop predictive mod-
els that estimate viscosity based on molecular com-
position and thermodynamic conditions. Several no-
table studies utilized an aggregation of diverse viscosity data and machine learning models
to achieve significant accuracy improvements in predicting the viscosity of complex mix-
tures, underscoring the practical benefits of these datasets in both experimental settings and
large-scale industrial applications.14

3.4.2 Dataset

We compiled a dataset from the NIST database and supplemented it with recently published
experimental works.15,16 This dataset includes data points for 100 pure fluids and the cor-
responding dynamic viscosity at 298.15 Kelvin. Each fluid is represented by its SMILES
string, facilitating straightforward chemical structure identification and further computa-
tional analysis. Therefore, we predict the value of the viscosity as a function of SMILES. The
distribution of the viscosity values in the dataset is shown in Figure 17.

We used a simple prompt template, shown in Table 12, for experiments to predict dy-
namic viscosity of molecules.

4Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
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Figure 17. Distribution of the dynamic viscosity values in the dataset. The median dy-
namic viscosity is 1.7 cp.

Table 12. Prompt templates and completions for predicting the dynamic viscosity of
molecules. <SMILES> is the placeholder for the SMILES notation of the molecules.

prompt completion experimental

What is the viscosity of <SMILES>? 0 Low
What is the viscosity of <SMILES>? 1 High

3.4.3 LLM results

GPT-3.5 We first evaluated the chemical knowledge of OpenAI’s GPT-3.5 on viscosity val-
ues via ChatGPT. For 100 entries, we prompted: “What is the viscosity of <name of molecule >
?” The results showed that viscosity is predicted with 55% accuracy (considering a threshold
of 1.7 cp) from the name of the chemical, i.e., the prediction is no much better than random
guessing.

Base Case To train a binary classification model, we split the dataset into two classes of
equal size based on the dynamic viscosity value separated by the median, i.e., dynamic vis-
cosity threshold of 1.7 cp. We fine-tuned three LLMs, i.e., GPT-J, Llama, and Mistral, and we
also trained two “traditional” ML models, i.e., XGBoost and random forest (RF), for compar-
ison purposes. To train RF and XGBoost, the SMILES of the molecules were converted into
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Morgan fingerprints. Table 13 and Figure 18 show that the models trained with 30 epochs
perform much better than random guess (shown by the dashed line). The highest accuracy
was achieved with the GPT-J and RF models (80%) for a training set of 80 data points. XG-
Boost provided a similar accuracy (79%). Slightly lower accuracy values were obtained with
Llama (68%) and Mistral (64%).

Table 13. Overview of the accuracy results of LLM and “traditional” ML models for bi-
nary classification (balanced classes) of the dynamic viscosity of molecules. Five runs
were performed to get the metrics average. LLMs were fine-tuned with 30 epochs and a
learning rate of 0.0003. Maximum performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

80 GPT-J (LLM) 0.80 0.79 0.80 0.60
Llama (LLM) 0.68 0.66 0.68 0.35
Mistral (LLM) 0.64 0.61 0.64 0.28
RF 0.80 0.79 0.80 0.60
XGBoost 0.79 0.79 0.79 0.58
Zero-rule 0.50 0.50 0.50 0.00

As an example, Figure 19 shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-J model trained using a training set of 80 data points and 30
epochs. We can see the good prediction performance of the results, although the model fails
more often in predicting samples labeled ‘1’.

Real Split To simulate a more realistic case, we trained a binary classification model using
an unbalanced dataset to predict dynamic viscosity values within the top 28% highest values
in the dataset (dynamic viscosity threshold = 3 cp). Three LLMs (GPT-J, Llama, and Mistral)
and two “traditional” ML models (XGBoost and RF) were also fine-tuned with an unbalanced
dataset using 30 epochs. Figure 20 shows that the LLM models do not perform better than
random guess (shown by the dashed line), obtaining an accuracy of 69-72% when using a
training set of 80 data points and 30 epochs. RF and XGBoost models perform only slightly
better than random guess (82 and 79%, respectively).

As an example, Figure 21a shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-J model trained with this unbalanced dataset using a training
set of 80 data points and 30 epochs. We can see that the model fails to predict samples
labeled ‘1’.

However, we obtained better predictions of the viscosity values higher than 3 cp when
we used a balanced dataset created by undersampling the majority class (label = 0) at the
cost of reducing the size of the dataset. An accuracy of 80% was achieved using a training
set of 50 data points after increasing the number of fine-tuning epochs to 140, which is
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similar to that achieved with the initial balanced 50/50% larger dataset. The normalized
confusion matrix in Figure 21b shows that the proportion of right predictions is above the
random guess also in the case of a smaller balanced dataset. If we compared these results
with those in Figure 19, we can see that a slightly higher accuracy to predict samples labeled
‘0’ is achieved when using more training data points.
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Figure 18. Learning curves for binary classification models (balanced classes) for the
dynamic viscosity of molecules. Data points indicate the mean value of five different ex-
periments. Error bands show the standard error of the mean. We used 50% as random
guess accuracy (dashed line), representing the zero rule baseline, i.e., a model that al-
ways predicts the most common class. Accuracy: GPT-J=0.800±0.052, Llama=0.675±0.032,
Mistral=0.642±0.040, random forest=0.800±0.031, XGBoost=0.790±0.031 (LLM epochs =
30, LLM learning rate = 0.0003, random forest and XGBoost=default parameters, training
set size = 80 data points).
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Figure 19. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for dynamic viscosity prediction with the GPT-J model. Models were
trained using a training set of 80 data points and 30 epochs (accuracy = 80%).
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Figure 20. Learning curves for binary classification models (unbalanced classes, 72/28%)
for the dynamic viscosity of molecules. Data points indicate the mean value of five differ-
ent experiments. Error bands show the standard error of the mean. We used 72% as a ran-
dom guess accuracy (dashed line), representing the zero rule baseline, i.e., a model that al-
ways predicts the most common class. Accuracy: GPT-J=0.719±0.024, Llama=0.690±0.010,
Mistral=0.700±0.016, random forest=0.815±0.026, XGBoost=0.790±0.041 (LLM epochs =
30, LLM learning rate = 0.0003, random forest and XGBoost=default parameters, training
set size = 80 data points).
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Figure 21. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for dynamic viscosity prediction with the GPT-J model. Models were
trained using an ‘unbalanced’ dataset with 72% of labels equal to ‘0’, a training set of 80 data
points and 30 epochs (accuracy = 72%) (a), and using a ‘balanced’ dataset with a training set
of 50 data points and 140 epochs (accuracy = 80%) (b).

35



3.5 Microstructural Properties of Magnesium Alloys

The dataset was provided by: Jianan Gu, Domonkos Tolnai, D.C. Florian Wieland, and
Regine Willumeit-Römer5

3.5.1 Scientific Background

Figure 22. AI generated representa-
tion of an example of a magnesium
alloy.

Due to their light weight, Mg alloys gain popularity
in structural applications where weight saving is of
importance.17 Furthermore, owing to their degrada-
tion under physiological conditions, specific Mg al-
loys are being used as degradable implants.18 Besides
a small portion produced with powder-metallurgical
processing,19–21 the majority of these alloys are cast
and subsequently subjected to thermo-mechanical
treatment to obtain a microstructure corresponding
to a suitable property profile.22,23 During service in a
corrosive environment, stress corrosion cracking be-
comes the limiting factor of the service life, as the
simultaneous mechanical- and corrosion-load leads
to early failure due to crack initiation and growth
at relatively low stress levels.24 To understand this
process, thorough knowledge of the connection of
processing parameters, alloy composition, and mi-
crostructure is necessary, which can be vastly differ-
ent for the different processing methods.

The herein-used dataset was compiled from the literature and collects important pro-
duction parameters and the resulting microstructural properties25–33 A major problem is
the establishment of a generalized model for the prediction of the microstructural proper-
ties because each production route has unique process parameters. This makes traditional
approaches, like e.g. random forest methods, hard to apply. Here we collect the alloy com-
position, production route parameters, along with the grain size and the fraction of the sec-
ondary phase. The later two parameters have an important impact on the magnesium alloy’s
mechanical and corrosive properties.

3.5.2 Dataset

The dataset contains 81 Mg alloys with their respective microstructure features for different
process routes:

• Extruded: the alloy is forced through a die.

5Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
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• Heat-treated: the alloy is heated to a specific temperature for a given time and rapidly
quenched down to room temperature.

• As-cast: the molten alloy is poured into a mold and allowed to solidify.

• Equal channel angular extrusion (ECAE): extrusion process in which the alloy is
pressed through a die with channels intersection at an angle of 90°.

Nine additional process parameters are reported for the relevant alloys:

• homogenized temperature: temperature of the homogenization treatment,

• homogenized time: time of the homogenization treatment,

• solutionized temperature: temperature of the solution heat treatment,

• solutionized time: time of the solution heat treatment,

• extrusion temperature: temperature of the extrusion process,

• extrusion speed: speed of the extrusion process,

• extrusion ratio: area of the billet vs. area of the shape in the extrusion process.

• ECAE temperature: temperature of the ECAE process, and

• ECAE pass: temperature of the ECAE process.

Additionally, 13 element columns (Fe, Cu, Ni, Nd, Zn, Ca, Al, Sn, Mn, Si, Gd, Y, and Zr)
are included in the dataset, describing the elemental composition of the materials as their
respective weight percentage in the alloy.

In Table 14, the number of missing values per production route is summarized. The
process type is highly unbalanced, with most materials manufactured via ‘extrusion’ and
only two reported cases of ECAE. Moreover, it can be seen that the available data is variable
over all production routes.

Table 14. Missing values counts (n) for each production route and data column.

Process n Thomo thomo Tsol tsol Tex vex Ratioex TECAE PassECAE

Extruded 43 28 28 9 9 0 0 0 43 43
Heat-treated 13 7 7 0 0 13 13 13 13 13
As-cast 23 23 23 23 23 23 23 23 23 23
ECAE 2 0 0 2 2 0 0 0 0 0
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We are interested in predicting the binary class of both the grain size and the fraction of
the secondary phase. From the quick visualization of the data, we can see that both values are
highly dependent on the production route (Figures 23 and 24). Lower grain sizes and lower
‘second phase’ values are mostly linked to an extrusion process. In contrast, higher grain
sizes come from heat-treated and as-cast procedures, while higher ‘second phase’ values are
mostly linked to as-cast processes.

An example of the prompt template used in the experiments for predicting grain size or
‘second phase’ of Mg alloys is shown in Table 15.

Table 15. Example prompts and completions for predicting microstructural properties of
Mg alloys. <Mg alloy> serves as a placeholder for the representation of the Mg alloy process
route.

prompt completion experimental

Example of training data

What is the grain size or second

phase of <Mg alloy>?

0 Low

What is the grain size or second

phase of <Mg alloy>?

1 High

3.5.3 LLM results

We used a training size of 25 and 50 epochs for the following experiments and comparisons.
For these initial experiments, GPT-J was fine-tuned. When we train a model to predict the
binary class of the ‘second phase’ (median = 1.14) on all the parameters, we get an accuracy
of 79.3%. If we train a model to predict the ‘second phase’ on only the process route, we
get an accuracy of 78.0%. We can conclude that the model mostly learns from the process
production procedure, and not necessarily from all the other parameters.

However, if we then filter only the 43 entries made with the extrusion process and predict
the binary class (new median of 0.65), we see that the accuracy of the model is 53.7%, i.e.,
not able to make any concrete predictions.

On the other hand, if we train a model to predict the binary class of the ’grain size’
(median = 25.7) on all the parameters, we get an accuracy of 84.0%. If we train a model
to predict the grain size on only the process route, we get an accuracy of 94.0%. We can
conclude that the model mostly learns from the production process, and not from all the
other parameters. The addition of extra parameters even leads to a significant decrease in
model performance.

However, if we then filter only the 43 entries made with the extrusion process and predict
the binary class (new median of 12.1), we see that the accuracy of the model is 55.0%, not
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being able to make any concrete predictions in this case either.
We further compared different models on their predictive performance of the ’grain size’.

We trained three different LLMs, i.e., GPT-J, Llama, and Mistral, and two “traditional” mod-
els (random forest (RF) and XGBoost) (Table 16). All the available parameters were used to
represent the Mg alloys. We see that all LLMs provide similar accuracies (average of 89%).
In comparison with “traditional” ML models, LLMs perform on average slightly worse for
this dataset.

Table 16. Overview of results of LLMs and “traditional” ML predicting the binary class
of the grain size. Three runs were performed to get the metrics average. All LLMs were fine-
tuned with 25 epochs and a learning rate of 0.003. For the random forest (RF) and XGBoost
models, optuna was used for hyperparameter optimization. Maximum performances are
highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

30 GPT-J (LLM) 0.85 0.85 0.85 0.63
Llama (LLM) 0.89 0.89 0.89 0.79
Mistral (LLM) 0.94 0.94 0.94 0.88
RF 0.95 0.95 0.95 0.90
XGBoost 0.95 0.95 0.95 0.89
Zero-rule 0.50 0.50 0.50 0.00
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Figure 23. Grain size analysis. Subsets of the complete dataset are analyzed based on the
production route. Pie charts display the proportion of lower grain size values (blue, size
lower than median = 25.7) and higher grain size values (red, size higher than median =
25.7) in the subset. Histograms represent the distribution of the values. The red line in the
subset’s histogram represents the median grain size of the complete dataset, i.e., 27.7.
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Figure 24. ‘Second phase’ analysis. Subsets of the complete dataset are analyzed based
on the production route. Pie charts display the proportion of lower ‘second phase’ values
(blue, lower than median = 1.14) and higher ‘second phase’ values (red, higher than median
= 1.14) in the subset. Histograms represent the distribution of the values. The red line in
the subset’s histogram represents the median ‘second phase’ value of the complete dataset,
i.e., 1.14.
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3.6 Phase Separation Propensity of Proteins

The dataset was provided by: Lydia L. Good, Alex Abrudan, Tuomas P.J. Knowles6

3.6.1 Scientific Background

Figure 25. AI generated representa-
tion of the formation of protein-rich
biomolecular condensates.

Predicting phase separation propensity for proteins
is important for understanding their contributions to
cellular organization and function (Figure 26).34 In
such a phase separation, one can observe the forma-
tion of a protein-rich biomolecular condensate and
a protein-poor phase. These condensates emerge
from the natural propensity of cellular proteins to
cluster, driven by specific sequences and biophysi-
cal interactions. To map out the relationship between
the sequences of proteins and their tendency to un-
dergo phase separation, Saar et al. 35 have compiled a
dataset comprising proteins with diverse phase sepa-
ration behaviors and analyzing them for commonali-
ties in their sequences and biophysical properties. In
addition, they developed binary classifiers based on
extracted physical features of the protein sequence
and an embedding of the sequence made using a
word2vec model,36 which can be used to compare
predictive performances. The reader is referred to the original publication for details on
the author’s methodology on the word2vec model.35

3.6.2 Dataset

The final dataset is constructed from two publicly available datasets, the LLPSDB37 and
the PDB.38 After cleaning and filtering of the LLPSDB, Saar et al. 35 divided the remaining
structures into two datasets. The first one contained proteins with an experimental evidence
documenting their homotypic phase separation at physiologically-relevant concentrations
(below 100 µM) (LLPS+), while the other contained proteins that phase separate only under
more extreme conditions (concentrations above 100 µM) (LLPS-). All structures in the PDB
dataset are highly unlikely to phase separate.

6Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
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Figure 26. LLMs to predict phase separation of proteins. The GPT model was tasked
with classifying protein sequences based on their propensity to undergo liquid-liquid phase
separation, a de-mixing process that underlies the formation of membrane-less organelles
within cells. Saar et al. 35 classified the protein sequences used for fine-tuning and testing
the model into three groups (LLPS+, LLPS-, PDB*) based on available experimental evidence
for their propensity to undergo homotypic phase separation. Microscopy images at the right
hand side, which show the presence and absence of protein phase separation in cells, are
adapted from Tsai et al. 39 .

The distribution of these three datasets is shown in Figure 27. The imbalance was ac-
counted by sampling the larger classes to match the size of the smallest class. For a detailed
description of the dataset construction, the reader is referred to the original publication.35

LLPS+
PDB LLPS-

Figure 27. Distribution of the three datasets. In total, there are 1783 sequences (PDB
1,562 and LLPSDB 221). From LLPSDB, 84 sequences (4.7%) have a low propensity to LLPS
(LLPS-) and 137 sequences (7.6%) have a high propensity to LLPS (LLPS+). All sequences
from PDB (1,562 sequences, 87.6%) are highly unlikely to LLPS (LLPS-).
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An example of the prompt used for the fine-tuning is shown in Table 17.

Table 17. Example prompts and completions for predicting the propensity of proteins to
phase separate. <protein> serves as a placeholder for the representation of the amino acid
sequence (see Table 18).

prompt completion experimental

Example of training data

What is the propensity to phase separate of

<protein>?

0 Low

What is propensity to phase separate of <pro-

tein>?

1 High

Table 18. Representation of the sequences. Two example entries illustrate the four different
representations of the sequence.

Example 1 Example 2

Sequence RRGGGFG...SGDGYN SKDHVN...GSRGGS
First 20 AA RRGDGRRRGGGGRGQGGRGR SKDHVNRIIESLEKSSSSEP
Length 40 260
Shuffled GGFGDS...GRKTNG TSDDYA...SITGGS

3.6.3 LLM results

As in the original publication, the first experiments aimed to train a classifier that could
distinguish the different datasets. A random subset of the most populated dataset (unlikely
to LLPS), equal in size to the least populated dataset (some evidence of LLPS), was taken to
ensure a final balanced dataset. For instance, 84 random entries from the PDB and the full
LLPS+ dataset (n = 84) were used to ensure training on a balanced dataset, thus obtaining
less biased predictions for the binary classification. Three different LLMs, i.e., GPT-J, Llama,
and Mistral, were fine-tuned to compare their predictive power with the in-house ML models
of Saar et al.Saar et al. 35 . For the LLM models, the final metric was the average accuracy over
three different training/test cycles. The benchmark corresponding to random guessing is an
accuracy of 50%. For all three cases, all LLMs show similar accuracies to Saar et al. 35 ’s
model (Table 19).

Next, we experimented with the following representations of the protein sequence in the
prompt (see Table 18 for examples):
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Table 19. Overview of the performance of the different models with the full sequence
as the representation. A comparison with models trained on two different featurization
strategies, i.e., engineered features (EF) and single-layer language model (LM), from Saar
et al. 35 was made. The LLMs (GPT-J, Llama, and Mistral) were trained on a training set size
of 75 and 25 epochs. The accuracy was taken over three seeds.

LLPS-/PDB* LLPS+/LLPS- LLPS+/PDB*

# per class 84 84 137
Total dataset size 168 168 274
Training Size 75 75 75
Test Size 50 50 50

GPT-J Accuracy 83% 64% 95%
Llama Accuracy 81% 64% 85%
Mistral Accuracy 82% 59% 92%
LM Accuracy 85% 65% 89%
EF Accuracy 87% 63% 90%

• The full sequence.

• The total length of the sequence, i.e., the number of amino acids in the sequence.

• Only the first 20 amino acids, i.e., the first 20 letters of the full sequence. Using only
the first 20 amino acids interrogates the attention window of the model to determine
whether the model has a limited attention window or considers the whole sequence, as
transformers are supposed to do.

• A random shuffle of the full sequence, i.e., the same letters representing the amino
acids, but now in a random order. Shuffling interrogates whether the model only learns
correlations about the amino acid composition of sequences or if positional correla-
tions are also learned.

The same training/testing workflow was used for every representation. The GPT-J model
was used for these comparisons. From the accuracies plotted in Figure 28, we see similar
trends in the LLPS-/PDB* and LLPS+/PDB* classifications. The full sequence has the high-
est performance, indicating that the models learn from the sequences’ full chemical/biological
context. In contrast, the sequence length does not hold any relevant information and is
indeed also reflected in the lowest accuracy. The LLPS-/LLPS+ classification has similar
metrics for all representations. Interestingly, we see that the LLMs obtain comparable per-
formances to the models of Saar et al. 35 (Figure 28, dotted line (EF model)). Figures 29 to 31
show the confusion matrices of the LLPS-/PDB*, LLPS-/LLPS+, and LLPS+/PDB* classi-
fiers, respectively.
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The results of the LLPS+/PDB classifier indicate that with the characteristic amino acid
composition of the disordered regions alone, we can distinguish the two classes since the
“shuffled sequence” model performance is relatively close to the performance of the “se-
quence” model. The LLPS-/PDB classification looks like a harder problem. However, the
lower accuracy could also be caused by data quality issues since the LLPS dataset is smaller
and trickier to create and possibly more heterogeneous in nature. Lastly, the LLPS+/LLPS-
classification is definitely a harder problem since both datasets contain partially disordered
proteins, and the model cannot capture the factors that make disordered proteins more
prone to LLPS, so an accuracy of 64% is not far from a random model.
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Figure 28. Accuracies for binary classification for the different datasets trained on four
different representations. GPT-J was used as the base model. The same workflow was used
for all four representations: training set size of 75, 25 epochs, test set size of 50, and average
metric over three different models. The dotted black line represents the accuracy of the EF
model of Saar et al. 35 .
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Figure 29. Normalized confusion matrices of the LLPS-/PDB* classifiers. Three experi-
ments, i.e., seeds, with the GPT-J model were performed for every representation. All models
were trained on a training set size of 75 and 25 epochs. The accuracy of the model is given
above every confusion matrix.
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Figure 31. Normalized confusion matrices of the LLPS+/PDB* classifiers. Three experi-
ments, i.e., seeds, with the GPT-J model were performed for every representation. All models
were trained on a training set size of 75 and 25 epochs. The accuracy of the model is given
above every confusion matrix.
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3.7 Structure of Nanoparticles

The dataset was provided by: Andy S. Anker7

3.7.1 Scientific Background

Figure 32. AI generated representa-
tion of the scattering of a nanoparti-
cle.

Developing new nanomaterials for energy technolo-
gies depends on understanding the intricate rela-
tion between material properties and atomic struc-
ture. It is, therefore, crucial to be able to character-
ize the atomic structure in nanomaterials routinely.
A promising method to elucidate size-dependent
atomic structure of nanomaterials is Pair Distribution
Function (PDF) analysis.40 The PDF can be obtained
through Fourier transformation of x-ray total scatter-
ing data and represents a histogram of all interatomic
distances in the sample (see Figure 33). Going from
the distance information in the PDF to a chemical
structure is an unassigned distance geometry prob-
lem (uDGP), and solving this is often the bottleneck
in nanostructure analysis. A Conditional Variational
Autoencoder (CVAE) has been proposed to automat-
ically solve the uDGP to obtain valid chemical struc-
tures from the scattering pattern.41,42

In this work, we explore the potential of an LLM
model to predict the structure type and number of atoms in nanomaterials from their scat-
tering pattern. Predicting these values accurately is an easier task than solving the structure,
and LLMs are more convenient to use for researchers than CVAEs, as they are purely based
on natural language.

3.7.2 Dataset

The dataset includes 1957 scattering patterns of nanoparticles with seven different structure
types (simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC), hexagonal
closed packed (HCP), decahedral (Dec), icosahedral (Ico), and octahedral (Oct)). These nano-
materials have up to 100 atoms. In this work, we predict a nanomaterial’s number of atoms
and structure type from its scattering pattern, The input to the LLM is the scattering pattern
represented as series of numbers in the form of a string obtained from the Pair Distribution
Function (PDF), as shown in Figure 34. The length of the input scattering pattern, i.e., the

7Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby,
Denmark
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Figure 33. Examples of simulated PDFs (A) from each one of the seven different structure
types that are presented in the dataset in sizes between 5 and 100 atoms (B).

number of points of the PDF representation, has been adjusted to comply with the model
context window by uniformly sampling the entire scattering pattern. The distribution of the
number of atoms and structure type values in the dataset is shown in Figure 35.

We used a simple prompt template, with prompts of the form shown in Table 20 for
experiments to predict the number of atoms and structure type.

3.7.3 LLM results

Structure type - Real Split We used the original dataset, which contains seven different
categories for this variable, to predict the structure type of nanoparticles. As it can be seen
in Figure 35a, the distribution of data points in these categories is highly unbalanced.

For this dataset, Figure 36 shows that our GPT-J model trained with 20 epochs gives an
accuracy of 93% for a training set of 1800 data points, which is significantly better than
random guess (shown by the dashed line). To check if we could further improve the model’s
predictive performance, we did experiments with 30 epochs, but an almost similar accuracy
was achieved (94%). This means the model can accurately predict the structure type despite
using a highly unbalanced training set.

Figure 37 shows the averaged (over three independent runs) normalized confusion ma-
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Figure 34. Pair Distribution Function (PDF) obtained from a material and the corre-
sponding scattering pattern string used as input to the LLM model. In this work we per-
form the classification task of predicting the structure type of a material and the regression
task of predicting the number of atoms from the obtained scattering pattern.

trix for the GPT-J model trained using a training set of 1800 data points, and 20 (Figure 37a)
and 30 epochs (Figure 37b). We can see that the slight increase in the model’s predictive per-
formance when using 30 fine-tuning epochs is associated with higher precision to predict
the less represented classes, i.e., Dec, Ico, and Oct.

We fine-tuned three LLMs, i.e., GPT-J, Llama, and Mistral, using 30 epochs. We also
trained two “traditional” ML models, i.e., XGBoost and random forest (RF), for comparison
purposes. Table 21 and Figure 38 show that the highest accuracy (97%) was obtained with
the GPT-J model, but only slightly lower accuracy values were obtained with other models
(94%).

For comparison purposes, we created a balanced 7-class dataset by sampling n data
points of each class, where n represents the amount of data points of the least-populated
class, i.e., 38 (Ico). This was done at the cost of reducing the size of the dataset to 266
data points. Figure 39 shows that the LLMs trained with 30 epochs give accuracy values
of 43-56% for a training set of 200 data points, which is higher than random guess (shown
by the dashed line) but much lower than the accuracy obtained for the prediction of the 7-
class unbalanced dataset. The accuracy achieved with the RF and XGBoost models is higher
(73% and 70%, respectively), but still lower than that obtained with the 7-class unbalanced
dataset.

As an example, Figure 40 shows the averaged (over three independent runs) normalized
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Figure 35. Distribution of the structure type (a) and number of atoms (b) of nanomate-
rials in the dataset. The nanoparticles in the dataset are distributed in 7 different structure
classes, which are highly unbalanced. The median number of atoms of the nanomaterials in
the dataset is 48.

confusion matrix for the GPT-J model trained using a training set of 200 data points and
30 epochs. We can see that the prediction accuracy for most of the categories is low. This
indicates that we can develop a model to predict an unbalanced dataset with seven classes by
using a relatively high training set size. However, when using a very low number of training
data points, the fine-tuned model cannot predict a balanced dataset. The RF and XGBoost
models seem to perform better with smaller datasets.

We also created balanced 5-class (Figure 41) and 4-class (Figure 42) datasets by under-
sampling the highest populated classes and removing the least populated classes, resulting
in training dataset sizes of 425 and 700 data points, respectively. As an example, Figure 43
shows the averaged (over three independent runs) normalized confusion matrix for the GPT-
J model trained using a 5-class balanced training set of 425 data points and 30 epochs (Fig-
ure 43a), and a model trained using a 4-class balanced training set of 700 data points and
30 epochs (Figure 43b). The results show that the LLMs predict four or five balanced classes
with relatively high accuracy (92-96% and 83-87%, respectively). When we increase the size
of the dataset, the performance of the LLMs becomes similar to that of the RF and XGBoost
models. From these results, we can deduce the importance of the training set size in ob-
taining a high LLMs performance. Even for balanced datasets, larger training set sizes are
necessary when complex inputs are given to the model.

Number of atoms -BaseCase To train binary classification models, we first split the dataset
into two classes of equal size based on the number of atoms separated by the median, i.e., 48
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Table 20. Example prompts and completions for predicting the structure type and num-
ber of atoms of nanoparticles. <scattering pattern> serves as a placeholder for the nu-
meric string of the nanomaterial’s scattering pattern.

prompt completion experimental

What is the structure type of <scattering pattern>∗? 0 Category BCC
What is the structure type of <scattering pattern>? 1 Category Dec
What is the structure type of <scattering pattern>? 2 Category FCC
What is the structure type of <scattering pattern>? 3 Category HCP
What is the structure type of <scattering pattern>? 4 Category Ico
What is the structure type of <scattering pattern>? 5 Category Oct
What is the structure type of <scattering pattern>? 6 Category SC

What is the number of atoms of <scattering pattern>? 0 Low
What is the number of atoms of <scattering pattern>? 1 High

* Scattering pattern example: “[0 0.001 -0.003 0.005 0.022 0.055 0.064 0.076 0.084 0.091 . . . 0.016
0.0012 0.010 0.008 0.009 0.008 0.008]”

Table 21. Overview of accuracy results of LLMs and “traditional” ML models for binary
classification (balanced classes) of the structure type. Three runs were performed to get
the metrics average. LLMs were fine-tuned with 30 epochs and a learning rate of 0.0003.
Maximum performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

1800 GPT-J (LLM) 0.94 0.86 0.94 0.92
Llama (LLM) 0.94 0.84 0.94 0.91
Mistral (LLM) 0.97 0.94 0.97 0.95
RF 0.94 0.83 0.94 0.91
XGBoost 0.94 0.88 0.96 0.94
Zero-rule 0.50 0.50 0.50 0.00

atoms.
Figure 44 shows that the GPT-J model trained with 20 epochs gives an accuracy of 94%

for a training set of 1800 data points, which is significantly better than random guess (shown
by the dashed line). To check if we could improve the model’s predictive performance, we
did experiments with 30 epochs, and a very high precision of 98% was achieved.

We also fine-tuned three LLMs, i.e., GPT-J, Llama, and Mistral, with 30 epochs, and two
“traditional” ML models, i.e., XGBoost and random forest (RF), for comparison purposes.
Table 22 and Figure 45 show that very high accuracies (100%) were obtained with the Llama,
RF, and XGBoost models, but only slightly lower accuracy values were obtained with GPT-J
and Mistral (98% and 99%, respectively).
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Figure 36. Learning curves for 7-class classification GPT-J models (unbalanced classes)
for the structure type fine-tuned with different number of epochs. Data points indicate
the mean value of three different experiments. Error bands show the standard error of the
mean. We used 0.51 for random guess accuracy (dashed line). Accuracy = 0.943±0.003
(epochs = 30, learning rate = 0.0003, training set size = 1800 data points).

Table 22. Overview of the accuracy results of LLMs and “traditional” ML models for
binary classification (balanced classes) of the number of atoms of nanoparticles. Three
runs were performed to get the metrics average. LLMs were fine-tuned with 30 epochs and
a learning rate of 0.0003. Maximum performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

1800 GPT-J (LLM) 0.98 0.98 0.98 0.96
Llama (LLM) 1.0 1.0 1.0 1.0
Mistral (LLM) 0.99 0.99 0.99 0.99
RF 1.0 1.0 1.0 1.0
XGBoost 1.0 1.0 1.0 1.0
Zero-rule 0.50 0.50 0.50 0.00

As an example, Figure 46 shows an averaged (over three independent runs) normalized
confusion matrix for the GPT-J model trained using a training set of 1800 data points and
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Figure 37. Normalized confusion matrix, averaged over three independent runs, on the
holdout test data for structure type prediction with the GPT-J model. Models were trained
using an ‘unbalanced’ dataset with seven categories, a training set of 1800 data points, and
20 epochs (accuracy = 93%) (a) and 30 epochs (accuracy = 94%) (b).

30 epochs. We can see that the predictive performance of the model for binary classification
of the number of atoms is very good.

Number of atoms - Real Split Since the binary classification of the number of atoms in
nanoparticles is of no practical interest, we also trained classification models using datasets
split into four and ten bins and regression models using datasets with continuous values.

To classify the dataset into a larger number of classes, we split it into four and ten equally
sized bins. For four-class classification, Figure 47 shows that the GPT-J model trained with
30 epochs gives an accuracy of 90% for a training set of 1800 data points, which is much
better than random guess (shown by the dashed line). This accuracy did not significantly
increase when we used 60 epochs, achieving a value of 91%. For ten-class classification,
Figure 48 shows that the model trained with 30 epochs achieves an accuracy of 83% for a
training set of 1800 data points, which is also much better than random guess (shown by the
dashed line). This accuracy slightly increased when we used 60 epochs, achieving a value of
85%.

We also fine-tuned three LLMs (GPT-J, Llama, and Mistral) and two “traditional” ML
models (XGBoost and RF) for four-class and ten-class classification using 60 epochs. For
four-class classification, Figure 49 shows that the highest accuracy (98%) was obtained with
the Mistral model, but high accuracy values were also obtained with other models (88-91%).
For ten-class classification, Figure 50 shows that the LLM models perform much better (ac-
curacy values of 85-92%) than the “traditional” ML models (accuracy values of 76% with RF,
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Figure 38. Learning curves for 7-class classification models (unbalanced classes) for the
structure type. Data points indicate the mean value of three different experiments. Error
bands show the standard error of the mean. We used 0.51 for random guess accuracy (dashed
line). Accuracy: GPT-J=0.943±0.003, Llama=0.940±0.012, Mistral=0.967±0.013, random
forest=0.939±0.003, XGBoost=0.958±0.008 (LLM epochs = 30, LLM learning rate = 0.0003,
random forest and XGBoost=default parameters, training set size = 1800 data points).

and 68% with XGBoost).
As an example, Figure 51 also shows the good predictions obtained with the GPT-J model

with four (Figure 51a) and ten (Figure 51b) classes in the dataset, since the majority of them
are in the diagonal of the confusion matrix.

Finally, for regression, we use the regression approach of our original article,9 i.e., direct
text completion of rounded figures. In this case, a random train/test data split stratified
on the target variable was applied using a threshold of 60 atoms. Figure 52 shows that
the regression LLM models performs notably well in predicting the number of atoms of
nanoparticles when using a training size of 1800 data points and 30 epochs (R2 = 0.98-
0.99, maximum absolute error (MAE) = 0.74-1.24, root mean squared error (RMSE) = 2.83-
3.76). We can also see that the LLMs perform better than the “traditional” ML models for
regression.
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Figure 39. Learning curves for 7-class classification models (balanced classes) for the
structure type. Data points indicate the mean value of three different experiments. Error
bands show the standard error of the mean. We used 0.14 for random guess accuracy (dashed
line). Accuracy: GPT-J=0.548±0.032, Llama=0.433±0.013, Mistral=0.560±0.053, random
forest=0.729±0.018, XGBoost=0.700±0.030 (LLM epochs = 30, LLM learning rate = 0.0003,
random forest and XGBoost=default parameters, training set size = 200 data points).
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Figure 40. Normalized confusion matrix, averaged over three independent runs, on the
holdout test data for structure type prediction with the GPT-J model. Models were trained
using a ‘balanced’ dataset with seven categories, a training set of 200 data points, and 30
epochs (accuracy = 55%).
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Figure 41. Learning curves for 5-class classification models (balanced classes) for the
structure type. Data points indicate the mean value of three different experiments. Error
bands show the standard error of the mean. We used 0.20 for random guess accuracy (dashed
line). Accuracy: GPT-J=0.867±0.013, Llama=0.833±0.037, Mistral=0.860±0.000, random
forest=0.896±0.018, XGBoost=0.900±0.014 (LLM epochs = 30, LLM learning rate = 0.0003,
random forest and XGBoost=default parameters, training set size = 425 data points).

60



250 400 550 7000.0
0.5
1.0

accuracy

---- zero-rule
Structure type_4categ_balanced_GPT-JStructure type_4categ_balanced_LlamaStructure type_4categ_balanced_MistralStructure type_4categ_balanced_RFStructure type_4categ_balanced_XGBoost

250 400 550 7000.0
0.5
1.0

F1 macro

250 400 550 7000.0
0.5
1.0

F1 micro

250 400 550 700
training set size

0.0
0.5
1.0

Figure 42. Learning curves for 4-class classification models (balanced classes) for the
structure type. Data points indicate the mean value of three different experiments. Error
bands show the standard error of the mean. We used 0.25 for random guess accuracy (dashed
line). Accuracy: GPT-J=0.920±0.035, Llama=0.920±0.042, Mistral=0.960±0.000, random
forest=0.960±0.011, XGBoost=0.967±0.014 (LLM epochs = 30, LLM learning rate = 0.0003,
random forest and XGBoost=default parameters, training set size = 700 data points).
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Figure 43. Normalized confusion matrix, averaged over three independent runs, on the
holdout test data for structure type prediction with the GPT-J model. Models were trained
using a ‘balanced’ dataset with five categories, a training set of 425 data points, and 30
epochs (accuracy = 87%) (a), as well as a ‘balanced’ dataset with four categories, a training
set of 700 data points, and 30 epochs (accuracy = 92%) (b).
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Figure 44. Learning curves for binary classification GPT-J models (balanced classes) for
the number of atoms of nanoparticles fine-tuned with different number of epochs. Data
points indicate the mean value of three different experiments. Error bands show the stan-
dard error of the mean. We used 0.50 as random guess accuracy (dashed line), representing
the zero rule baseline, i.e., a model that always predicts the most common class. Accuracy =
0.980±0.012 (epochs = 30, learning rate = 0.0003, training set size = 1800 data points).
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Figure 45. Learning curves for binary classification models (balanced classes) for the
number of atoms of nanoparticles. Data points indicate the mean value of three differ-
ent experiments. Error bands show the standard error of the mean. We used 0.50 as ran-
dom guess accuracy (dashed line), representing the zero rule baseline, i.e., a model that
always predicts the most common class. Accuracy: GPT-J=0.980±0.012, Llama=1.0±0.0,
Mistral=0.993±0.007, random forest=1.0±0.0, XGBoost=1.0±0.0 (LLM epochs = 30, LLM
learning rate = 0.0003, random forest and XGBoost=default parameters, training set size =
1800 data points).
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Figure 46. Normalized confusion matrix, averaged over three independent runs, on the
holdout test data for the number of atoms prediction with the GPT-J model. Models were
trained for binary classification using a training set of 1800 data points and 30 epochs (ac-
curacy = 98%).
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Figure 47. Learning curves for 4-class classification GPT-J models for the number of
atoms of nanoparticles. Data points indicate the mean value of three different experiments.
Error bands show the standard error of the mean. We used 0.25 as random guess accuracy
(dashed line), representing the zero rule baseline, i.e., a model that always predicts the most
common class. Accuracy = 0.907±0.007 (epochs = 60, learning rate = 0.0003, training set
size = 1800 data points).
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Figure 48. Learning curves for 10-class classification GPT-J models for the number of
atoms of nanoparticles. Data points indicate the mean value of three different experiments.
Error bands show the standard error of the mean. We used 0.10 as a random guess accuracy
(dashed line), representing the zero rule baseline, i.e., a model that always predicts the most
common class. Accuracy = 0.853±0.027 (epochs = 60, learning rate = 0.0003, training set
size = 1800 data points).
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Figure 49. Learning curves for 4-class classification models for the number of atoms of
nanoparticles. Data points indicate the mean value of three different experiments. Error
bands show the standard error of the mean. We used 0.25 as random guess accuracy (dashed
line), representing the zero rule baseline, i.e., a model that always predicts the most common
class. Accuracy: GPT-J=0.907±0.007, Llama=0.893±0.007, Mistral=0.980±0.011, random
forest=0.880±0.000, XGBoost=0.900±0.000 (LLM epochs = 60, LLM learning rate = 0.0003,
random forest and XGBoost=default parameters, training set size = 1800 data points).
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Figure 50. Learning curves for 10-class classification models for the number of atoms of
nanoparticles. Data points indicate the mean value of three different experiments. Error
bands show the standard error of the mean. We used 0.10 as a random guess accuracy
(dashed line), representing the zero rule baseline, i.e., a model that always predicts the most
common class. Accuracy: GPT-J=0.853±0.027, Llama=0.927±0.007, Mistral=0.913±0.007,
random forest=0.760±0.000, XGBoost=0.680±0.000 (LLM epochs = 60, LLM learning rate
= 0.0003, random forest and XGBoost=default parameters, training set size = 1800 data
points).
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Figure 51. Normalized confusion matrix, averaged over three independent runs, on the
holdout test data for the number of atoms of nanoparticles prediction with the GPT-J
model. Models were trained using 4-class (accuracy = 91%) (a) and 10-class (accuracy =
85%) (b) balanced datasets, training sets of 1800 data points, and 60 epochs.

70



600 1000 1400 18000

1
R2

Number of atoms_GPT-J
Number of atoms_LlamaNumber of atoms_Mistral

Number of atoms_RFNumber of atoms_XGBoost

600 1000 1400 18000

5
mae

600 1000 1400 1800
training set size

0

10
rmse

Figure 52. Learning curves for regression models for the prediction of the num-
ber of atoms of nanoparticles. Data points indicate the mean value of three dif-
ferent experiments. Error bands show the standard error of the mean. R2: GPT-
J=0.982±0.007, Llama=0.993±0.001, Mistral=0.991±0.001, random forest=0.932±0.003,
XGBoost=0.942±0.006; MAE: GPT-J=1.24±0.31, Llama=0.74±0.02, Mistral=0.82±0.19, ran-
dom forest=5.08±0.15, XGBoost=4.71±0.23; RMSE: GPT-J=3.76±0.85, Llama=2.51±0.21,
Mistral=2.83±0.17, random forest=7.30±0.22, XGBoost=6.76±0.36 (LLM epochs = 30, LLM
learning rate = 0.0003, random forest and XGBoost=default parameters, training set size =
1800 data points).
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3.8 Melting Temperature of triacylglycerols

The dataset was provided by: Michele Lessona, Antonio Buffo and Elena Simone8

3.8.1 Scientific Background

Figure 53. AI generated represen-
tation of the melting temperature of
triacylglycerols.

Triacylglycerols (TAGs) are the primary components
of natural fats and oils. Fats and oils are of crucial im-
portance in food, cosmetic, and pharmaceutical ap-
plications. Natural fats are mixtures of several TAGs
composed of different Fatty Acids (FAs), which vary
in unsaturation level, chain length, and their relative
position on the glycerol backbone. These variations
affect both the thermal and structural properties of
TAGs and, in turn, their behavior in solid fat mix-
tures. To predict how complex TAG mixtures crystal-
lize and melt, different thermodynamic models based
on the thermal properties of pure TAGs have been
developed.43–45 However, due to the chemical com-
plexity of natural fats and the structural similarity of
many natural TAG molecules, these are often difficult
to extract and purify, meaning that the experimen-
tal data necessary to build thermodynamic models of
TAG mixtures is not always available. Over the years,
many predictive models for the estimation of melting
temperature and enthalpy of pure TAGs43,46–48 have been developed.

3.8.2 Dataset

Literature data on the melting point and enthalpy of a wide selection of pure TAGs in their
β-polymorph (the most thermodynamically stable form) were also collected and deposited
in a publicly available database.49 Nevertheless, the lack of reliable, pure TAG melting prop-
erties remains a key issue in lipid science. For this work, 211 TAGs were selected and rep-
resented using the commonly employed three-letter code (e.g., SSS POS, POP), with each
letter corresponding to an FA. The TAGs were further identified by their common and IU-
PAC name, the omega and the delta nomenclature (which is very common for FAs), and
their SMILES and InChi molecular descriptors. The melting temperature was found in the
aforementioned experimental database.49

For every TAG, different representations were given:

• Name - Three letter name
8Department of Applied Science and Technology (DISAT) , Politecnico di Torino, 10129 Turino, Italy
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• iupac - The proper IUPAC name of the TAG

• iupac-common name - The common name of the TAG

• omega - The omega notation of the TAG

• delta - The delta notation of the TAG

• InChI - The InChI notation of the TAG

• SMILES - The SMILES notation of the TAG

In addition, two physical properties of the TAGs were included:

• melting enthalpy - in kJmol−1

• melting temperature - in ◦C

The distribution of the melting temperature values in the dataset is shown in Figure 54.
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Figure 54. Distribution of the melting temperature. Left: The black line in the histogram
represents the median melting temperature of 45.1 ◦C (n = 211). Right: A binary classifica-
tion based on the median melting temperature was created.

We used a simple prompt template shown in Table 23 for experiments to predict the
melting temperature of TAGs.

3.8.3 LLM Results

Base Case For the binary classification models, we split the dataset into two equally sized
classes based on their melting point values. Entries with values higher than the median
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Table 23. Example prompts and completions for predicting the melting point of triacyl-
glycerols (TAG). <TAG> is the placeholder for the various TAG representations used.

prompt completion experimental

Example of training data

What is the melting point of

<TAG>?

0 Low

What is the melting point of

<TAG>?

1 High

of 45.1 ◦C are labeled “1”, and entries with lower values are labeled “0”. We performed
a learning curve analysis on this binary classification. The number of test data remained
constant over all runs, i.e., 50. The number of epochs was set to 25. Three unique runs with
the GPT-J model were performed for every pair of training size/epoch experiments to get
the average metrics. As the dataset is balanced, we can assume an accuracy of 50% as the
zero-rule baseline, i.e., random guessing.

Firstly, we compared the influence of different representations of the TAGs on the per-
formance of fine-tuning the GPT-J model (Figure 55). We do not see a significant difference
in performance for training set sizes above 100, i.e., accuracies within 2% of each other. We
do see subtle differences on the lower end of the plot, i.e., training set size of 10, where the
InChI notation (accuracy of 88%) and SMILES notation (accuracy of 81%) perform better
than the IUPAC name (accuracy of 60%).

Apart from the representation, we validated various base models. Three LLMs. i.e., GPT-
J, Llama, and Mistral, were fine-tuned. We notice that all models show similar predictive
performance. A maximum accuracy of 92% was reached with the GPT-J model (Figure 56
and Table 24). In addition, the fine-tuned LLMs were compared with “traditional” ML mod-
els (XGBoost and random forest (RF)). We can conclude that LLMs can, in general, compete
with, and even outperform, these models.

74



Table 24. Overview of results of LLMs and “traditional” ML predicting the binary class
of the melting point. Three runs were performed to get the metrics average. All LLMs were
fine-tuned with 25 epochs and a learning rate of 0.003. For the random forest (RF) and XG-
Boost models, optuna was used for hyperparameter optimization. Maximum performances
are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

150 GPT-J (LLM) 0.92 0.92 0.92 0.84
Llama (LLM) 0.92 0.92 0.92 0.84
Mistral (LLM) 0.87 0.87 0.87 0.75
RF 0.86 0.86 0.86 0.72
XGBoost 0.88 0.88 0.88 0.77
Zero-rule 0.50 0.50 0.50 0.00
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Figure 55. Learning curve analyses of binary classification of the melting point using
different representations. Four representations of the TAGs (IUPAC, InChI, omega notation,
and SMILES) were validated in predicting the binary class of the melting point of TAGs by
fine-tuning the GPT-J model. Three runs were performed for each model to get the metric’s
average and standard deviation. The fine-tuned model trained on the IUPAC name reached
the maximum accuracy of 95% (training set size of 150 and 25 epochs).
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Figure 56. Learning curve analyses of binary classification of the melting point using
different models. Three LLMs (GPT-J, Llama, and Mistral) and two traditional ML models
(XGBoost and random forest (RF)) were validated on predicting the binary class of the melt-
ing point of TAGs. We used 50% as a random guess accuracy (dashed line), representing the
zero rule baseline. Three runs were performed for each model to get the metric’s average and
standard deviation. SMILES of the TAGs were used as the input for the LLMs. Morgan Fin-
gerprints of the TAGs were used as the input for the traditional ML models. The fine-tuned
model reached the maximum accuracy of 92% (training set size of 150 and 25 epochs).
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4 Reactions and Synthesis

This section describes case studies regarding reactions and synthesis procedures.

4.1 Activation Energy of Cycloadditions

The dataset was provided by: Dennis Svatunek9

4.1.1 Scientific Background

Figure 57. AI generated representa-
tion of the concept of click chemistry
and Diels-Alder reactions.

Click chemistry comprises chemical reactions that
are highly efficient and selective.50 These properties
make them interesting for bioorthogonal chemistry,
i.e., in vivo reactions that do not alter the native bio-
chemical reactions. Among the chemical transforma-
tions, Diels-Alder reactions hold significant promi-
nence. Notably, the cycloaddition involving 1,2,4,5-
tetrazines and strained alkenes is a well-established
system in this context. Nevertheless, their reaction
kinetics are not fully understood. An interesting ob-
servation is that substitutes on the 3- and 6-positions
of the tetrazine do affect the reaction rate signifi-
cantly.

A recent study by Houszka et al. 51 shed light on
the effect of these substituents on the reactivity. They
calculated the activation energy for tetrazine-alkene
cycloadditions with various chemical functionalities
on the 3- and 6- positions of the tetrazine, R1 and
R2). These calculations showed that Frontier Molec-
ular Orbital (FMO) interactions are not always the primary driving force. Also, lower dis-
tortion energies and increased electrostatic attraction have an influence (for a detailed dis-
cussion, see Houszka et al. 51). Following this report, Svatunek recently published a dataset
of reaction barriers for over 1,000 tetrazine derivatives to enable a systematic investigation
into substituent effects.52

We were interested in whether we could predict the activation energy solely from the
chemical formula with the help of a Large Language Model (LLM).

To represent the molecule, we used the Simplified Molecular Input Line-Entry System
(SMILES) notation, which captures the atomic composition, bonds, branches, aromaticity,
and stereochemistry. Their seamless integration into conventional machine learning meth-

9Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
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ods is somehow restricted by their non-numeric value and variable string length. In contrast,
the inherent nature of LLMs allows textual input, regardless of its length.

4.1.2 Dataset

The dataset contains 966 molecules with their respective DFT-calculated barrier heights (free
energy of activation in kcalmol−1) for bioorthogonal click reactions. One reaction partner
is kept the same (trans-cyclooctene), while substituents on the second (1,2,4,5-tetrazine) are
varied. All molecules are represented by their SMILES notation. For the binary classification
models, the dataset was split into two equally sized bins. Here, the threshold was the median
of the free energy of activation, i.e., 14.35 kcalmol−1. The distribution of the free energies of
activation is shown in Figure 58.
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density

Figure 58. Distribution of activation barrier heights in the dataset. The median of free
energy of activation is 14.35 kcalmol−1.

Table 25 shows an example of the prompts we use to fine-tune our LLM model.

4.1.3 LLM results

Base Case As an initial test, we split our data set into two equally sized classes based
on their free energy of activation value. Entries with values higher than the median of
14.35 kcalmol−1 are labeled ‘1’, and entries with lower values are labeled ‘0’. We performed a
learning curve analysis for this binary classification of the free energy of activation. We used
the SMILES notation to represent the tetrazine-molecule, containing different substituents
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Table 25. Example prompts and completions for predicting the free energy of activation
of tetrazines. ∆E refers to the free energy of activation. <SMILES> serves as a placeholder
for the SMILES notation for the tetrazine.

prompt completion experimental

Example of training data

What is the ∆E of <SMILES>? 0 Low
What is the ∆E of <SMILES>? 1 High

on the R1 and R2 position. As the total dataset contained 966 entries, our maximum number
of training data was set to 500. The number of test data remained constant over all runs, i.e.,
50.

We first screened the number of epochs; 5, 15, and 25. Three unique runs were performed
for every pair of training size-epoch experiments to get the average metrics (Figure 59). The
GPT-J model was used for this screening.

We observed that the accuracy converges after a training set size of 250 and 15 epochs.
Since we are dealing with binary classification of a balanced dataset, all accuracies above
50% are an improvement to random guessing. An accuracy of 94% clearly suggests that our
GPT models perform well for this binary classification problem.

In a next step, we screened different models. Three LLMs, i.e., GPT-J, Llama, and Mistral,
were fine-tuned. We notice that a maximum accuracy of 94% was reached with the GPT-J
model (Figure 60 and Table 26). In addition, the fine-tuned LLMs were compared with “tra-
ditional” ML models (XGBoost and random forest (RF)). For these experiments, the SMILES
notations were converted Morgan fingerprints. We see that those two models slightly out-
perform the Llama and Mistral models. However, we can still conclude that LLMs can in
general compete with these models.
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Figure 59. Learning curve analysis for predictions on the free energy of activation of
the bioorthogonal click reaction. The blue, green, and orange lines represent 5, 15, and
20 epochs, respectively. Three separate models (GPT-J) were trained and tested, where the
average and the standard deviation were plotted. A maximum accuracy of 94% was reached
for a training set size of 500 and 25 epochs.

Table 26. Overview of results of LLMs and “traditional” ML predicting the binary class
of the activation energy. Three runs were performed to get the metrics average. All LLMs
were fine-tuned with 25 epochs and a learning rate of 0.003. For the random forest (RF)
and XGBoost models, optuna was used for hyperparameter optimization. Maximum perfor-
mances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

500 GPT-J (LLM) 0.94 0.94 0.94 0.88
Llama (LLM) 0.85 0.85 0.85 0.69
Mistral (LLM) 0.88 0.88 0.88 0.76
RF 0.89 0.89 0.89 0.79
XGBoost 0.91 0.91 0.91 0.74
Zero-rule 0.50 0.50 0.50 0.00

80



0.0

0.5

1.0
Llama

GPT-J

mistralzero-rule

RFXGBoostaccuracy

0.0

0.5

1.0
f1_macro

0.0

0.5

1.0
f1_micro

30
0

10
050 25

010 50
0

training set size

0.0

0.5

1.0
kappa

Figure 60. Learning curve analyses of binary classification of the adhesive free-energy
using different models. Three base LLMs (GPT-J, Llama, and Mistral) and two traditional
ML models (XGBoost and random forest (RF)) were validated on predicting the binary class
of the free energy of activation of the bioorthogonal click reaction. We used 50% as a random
guess accuracy (dashed line), representing the zero rule baseline. Three runs were performed
for each model to get the metric’s average and standard deviation. The fine-tuned GPT-J
model reached the maximum accuracy of 94% (training set size of 500 and 25 epochs).

81



4.2 Free Energy of Catalyzed Cleavage Reaction

The dataset was provided by: Rubén Laplaza and Clemence Corminboeuf10

4.2.1 Scientific Background

Figure 61. AI generated representa-
tion of a C(sp2)–O cleavage reaction.

Catalysis plays a crucial part in the chemical indus-
try. Choosing the correct catalyst is often a com-
plex task as it needs to balance between high reaction
yields and low costs. A computationally efficient way
of predicting the performance of a catalyst is with the
help of linear scaling relationships.53 Here, rather
than computing the full free energy profile, only one
value of an intermediate or transition state is used
to establish linear correlations for the remaining free
energies. These relationships can then be translated
to a so-called volcano plot to visually compare the
performance of the catalyst.54

In this study, the reductive C(sp2)–O cleavage
reaction in an aryl ether compound was examined
(more specifically, the reductive deoxygenation of
2-methoxynaphthalene with trimethylsilane).55 This
reaction is particularly relevant in the degradation
of lignin into its smaller building blocks. The tra-
ditional two-step process is, however, ecologically and atom-economically unfriendly. Al-
ternatively, a selective catalytic cleavage of the ether group from the arene moiety could
be exploited (Figure 62). Two types of nickel catalysts have been proposed to facilitate the
reaction: nickel catalysts bearing a phosphine and N-heterocyclic carbene ligand.

Our goal was to predict the catalytic activity of nickel-containing molecules for the aryl
ether cleavage reaction. We determined the success of the catalysis based on the relative
free energy of one specific intermediate (∆GRRS(4), see Cordova et al. 55 for details on the
catalytic cycle). A dataset of 143,000 nickel complexes with their respective calculated free
energy of intermediate 4 was created. LLMs were trained to predict this free energy from
various molecular representations.

4.2.2 Dataset

As discussed above, the free energy of intermediate 4 of the catalysis cycle was our property
of interest. All catalysts were nickel complexes with either phospines or N-heterocyclic car-
benes as ligands. Substituents on the R/R’/R” positions were altered between 68 different

10Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering
(ISIC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
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Figure 62. Possible Routes to Aryl Ether Cleavage. The current study examined if the
performance of the catalyst for route C can be predicted from the SMILES notation of the
catalyst. Adapted from Cordova et al. 55 .

chemical fragments for the phospohine ligands, resulting in 54,740 unique molecules. For
the carbenes, a similar combinatorial type placement for three groups resulted in 90,000
unique carbene ligands. DFT calculations were used to calculate the free energy of inter-
mediate 4 relative to the initial energy at the beginning of the cycle (∆GRRS(4), see Cordova
et al. 55 for details on the simulations).

As for the molecular representation of the catalysts, all substituents were converted to
their SMILES string and combined to obtain the final structure. A subset of the full dataset
was used to validate our LLM approach. The total number of entries was 1,423, with 770
species containing phosphine ligands and 653 containing carbenes ligands. The distribution
of the free energy values of intermediate 4 of the catalysis cycle is shown in Figure 58.

Table 27 shows an example of the prompt we use to fine-tune our LLM model.

Table 27. Example prompts and completions for predicting the relative free energy of
intermediate 4 for the Ni-catalyzed reaction. <SMILES> serves as a placeholder for the
SMILES notation for the nickel-containing molecules.

prompt completion experimental

Example of training data

What is the relative free energy of <SMILES>? 0 Low
What is the relative free energy of <SMILES>? 1 High
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Figure 63. Distribution of the relative free energy values of intermediate 4 in the dataset.
The median relative free energy is −12.72 kcalmol−1.

4.2.3 LLM results

Base Case As an initial test, we performed a learning curve analysis for the prediction of
our property of interest, i.e., the relative free energy of intermediate 4 ∆GRRS(4). We used
the SMILES notation as the representation of the catalysts and trained separate models to
predict the binary class of the relative free energy. As the total dataset contained 1,423
entries, our maximum number of training data was set to 1000. The number of test data
remained constant over all runs, i.e., 50. The number of epochs screened was 15 and 20. For
every pair of training size-epoch experiments, three unique runs were performed to get the
average metrics (Figure 64).

For all properties, we observed no significant difference between experiments with 15
and 20 epochs. We also see that the accuracy converges after a training set size of 100 for
all cases. Note that, since we are dealing with binary classification of a balanced dataset, all
accuracies above 50% are an improvement to random guessing.

In a next step, we screened different models. Three LLMs, i.e., GPT-J, Llama, and Mistral,
were fine-tuned. We notice that a maximum accuracy of 88% was reached with the GPT-J
model (Figure 65 and Table 28).

Real split Volcano plots describe the relationship between a descriptor of the catalytic cy-
cle and the overall catalytic activity of the catalyst. They offer a great visualization of the
performance of catalysts. The molecules at the peak of the plot are usually described as ‘op-
timal’ catalysts, whereas entries left or right of the peak have a suboptimal property or even
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Figure 64. Learning curve analysis of binary classifications of the relative free energy of
intermediate 4. Three runs were performed to get an average and standard deviation of the
metric. Experiments were performed with the GPT-J model. Different numbers of epochs
were analyzed, i.e., 15 (blue) and 20 (green). A maximum accuracy of 90% was reached for
a training set size of 1,000 and 20 epochs.

Table 28. Overview of results of LLMs predicting the binary class of the free energy of
intermediate 4 of the described nickel catalysis. Three runs were performed to get the
metrics average. All LLMs were fine-tuned with 25 epochs and a learning rate of 0.003.
Maximum performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

1000 GPT-J (LLM) 0.88 0.88 0.88 0.76
Llama (LLM) 0.71 0.68 0.71 0.43
Mistral (LLM) 0.79 0.78 0.79 0.59
Zero-rule 0.50 0.50 0.50 0.00

exceed the optimal range (Figure 66).
For the catalytic cycle at hand, ∆GRRS(4) values between −36 and −30 kcalmol−1 (±

3 kcalmol−1) were observed to be of particular interest. We used this range as a real-life
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Figure 65. Learning curve analyses of binary classification of the free energy of interme-
diate 4 of the described nickel catalysis using different models. Three base LLMs (GPT-J,
Llama, and Mistral) and two traditional ML models (XGBoost and random forest (RF)) were
validated on predicting the binary class of the free energy of activation of intermediate 4
of the described nickel catalysis. We used 50% as a random guess accuracy (dashed line),
representing the zero rule baseline. For each model, three runs were performed to get the
metric’s average and standard deviation. The fine-tuned GPT-J model reached the maximum
accuracy of 88% (training set size of 1,000 and 25 epochs).

test case to predict whether a catalyst is suitable for the reaction. From the 1,423 entries,
only 55 catalysts (3.8%) had a ∆GRRS(4) value between −27 and −39 kcalmol−1. To create a
balanced training set, we undersampled the ‘non-optimal’ catalyst class, i.e., random sam-
ple of 55 molecules was taken. Rather than 3 runs, we now performed 10 experiments, each
with a different class sample, to increase variance.

Figure 67 shows the results of our LLM predictions with GPT-J using the same hyper-
parameters (i.e., 20 epochs and a learning rate of 0.0003). As we are working with a balanced
dataset, the random guessing benchmark accuracy to beat is 50%. We could predict whether
a catalyst is within the optimal range with an accuracy of 78.5% (average over 10 runs).
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Figure 66. TOF Volcano plot of the catalytic cycle. The theoretical turnover frequency
(TOF) is plotted over the descriptor value, here the relative free energy of intermediate 4
(∆GRRS(4)). Ideal catalysts are located at the top of the plot. Adapted from Cordova et al. 55 .
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Figure 67. Normalized confusion matrix of models predicting the performance of the
nickel catalyst. The confusion matrix contains the combined predictions of 10 individ-
ual training/test runs (GPT-J). A balanced dataset of 100 data points was used for training,
number of epochs and the learning rate were set to 20 and 0.0003, respectively. The average
accuracy over 10 unique models was 78.5%.

87



4.3 Yield of Catalytic Isomerization

The dataset was provided by: Leander Choudhury11

4.3.1 Scientific Background

Figure 68. AI generated representa-
tion of a isomerization reaction cat-
alyzed by Platinum(II) bromide.

Isomerization reactions are essential in organic syn-
thesis and industrial processes because they allow
for the transformation of molecules without chang-
ing the overall molecular composition. These reac-
tions are often accelerated by catalysts, which include
transition metal complexes. In the current study, the
curator performed a scoping study of a wide range
of isomerization reactions of cyclopropenes to 1,3-
dienes, all catalyzed by Platinum(II) bromide (PtBr2).
These resulting 1,3-dienes are interesting building
blocks in chemical synthesis.56 Hence, predicting the
success of these isomerization reactions could be an
alternative to scoping studies.

4.3.2 Dataset

The dataset contains 16 experimental reaction proto-
cols for catalytic isomerisation.57 The starting mate-
rial was the only variable in the reaction conditions,
and as a result, the product also changed. Both the
starting material and the product were represented
in the SMILES notation. The reaction conditions were constant for all entries (PtBr2 as cata-
lyst, 1.2-DCE as solvent, 70 ◦C) and were, therefore, omitted in the prompt.

We aimed to predict the yield of the isomerization. These values ranged from 5% to 98%.
Figure 69 shows the distribution of the yield values. The noise in the data could be rather
high as both the starting material and the product are quite unstable. This is especially
true for benzylic alcohols that tend to polymerize when subjected to small amounts of acid.
Expected potential product losses from instability can be up to 15% in some cases, but are
limited to 2% for most protocols. In our experiments, the median yield of 50.5% was taken
as the threshold for a successful reaction. As this value can also be interpreted as a realistic
experimental benchmark, we also took the trained model as the real-life case.

Table 29 shows an example of the prompts we use to fine-tune our LLM model.

11Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering
(ISIC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
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Figure 69. Histogram of the yield of the catalytic isomerization reaction. The median of
yield is 50.5%.

Table 29. Example prompts and completions for predicting yield of isomerisation.
<SMILES> serves as a placeholder for the representation of the structure.

prompt completion experimental

Example of training data

What is the yield of isomerization from

<SMILES> to <SMILES>?

0 Low

What is the yield of isomerization from

<SMILES> to <SMILES>?

1 High

4.3.3 LLM results

Base Case With only 16 entries, the provided dataset was rather small. We were thus
limited in the training examples. This case study was again a search for the limits of the
capabilities of our approach.

The first experiments with 25 epochs were not successful (Figure 70). The models could
not capture the prompt/completion structure and returned invalid completions for the test
data, e.g., ’-9223372036854775808’ as the completion.

Next, we increased the number of epochs to 50, hypothesizing that this would increase
the fine-tuning performance. Indeed, we do see an increase in accuracy, i.e., 50%. However,
as the baseline accuracy in our binary classification is 50%, we can conclude that this value
does not represent any true predictive power. This is also reflected in a kappa value of 0.
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We can only tell the model ’learned’ the prompt/completion format, as the outputs are now
‘0’ or ‘1’. Experiments using different LLMs, i.e., GPT-J, Llama, and Mistral, didn’t show
improvement on the predictive power (Figure 71).
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Figure 70. Learning curve analysis of predictions for the success of the catalytic isomer-
ization. Models fine-tuned with 10 (blue), 25 (orange), and 50 (green) epochs were validated.
The trained models were unable to predict the success of the isomerization.
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Figure 71. Learning curve analyses of binary classifications of the success of the catalytic
isomerization using different models. Three LLMs (GPT-J, Llama, and Mistral) were vali-
dated on predicting the binary class of the the success of the catalytic isomerization. Three
runs were performed for each model to get the metric’s average and standard deviation.
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4.4 Kinetics of Polymerization

The dataset was provided by: Joren Van Herck and Tanja Junkers12

4.4.1 Scientific Background

Figure 72. AI generated represen-
tation of a flow chemistry setup for
polymer chemistry.

Flow chemistry is an attractive alternative to tradi-
tional batch reactions. It allows for continuous syn-
thesis and dynamic changes in reaction conditions,
e.g., changing reactants stoichiometry by altering re-
spective flow rates. The small diameters of the reac-
tor further improve mixing and heat transfer. Adding
analytic tools in the stream of synthesis, i.e., in-
line analysis can monitor chemical transformations
in real-time. These combined features make flow
setups highly suitable for high-throughput kinetic
screenings. As the residence time inside the flow re-
actor is related to the feed flow rate, it can be dynam-
ically changed within one reactor space by simply al-
tering the feed settings. Real-time data acquisition
downstream of the reactor can continuously monitor
the reaction product.

Recent advancements in high-throughput screen-
ings greatly benefit the field of polymer chemistry.
Collecting large datasets on the kinetics of polymer-
ization gives better insight into the often complex underlying reaction mechanism and, sub-
sequently, accelerates the search for optimal reaction conditions.

Van Herck et al. 58 developed a fully automated polymer synthesis platform for high-
throughput kinetic screenings of reversible-addition fragmentation chain transfer (RAFT)
radical polymerization. The setup comprises a flow reactor coupled to an inline bench-
top NMR and online SEC. While the first continuously (scan every 3 seconds) monitors the
monomer conversion, the latter measures the molecular weight distribution every three min-
utes. They performed kinetic screenings of eight different monomers, each under three dif-
ferent reaction conditions. The data from each screening was used to calculate the rate of
polymerization.

In this study, we aimed to predict the rate of polymerization based on the monomer and
the reaction conditions.

12Polymer Reaction Design group, School of Chemistry, Monash University, Clayton VIC 3800, Australia
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4.4.2 Dataset

The dataset contains kinetic data of RAFT polymerizations.58 Eight different monomers
were screened. The monomers were all acrylates with variations in the ester side chain:
methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, iso-butyl acrylate, 2-ethyl-
hexyl acrylate, cyclohexyl acrylate, and dodecyl acrylate. Three monomer concentrations
were screened for all monomers, i.e., 1 M, 2 M, and 4 M (4 M was not used for dodecyl acry-
late). The dataset, therefore, resulted in 23 entries. For every reaction, the rate of polymer-
ization was experimentally determined. The distribution of the data is shown in Figure 73.
The median rate of polymerization was 0.033 M/s.
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Figure 73. Distribution of polymerization rate of the monomers in the dataset. The me-
dian polymerization rate is 0.033 M/s

Table 30 shows an example of the prompt we use to fine-tune our LLM model.

Table 30. Example prompts and completions for predicting the polymerization rate. <mo-
lar> is a placeholder for the concentration used in the reaction, and <monomer> is the place-
holder for the representation of the monomer as shown in Table 31.

prompt completion experimental

Example of training data

What is the polymerization rate of <molar>

molar <monomer>?

0 Low

What is the polymerization rate of <molar>

molar <monomer>?

1 High
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Table 31. Representation of the monomers. Two example entries illustrate the different
representations of the monomers.

Example 1 Example 2

name ethyl acrylate (2 molar) dodecyl acrylate (1 molar)
SMILES CCOC(=O)C=C (2 molar) CCCCCCCCCCCCOC(=O)C=C (1 molar)
length 11 (2 molar) 21 (1 molar)

rate 0.026 0.035
bin 0 1

4.4.3 LLM results

Base Case The relatively small size of the dataset forced us to use a small training size. We
performed the standard experiment with a training set size of 15 and a test set of 7. For all
cases, we combined the representation of the monomer and the concentration. We aimed
to predict the binary class of the rate of polymerization where the median value (0.033 M/s)
served as the threshold. Three unique runs were performed for every experiment to get the
average metrics. In initial experiments, we fine-tuned LLMs on different representations
of the monomer, i.e., the IUPAC name, SMILES, and the length of the SMILES (number of
atoms). The number of epochs was set to 100. We found that fine-tuned models based on
the SMILES of the monomer (accuracy of 76%) do better than models based on the IUPAC
name of the monomers (accuracy of 57%) and based on the length of the SMILES (accuracy
of 57%).

To further examine the capability of LLMs on this small dataset, we performed a ‘Leave
One Out’ analysis where we used all but one monomer set as training data and that one
monomer set as only test data (n = 3). For instance, we left the methyl acrylate set, i.e., three
different monomer concentrations, out of the training set, and, after fine-tuning the model,
we predicted the binary class of these three reaction conditions. Five runs were performed
for every train-test split. Three different LLMs, i.e., GPT-J, Llama, and Mistral, were val-
idated. The results are summarized in Table 32. More detailed overviews per model are
shown in Figure 74 for GPT-J, Figure 75 for Llama, and Figure 76 for Mistral. Here, the
monomer on each row represents the test set (n = 3). For each monomer, the three different
reaction conditions, i.e., monomer concentration in the columns, are predicted. The experi-
ment is further split in the number of epochs used for the training. Each square represents
the prediction of five fine-tuned models of the monomer-concentration-epoch combination.
The color indicates the accuracy over the five runs where the darkest blue indicates five cor-
rect predictions and the lightest blue means zero correct predictions. We see that, in general,
the number of epochs has a minor influence on the predictions. For the Mistral model, an in-
crease of 8% in accuracy is observed when increasing the number of epochs from 25 to 100.
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Looking closer, small individual improvements are seen for reactions with a polymerization
rate around the threshold of 0.033 M/s. For instance, the GPT-J prediction of 2 M iso-butyl
acrylate (with a rate of polymerization of 0.030) increased in accuracy from 25 to 50 epochs.
These subtle changes hint that fine-tuned LLMs can indeed capture the relation between the
reaction conditions and the rate of polymerization.

Table 32. Overview of the ’Leave One Set Out’ accuracy (%) results of LLMs predicting
the binary class of the rate of polymerization of monomers. The average accuracy over 8
monomers (each five runs) are reported. The maximum performance is highlighted in bold.

Epochs GPT-J Llama Mistral

25 0.76 0.77 0.73
50 0.80 0.83 0.80
100 0.79 0.83 0.81
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Figure 74. Overview of models predicting the rate of polymerization (GPT-J). Each square
represents the predictions over five different seeds of a ’monomer’, ’concentration’ and
’epoch’ combination. All monomers were represented by their SMILES notation. The color
indicates the accuracy over the five runs where the darkest blue indicates five correct predic-
tions and the lightest blue means zero correct predictions. Four, three, two and one correct
predictions have intermediate blue colors. Average accuracies are 0.76, 0.80 and 0.79 for 25
epochs, 50 epochs and 100 epochs, respectively.
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Figure 75. Overview of models predicting the rate of polymerization (Llama). Each
square represents the predictions over five different seeds of a ’monomer’, ’concentration’
and ’epoch’ combination. All monomers were represented by their SMILES notation. The
color indicates the accuracy over the five runs where the darkest blue indicates five correct
predictions and the lightest blue means zero correct predictions. Four, three, two and one
correct predictions have intermediate blue colors. Average accuracies are 0.77, 0.83 and 0.83
for 25 epochs, 50 epochs and 100 epochs, respectively.
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Figure 76. Overview of models predicting the rate of polymerization (Mistral). Each
square represents the predictions over five different seeds of a ’monomer’, ’concentration’,
and ’epoch’ combination. All monomers were represented by their SMILES notation. The
color indicates the accuracy over the five runs where the darkest blue indicates means five
correct predictions and the lightest blue means zero correct predictions. Four, three, two,
and one correct predictions have intermediate blue colors. Average accuracies are 0.73, 0.80,
and 0.81 for 25 epochs, 50 epochs and 100 epochs, respectively.
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4.5 Photocatalytic Water Splitting Activity of MOFs

The dataset was provided by: Beatriz Mouriño, Sauradeep Majumdar, and Xin Jin13

4.5.1 Scientific Background

Figure 77. AI generated represen-
tation of the concept of photocatal-
ysis for sustainable hydrogen pro-
duction using Metal-Organic Frame-
works (MOFs) and Covalent-Organic
Frameworks (COFs).

As the practical implication of green energy becomes
increasingly a reality, much attention has been given
to photocatalysis in recent years. The everlasting
sunlight could drive chemical transformations inde-
pendent of fossil fuels. One notable example is wa-
ter splitting mediated by a photocatalyst. The re-
sulting hydrogen production could serve as a defin-
ing step towards a more sustainable hydrogen econ-
omy. It is a promising theory indeed, but find-
ing a suitable material is the key to unlocking its
success. Thanks to their inherent modular nature,
Metal-Organic Frameworks (MOFs) and Covalent Or-
ganic Frameworks (COFs) are put high on the photo-
catalysis shortlist.59 However, it is also exactly this
modularity that results in millions of potential struc-
tures, and hence, careful selection rules are needed to
filter the ‘best’ from the rest.

The first obvious criterion is the ability to absorb
visible light. Quantitatively, this translates itself into
a bandgap that lies within the visible light range of
1.6 eV to 3.2 eV. Subsequently, upon absorption, the
ionization potential (IP) and electron affinity (EA)
should be straddling the potentials of the surface reactions, i.e., −4.4 eV to −5.6 eV for hy-
drogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. IP and
EA can be estimated computationally by aligning the valence and conduction band edges to
a reference vacuum potential. Lastly, the generated charge carriers ideally have limited re-
combination, thus increasing their lifetime. Similarly, a high mobility of electrons and holes
is preferred to improve the material’s overall efficiency.60

It is no surprise that experimental screening of a large number of MOFs/COFs is out
of the picture. An alternative and more sustainable approach in the search for the per-
fect candidate is using high-throughput computational screening. For instance, the QMOF
database, curated by Rosen et al. 61 , contains over 15,000 MOFs. These structures success-
fully ran through a DFT workflow that calculated electronic properties. Recently, an identi-

13Laboratory of molecular simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, École Polytech-
nique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
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cal database for COFs was developed by Mouriño et al. 62 .
Reticular chemistry also benefits from the increasing popularity of machine learning al-

gorithms. The vast number of possible structures provide training data for the models. On
the other hand, the ability to accurately and quickly predict properties in a complex param-
eter landscape greatly accelerates the identification of materials for specific applications.
The ML-assisted search for MOFs that satisfy some basic conditions for photocatalytic water
splitting will be discussed in the following experiments. By predicting important indicators
for success, certain structures can be prioritized over others, both for in silico calculations
and experimental validation.

4.5.2 Dataset

The dataset contains 95 MOFs. DFT was used to compute the photocatalytic properties. We
aimed to predict the potential of the structure for water splitting based on three properties:

• whether band edges (aligned to vacuum) are straddling the HER redox potential (−4.4 eV),

• whether band edges (aligned to vacuum) are straddling the OER redox potential (−5.6 eV),
and

• whether the band gap is within the visible light range (1.6 eV to 3.2 eV).

For all three cases, the elemental composition was used to predict the binary class of the
property. We did not create a balanced dataset. Therefore, the percentage of the majority
class was the random guess mark, i.e., 70%, 90%, and 60% for the HER, OER, and VIS case
studies, respectively (fig. 78).

An example of the prompt we use to fine-tune our LLM model is shown in Table 33.

False
70.0 %

True
30.0 %

HER

False
90.0 %

True
10.0 %

OER
False

60.0 %

True
40.0 %

VIS

Figure 78. Distribution of the three properties related to the photocatalytic activity of
MOFs. The pie plots show the distribution based on whether or not the band edges of a
material straddle the redox potential in the HER and OER cases. For the VIS case study, the
distribution is based on whether or not the band gap is within the visible light range.
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Table 33. Example prompts and completions for predicting photocatalytic properties of
MOFs. <property> is a placeholder for the HER redox potential, OER redox potential, or
bandgap. <MOF> serves as a placeholder for the representation of the structure as shown in
34.

prompt completion experimental

Example of training data

What is the <property> of <MOF>? 0 Low
What is the <property> of <MOF>? 1 High

Table 34. Representation of the MOF structures. Two example entries illustrate the five
different representations of the materials.

Example 1 Example 2

Linker elements C, N, S C, N
Node elements Cu Au, Cl

Linker + Node elements C, N, Cu, S Au, C, N, Cl
mofid S=C1N=CC... -2.00 Cl[Au]... pyrazolate opt
mofkey Cu.UO...H.MOFkey-v1.rtl Au.G...R.MOFkey-v1.bto

4.5.3 LLM results

Real split The provided dataset gave us three test cases, i.e., HER, OER, and VIS. The re-
sults for the different representations of the structures used are shown in Table 35 and Fig-
ure 79.

Firstly, the chemical elements of both the organic linker and the metal node were ex-
tracted and used separately as the input. From these basic representations, we can already
make accurate models. We see that for the HER model, the elements of the organic linker
have a slightly higher predictive power than the metal node. In contrast, the OER model
based on the metal node outperforms its linker counterpart. A combined feature vector with
both the elements of the metal node and the organic linker didn’t have an improved effect
on the performance and was, in all cases, similar to its model with the best single descriptor,
i.e., linker and metal elements for HER and OER, respectively.

The mofid and the mofkey, i.e., a shorter, hashed version of the mofid, add extra struc-
tural information to the MOF representation.63 We, however, see that there is no significant
increase in performance. We can, therefore, conclude that only the elemental composition
of the building blocks of the MOFs already holds enough information to predict the binary
class of the photocatalytic properties. It is interesting to note that we outperform the random
guessing baseline for the HER and VIS experiments. For the OER predictions, the accuracy
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Table 35. Overview of accuracies for binary classifications for HER, OER, and VIS. Three
runs were performed to get the metric’s average. The GPT-J model was used. For all experi-
ments, the training size and number of epochs were set to 50 and 25, respectively.

Feature(s) HER OER VIS
Accuracy / %

Linker Elements 0.86 0.83 0.89
Node Elements 0.79 0.89 0.74
Linker + Node Elements 0.86 0.89 0.90
mofid 0.90 0.83 0.93
mofkey 0.89 0.86 0.95
Random Baseline 0.70 0.90 0.60

of the LLM was no better than the random guessing baseline.
Three LLMs, i.e., GPT-J, Llama, and Mistral, were fine-tuned. The elements of both the

linker and metal cluster were used as the representation of the MOFs. We notice that all
three models are comparable in performance. A maximum accuracy of 95% was reached
with the Mistral model for predicting the binary class of the VIS property. (Table 36).

Table 36. Overview of results of LLMs predicting the binary class of photocatalytic prop-
erties of MOFs. Three runs were performed to get the metrics average. All LLMs were
fine-tuned with 25 epochs and a learning rate of 0.003. The training set size was 25. The
linker and node elements were used as the representation of the MOFs. Maximum perfor-
mances per property are highlighted in bold.

Target Model Accuracy F1 Macro F1 Micro Kappa

HER GPT-J (LLM) 0.92 0.92 0.92 0.83
Llama (LLM) 0.64 0.63 0.64 0.28
Mistral (LLM) 0.89 0.89 0.89 0.78

OER GPT-J (LLM) 0.94 0.94 0.94 0.89
Llama (LLM) 0.83 0.82 0.83 0.67
Mistral (LLM) 0.78 0.77 0.78 0.56

VIS GPT-J (LLM) 0.86 0.86 0.86 0.71
Llama (LLM) 0.83 0.80 0.83 0.67
Mistral (LLM) 0.95 0.95 0.95 0.90
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Figure 79. Overview of accuracies of the binary classifications for HER, OER, and VIS
trained on a realistic split based on different feature vectors. Numbers above bars indicate
accuracies. The dotted line indicates the accuracy of the random guessing baseline for all
cases. Three runs with the GPT-J model were performed to get the metric’s average and
standard deviation. For all experiments, the training size and number of epochs were set to
50 and 25, respectively.
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4.6 Photocatalytic Carbondioxide Conversion Activity of MOFs

The dataset was provided by: Matthew Garvin, Neda Poudineh, Susana Garcia14 and Ru-
araidh D. McIntosh15

4.6.1 Scientific Background

Figure 80. AI generated represen-
tation of the interaction of Metal-
Organic Frameworks (MOFs) with a
semiconductor photocatalyst under
sunlight for enhanced photocatalytic
efficiency.

The current energy crisis and the challenges of global
climate change force research in innovative and excit-
ing directions. Promising avenues are those that are
similar to nature’s own processes. Take photosynthe-
sis, for instance, where sunlight and carbon dioxide
are converted into valuable energy. Thus, creating an
artificial system that mimics this natural process has
the potential to become a key solution to tackle our
energy and environmental concerns.64

Although an efficiency comparable to that of the
natural process is currently out of reach, metal-
organic frameworks are among the most promising
types of materials to achieve it.65 Their flexibility
in composition and structure allows tuning of their
physical properties. Unfortunately, photocatalytic re-
actions are complex and, despite the flexibility in
the synthesis of MOFs to obtain the optimal physi-
cal properties, a single MOF structure often fails to
fulfill all the necessary requirements. Combining the
MOF material with a semiconductor photocatalyst
could, however, increase the overall photocatalytic
efficiency.66

In this study, we worked with a dataset of the photocatalytic activity of MOFs. We aimed
to predict the efficiency of these photocatalytic systems based on various descriptors. Each
entry consists of the composition of the MOF, the photocatalytic conversion studied and the
band gaps of the MOF and cocatalyst.

4.6.2 Dataset

The dataset contains 77 data points, including information on the simplified Molecular In-
put Line-Entry System (SMILES) representation of MOFs, the catalytic system (including

14The Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh, EH14 4AS, United Kingdom

15Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edin-
burgh, EH14 4AS, United Kingdom
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Figure 81. A schematic of photocatalytic activities of Metal-Organic Framework materi-
als for CO2 photoreduction.

metal source, linker, phase, sacrificial agent, and cocatalyst), the values of band gaps, con-
duction bands (CB) and valence bands (VB) for MOF and cocatalyst, as will as the products
of the photocatalytic conversion (CO, CH4, H2, CH3COOH, HCOOC, MeOH).

We predict the photocatalytic activity of MOFs. The distribution of the photocatalytic
activity values in the dataset is shown in Figure 82. To predict the photocatalytic activity of
MOFs, we compare the classification models trained with four different sets of input vari-
ables, as shown in Table 37. The first set includes the SMILES notation of the linker molecule
along with the metal to represent the MOF structure, while the other sets include the catalyst
system and the band gaps, CB, and VB for MOF and co-catalyst.

We used simple prompt templates, with prompts of the form shown in Table 38, for
experiments to predict photocatalytic activity.

4.6.3 LLM results

Base Case To train the binary classification models, we split the dataset into two classes
of equal size based on photocatalytic activity separated by the median, i.e., photocatalytic
activity threshold of 39 µmolh−1 g−1. For this dataset, we used 100 fine-tuning epochs, as
otherwise, we obtained many NaN or invalid predictions with the GPT-J model.

Figure 83 shows that there are slight differences in the prediction of photocatalytic ac-
tivity for the different sets of input variables studied with the GPT-J model. As shown in
Figure 83, we find that these models perform slightly better than random guessing (shown
by the dashed line). An accuracy of 58% was obtained when we used the “SMILES+metal”
notation as the only input variable. The accuracy increased up to 65% when we used the cat-
alyst system characteristics as predictors. When we combined the SMILES notation and the
catalyst system parameters in the prompt (“catalyst+SMILES” set of input variables in Ta-
ble 37), the accuracy increased to 68% for a training set of 65 data points. However, adding
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Table 37. Sets of input variables used to predict the photocatalytic activity of MOFs.

input variables SMILES
+metal

catalyst catalyst
+SMILES

catalyst
+SMILES
+band gaps

SMILES X X X
metal source X X X X
linker X X X
phase X X X
sacrificial agent X X X
cocatalyst X X X
bandgap for composite X
bandgap for MOF X
bandgap for cocatalyst X
CB for MOF X
CB for cocatalyst X
VB for MOF X
VB for cocatalyst X

CB: conduction band; VB: valence band.
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Figure 82. Distribution of the photocatalytic activity of MOFs in the dataset. The median
of photocatalytic activity is 39 µmolh−1 g−1.

the band gap, CB and VB values to the prompt (“catalyst+SMILES+band gaps” set of input
variables in Table 37) did not result in an increase in accuracy (58%).

We fine-tuned three LLMs, i.e., GPT-J, Llama, and Mistral, using the “catalyst+SMILES”
set of input variables, and we also trained two “traditional” ML models, i.e., XGBoost and
random forest (RF), for comparison purposes. To train RF and XGBoost, SMILES were con-
verted into Morgan fingerprints.Table 39 and Figure 84 show that the models trained with
100 epochs perform slightly better than random guess (shown by the dashed line). The
higher accuracy was achieved with the GPT-J model (68%) for a training set of 65 data points.
The performance was slightly lower with other models (57-60%).

As an example, Figure 85 shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-J model trained with the “catalyst+SMILES” set of input vari-
ables using a training set of 65 data points and 100 epochs. We can see that the predictions
are not better than random guessing when we predict samples labeled ‘1’. We probably need
more data to predict the outcome of complex processes such as photocatalysis, as a large
number of variables, as well as products, are analyzed in this dataset.

Real Split To simulate a more realistic case, we trained binary classification models using
unbalanced datasets to predict whether photocatalytic activity is within the top 27% high-
est values of the dataset (photocatalytic activity threshold = 200 µmolh−1 g−1). Figure 86
shows that there are no relevant differences in the prediction of photocatalytic activity for
the different sets of input variables studied with the GPT-J model. For all of them, Figure 86
shows that the models perform no better than random guessing (shown by the dashed line),
achieving an accuracy of 73% when using a training set of 65 data points and 100 epochs
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Figure 83. Learning curves for binary classification GPT-J models (balanced classes) for
the photocatalytic activity of MOFs as a function of the number of training points. Data
points indicate the mean value of five different experiments. Error bands show the standard
error of the mean. We used 0.50 as random guessing accuracy (dashed line), which repre-
sents the zero rule baseline, i.e., a model that always predicts the most common class. Accu-
racy = 0.681±0.034 when the “catalyst+SMILES” set of input variables was used (epochs =
100, learning rate = 0.001, training set size = 65 data points).

when the “catalyst+SMILES” or the “catalyst+SMILES+band gaps” sets of input variables
were used.

Three LLMs (GPT-J, Llama, and Mistral) and two “traditional” ML models (XGBoost and
RF) were also fine-tuned with an unbalanced dataset using 100 epochs. Figure 87 shows that
the models do not perform better than random guess (shown by the dashed line), obtaining
an accuracy of 68-75% when using a training set of 65 data points and 100 epochs.

As an example, Figure 88a shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-J model trained with this unbalanced dataset using a training
set of 65 data points and 100 epochs. We can see that it clearly fails to predict high values of
the photocatalytic activity (i.e., label = 1), which is the least represented class in the dataset.

We also used a balanced dataset created by undersampling the majority class (label = 0)
at the cost of reducing the size of the dataset to obtain a model for predicting the photocat-
alytic activity greater than 200 µmolh−1 g−1. However, we obtained an accuracy of 60% when
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we used the “catalyst+SMILES” set of input variables shown in Table 37), using a training
set of 35 data points and 100 fine-tuning epochs. Although this accuracy is slightly better
than random guessing, the normalized confusion matrix in Figure 88b shows that the model
still fails to predict high values of the photocatalytic activity labeled ‘1’.
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Table 38. Prompt templates and completions. These prompts were used to predict the pho-
tocatalytic activity of metal-organic frameworks (MOFs) to obtain different products from
SMILES and metal, catalyst system, catalyst system together with SMILES, and catalyst sys-
tem together with SMILES and band gaps, respectively, according to the different sets of
input variables shown in Table 37.

prompt completion experimental

What is the photocatalytic activity (in µmol h−1 g−1) for <product> of

the <SMILES> catalyst made out of <metal source>?

0 Low

What is the photocatalytic activity (in µmol h−1 g−1) for <product> of

the <SMILES> catalyst made out of <metal source>?

1 High

What is the photocatalytic activity (in µmol h−1 g−1) for <product> of

a catalyst made out of <metal source> and <linker> in <phase> phase

with <sacrificial agent> as a sacrificial agent and <cocatalyst> as a

cocatalyst?

0 Low

What is the photocatalytic activity (in µmol h−1 g−1) for <product> of

a catalyst made out of <metal source> and <linker> in <phase> phase

with <sacrificial agent> as a sacrificial agent and <cocatalyst> as a

cocatalyst?

1 High

What is the photocatalytic activity (in µmol h−1 g−1) for <product>

of the <SMILES> catalyst made out of <metal source> and <linker> in

<phase> phase with <sacrificial agent> as a sacrificial agent and <co-

catalyst> as a cocatalyst?

0 Low

What is the photocatalytic activity (in µmol h−1 g−1) for <product>

of the <SMILES> catalyst made out of <metal source> and <linker> in

<phase> phase with <sacrificial agent> as a sacrificial agent and <co-

catalyst> as a cocatalyst?

1 High

What is the photocatalytic activity (in µmol h−1 g−1) for <product>

of the <SMILES> catalyst made out of <metal source> and <linker> in

<phase> phase with <sacrificial agent> as a sacrificial agent and <co-

catalyst> as a cocatalyst, with band gap for composite (in eV) of <band

gap for composite>, with band gap for MOF (in eV) of <band gap for

MOF>, with band gap for cocatalyst (in eV) of <band gap for cocata-

lyst>, with CB for MOF (in eV) of <CB for MOF>, with CB for cocata-

lyst (in eV) of <CB for cocatalyst>, with VB for MOF (in eV) of <VB for

MOF>, and with VB for cocatalyst (in eV) of <VB for cocatalyst>?

0 Low

What is the photocatalytic activity (in µmol h−1 g−1) for <product>

of the <SMILES> catalyst made out of <metal source> and <linker> in

<phase> phase with <sacrificial agent> as a sacrificial agent and <co-

catalyst> as a cocatalyst, with band gap for composite (in eV) of <band

gap for composite>, with band gap for MOF (in eV) of <band gap for

MOF>, with band gap for cocatalyst (in eV) of <band gap for cocata-

lyst>, with CB for MOF (in eV) of <CB for MOF>, with CB for cocata-

lyst (in eV) of <CB for cocatalyst>, with VB for MOF (in eV) of <VB for

MOF>, and with VB for cocatalyst (in eV) of <VB for cocatalyst>?

1 High
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Table 39. Overview of the accuracy results of LLMs and “traditional” ML models for
binary classification (balanced classes) of the photocatalytic activity of MOFs using the
“catalyst+SMILES” set of input variables. Five runs were performed to get the metrics
average. LLMs were fine-tuned with 100 epochs and a learning rate of 0.0003. Maximum
performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

65 GPT-J (LLM) 0.68 0.67 0.68 0.36
Llama (LLM) 0.60 0.54 0.60 0.20
Mistral (LLM) 0.58 0.49 0.58 0.17
RF 0.60 0.59 0.60 0.20
XGBoost 0.57 0.51 0.57 0.13
Zero-rule 0.50 0.50 0.50 0.00
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Figure 84. Learning curves for binary classification models (balanced classes) for the
photocatalytic activity of MOFs using the “catalyst+SMILES” set of input variables
as a function of the number of training points. Data points indicate the mean value
of five different experiments. Error bands show the standard error of the mean. We
used 0.50 as random guessing accuracy (dashed line), which represents the zero rule
baseline, i.e., a model that always predicts the most common class. Accuracy: GPT-
J=0.681±0.034, Llama=0.600±0.017, Mistral=0.583±0.030, random forest=0.600±0.027,
XGBoost=0.567±0.067 (LLM epochs = 100, LLM learning rate = 0.0003, random forest and
XGBoost=default parameters, training set size = 65 data points).
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Figure 85. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for the prediction of the photocatalytic activity of MOFs with the GPT-
J model. Models were trained with the “catalyst+SMILES” set of input variables using a
training set of 65 data points and 100 epochs (accuracy = 68%).
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Figure 86. Learning curves for binary classification GPT-J models (unbalanced classes,
73/27%) for the photocatalytic activity of MOFs as a function of the number of training
points. Data points indicate the mean value of five different experiments. Error bands show
the standard error of the mean. We used 0.73 as random guessing accuracy (dashed line),
which represents the zero rule baseline, i.e., a model that always predicts the most common
class. Accuracy = 0.681±0.033 when the “catalyst+SMILES” set of input variables was used
(epochs = 100, learning rate = 0.0003, training set size = 65 data points).
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Figure 87. Learning curves for binary classification models (unbalanced classes, 73/27%)
for the photocatalytic activity of MOFs as a function of the number of training points.
Data points indicate the mean value of five different experiments. Error bands show the
standard error of the mean. We used 0.73 as random guessing accuracy (dashed line),
which represents the zero rule baseline, i.e., a model that always predicts the most common
class. Accuracy: GPT-J=0.681±0.033, Llama=0.750±0.022, Mistral=0.750±0.022, random
forest=0.733±0.030, XGBoost=0.717±0.056 (“catalyst+SMILES” set of input variables, LLM
epochs = 100, LLM learning rate = 0.0003, random forest and XGBoost=default parameters,
training set size = 65 data points).
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Figure 88. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for the prediction of the photocatalytic activity of MOFs with the GPT-
J model. Models were trained with the “catalyst+SMILES” set of input variables using an
´unbalanced’ dataset with 73% of labels equal to 0, a training set of 65 data points and 100
epochs (accuracy = 73%) (a), and using a ‘balanced’ dataset (50/50) with a training set of 35
data points and 100 epochs (accuracy = 60%) (b).
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4.7 Success of MOF Synthesis

The dataset was provided by: Francesca Nerli and Marco Taddei16

4.7.1 Scientific Background

Figure 89. AI generated represen-
tation of the synthesis of Metal-
Organic Frameworks (MOFs).

Synthetic chemistry is often seen as the basis of ma-
terial science; the actual synthesis of a material is
needed to do further characterization. Small changes
in reaction conditions can have large impacts on the
success or yield of the reaction. Finding the optimal
parameters can improve chemistry and save time and
money when upscaling the process. However, this
search requires profound knowledge of the chemical
background, time, and money.

The following case study concerns the synthesis
of metal-organic frameworks. In the last decades,
this class of materials has gained much attention be-
cause of its versatility and potential applications in
various fields. Also, the first challenge to overcome is
the successful and effective synthesis of the material.
Currently, many of these studies use an approach
based on trial-and-error and chemical intuition. As
trillions of combinations are possible, a more sustain-
able optimization workflow is of great interest.

Here, the focus is on optimizing the synthesis of Ce(IV)-based MIL-140A using 2,3,5-
trifluoroterephthalate as the organic linker [hereafter F3 MIL-140A(Ce)]. The material was
synthesized under 25 different conditions, and the yield and phase purity of the product
were determined for every set of parameters. We aim to use this dataset of experimental
protocols to predict the success of newly presented reaction conditions, thereby gaining a
priori knowledge and helping experimentalists speed up optimization procedures.

4.7.2 Dataset

The dataset contains 26 experimental reaction protocols for the synthesis of F3 MIL-140A(Ce).
Each entry has 12 variables, as listed below;

• MeOH:H2O Ratio methanol/water.

• CAN:F3BDC molar ratio Cerium ammonium nitrate and 2,3,5-trifluoroterephthalic
acid molar ratio.

16Dipartimento di Chimica e Chimica Industriale, Unitá di Ricerca INSTM, Universitá di Pisa, Via Giuseppe
Moruzzi 13, 56124 Pisa, Italy
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Figure 90. Schematic representation of the synthesis of MIL-140A.

• F3BDC (mmol) Amount of 2,3,5-trifluoroterephthalic acid.

• CAN (mmol) Amount of cerium ammonium nitrate.

• T (°C) Temperature of synthesis.

• HNO3 Equivalents nitric acid equivalents.

• V CAN (mL) Volume of cerium ammonium nitrate solution.

• V F3BDC (mL) Volume of 2,3,5-trifluoroterephthalic acid solution.

• Vfinal (mL) Total volume.

• Reaction time Reaction time with unit included.

A successful synthesis is defined as one that affords at least 20% yield of phase-pure
F3 MIL-140A(Ce), as determined by powder X-ray diffraction analysis. This results in a
binary classification problem from a slightly unbalanced, rather small, dataset (Figure 91).

Table 40 shows an example of the prompt we use to fine-tune our LLM model.

4.7.3 LLM results

With only 26 entries, the provided dataset was rather small. We were thus limited in the
training examples. This case study was truly a search for the limits of the capabilities of
our approach. The first experiments with 25 epochs with only a few training examples
(n = 10) were not successful. The models were unable to capture the prompt/completion
structure and returned invalid completions for the test data, e.g., ’-9223372036854775808’
as the completion. The 0% accuracy in the learning curves should, therefore, be interpreted
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Figure 91. Histogram of reaction success of 26 experimental reaction protocols for the
synthesis of MIL-140A.

as a result of unsuccessful parsing of the returned completion rather than a completely in-
accurate fine-tuning of a model.

Next, we increased the number of epochs to 50, hypothesizing that this would increase
the performance of the fine-tuning. Indeed, we have already obtained useful predictions
on the test set in a very low data regime. Models trained on only five training examples
but repeatably seeing the same data for 50 times, i.e., number of epochs, could capture the
subtle relations between reaction conditions and reaction outcome. The average accuracy
over 3 seeds was 89%.

In a next step, we screened different models. Three base LLMs, i.e., GPT-J, Llama, and
Mistral, were fine-tuned. We notice that a maximum accuracy of 100% was reached with

Table 40. Example prompts and completions for predicting the success of the synthesis
of MIL-140A. <reaction conditions> serves as the placeholder for the available reaction
parameters for the synthesis.

prompt completion experimental

Example of training data

What is the success of synthesis of MIL-140A

with <reaction conditions>

0 Unsuccessful

What is the success of synthesis of MIL-140A

with <reaction conditions>

1 Successful
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Figure 92. Learning curve analysis of predictions for the success of the synthesis of MIL-
140A. Models fine-tuned with 10 (blue), 25 (green), and 50 (orange) epochs were validated.
A maximum accuracy of 89% was reached for a training set of 20 and 50 epochs.
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the GPT-J model (Figure 93 and Table 41). In addition, the fine-tuned LLMs were compared
with “traditional” ML models (random forest (RF) and XGBoost). We see that the LLMs can
compete with these models.

Table 41. Overview of results of LLMs and “traditional” ML predicting the binary class of
the success of a MOF synthesis. Three runs were performed to get the metrics average. All
LLMs were fine-tuned with 50 epochs and a learning rate of 0.003. For the random forest
(RF) and XGBoost models, optuna was used for hyperparameter optimization. Maximum
performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

15 GPT-J (LLM) 1.00 1.00 1.00 1.00
Llama (LLM) 0.80 0.79 0.80 0.63
Mistral (LLM) 0.93 0.92 0.93 0.85
RF 0.80 0.78 0.80 0.61
XGBoost 1.00 1.00 1.00 1.00
Zero-rule 0.50 0.50 0.50 0.00

In addition, we tested the best-performing model (GPT-J) on a hold-out dataset that was
only sent to us after the models were trained. We performed this extra test to minimize
chances of data leakage while maximizing transparency towards the domain experts. In-
terestingly, the outcome for all ten different models was the same, predicting the correct
outcome for 4 out of 5 reaction conditions (Figure 94).

121



0.0

0.5

1.0
RF

XGBoost
Llama

GPT-J
mistral

zero-rule

accuracy

0.0

0.5

1.0
f1_macro

0.0

0.5

1.0
f1_micro

5 1510
training set size

0.0

0.5

1.0
kappa

Figure 93. Learning curve analyses of binary classifications of the success of the catalytic
isomerization using different models. Three LLMs (GPT-J, Llama, and Mistral) were val-
idated on predicting the binary class of the the success of the MOF synthesis. Three runs
were performed for each model to get the metric’s average and standard deviation.
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Figure 94. Confusion matrix of predictions of unseen hold-out data. GPT-J models were
fine-tuned on 20 example prompts with 50 epochs. Ten different seeds all gave the same
predictions. The labels ‘0’ and ‘1’ represent the success of the reaction outcome.
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5 Systems and Applications

This is the section that describes case studies regarding chemical systems and applications.

5.1 Gas Uptake and Diffusion of MOFs

The dataset was provided by: Hilal Daglar and Seda Keskin17

5.1.1 Scientific Background

Figure 95. AI generated represen-
tation of Metal-Organic Frameworks
(MOFs) in gas separation.

Metal-organic frameworks (MOFs) have proven to be
successful in a plethora of applications.67 From a
synthesis point of view, MOFs consist of a metal part
and an organic linker. The endless combinations of
metal and ligand make trial-and-error as a strategy
to find the best material unsustainable. Computer-
aided searches, being molecular simulations or ma-
chine learning algorithms, are therefore an impor-
tant cornerstone in identifying promising MOF struc-
tures.68

Their high porosity and large surface-to-volume
ratio make this class of materials of great interest for
gas separation, especially in natural gas processing.
Given the current energy crisis, striving for maxi-
mal energy extraction from fuels is paramount. Re-
moving contaminants, such as CO2, is critical in this
regard. Today, repeated distillation-compression cy-
cling, cryogenic distillation, and pressure swing ad-
sorption are widely used to achieve this goal. Ad-
vanced separation technologies based on porous materials, e.g., MOFs, are seen as an energy-
efficient alternative. For a comprehensive overview of various applications, the reader is
referred to the review of Li et al. 69 .

Important physical metrics to evaluate the gas separation potential of a material are its
uptake and diffusion. The ability to predict these properties could prioritize molecular sim-
ulations, synthesis, and, eventually, testing of their separation performance. Daglar and Ke-
skin 70 successfully developed several models that could predict uptake and diffusion prop-
erties of He, H2, N2, and CH4 gasses in MOFs. Training data consisted of simulated uptake
and diffusion data of more than 5,000 MOFs. They used 19 different MOF descriptors, rang-
ing from pore size to chemical composition, to investigate their respective influence on the

17Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Is-
tanbul, Turkey
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model’s performance. These in-depth feature analyses and ML experiments are an excellent
starting point to compare with our GPT methodology.

Figure 96. Gas uptake and diffusion in a MOF

5.1.2 Dataset

The dataset provided by Daglar and Keskin 70 is a subset of the CoRE MOF database.71 To
ensure the accessibility of the molecules studied, the database was filtered on MOFs with
>3.8 Å and an accessible surface area (SA) >0 m2 g−1. Molecular dynamics simulations were
used to calculate diffusion and uptake for the remaining MOFs. Further filtering of the
structures was based on the self-diffusivities, i.e., >1×10−8 cm2 s−1 and statistical outliers for
the individual gas molecules. Finally, the dataset contains 677 MOFs for training ML models
for He, 2,715 MOFs for H2, 5,215 MOFs for CH4, and 5,224 MOFs for N2 (Figure 97). These
were used to train models for both their respective diffusion and uptake. For the base cases,
the binary classification was based on the median diffusion and uptake of the MOFs, taken
over the complete dataset of the guest molecule.

An example of the prompt template is shown in Table 42.

5.1.3 LLM results

Base Case In the first model iterations, we predicted the diffusion and uptake class solely
from the mofid or mofkey. The mofid is an identifier that describes the chemistry and topol-
ogy of MOF structures; the mofkey is the hashed version of the mofid.63 Over the 8 test cases,
i.e., He, H2, N2, and CH4 uptake and diffusion, averages of 68% and 66% for the mofid and
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Table 42. Example prompts and completions for predicting the uptake or diffusion of
MOFs. <MOF> serves as a placeholder for the various descriptors used in this study (see
Table 43 for details).

prompt completion experimental

Example of training data

What is the uptake or diffusion of <MOF>? 0 Low
What is the uptake or diffusion of <MOF>? 1 High

mofkey model, respectively, suggested no significant difference between the two represen-
tations on average (Table 44). While these are arguably not outstanding models, they still
perform better than the baseline of 50%, and thus serve as a good starting point for further
investigation.

Interestingly, similar conclusions were drawn from the original regression models, where
the atomic structure was a weak predictor for gas diffusion and uptake. Feature correla-
tion analysis revealed higher CH4 diffusion for low-medium carbon percentage and high
metal percentage, whereas weaker correlations were seen for He diffusion. As the mofid and
mofkey primarily capture the atoms of the structures, our initial experiments align with the
conclusions of Daglar and Keskin 70 .

AddingMOFcharacteristics The original dataset contained additional features grouped by
their physical/chemical relevance, i.e., pore volume, pore geometry, atom types, and chem-
ical descriptors (Table 43). These features are computed directly from the crystal structure
of the MOFs. Hence, we can only conduct a similar analysis from experimental data if the
crystal structure is known.

Previous regression experiments were performed by the curators, where the stepwise
addition of these groups made up the feature vector. Although the objective of the task is
slightly different, i.e., regression versus classification, we opted to try the same methodol-
ogy and hypothesized that similar trends in accuracy could be spotted. As test cases, we
chose He diffusion and CH4 diffusion as they showed interesting examples from the initial
experiments.

Table 45 compares our GPT-J classification model and the regression model of Daglar and
Keskin 70 , where the accuracy and the R2 serve as their respective metrics. At first glance, it
might seem that the higher percentage in accuracy versus the regression’s R2 value indicates
superior models. However, it is important to stress that these absolute values have differ-
ent statistical meanings and we only use the table to discuss similar ‘learning trends’. The
regression models predict the uptake and diffusion values (and thus can be any number)
from the given feature vector, where from the R2 value of the true and predicted numbers
reflects the performance of the individual models. As our GPT-J models address a classifi-
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Table 43. Sets of input variables used to represent the feature vector.70

group feature

A largest cavity diameter (Å)
pore limiting diameter (Å)

pore size ratio

B density (g/cm3)
pore volume (cm3/g)

porosity
surface area (m2/g)

C carbon percentage
hydrogen percentage
nitrogen percentage
oxygen percentage

halogen (Br, Cl, F, I) percentage
metalloid (As, B, Ge, Te, Sb, Si) percentage

ametal (Se, S, P) percentage
metal percentage

D total degree of unsaturation
degree of unsaturation

metallic percentage (#of metal/#of C atoms)
oxygen-to-metal ratio
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Table 44. Overview of accuracies for binary classifications for all test cases. Three runs
were performed to get the metric’s average and standard deviation. For all experiments, the
training size and number of epochs were set to 500 and 25, respectively. The medians of
the respective diffusion and uptake values were used as the threshold for creating the binary
classes.

He H2 N2 CH4

Diff. Uptake Diff. Uptake Diff. Uptake Diff. Uptake

mofid

Accuracy 0.62 0.68 0.60 0.71 0.68 0.74 0.71 0.71
Kappa 0.24 0.37 0.20 0.42 0.36 0.48 0.42 0.42

mofkey

Accuracy 0.63 0.76 0.59 0.64 0.62 0.70 0.64 0.69
Kappa 0.26 0.52 0.18 0.29 0.25 0.41 0.20 0.39

cation problem (and thus the output can only be ‘1’ or ‘0’ in our case), their performance is
assessed with the accuracy, i.e., the percentage of predicting the correct class of the instances.

Having said this, a first striking result can be seen for the He diffusion GPT-J model with
only the pore volume parameters, i.e., group A (Table 43). Compared to the mofid or mofkey
models from Table 44, there is a significant increase in accuracy, underpinning the learning
capability of these models. Moreover, the accuracy increases upon adding more descriptors,
a trend that can also be noted in the regression models. Also, for the CH4 diffusion models,
the model based on only group A is the worst for classification and regression. Adding more
features increases the performance. Moreover, for both GPT-J test cases, the combination of
groups A and B as a feature vector outperforms models based solely on one feature group.
We further tested different LLMs in predicting the binary class of the He diffusion. For this
comparison, we used the full feature vector, i.e. ABCD feature. We saw very comparable
accuracies around 70%, also with traditional ML models (Figure 98).
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Table 45. Overview of main performance metrics. The table shows the accuracy and R2

value for helium diffusion and CH4 diffusion for the binary classification GPT-J and regres-
sion models, respectively. Different descriptors were gradually added to the feature vector
to investigate the influence of the MOF representation. In both GPT-J series, the median
diffusion was used as the threshold for creating the binary classes.

He Diffusion CH4 Diffusion

GPT-J Regression GPT-J Regression

A 68 41 66 31
B 62 / 72 /
AB 73 63 80 72
ABC 77 64 78 77
ABCD 70 65 81 78
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Figure 97. Histograms of the eight properties studied, i.e., MOF uptake and diffusion for
helium, hydrogen, methane, and nitrogen.
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Figure 98. Learning curve analyses of binary classification of the He diffusion using dif-
ferent models. Three LLMs (GPT-J, Llama, and Mistral) and two traditional ML models
(XGBoost and random forest (RF)) were validated on predicting the binary class of the He
diffusion. We used 50% as a random guess accuracy (dashed line), representing the zero
rule baseline, For each model, three runs were performed to get the metric’s average and
standard deviation. The fine-tuned Mistral model reached the maximum accuracy of 72%
(training set size of 500 and 25 epochs).
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5.2 Hydrogen Storage Capacity of Metal Hydrides

The dataset was provided by: Noémie Xiao Hu18 and Andreas Züttel19

5.2.1 Scientific Background

Figure 99. AI generated representa-
tion of hydrogen storage using metal
hydrides.

Hydrogen is an interesting energy source with double
the energy storage capacity of most conventional fu-
els.72,73 However, the low density of hydrogen makes
efficient storage challenging, from a practical side,
but also regarding safety and costs. Potential solu-
tions include pressurized gas, cryogenic liquid, or ab-
sorption to solid-state materials. The latter proves
promising mainly because of their ab- and absorp-
tion reversibility and high hydrogen storage capac-
ity. Within the class of solid-state materials, promis-
ing candidates come from metals that form metal hy-
drides upon the chemisorption of hydrogen.74

The search for an ideal metal hydride for hydro-
gen absorption is dual. The structure formed should
be stable to prevent any hydrogen leakage during
storage. On the other hand, the reverse reaction, i.e.,
desorption, needs to be easily provoked to effectively
access the stored hydrogen. In other words, opti-
mal stability is key to ensuring the most desirable
adsorption-desorption process.

The ability to predict the heat of absorption for a system could prioritize experimental
validation and is, therefore, considered highly relevant in the endeavor to establish a sus-
tainable hydrogen economy. Several models, both theoretical and (semi)-empirical, have
been proposed. A notable example is the semi-empirical model of Griessen and Riesterer 75

based on the quantum mechanical parameters, i.e., Fermi energy. A more recent work was
published by Witman et al. 76 . Using machine learning, they predicted the equilibrium pres-
sure, i.e., how much hydrogen a material can deliver at room temperature. As there is a clear
link between the equilibrium pressure and the heat of formation, our methodology serves as
a useful tool for finding suitable hydrogen storage materials.

18Laboratory of molecular simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, École Polytech-
nique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland

19Laboratory of Materials for Renewable Energy (LMER), Institut des Sciences et Ingénierie Chimiques, École
Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
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5.2.2 Dataset

The ML-HydPARK dataset created by Witman et al. 77 was used to train the models. This
open-access database is a subset (<20%) of the HYDPARK database. Besides the metal hy-
dride composition, each entry contains the equilibrium pressure (at 25 ◦C) and its heat of
formation.

Considering the variety of heat of formation ranges in literature, the values between
−40 kJmol−1 to −20 kJmol−1 are labeled as ‘optimal’ for all our experiments. This crite-
rion results in 255 potential candidates (≈60% of the dataset) for hydrogen storage appli-
cations. The remaining structures, with heat of formation values both >−20 kJmol−1 or
<−40 kJmol−1, are classified as ‘sub ideal’.

The aforementioned correlation between the natural logarithm of the equilibrium pres-
sure and heat of formation is illustrated in Figure 100. An elemental analysis of the struc-
tures is shown in Figure 101, where the bars’ height and color scheme represent the ele-
ment’s absolute presence in the structures and the heat of formation binning, respectively.
For this plot, the stoichiometry of the structures was neglected. For instance, ZrFe1.8Ni0.2
and Mg2Co0.25Ni0.75 are both counted as ‘Ni’ containing structures. As the heat of forma-
tion is often indecisive within one element, predicting the hydrogen storage potential via the
structural composition is a complex task. Table 46 shows an example of the prompt used to
fine-tune the LLMs in our experiments.
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Figure 100. Equilibrium pressure vs. heat of formation. Structures with heat of formation
between −40 kJmol−1 to −20 kJmol−1 were considered optimal.

5.2.3 LLM results

Base Case In the first binary classification problem, we predicted the binary class of the
heat of formation value, i.e., lower or higher than the median of −34.95 kJmol−1, based only
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Figure 101. Elemental analysis of the ML-HydPARK dataset.

Table 46. Example prompts and completions for predicting the heat of formation of hy-
drides. <Formula> serves as a placeholder for the chemical formula of the hydride.

prompt completion experimental

Example of training data

What is the heat of formation of <Formula>

and/or <Pressure>?

0 Low

What is the heat of formation of <Formula>

and/or <Pressure>?

1 High

on the composition formula.
Intuitively, a trained chemist can try to interpolate the success of the material based on

the chemical composition. For instance, if the material has element X, it will likely be better
than a material containing element Y. However, for non-experts, this is often not as straight-
forward. One potential strategy that could be used is taking the dominant element of each
material and accepting the dominant bin as the predicted outcome. For instance, asking
a non-expert the success of the material Zr0.2Ti0.8Cr1.8, Cr, as the dominant element, can
naively be taken as the main feature, and looking at the elemental analysis, Figure 101 sug-
gest that the material is likely optimal. Nevertheless, this analysis results in a predictive
accuracy of 58%, further suggesting that a non-expert eye is not sufficient for material se-
lection. On the other hand, our LLM approach allows for easy input of textual strings, so
we can train the model on the full elemental composition. So rather than Cr, we now use
the complete Zr0.2Ti0.8Cr1.8 as the feature to predict the heat of formation. Fine-tuning the
LLM exceeds the previous baseline of 58% by quite some margin, with an accuracy of 84.6%,
suggesting that the model learns the subtle correlations in the composition of the materials
(Table 47).

Similarly, we can create a ‘lazy’ baseline model with the equilibrium pressure as the only

133



feature by binning the outcome of a linear regression. For example, a ln(P ) of -10 would give
a heat of formation of −59 kJmol−1, which is lower than the median of −34.95 kJmol−1, so
binned as ‘sub ideal.’ An accuracy of 80.3% is calculated via this method. Again, if we train
our models on only the equilibrium pressure, we get an accuracy of 76.0%, confirming the
learning ability of these LLMs.

Lastly, if we combine both features and train the model on ‘<composition name> (with
an equilibrium pressure of <pressure>),’ no additional improvement is observed, with an
accuracy of 78.6% (Figure 102).

Table 47. Binary classification for the heat of formation. All models (GPT-J) were trained
on 350 examples and 50 epochs. The median was the threshold for the class split.

Feature(s) Accuracy / %

Formula 84.6
Pressure 76.0
Formula + Pressure 78.6

We also compared the performance of three LLMs, i.e, GPT-J, Llama, and Mistral. We
notice that all three models are comparable in performance. A maximum accuracy of 86%
was reached with the Llama model (Figure 102 and Table 48).

Table 48. Overview of results of LLMs predicting the binary class of the heat of formation
of hydrides. Three runs were performed to get the metrics average. All LLMs were fine-
tuned with 25 epochs and a learning rate of 0.003. Maximum performances are highlighted
in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

350 GPT-J (LLM) 0.79 0.79 0.79 0.57
Llama (LLM) 0.86 0.86 0.86 0.72
Mistral (LLM) 0.79 0.79 0.79 0.59
Zero-rule 0.50 0.50 0.50 0.00

Real split Next, a series of models were trained on the more realistic threshold. Here, only
materials with heat of formation values between −40 kJmol−1 to −20 kJmol−1 are labeled
‘ideal.’ Lower or higher values are labeled ‘sub ideal,’ so a binary classification is preserved.
These threshold values where taking based on suggestions in reported literature.78,79 The
split gives a slightly imbalanced dataset, with 60% ‘sub ideal’ cases, which therefore serves
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Figure 102. Learning curve analyses of binary classification of the heat of formation of
hydrides using different models. Three LLMs (GPT-J, Llama, and Mistral) were validated
on predicting the binary class of the heat of formation of hydrides. For each model, three
runs were performed to get the metric’s average and standard deviation. The fine-tuned
Llama model reached the maximum accuracy of 86% (training set size of 350 and 50 epochs).
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as our baseline. ‘Lazy’ predictions on the dominant element and with the regression on
the equilibrium pressure binning give accuracies of 61.4% and 81%, respectively. The fine-
tuning of LLMs for both the formula and the pressure as a single feature gives an accuracy
of 70%. The combined feature vector, i.e., formula and pressure, does not significantly in-
crease the performance of the models, i.e., an accuracy of 74.6% (Table 49). While this result
is slightly worse than the regression on the equilibrium pressure, it still makes superior pre-
dictions from the elemental composition of the materials. As a non-expert, this situation can
be of practical relevance as equilibrium pressure values are not always reported/accessible.

Table 49. Binary classification for the heat of formation trained on a realistic split. All
models were trained on 300 examples and 50 epochs. Reported accuracies are averages of
3 individual runs. Values between −40 kJmol−1 to −20 kJmol−1 were labeled as ‘optimal’;
higher or lower heat of formation values were ‘sub ideal’.

Feature(s) Accuracy / %

Formula 70.6
Pressure 71.3
Formula + Pressure 74.6
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5.3 Carbondioxide Adsorption of Biomass-derived Adsorbents

The dataset was provided by: Hossein Mashhadimoslem20

5.3.1 Scientific Background

Figure 103. AI generated represen-
tation of biomass-derived activated
carbons for CO2 capture.

Biomass-derived activated carbons for CO2 capture
in industry are a sustainable pathway to carbon neu-
trality. Although searching for microporous carbon
adsorbents suitable as CO2 adsorbents has been a
relevant research topic for many years, large-scale
deployment of bio-based adsorption processes still
faces scientific and technological challenges.80–82

Promising attributes of carbon-based adsorbents
include their low cost, high surface area, high abil-
ity to modify pore structure and functionalize the
surface, and relative ease of regeneration.83 How-
ever, implementing adsorption-based CO2 capture
on an industrial scale requires a material that can ad-
equately handle real flue gas conditions. Due to their
hydrophobic nature, carbon adsorbents exhibit high
stability under wet conditions, making them promis-
ing candidates for post-combustion CO2 capture ap-
plications. In addition, bio-based adsorbents have
recently received considerable attention as sustain-
able and cost-effective materials for CO2 capture, as they can be developed from renewable
sources that are available worldwide at lower cost through relatively simple treatment pro-
cesses.

The production of carbon adsorbents from biomass precursors involves physical or chem-
ical activation to develop porosity through the reaction of the precursor with the activating
agent.84 The adsorption capacity of an activated carbon is mainly dependent on its pore
structure. Every carbon precursor requires specific activation conditions. Since laboratory
experiments are time-consuming and expensive, a model to predict the textural properties,
such as BET surface area, as well as CO2 adsorption capacity, of biomass-based activated car-
bons, could accelerate the development of adsorption processes on bio-derived adsorbents
by helping to synthesize efficient adsorbents for CO2 capture.

In this work, we use our LLMs approach to build a machine learning model to predict
the BET surface area of a biomass-derived activated carbon from the biomass precursor and
activation conditions. Likewise, we develop a model to predict the CO2 adsorption capacity

20Department of Chemical Engineering, University of Waterloo, Waterloo, N2L3G1, Canada
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of a biomass-derived activated carbon from the biomass precursor, activation conditions,
textural properties, and adsorption conditions.

5.3.2 Dataset

We used the dataset collected by Mashhadimoslem et al. 85 on the synthesis of activated car-
bons from different biomass precursors for CO2 adsorption. The dataset contains 33 biomass
precursors and ten activating agents used to synthesize different activated carbons. These
biomass-derived adsorbents are tested for CO2 adsorption under varying pressure and tem-
perature conditions, resulting in a dataset of 74 data points for BET surface area and 421
data points for CO2 adsorption. The dataset contains information about the precursor ac-
tivation process (biomass precursor, activating agent, activating agent/carbon weight ratio,
and activation temperature) and adsorption conditions (pressure and temperature), along
with the textural properties of the activated carbon (BET surface area and pore volume) and
its CO2 adsorption capacity.

We predict the BET surface area and CO2 adsorption capacity of biomass-derived acti-
vated carbons. The distribution of the two variables is shown in Figure 104. We used the
biomass precursor name, activating agent, activation agent/carbon ratio, and activation tem-
perature as inputs to predict the BET surface area. To predict the CO2 adsorption capacity
of a biomass-derived activated carbon, we used as inputs the biomass precursor, activating
agent, activating agent/carbon ratio, activation temperature, BET surface area, pore volume,
adsorption pressure, and adsorption temperature.
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Figure 104. Distribution of the of the BET surface area (a) and CO2 adsorption capacity
(b) values in the dataset. The median BET surface area is 1262 m2 g−1 and the median CO2
adsorption capacity is 2.7 mmolg−1.

We used a simple prompt template, with prompts of the form shown in Table 50 for
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experiments to predict BET surface area and CO2 adsorption capacity.

Table 50. Example prompts and completions for predicting the BET surface area and CO2
adsorption capacity.

prompt completion experimental

What is the BET surface area (m2/g) of an activated carbon syn-

thesized from <biomass precursor> as precursor, activated with

<activating agent> with an activating agent/carbon weight ratio

of <activating agent/carbon ratio> at a temperature of <activation

temperature> K?

0 Low

What is the BET surface area (m2/g) of an activated carbon syn-

thesized from <biomass precursor> as precursor, activated with

<activating agent> with an activating agent/carbon weight ratio

of <activating agent/carbon ratio> at a temperature of <activation

temperature> K?

1 High

What is the CO
2
adsorption capacity (mmol/g) of an activated car-

bon at <adsorption temperature> K and <adsorption pressure> bar,

which has been synthesized from <biomass precursor> as precursor,

activated with <activating agent> with an activating agent/carbon

weight ratio of <activating agent/carbon ratio> at a temperature

of <activation temperature> K, and has a BET surface area of <BET

surface area> m2/g and a pore volume of <pore volume> cm3/g?

0 Low

What is the CO
2
adsorption capacity (mmol/g) of an activated car-

bon at <adsorption temperature> K and <adsorption pressure> bar,

which has been synthesized from <biomass precursor> as precursor,

activated with <activating agent> with an activating agent/carbon

weight ratio of <activating agent/carbon ratio> at a temperature

of <activation temperature> K, and has a BET surface area of <BET

surface area> m2/g and a pore volume of <pore volume> cm3/g?

1 High

5.3.3 LLM results

BET surface - Base Case To train the binary classification models, we split the dataset
into two classes of equal size based on the BET surface area separated by the median, i.e.,
1262 m2 g−1. For this dataset, we tested 30 and 60 fine-tuning epochs with the GPT-J model,
but they provided a high number of invalid predictions. Therefore, we tested more epochs,
as shown in Figure 105. We find that the models trained with 140 and 200 epochs perform
better than random guess (shown by the dashed line), with an accuracy of 72% for a training
set of 65 data points and 140 epochs.

Therefore, three base LLMs, i.e., GPT-J, Llama, and Mistral, were fine-tuned using 140
epochs. We also trained two “traditional” ML models, i.e., XGBoost and random forest (RF),
for comparison purposes. Table 51 and Figure 106 show that the highest accuracy (76%) was
obtained with LLama. Only slightly lower performance values were obtained with other
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Figure 105. Learning curves for binary classification GPT-J models (balanced classes)
for the BET surface area of biomass-derived activated carbons fine-tuned with different
number of epochs. Data points indicate the mean value of five different experiments. Error
bands show the standard error of the mean. We used 0.50 as random guess accuracy (dashed
line), which represents the zero rule baseline, i.e., a model that always predicts the most
common class. Accuracy = 0.722±0.056 (epochs = 140, learning rate = 0.0003, training set
size = 65 data points).

models (accuracy of 72-73%), with a slightly lower accuracy value in the case of XGBoost
(68%).

As an example, Figure 107 shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-J model trained using a training set of 65 data points and 140
epochs. We can see that the model fails more often in predicting samples with a high value
of BET surface area.

CO2 adsorption capacity - Base Case We also split the dataset into two classes of equal size
based on the CO2 adsorption capacity separated by the median, i.e., 2.7 mmolg−1. We fine-
tuned three LLMs (GPT-J, Llama, and Mistral) and two “traditional” ML models (XGBoost
and RF) with the CO2 adsorption capacity dataset using 30 epochs. Table 52 and Figure 108
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Table 51. Overview of the accuracy results of LLMs and “traditional” ML models for
binary classification (balanced classes) of the BET surface area of biomass-derived acti-
vated carbons. Five runs were performed to get the metrics average. LLMs were fine-tuned
with 140 epochs and a learning rate of 0.0003. Maximum performances are highlighted in
bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

65 GPT-J (LLM) 0.72 0.71 0.72 0.46
Llama (LLM) 0.76 0.75 0.76 0.52
Mistral (LLM) 0.72 0.71 0.72 0.45
RF 0.73 0.73 0.73 0.47
XGBoost 0.68 0.64 0.68 0.32
Zero-rule 0.50 0.50 0.50 0.00

show the results for binary classification of the CO2 adsorption capacity. The trained models
perform much better than random guess (shown by the dashed line) for this variable. The
highest accuracy (93%) was obtained with XGBoost. However, only slightly lower perfor-
mance values were obtained with RF (92%) and Mistral (90%) for training sets of 380 data
points.

Table 52. Overview of the accuracy results of LLMs and “traditional” ML models for bi-
nary classification (balanced classes) of the CO2 adsorption capacity of biomass-derived
activated carbons. Five runs were performed to get the metrics average. LLMs were fine-
tuned with 30 epochs and a learning rate of 0.0003. Maximum performances are highlighted
in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

380 GPT-J (LLM) 0.84 0.84 0.84 0.69
Llama (LLM) 0.83 0.83 0.83 0.66
Mistral (LLM) 0.90 0.90 0.90 0.80
RF 0.92 0.92 0.92 0.83
XGBoost 0.93 0.93 0.93 0.87
Zero-rule 0.50 0.50 0.50 0.00

As an example, Figure 109 shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-J model trained using a training set of 380 data points and 30
epochs. We see that the model can predict the two classes in the dataset quite well, although
it fails more often in predicting samples with a low CO2 capacity.
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BET surface area - Real Split To estimate if the activation procedure of a biomass precursor
can produce an activated carbon with a very high specific surface area, a binary classification
GPT-J model was trained to predict whether the BET surface area is lower or higher than
1800 m2 g−1. This implies using an unbalanced dataset since the data points with such a
high BET surface area represent only 26% of our overall dataset.

Figure 110 shows that this model does not perform much better than random guess
(shown by the dashed line), obtaining an accuracy of 86% when using a training set of 65
data points and 140 epochs.

Three LLMs (GPT-J, Llama, and Mistral) and two “traditional” ML models (XGBoost and
RF) were also fine-tuned with an unbalanced dataset using 140 epochs. Figure 111 shows
similar accuracy values for the LLMs and RF (80-86%) and a lower accuracy for XGBoost
(76%) when trained using an unbalanced dataset.

As an example, Figure 112a shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-Jmodel trained with this unbalanced dataset using a training
set of 65 data points and 140 epochs. We can see that the model clearly fails to predict high
values of the BET surface area (i.e., label = 1), which is the least represented class in the
dataset.

However, we obtained better predictions of the BET surface area values higher than
1800 m2 g−1 when we used a balanced dataset created by randomly undersampling the ma-
jority class (label = 0) at the cost of reducing the size of the dataset. An accuracy of 75% was
achieved using a training set of 30 data points and 200 fine-tuning epochs, similar to that
obtained for the initial balanced 50/50% dataset. The normalized confusion matrix in Fig-
ure 112b shows better results were obtained with a smaller balanced dataset. We can deduce
that we need more fine-tuning epochs to obtain better results than random guess when our
dataset is smaller.

CO2 adsorption capacity - Real Split We also trained a model to predict whether the CO2
adsorption capacity of a biomass-derived adsorbent is lower or higher than 4 mmolg−1, i.e.,
if it has a very high adsorption capacity. We also used an unbalanced dataset since the data
points with such a high CO2 adsorption capacity represent only 28% of our overall dataset.
We fine-tuned three LLMs (GPT-J, Llama, and Mistral) and two “traditional” ML models
(XGBoost and RF) with the CO2 adsorption capacity dataset using 30 epochs. Figure 113
show that GPT-J does not perform better than random guess (shown by the dashed line),
obtaining an accuracy of 74%. However, other models perform better than random guess
for this variable. The highest accuracy (91%) was obtained with Mistral and RF, but high
accuracy values were also obtained with Llama (86%) and XGBoost (89%) for training sets
of 380 data points.

As an example, Figure 114a shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-J model trained with this unbalanced dataset using a training
set of 380 data points and 30 epochs. The predictions are close to the random guess.
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As in the case of the BET surface area, we also obtained better predictions of the CO2
adsorption capacity values higher than 4 mmolg−1 when we used a balanced dataset created
by undersampling the majority class (label = 0) (also reducing the size of the dataset). We
needed to increase the number of fine-tuning epochs to obtain valid predictions. Thus, an
accuracy of 82% was achieved using a training set of 200 data points and 100 epochs, which
is similar to the accuracy obtained for the initial balanced 50/50% dataset. The normal-
ized confusion matrix in Figure 114b shows better results obtained with a smaller balanced
dataset if more fine-tuning epochs are used. We can see that the model can predict the two
classes in the dataset quite well.

Given the promising results obtained for binary classification for the CO2 adsorption
capacity, we also trained classification models using datasets split into 4 and 10 bins and
regression models using datasets with continuous values. To perform classification into a
higher number of bins, we split the dataset into four and ten equally sized bins. For regres-
sion, we use the regression approach of our original article,9 i.e., direct text completion of
rounded figures. In this case, a random train/test data split stratified on the target variable
was applied using a threshold of 5 mmolg−1 for the CO2 adsorption capacity.

Figures 115 and 116 show a performance clearly above the random guess (shown by the
dashed line) for both four-class and ten-class classification, respectively. In these cases, the
LLM models show a slightly higher performance than RF and XGBoost. As an example, Fig-
ure 117 shows that GPT-J model provide good predictions for datasets with 4 (Figure 117a)
and 10 (Figure 117b) classes since the majority of them are in the diagonal of the confusion
matrix.

Finally, Figure 118 shows that the regression model also performs well in predicting CO2
adsorption capacity when using a training size of 380 data points. In this case, the LLMs
show an accuracy similar to that obtained with RF. However, a slightly better performance
is obtained with XGBoost. In this case, unlike RF and XGBoost model, where the biomass
precursor names and the activating agent’s chemical formulas were encoded to numerical
values, since LLMs allow text input, we trained the models using the biomass precursor’s
name and the activating agent’s chemical formula an input variables.

For the prediction of CO2 adsorption capacity, we also compare the regression GPT-J
model trained with three different sets of input variables, as shown in Table 53. Figure 119
shows no relevant difference in the prediction of CO2 adsorption capacity for the different
sets of input variables for training sizes above 200 data points. Maximum R2 values of 0.83–
0.87 were obtained for a training set size of 380. This means that the fine-tuned GPT-J 6B
model can successfully predict the CO2 adsorption capacity of biomass-derived activated
carbons from two different sets of input variables: (i) the textural properties of the activated
carbon and the adsorption temperature and pressure, and (ii) the activation conditions of the
biomass precursor together with the adsorption conditions. This is an interesting finding, as
it means that we could estimate the CO2 adsorption capacity of a biomass-derived adsorbent
at selected adsorption conditions before synthesizing it, just by knowing the characteristics
of the precursor and activation conditions.
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Table 53. Sets of input variables used to predict the CO2 adsorption capacity of biomass-
derived activated carbons using regression models.

input variables all inputs wo BETpore only BETpore

biomass precursor X X
activating agent X X
activating agent/carbon ratio X X
activation temperature X X
BET surface area X X
pore volume X X
adsorption pressure X X X
adsorption temperature X X X

In addition, Figure 119 also shows the performance of the regression model after re-
moving the precursor name in the case of the “all inputs” and “wo BETpore” sets of input
variables (“all inputs woNAME” and “wo BETporeNAME” lines, respectively). We can see
that the performance is only slightly lower if the precursor name is not included within the
input variables. This indicates that the model could learn some trends associated with the
biomass precursor name to some certain extent, although its influence is low.
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Figure 106. Learning curves for binary classification models (balanced classes) for the
BET surface area of biomass-derived activated carbons fine-tuned with different number
of epochs. Data points indicate the mean value of five different experiments. Error bands
show the standard error of the mean. We used 0.50 as random guess accuracy (dashed line),
which represents the zero rule baseline, i.e., a model that always predicts the most common
class. Accuracy: GPT-J=0.722±0.056, Llama=0.759±0.053, Mistral=0.722±0.056, random
forest=0.733±0.044, XGBoost=0.680±0.068 (LLM epochs = 140, LLM learning rate = 0.0003,
random forest and XGBoost=default parameters, training set size = 65 data points).

145



0 1
Predicted label

0

1

Tr
ue

 la
be

l 0.78 0.22

0.33 0.67
0.3

0.4

0.5

0.6

0.7

Figure 107. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for BET surface area prediction with the GPT-J model. Models were
trained using a training set of 65 data points and 140 epochs (accuracy = 72%).
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Figure 108. Learning curves for binary classification models (balanced classes) for the
CO2 adsorption capacity of biomass-derived activated carbons. Data points indicate the
mean value of five different experiments. Error bands show the standard error of the
mean. We used 0.50 as random guess accuracy (dashed line), which represents the zero
rule baseline, i.e., a model that always predicts the most common class. Accuracy: GPT-
J=0.844±0.018, Llama=0.829±0.025, Mistral=0.902±0.006, random forest=0.917±0.014,
XGBoost=0.933±0.019 (LLM epochs = 30, LLM learning rate = 0.0003, random forest and
XGBoost=default parameters, training set size = 380 data points).
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Figure 109. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for CO2 adsorption capacity prediction with the GPT-J model. Models
were trained using a training set of 380 data points and 30 epochs (accuracy = 84%).
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Figure 110. Learning curves for binary classification GPT-J models (unbalanced classes,
74/24%) for the BET surface area of biomass-derived activated carbons fine-tuned with
different number of epochs. Data points indicate the mean value of five different experi-
ments. Error bands show the standard error of the mean. We used 0.74 as random guess
accuracy (dashed line), representing the zero rule baseline, i.e., a model that always predicts
the most common class. Accuracy = 0.861±0.070 (epochs = 140, learning rate = 0.0005,
training set size = 65 data points).
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Figure 111. Learning curves for binary classification models (unbalanced classes,
74/26%) for the BET surface area of biomass-derived activated carbons fine-tuned with
different number of epochs. Data points indicate the mean value of five different ex-
periments. Error bands show the standard error of the mean. We used 0.74 as random
guess accuracy (dashed line), representing the zero rule baseline, i.e., a model that al-
ways predicts the most common class. Accuracy: GPT-J=0.861±0.070, Llama=0.796±0.034,
Mistral=0.806±0.053, random forest=0.811±0.017, XGBoost=0.760±0.065 (LLM epochs =
140, LLM learning rate = 0.0003, random forest and XGBoost=default parameters, training
set size = 65 data points).
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Figure 112. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for BET surface area prediction with the GPT-J model. Models were
trained using an ‘unbalanced’ dataset with 74% of labels equal to 0, a training set of 65 data
points, and 140 epochs (accuracy = 86%) (a), and using a ‘balanced’ dataset with a training
set of 30 data points and 200 epochs (accuracy = 75%) (b).
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Figure 113. Learning curves for binary classification models (unbalanced classes,
72/28%) for the CO2 adsorption capacity of biomass-derived activated carbons. Data
points indicate the mean value of five different experiments. Error bands show the standard
error of the mean. We used 0.72 as random guess accuracy (dashed line). Accuracy: GPT-
J=0.737±0.030, Llama=0.862±0.019, Mistral=0.911±0.021, random forest=0.910±0.019,
XGBoost=0.886±0.016 (LLM epochs = 30, LLM learning rate = 0.0003, random forest and
XGBoost=default parameters, training set size = 380 data points).
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Figure 114. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for CO2 adsorption capacity prediction with the GPT-J model. Models
were trained using an ‘unbalanced’ dataset with 72% of labels equal to 0, a training set of
380 data points and 30 epochs (accuracy = 74%)(a), and using a ‘balanced’ dataset with a
training set of 200 data points and 100 epochs (accuracy = 82%) (b).
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Figure 115. Learning curves for 4-class classification models for the CO2 adsorption ca-
pacity of biomass-derived activated carbons. Data points indicate the mean value of five
different experiments. Error bands show the standard error of the mean. We used 0.25 as
random guess accuracy (dashed line). Accuracy: GPT-J=0.722±0.031, Llama=0.637±0.029,
Mistral=0.791±0.031, random forest=0.671±0.019, XGBoost=0.662±0.018 (LLM epochs =
30, LLM learning rate = 0.0003, random forest and XGBoost=default parameters, training
set size = 380 data points).
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Figure 116. Learning curves for 10-class classification models for the CO2 adsorption
capacity of biomass-derived activated carbons. Data points indicate the mean value of five
different experiments. Error bands show the standard error of the mean. We used 0.10 as
random guess accuracy (dashed line). Accuracy: GPT-J=0.576±0.041, Llama=0.493±0.050,
Mistral=0.528±0.017, random forest=0.468±0.027, XGBoost=0.405±0.035 (LLM epochs =
30, LLM learning rate = 0.0003, random forest and XGBoost=default parameters, training
set size = 380 data points).
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Figure 117. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for CO2 adsorption capacity prediction with the GPT-J model. Models
were trained using 4-class (a) and 10-class (b) balanced datasets, training sets of 380 data
points, and 30 epochs.
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Figure 118. Learning curves for regression models for the prediction of the CO2 adsorp-
tion capacity of biomass-derived activated carbons. Data points indicate the mean value
of five different experiments. Error bands show the standard error of the mean. R2: GPT-
J=0.826±0.027, Llama=0.876±0.019, Mistral=0.879±0.016, random forest=0.888±0.012,
XGBoost=0.987±0.006; MAE: GPT-J=0.50±0.02, Llama=0.42±0.02, Mistral=0.39±0.03, ran-
dom forest=0.37±0.02, XGBoost=0.05±0.01; RMSE: GPT-J=0.70±0.06, Llama=0.60±0.05,
Mistral=0.59±0.05, random forest=0.59±0.03, XGBoost=0.17±0.04 (LLM epochs = 30, LLM
learning rate = 0.0001, random forest and XGBoost=default parameters, training set size =
380 data points).
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Figure 119. Learning curves for regression GPT-J models for the prediction of the CO2
adsorption capacity of biomass-derived activated carbons. The blue line (“all inputs”)
represents the results we obtained using as input the biomass precursor, activation condi-
tions, textural properties of the activated carbon, and adsorption conditions. The green line
(“wo BETpore”) represents the results we obtained using as input the biomass precursor, ac-
tivation conditions, and adsorption conditions. The yellow line (“only BETpore”) represents
the results we obtained using as input the textural properties of the activated carbon, and
adsorption conditions. Data points indicate the mean value of five different experiments
using a training set of 380 data points and 30 epochs. Error bands show the standard er-
ror of the mean. R2 = 0.827±0.027 for “all inputs”. R2 = 0.831±0.021 for “only BETpore”.
R2 = 0.867±0.014 for “wo BETpore”. R2 = 0.773±0.022 for “all inputs woNAME”. R2 =
0.780±0.032 for “wo BETporeNAME”.
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5.4 Thermal Desalination of Water

The dataset was provided by: Mehrdad Asgari21 and Morteza Sagharichiha22

5.4.1 Scientific Background

Figure 120. AI generated represen-
tation of a water desalination pro-
cess.

Water desalination plays a key role in addressing the
global challenge of water scarcity.86 With freshwa-
ter sources dwindling due to factors like population
growth, urbanization, and climate change, desalina-
tion provides a vital solution to meet the increasing
demand for clean water. By removing salt and impu-
rities from seawater or brackish water, desalination
technologies offer a sustainable means of securing
freshwater supplies, especially in arid regions where
traditional water sources are limited. Additionally,
desalination enables the utilization of alternative wa-
ter sources, reducing dependence on finite freshwater
resources and mitigating the impact of droughts and
water shortages on communities, agriculture, and in-
dustries. As the need for accessible and reliable water
continues to grow, investing in desalination technolo-
gies becomes increasingly critical for ensuring wa-
ter security and supporting sustainable development
worldwide.

Mathematical modeling has been widely used to simulate the behavior of thermal de-
salination units and optimize their design. However, the complexity of the process and the
large number of parameters involved make it difficult to develop accurate models, which can
limit the effectiveness of the optimization process. Machine learning can offer a promising
approach to training models on large amounts of simulated data to predict the behavior of
thermal desalination units. In this work, we develop a model using data from the simulation
of thermal desalination units, specifically multiple effect evaporators (MEE) with thermal
vapor compression (TVC) and a condenser, for brackish water desalination.87

In desalination systems, maximizing distilled water output per unit of energy input is
crucial. Multi-effect desalination systems achieve this by distilling one unit of steam to pro-
duce another, which is then used in subsequent heat exchangers, known as ”effects”. The
evaluation index for these systems is the Gain Output Ratio (GOR), representing the ratio
of the distillate’s total latent heat of evaporation to thermal energy input.88 A higher GOR

21Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive,
Cambridge CB3 0AS, United Kingdom

22Department of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
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Figure 121. Illustration depicting the schematic of a multiple effect evaporators plant.87

(Reproduced with permission, copyright 2014, Elsevier).

signifies greater thermal energy utilization efficiency. However, there’s a trade-off between
the number of effects and GOR, impacting variable costs, and the total surface area of heat
exchangers, affecting fixed costs. To optimize heat exchangers, understanding how design
parameters (e.g., number of effects) affect the required surface area and GOR is crucial. Mod-
els are built to predict the specific heat-transfer surface and GOR based on the number of
effects and steam temperature. These variables influence the system’s final cost: specific
heat transfer surface determines plant size and fixed costs, while GOR influences steam con-
sumption and variable costs.

In this study, we utilize data derived from a model we developed87 to simulate the oper-
ation of feed-forward thermal desalination units. Figure 121 This model extensively incor-
porates mass and energy balances across all thermal desalination effects, accounting for key
concepts in the field such as boiling point elevation (BPE) and the impact of non-condensable
gases (NCGs) on pressure within the effects. By leveraging this model, critical parameters in-
fluencing desalination unit performance can be identified, paving the way for the creation of
more efficient and cost-effective thermal desalination units to address the increasing demand
for fresh water in water-scarce regions. Furthermore, the precise prediction capabilities of-
fered by this model can streamline the design process, reducing cycle time and enhancing
overall design efficiency.

5.4.2 Dataset

The dataset contains 30 data points, including information on the number of effects and
steam temperature.
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We predict the specific heat transfer surface and GOR. The distribution of both variables
is shown in Figure 122. We used the number of effects and steam temperature as inputs to
predict the specific heat transfer surface and GOR of multiple-effect evaporator systems.

We used a simple prompt template shown in Table 54, for our experiments to predict the
specific heat-transfer surface and GOR.

500 1000 1500
Specific heat transfer surface (kg m2 s 1)

0.0000

0.0005

0.0010

0.0015

density

(a)

5 6 7 8
GOR

0.0

0.1

0.2

0.3

0.4

density

(b)

Figure 122. Distribution of the specific heat transfer surface (a) and Gain Output Ratio
(GOR) (b) of multiple-effect evaporator systems in the dataset. The median specific heat
transfer surface is 628 kg m2 s−1 and the median GOR is 6.2.

5.4.3 LLM results

Specific heat transfer surface - Base Case To train the binary classification models, we split
the dataset into two classes of equal size based on the specific heat transfer surface separated
by the median, i.e., specific heat transfer surface threshold of 628 kg m2 s−1. For this dataset,
we increased the number of epochs to test whether we could obtain a better prediction than
random guess with the GPT-J model.

As shown in Figure 123, we find that GPT-J models trained with 60 and 100 epochs
perform much better than random guess (shown by the dashed line) when using training
sizes larger than 10 data points, with an accuracy of 83% for a training set of 25 data points
and 100 epochs.

Therefore, three base LLMs, i.e., GPT-J, Llama, and Mistral, were fine-tuned using 100
epochs. We also trained two “traditional” ML models, i.e., XGBoost and random Forest
(RF), for comparison purposes. Table 55 and Figure 124 show that high accuracies were
obtained with the LLM models (80-87%). However, in this case, very high accuracy values
were obtained with RF and XGBoost (100%).
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Table 54. Example prompts and completions for predicting the specific heat transfer
surface and GOR.

prompt completion experimental

What is the specific heat transfer surface of a

<number of effects> effects evaporator for water

desalination with a steam temperature of <steam

temperature>◦C?

0 Low

What is the specific heat transfer surface of a

<number of effects> effects evaporator for water

desalination with a steam temperature of <steam

temperature>◦C?

1 High

What is the Gain Output Ratio (GOR) of a <num-

ber of effects> effects evaporator for water de-

salination with a steam temperature of <steam

temperature>◦C?

0 Low

What is the Gain Output Ratio (GOR) of a <num-

ber of effects> effects evaporator for water de-

salination with a steam temperature of <steam

temperature>◦C?

1 High

Table 55. Overview of the accuracy results of LLMs and “traditional” ML models for
binary classification (balanced classes) of the specific heat transfer surface. Five runs
were performed to get the metrics average. LLMs were fine-tuned with 100 epochs and a
learning rate of 0.0003. Maximum performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

25 GPT-J (LLM) 0.83 0.79 0.83 0.63
Llama (LLM) 0.80 0.76 0.80 0.57
Mistral (LLM) 0.87 0.82 0.87 0.69
RF 1.0 1.0 1.0 1.0
XGBoost 1.0 1.0 1.0 1.0
Zero-rule 0.50 0.50 0.50 0.00

As an example, Figure 125 shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-J model trained using a training set of 25 data points and 100
epochs. We can see that the model sometimes fails to predict the class with labels equal to
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Figure 123. Learning curves for binary classification GPT-J models (balanced classes)
for specific heat transfer surface fine-tuned with different number of epochs. Data points
indicate the mean value of five different experiments. Error bands show the standard error of
the mean. We used 0.50 as random guess accuracy (dashed line), representing the zero rule
baseline, i.e., a model that always predicts the most common class. Accuracy = 0.833±0.062
(epochs = 100, learning rate = 0.0003, training set size = 25 data points).

zero.

GainOutput Ratio (GOR) - BaseCase We also split the dataset into two classes of equal size
based on the GOR values separated by the median, i.e., 6.2. Figure 126 shows the results for
binary classification GPT-J models of GOR. Models trained with 60 and 100 epochs perform
much better than random guessing (shown by the dashed line), reaching an accuracy value
of 92% for a training set of 25 data points and 100 epochs.

We also fine-tuned three LLMs (GPT-J, Llama, and Mistral) and two “traditional” ML
models (XGBoost and RF) with the CO2 adsorption capacity dataset using 30 epochs. Ta-
ble 56 and Figure 127 show that the trained models perform much better than random guess
(shown by the dashed line). The highest accuracy (100%) was obtained with Mistral, but
high accuracy values were also obtained with all other models (92-93%) for training sets of
25 data points.

As an example, Figure 128 shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-J model trained using a training set of 25 data points and 100
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Figure 124. Learning curves for binary classification models (balanced classes) for spe-
cific heat transfer surface. Data points indicate the mean value of five different exper-
iments. Error bands show the standard error of the mean. We used 0.50 as random
guess accuracy (dashed line), representing the zero rule baseline, i.e., a model that al-
ways predicts the most common class. Accuracy: GPT-J=0.833±0.061, Llama=0.800±0.052,
Mistral=0.867±0.067, random forest=1.0±0.0, XGBoost=1.0±0.0 (LLM epochs = 100, LLM
learning rate = 0.0003, random forest and XGBoost=default parameters, training set size =
25 data points).

epochs. We can see that the model predicts the two dataset classes very well.

Specific heat transfer surface - Real Split To simulate a more realistic case, we trained bi-
nary classification models using unbalanced datasets to predict whether a multi-effect evap-
orator system has a specific heat transfer surface within the top 20% highest values of the
dataset (specific heat transfer surface threshold = 1000 kgm2 s−1). We fine-tuned three LLMs
(GPT-J, Llama, and Mistral) and two “traditional” ML models (XGBoost and RF) with the
CO2 adsorption capacity dataset using 30 epochs. Figure 129 shows that the GPT-J, Llama
models perform no better than random guess (shown by the dashed line), achieving an ac-
curacy of 80% when using a training set of 25 data points and 100 epochs. A slightly higher
accuracy was obtained with Mistral (84%). In this case, the ML models achieved higher
accuracy values (94% with RF, and 100% with XGBoost).
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Figure 125. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for predicting specific heat transfer surface with the GPT-J model. Mod-
els were trained using 25 data points and 100 epochs (accuracy = 83%).

Table 56. Overview of the accuracy results of LLMs and “traditional” ML models for
binary classification (balanced classes) of the Gain Output Ratio (GOR). Five runs were
performed to get the metrics average. LLMs were fine-tuned with 100 epochs and a learning
rate of 0.0003. Maximum performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

25 GPT-J (LLM) 0.92 0.92 0.92 0.85
Llama (LLM) 0.93 0.93 0.93 0.88
Mistral (LLM) 1.0 1.0 1.0 1.0
RF 0.92 0.91 0.92 0.83
XGBoost 0.93 0.91 0.93 0.84
Zero-rule 0.50 0.50 0.50 0.00

As an example, Figure 130 shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-J model trained with this unbalanced dataset using a training
set of 25 data points and 100 epochs. We can see that the model fails to predict high values
of the specific heat transfer surface (i.e., label = 1), which is the least represented class in the
dataset.

Gain Output Ratio (GOR) - Real Split We also trained binary classification models using
unbalanced datasets to predict whether a multi-effect evaporator system has a GOR value
within the top 33% highest values of the dataset (GOR threshold = 6.8). We fine-tuned three
LLMs (GPT-J, Llama, and Mistral) and two “traditional” ML models (XGBoost and RF) with
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Figure 126. Learning curves for binary classification GPT-J models (balanced classes)
for Gain Output Ratio (GOR) fine-tuned with different number of epochs. Data points
indicate the mean value of five different experiments. Error bands show the standard error
of the mean. We used 0.50 as random guess accuracy (dashed line), representing the zero rule
baseline, i.e., a model that always predicts the most common class. Accuracy = 0.920±0.049
(epochs = 100, learning rate = 0.0003, training set size = 25 data points).

the CO2 adsorption capacity dataset using 30 epochs. Figure 131 shows good performance
for all models, with higher accuracy values than random guess (shown by the dashed line).
Similar performance was obtained for all models (90-100%) when using a training set of 25
data points and 100 epochs.

As an example, Figure 132 shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-J model trained with this unbalanced dataset using a training
set of 25 data points and 100 epochs. We can see that the model can still predict the two
classes in the dataset quite well.
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Figure 127. Learning curves for binary classification models (balanced classes) for Gain
Output Ratio (GOR). Data points indicate the mean value of five different experiments. Er-
ror bands show the standard error of the mean. We used 0.50 as random guess accuracy
(dashed line), representing the zero rule baseline, i.e., a model that always predicts the most
common class. Accuracy: GPT-J=0.920±0.049, Llama=0.933±0.067, Mistral=1.0±0.0, ran-
dom forest=0.920±0.033, XGBoost=0.933±0.044 (LLM epochs = 100, LLM learning rate =
0.0003, random forest and XGBoost=default parameters, training set size = 25 data points).
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Figure 128. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for the prediction of Gain Output Ratio (GOR) with the GPT-J model.
Models were trained using 25 data points and 100 epochs (accuracy = 92%).
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Figure 129. Learning curves for binary classification models (unbalanced classes,
80/20%) for specific heat transfer surface. Data points indicate the mean value of five dif-
ferent experiments. Error bands show the standard error of the mean. We used 0.80 as a ran-
dom guess accuracy (dashed line), representing the zero rule baseline, i.e., a model that al-
ways predicts the most common class. Accuracy: GPT-J=0.800±0.063, Llama=0.800±0.052,
Mistral=0.840±0.040, random forest=0.940±0.031, XGBoost=1.0±0.0 (LLM epochs = 100,
LLM learning rate = 0.0003, random forest and XGBoost=default parameters, training set
size = 25 data points).
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Figure 130. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for the prediction of specific heat transfer surface with the GPT-J model.
Models were trained using an unbalanced dataset with 20% of labels equal to ‘1’, a training
set of 25 data points, and 100 epochs (accuracy = 80%).
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Figure 131. Learning curves for binary classification models (unbalanced classes,
67/33%) for Gain Output Ratio (GOR). Data points indicate the mean value of five dif-
ferent experiments. Error bands show the standard error of the mean. We used 0.67 as ran-
dom guess accuracy (dashed line), representing the zero rule baseline, i.e., a model that al-
ways predicts the most common class. Accuracy: GPT-J=0.900±0.068, Llama=0.900±0.068,
Mistral=1.0±0.0, random forest=0.980±0.020, XGBoost=0.967±0.033 (LLM epochs = 100,
LLM learning rate = 0.0003, random forest and XGBoost=default parameters, training set
size = 25 data points).
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Figure 132. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for the prediction of Gain Output Ratio (GOR) with the GPT-J model.
Models were trained using an unbalanced dataset with 33% of labels equal to 1, a training
set of 25 data points, and 100 epochs (accuracy = 90%).
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5.5 Detection Response of Gas Sensors

The dataset was provided by: Mehrdad Asgari23 and Fahimeh Hooriabad Saboor24

5.5.1 Scientific Background

Figure 133. AI generated represen-
tation of the rendering of a gas sen-
sor.

Sensors play a crucial role across various domains,
such as environmental monitoring, industrial safety,
and medical diagnostics. However, developing effi-
cient gas sensors poses significant challenges due to
the profound impact of material structure and com-
position on sensor performance. Investigating the
intricate relationships between material structure,
composition, and sensing response is essential for
designing and improving gas sensors with enhanced
sensitivity and selectivity. In this study, we focus on
two main types of gas sensors: core-shell and com-
posite. Building upon our previous research on core-
shell nanostructures’ effectiveness in sensing proper-
ties,89 we synthesized a comprehensive set of core-
shell and composite sensors with varying ZnO/SiO2
compositions. Given the complexity of sensor nanos-
tructures, traditional modeling approaches may fall
short, necessitating the exploration of new models ca-
pable of understanding this relationship. We evalu-
ated the selective detection of ethanol (C2H5OH) compared to interfering gases like carbon
monoxide (CO), methane (CH4), propane (C3H8), trichloroethylene (C2HCl3), and toluene
(C6H5CH3) in dry air.

Silica/ZnO core/shell gas sensors and composite nanostructured gas sensors were pre-
pared using two-step (Figure 134a) and one-step microemulsion methods,(Figure 134b) re-
spectively. The zinc oxide concentration in the samples ranged from 15% to 90% by weight.
The morphology of core-shell and composite sensors is illustrated in the Figure 135 and
Figure 136, respectively.

The powder samples were mixed in deionized water and ball-milled to create a uniform
paste. This paste was then screen-printed onto an alumina substrate, placed between two
gold electrodes spaced 1 mm apart, which were already present on the alumina surface (Fig-
ure 137). All sensors underwent drying at 80 ◦C and annealing at 480 ◦C for 2 hours. To
evaluate sensor performance, an experimental setup utilizing a continuous flow system was

23Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive,
Cambridge CB3 0AS, United Kingdom

24Chemical Engineering Department, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
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(a)

(b)

Figure 134. Sensor synthesis. (a) Illustration depicting the two-step microemulsion syn-
thesis process used to create core-shell sensors. (b) Diagram illustrating the single-step mi-
croemulsion synthesis process for producing composite sensors.

employed (Figure 138), exposing the sensors to various gases at temperatures from 300 ◦C
to 500 ◦C.

In this study, we develop a model to predict the sensing response as a function of sensor
type (core-shell and composite), zinc oxide content, and operating temperature. This model
can help better understand the underlying mechanisms responsible for the sensing behavior
and identify relationships between material properties and performance. This can guide
the development of intelligently designed sensors that operate within a specific temperature
range of interest, leading to discoveries and innovations in the field of sensor technology.

5.5.2 Dataset

The dataset contains 56 data points, including information on the type of sensor, i.e., core-
shell and composite, its zinc oxide content, and operating temperature.

We predict the sensor detection response. The dataset’s sensing response values distri-
bution is shown in Figure 139. To predict the sensor’s sensing response, we used the sensor
type (core-shell and composite), its zinc oxide content, and the operating temperature as
inputs.

We used a simple prompt template shown in Table 57 for experiments to predict sensor
response.
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Figure 135. SEM image displaying the morphology of a core-shell sample with 40 wt%
Zn.

Figure 136. SEM image displaying the morphology of a composite sample with 40 wt%
Zn.

5.5.3 LLM results

Base case To train the binary classification models, we split the dataset into two classes
of equal size based on the sensor detection response separated by the median, i.e., sensing
response threshold of 12. For this dataset, we have used 100 fine-tuning epochs. Otherwise,
we would have obtained a too-high number of NaN or invalid predictions with the GPT-J
model. We fine-tuned three LLMs, i.e., GPT-J, Llama, and Mistral, and we also trained two
“traditional” ML models, i.e., XGBoost and random forest (RF), for comparison purposes.
Table 58 and Figure 140 show that models trained with 100 epochs perform much better
than random guess (shown by the dashed line) when using training sizes equal to or greater
than 30 data points. Similar accuracy values (89-90%) are obtained with GPT-J, RF, and
XGBoost, and slightly lower values with Llama and Mistral (86-88%) for a training set of 45
data points.

As an example,Figure 141 shows an averaged (over five independent runs) normalized
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Figure 137. A schematic depiction of a sensor substrate coated with a paste of the sensing
material.

Figure 138. A schematic illustration of the flow-through gas sensor setup utilized in this
study.

confusion matrix for the GPT-J model trained using a training set of 45 data points and 100
epochs. We can see the good predictive performance of the model for the two classes in the
dataset.

Real split To simulate a more realistic case, we trained binary classification models using
unbalanced datasets to predict whether a sensor gives a response within the top 30% highest
response values in the dataset (detection response threshold = 20). Three LLMs (GPT-J,
Llama, and Mistral) and two “traditional” ML models (XGBoost and RF) were also fine-tuned
with an unbalanced dataset using 100 epochs. Figure 142 shows acceptable performance for
these models, which still perform better than random guess (shown by the dashed line).
Similar accuracy values are obtained for all the models when trained using an unbalanced
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Figure 139. Distribution of the dataset’s detection response of gas sensors. The median
sensor detection response is 12.

dataset using a training set of 45 data points.
As an example, Figure 143 shows an averaged (over five independent runs) normalized

confusion matrix for the GPT-J model trained with this unbalanced dataset using a training
set of 45 data points and 100 epochs. We can see that the model predicts the two classes of
the dataset quite well.

Table 57. Example prompts and completions for predicting the sensor detection re-
sponse.

prompt completion experimental

What is the sensor detection response of a <sensor

type> gas sensor that contains <ZnO content>% of ZnO

at an operating temperature of <temperature>◦C?

0 Low

What is the sensor detection response of a <sensor

type> gas sensor that contains <ZnO content>% of ZnO

at an operating temperature of <temperature>◦C?

1 High
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Table 58. Overview of the accuracy results of LLMs and “traditional” ML models for
binary classification (balanced classes) of the sensor response. Five runs were performed
to get the metrics average. LLMs were fine-tuned with 100 epochs and a learning rate of
0.0003. Maximum performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

45 GPT-J (LLM) 0.89 0.89 0.89 0.78
Llama (LLM) 0.86 0.86 0.86 0.72
Mistral (LLM) 0.88 0.87 0.87 0.76
RF 0.89 0.89 0.89 0.78
XGBoost 0.90 0.89 0.90 0.80
Zero-rule 0.50 0.50 0.50 0.00
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Figure 140. Learning curves for binary classification models (balanced classes) for sen-
sor response prediction. Data points indicate the mean value of five different experiments.
Error bands show the standard error of the mean. We used 0.50 as random guess accuracy
(dashed line), representing the zero rule baseline, i.e., a model that always predicts the most
common class. Accuracy: GPT-J=0.894±0.028, Llama=0.864±0.020, Mistral=0.879±0.045,
random forest=0.891±0.018, XGBoost=0.900±0.037 (LLM epochs = 100, LLM learning rate
= 0.0003, random forest and XGBoost=default parameters, training set size = 45 data
points).
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Figure 141. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for prediction of sensor detection response with the GPT-J model. Mod-
els were trained using a training set of 45 data points and 100 epochs (accuracy = 89%).
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Figure 142. Learning curves for binary classification models (unbalanced classes,
70/30%) for sensor detection response. Data points indicate the mean value of five differ-
ent experiments. Error bands show the standard error of the mean. We used 0.70 as a ran-
dom guess accuracy (dashed line), representing the zero rule baseline, i.e., a model that al-
ways predicts the most common class. Accuracy: GPT-J=0.873±0.046, Llama=0.894±0.036,
Mistral=0.836±0.018, random forest=0.864±0.024, XGBoost=0.817±0.052 (LLM epochs =
100, LLM learning rate = 0.0003, random forest and XGBoost=default parameters, training
set size = 45 data points).

180



0 1
Predicted label

0

1

Tr
ue

 la
be

l 0.9 0.1

0.2 0.8
0.2

0.4

0.6

0.8

Figure 143. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for prediction of sensor detection response with the GPT-J model. Mod-
els trained using an unbalanced dataset with 30% labels equal to 1, a training set of 45 data
points, and 100 epochs (accuracy = 87%).
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5.6 Stability of Gas Sensors

The dataset was provided by: Mehrdad Asgari25 and Sahar Vahdatifar26

5.6.1 Scientific Background

Figure 144. AI generated represen-
tation of the doping of SnO2-based
gas sensors.

Doping SnO2-based gas sensors with various addi-
tives can enhance not only their sensitivity and selec-
tivity but also, crucially, their long-term stability. For
instance, research has indicated that certain additives
have the potential to stabilize the performance of a
Pt/SnO2 sensor.90 Moreover, elevating the annealing
temperature during the synthesis process may miti-
gate the decline in sensitivity over time, thereby en-
hancing the sensors’ stability. It is noteworthy that
multiple factors, including compositions and anneal-
ing temperature, interact, complicating the develop-
ment of a model to elucidate the sensor’s behavior
over time.

Indeed, beyond the factors influencing stability,
the very definition of stability is crucial for assessing
whether a material is stable. This becomes increas-
ingly significant, particularly as the decay in sensor
sensitivity over time does not adhere to a linear or
easily definable pattern. Various sensors exhibit di-
verse deactivation mechanisms and behaviors, complicating establishing a clear definition
and prediction for sensor stability.

Herein, we aim to develop a model for predicting the stability of synthesized sensors
with varying compositions, utilizing a robust dataset derived from systematic experiments
conducted on our gas sensors of interest. In this case study, we focused on Pt/SnO2 nanopar-
ticles doped with various materials such as MoO3, CeO2, Sm2O3, and SiO2 to enhance the
long-term stability of gas sensors for carbon monoxide (CO) detection.91 Pure SnO2 and
SnO2 doped with 5.0 and 10.0 wt.% nano additives were synthesized by a sol-gel method,
which is used to precisely control the composition of gas sensors, and then these materials
were impregnated with 1.0 wt.% platinum. The effect of dopants and annealing temperature
during synthesis on the detection ability was analyzed.91

To assess the stability of the materials, we conducted accelerated stability tests on the
synthesized samples. These tests involved exposing the materials to air with 30% relative

25Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive,
Cambridge CB3 0AS, United Kingdom

26Department of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
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Figure 145. Schematic figure of the custom-build setup for aging synthesized sensors.

humidity at a custom-built setup designed for aging the synthesized sensors under con-
trolled conditions. A schematic figure of this setup used for this study can be seen in (Fig-
ure 145). The temperature of the aging was set at 600 ◦C with the duration of aging varying
up to 15 days. Subsequently, we evaluated the performance of the sensors through gas de-
tection tests, specifically targeting 100 ppm of CO at 250 ◦C. These tests were conducted
immediately after synthesis and repeated on days 5, 9, 12, and 15 to monitor any changes in
performance over time. The sensors were fabricated following the method outlined in the
previous section (Figure 137). Additionally, the sensitivity of the gas sensors to CO was mea-
sured using the setup described earlier (Figure 138).91 The difference in detection response
between days 5 and 15 served as a metric to gauge the stability of the gas sensors. Sensors
exhibiting a response loss of less than 20% were deemed to be highly stable.

In this study, we develop a model to predict whether a SnO2-based gas sensor is stable or
not as a function of the type of dopant material, its dosage, and the calcination temperature
during synthesis. This model could contribute to developing more stable and efficient gas
sensors.

5.6.2 Dataset

The dataset contains 19 data points, including information on the type of dopant material,
its dosage, and the calcination temperature during sensor synthesis.

We predict the stability of the sensor in the detection response. The dataset’s sensing
response loss distribution is shown in Figure 146. To predict sensor stability, we used the
type of dopant material, its dosage, and the calcination temperature during synthesis as
inputs.

We used a simple prompt template shown in Table 59 for experiments to predict sensor
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Figure 146. Distribution of the detection response loss of SnO2-based gas sensors in the
dataset. The median detection response loss between days 5 and 15 is 12%.

5.6.3 LLM results

Base case To train the binary classification models, we split the dataset into two classes
of equal size based on sensor stability separated by the median, i.e., response loss between
days 5 and 15 less than 12%. For this dataset, we used 120 fine-tuning epochs, as other-
wise, we obtained a high number of NaN or invalid predictions with the GPT-J model. We
fine-tuned three LLMs, i.e., GPT-J, Llama, and Mistral, and we also trained two “traditional”
ML models, i.e., XGBoost and Random Forest (RF), for comparison purposes. Table 60 and
Figure 147 show that the models trained with 120 epochs perform slightly better than ran-
dom guess (shown by the dashed line). The higher accuracy was achieved with the GPT-J
model (71%) for a training set of 15 data points, close to that obtained with RF (68%). The
performance was slightly lower with Llama and Mistral (63%), while very low accuracy was
reached with XGBoost (0.30%) for this dataset.

As an example, Figure 148 shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-J model trained using a training set of 15 data points and 120
epochs. The model sometimes fails to predict samples labeled ‘1’ or ‘0’.

Real split To simulate a more realistic, less restrictive case, we trained binary classification
models using unbalanced datasets to predict whether a sensor is stable. We define a sensor as
stable if it has a response loss of less than 20%. Data points with this response loss represent
63% of our overall dataset. Three LLMs (GPT-J, Llama, and Mistral) and two “traditional”
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Table 59. Prompt template and completions. This prompt was used to predict the sensor
stability.

prompt completion experimental

What is the sensor stability of a gas sensor

synthesized from Pt/SnO2 nanoparticles doped

with <dopant type> at a dose of <dopant dosage>

at an annealing temperature of <calcination

temperature>◦C?

0 Low

What is the sensor stability of a gas sensor

synthesized from Pt/SnO2 nanoparticles doped

with <dopant type> at a dose of <dopant dosage>

at an annealing temperature of <calcination

temperature>◦C?

1 High

Table 60. Overview of the accuracy results of LLMs and “traditional” ML models for
binary classification (balanced classes) of the sensor stability. Five runs were performed
to get the metrics average. LLMs were fine-tuned with 120 epochs and a learning rate of
0.0003. Maximum performances are highlighted in bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

15 GPT-J (LLM) 0.71 0.70 0.71 0.42
Llama (LLM) 0.63 0.56 0.63 0.25
Mistral (LLM) 0.63 0.58 0.63 0.25
RF 0.68 0.62 0.68 0.35
XGBoost 0.30 0.24 0.30 -0.40
Zero-rule 0.50 0.50 0.50 0.00

ML models (XGBoost and RF) were also fine-tuned with an unbalanced dataset using 120
epochs. Figure 149 shows that the LLM models perform slightly better than random guess
(shown by the dashed line) (79-83%) when using a training set of 15 data points. In this
case, the LLM models show a higher performance than RF (75%) and XGBoost (63%).

As an example, Figure 150 shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-J model trained with this unbalanced dataset using a training
set of 15 data points and 120 epochs. We can see that the model sometimes fails to predict
stable sensors (i.e., label = 1).
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Figure 147. Learning curves for binary classification models (balanced classes) for sensor
stability. Data points indicate the mean value of five different experiments. Error bands
show the standard error of the mean. We used 0.50 as random guess accuracy (dashed line),
representing the zero rule baseline, i.e., a model that always predicts the most common
class. Accuracy: GPT-J=0.708±0.077, Llama=0.625±0.056, Mistral=0.625±0.072, random
forest=0.675±0.065, XGBoost=0.300±0.073 (LLM epochs = 120, LLM learning rate = 0.001,
random forest and XGBoost=default parameters, training set size = 15 data points).
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Figure 148. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for the prediction of sensor stability with the GPT-J model. Models were
trained using a training set of 15 data points and 120 epochs (accuracy = 71%).
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Figure 149. Learning curves for binary classification models (unbalanced classes,
37/63%) for sensor stability. Data points indicate the mean value of five different ex-
periments. Error bands show the standard error of the mean. We used 0.63 as random
guess accuracy (dashed line), which represents the zero rule baseline, i.e., a model that al-
ways predicts the most common class. Accuracy: GPT-J=0.833±0.083, Llama=0.833±0.053,
Mistral=0.792±0.077, random forest=0.750±0.083, XGBoost=0.625±0.042 (LLM epochs =
120, LLM learning rate = 0.001, random forest and XGBoost=default parameters, training
set size = 15 data points).
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Figure 150. Normalized confusion matrix, averaged over five independent runs, on the
holdout test data for the prediction of sensor stability with the GPT-J model. Models were
trained using an unbalanced dataset with 63% of labels equal to 1, a training set of 15 data
points, and 120 epochs (accuracy = 83%).
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5.7 Gasification of Biomass

The dataset was provided by: Marı́a Victoria Gil and Covadonga Pevida27

5.7.1 Scientific Background

Figure 151. AI generated represen-
tation of bioenergy production.

Bioenergy is one of the key pillars that will decar-
bonize our global energy systems in the coming years.
Biomass is a versatile renewable resource that can
replace fossil fuels and generate negative emissions.
Gasification, which is the thermochemical conversion
by partial oxidation at high temperatures of a solid
carbonaceous feedstock into a gaseous product, is the
most promising route for biomass valorization due to
two main advantages of this process: high flexibil-
ity in terms of feedstock and versatility to produce
different energy carriers. In fact, the gaseous stream
produced, i.e., the syngas, can be used as fuel gas for
heat and power generation and as feedstock for pro-
ducing hydrogen, biofuels, and chemicals (see Fig-
ure 152).92,93

Gil et al. 94 developed a model to predict the main outputs of the biomass gasification
process from biomass properties and process conditions. From the predictions of the volume
concentrations of H2 and CO, the H2/CO ratio in the synthesis gas can be calculated. These
authors generated a dataset from this model, which included the gasification results of a
series of biomasses whose characteristics were extracted from the literature. Using the molar
H2/CO ratio in the syngas, it is possible to classify whether a particular type of biomass is
expected to be good for conversion to chemicals and fuels. This means to answer the question
of whether biomass gasification produces syngas with a H2/CO ratio greater than 1.8 since
high ratios are required to use the syngas to synthesize fuel and chemicals.95–98

Given the broad range of possibilities related to the diversity of available biomasses and
the versatility of the gasification gaseous product, predicting the syngas’ characteristics will
be crucial from a practical point of view to promote the development of the technology.
Therefore, in this work, we use our LLMs approach9 to build a machine learning model to
predict the H2/CO ratio in syngas obtained from biomass gasification using biomass prop-
erties as inputs.

27Instituto de Ciencia y Tecnologı́a del Carbono (INCAR), CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain
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Figure 152. Schematic representation of the biomass gasification case study.

5.7.2 Dataset

We used the dataset generated by Gil et al. 94 on the H2/CO ratio in syngas obtained from
biomass gasification at 1173 K, steam-to-air ratio of 2.33 and stoichiometric ratio (SR) of
0.25. The dataset contains 50 data points, including the main characteristics of different
biomass types, such as name, contents of C, H, O, ash, volatile matter (VM), and fixed carbon
(FC) (wt%, db), as well as moisture content (MC) (wt%) and higher heating value (HHV)
(MJ/kg).

We predict the H2/CO ratio in syngas from biomass gasification. The distribution of
this variable is shown in Figure 153. To predict the H2/CO ratio in syngas from biomass
gasification, we used the following variables as inputs: biomass name, contents of C, H, O,
ash, volatile matter (VM), fixed carbon (FC) (wt%, db), moisture content (MC) (wt%), and
biomass higher heating value (HHV) (MJ/kg).

We used a simple prompt template shown in Table 61 for experiments to predict H2/CO
ratio.

5.7.3 LLM results

Base Case To train the binary classification models, we split the dataset into two classes of
equal size based on the syngas H2/CO ratio separated by the median, i.e., 1.4. To avoid NaN
or not valid predictions, we tested different numbers of epochs with the GPT-J model, as
shown in Figure 154. We find that the model trained with 100 and 140 epochs performs bet-
ter than random guesses (shown by the dashed line), with an accuracy of 78% for a training
set of 45 data points and 100 epochs.

Therefore, three base LLMs, i.e., GPT-J, Llama, and Mistral, were fine-tuned /using 100
epochs. We also trained two “traditional” ML models, i.e., XGBoost and random Forest (RF),
for comparison purposes. Table 62 and Figure 155 show that the highest accuracy (87%) was
obtained with XGBoost. Lower performance was obtained with other models (68-78%).
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Figure 153. Distribution of the syngas H2/CO ratio in the dataset. The median of the
syngas H2/CO ratio was is 1.4.

As an example, Figure 156 shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-J model trained using a training set of 45 data points and 100
epochs. We can see that the model often fails to predict samples labeled ‘1’.

Real Split To estimate if the gasification process of a given biomass produces syngas with a
H2/CO ratio higher than 1.8, a binary classification GPT-J model was trained with an unbal-
anced dataset since the data points with such values represent the 30% of the overall dataset.
Figure 157 shows that this model does not perform better than random guess (shown by the
dashed line), obtaining an accuracy of 70% when using a training set of 45 data points and
100 epochs.

Three LLMs (GPT-J, Llama, and Mistral) and two “traditional” ML models (XGBoost and
RF) were also fine-tuned with an unbalanced dataset using 100 epochs. Figure 158 shows
similar accuracy values for the LLMs and RF (70-72%), and a slightly higher accuracy for
XGBoost (84%) when trained using an unbalanced dataset.

As an example, Figure 159a shows an averaged (over five independent runs) normalized
confusion matrix for the GPT-J model trained with this unbalanced dataset using a training
set of 45 data points and 140 epochs. We can see that the right predictions are close to the
random guess.

However, we obtained better predictions of the syngas H2/CO ratio values higher than
1.8 when we used a balanced dataset created by undersampling the majority class (label =
0) at the cost of reducing the size of the dataset. An accuracy of 70% was achieved with
the GPT-J model using a training set of 25 data points and 140 fine-tuning epochs, which
is slightly lower than that achieved with the initial balanced 50/50% larger dataset. The
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Table 61. Example prompts and completions for predicting the H2/CO ratio in syngas
from the inputs variables studied.

prompt completion experimental

What is the H
2
/CO ratio in syngas obtained

from steam gasification of <biomass name> with

C content of <carbon content>%, H content of

<hydrogen content>%, O content of <oxygen con-

tent>%, VM content of <volatile matter con-

tent>%, FC content of <fixed carbon content>%,

ash content of <ash content>%, MC (%) content

of <moisture content>, and HHV of <higher heat-

ing value> MJ/kg?

0 Low

What is the H
2
/CO ratio in syngas obtained

from steam gasification of <biomass name> with

C content of <carbon content>%, H content of

<hydrogen content>%, O content of <oxygen con-

tent>%, VM content of <volatile matter con-

tent>%, FC content of <fixed carbon content>%,

ash content of <ash content>%, MC (%) content

of <moisture content>, and HHV of <higher heat-

ing value> MJ/kg?

1 High

Table 62. Overview of the accuracy results of LLMs and “traditional” ML models for bi-
nary classification (balanced classes) of the H2/CO ratio in syngas obtained from biomass
gasification. Ten runs were performed to get the metrics average. LLMs were fine-tuned
with 100 epochs and a learning rate of 0.0003. Maximum performances are highlighted in
bold.

Size Model Accuracy F1 Macro F1 Micro Kappa

45 GPT-J (LLM) 0.78 0.74 0.78 0.54
Llama (LLM) 0.76 0.74 0.76 0.53
Mistral (LLM) 0.68 0.61 0.68 0.28
RF 0.76 0.72 0.76 0.51
XGBoost 0.87 0.81 0.87 0.68
Zero-rule 0.50 0.50 0.50 0.00
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Figure 154. Learning curves for binary classification GPT-J models (balanced classes) for
the H2/CO ratio in syngas obtained from biomass gasification fine-tuned with different
number of epochs. Data points indicate the mean value of ten different experiments. Error
bands show the standard error of the mean. We used 0.50 as random guess accuracy (dashed
line), representing the zero rule baseline, i.e., a model that always predicts the most common
class. Accuracy = 0.775±0.059 (epochs = 100, learning rate = 0.0003, training set size = 45
data points).

normalized confusion matrix in Figure 159b shows that the proportion of right predictions is
above the random guess in the case of a smaller balanced dataset. However, if we compared
these results with those in Figure 156, we can deduce that a slightly higher accuracy value is
achieved when using more training data points.
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Figure 155. Learning curves for binary classification models (balanced classes) for
the H2/CO ratio in syngas obtained from biomass gasification. Data points indicate
the mean value of ten different experiments. Error bands show the standard error of
the mean. We used 0.50 as random guess accuracy (dashed line), representing the zero
rule baseline, i.e., a model that always predicts the most common class. Accuracy: GPT-
J=0.775±0.059, Llama=0.756±0.056, Mistral=0.680±0.061, random forest=0.760±0.065,
XGBoost=0.867±0.054 (LLM epochs = 100, LLM learning rate = 0.0003, random forest and
XGBoost=default parameters, training set size = 45 data points).
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Figure 156. Normalized confusion matrix, averaged over ten independent runs, on the
holdout test data for syngas H2/CO ratio prediction with the GPT-J model. Models were
trained in an balanced dataset using a training set of 45 data points and 100 epochs (accuracy
= 78%).
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Figure 157. Learning curves for binary classification GPT-J models (unbalanced classes,
70/30%) for the H2/CO ratio in syngas obtained from biomass gasification fine-tuned
with different number of epochs. Data points indicate the mean value of ten different ex-
periments. Error bands show the standard error of the mean. We used 0.70 as a random
guess accuracy (dashed line), representing the zero rule baseline, i.e., a model that always
predicts the most common class. Accuracy = 0.700±0.068 (epochs = 100, learning rate =
0.0003, training set size = 45 data points).
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Figure 158. Learning curves for binary classification models (unbalanced classes,
70/30%) for the H2/CO ratio in syngas obtained from biomass gasification. Data points
indicate the mean value of ten different experiments. Error bands show the standard error
of the mean. We used 0.70 as a random guess accuracy (dashed line), representing the zero
rule baseline, i.e., a model that always predicts the most common class. Accuracy: GPT-
J=0.700±0.068, Llama=0.660±0.031, Mistral=0.667±0.047, random forest=0.720±0.044,
XGBoost=0.840±0.026 (LLM epochs = 100, LLM learning rate = 0.0003, random forest and
XGBoost=default parameters, training set size = 45 data points).
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Figure 159. Normalized confusion matrix, averaged over ten independent runs, on the
holdout test data for BET surface area prediction with the GPT-J model. Models trained
using an ‘unbalanced’ dataset with 70% of labels equal to 0, a training set of 45 data points
and 100 epochs (accuracy = 70%) (a), and using a ‘balanced’ dataset with a training set of 25
data points and 140 epochs (accuracy = 70%) (b).
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